The spectrum of the Laplacian and volume growth of proper minimal submanifolds

Bessa, G. Pacelli and Gimeno, Vincent and Polymerakis, Panagiotis (2021) The spectrum of the Laplacian and volume growth of proper minimal submanifolds. MPIM Preprint Series 2021 (15).

[thumbnail of mpim-preprint_2021-15.pdf]
Preview
Text
mpim-preprint_2021-15.pdf

Download (283kB) | Preview

Abstract

We give upper bounds for the bottom of the essential spectrum of properly immersed minimal submanifolds of $\mathbb{R}^n$ in terms of their volume growth. This result can be viewed as an extrinsic version of Brook's essential spectrum estimate [6, Thm.1] and it gives a fairly general answer to a question of S. T. Yau [26, p.240] about what upper bounds for the first eigenvalue (bottom of the spectrum) of immersed minimal surfaces of $\mathbb{R}^3$.

Item Type: MPIM Preprint
Subjects: 3 Geometry and topology > 58-XX Global analysis, analysis on manifolds
Divisions: Research > Preprints
Depositing User: Andrea Kohlhuber
Date Deposited: 18 May 2021 10:03
Last Modified: 18 May 2021 11:04
URI: https://archive.mpim-bonn.mpg.de/id/eprint/4545

Actions (login required)

View Item View Item