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Abstract

We give upper bounds for the bottom of the essential spectrum
of properly immersed minimal submanifolds of R™ in terms of
their volume growth. This result can be viewed as an extrinsic
version of Brook’s essential spectrum estimate [6, Thm.1] and it
gives a fairly general answer to a question of S. T. Yau [26, p.240)
about what upper bounds for the first eigenvalue (bottom of the
spectrum) of immersed minimal surfaces of R?

Mathematics Subject Classification (2000): 58C40, 53C42
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1 Introduction

Let M be a complete Riemannian n-manifold and let A = div ograd be
the Laplace-Beltrami operator (Laplacian) acting on C§°(M) the space
of smooth functions with compact support. The Laplacian has a unique
self-adjoint extension to an operator A: D(A) — L?(M) whose domain
is D(A) = {f € L3(M): Af € L>(M)}. The spectrum A is the set
of A € R for which Ker(A + AI) # {0} or (A + A)~! is unbounded.
We will refer to o(A) as the spectrum of M and denote it by o(M).
Those A’s for which Ker(A + AI) # {0} are the eigenvalues of M and
the elements of Ker(A + A\I) are the eigenfunctions associated to A. The
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set of all eigenvalues of M is the point spectrum o, (M) and the subset
of the point spectrum formed by the isolated eigenvalues with finite
multiplicity (dimKer(A 4+ AI) < oo) is called the discrete spectrum
o4(M). The essential spectrum is oess(N) = (M) \ oq(M), see [8].
When M is compact the spectrum of A is discrete while when M is
non-compact the spectrum may be purely continuous, (o,(M) = 0), like
the Euclidean space R"! purely discrete, (ocss(M) = 0), as the simply
connected Riemannian manifolds with highly negative curvature, [11]
or may be a mixture of both types, [9, 10]. The very basic question [25]
is for what geometries inf o(M) > 07 It was shown by McKean in [23]
that if M is a simply connected Riemannian manifold with curvature
Ky < —62 < 0 then info(M) > (n — 1)%6%2/4. Cheng has shown in
[7] that if M is complete with non-negative Ricci curvature Ricys > 0
then info(M) = 0. An curvature free estimate for the bottom of the
spectrum was obtained by R. Brooks in [6]. More precisely, let M be a
complete Riemannian manifold of infinite volume and v(r) = vol(By(r))
be the volume of the geodesic ball B, (r) of radius r centred at p € M.
Set
1 = limsup 7log(v(7")).
r—00 r
Brooks proved that inf oess(M) < p?/4.

It is a classical result due to Efimov-Hilbert that complete surfaces
with curvature K,, < —62 < 0 can not be isometrically immersed in
R3, see [12, 16]. Naturally one is lead to ask if a complete surface with
inf o(M) > 0 can be isometrically immersed in R? It turns out that the
examples, constructed by Nadirashvili [24] and the Spanish School of
Geometry [1, 19, 20, 21, 22], of bounded complete minimal surfaces of
R3 have inf o(M) > 0, see [3, 4, 2]. However, the question whether a
manifold with inf o(M) > 0 can be minimally and properly immersed
in the Euclidean space can is still valid. In some sense, it complements
the question raised by S. T. Yau in [26, p.240] when he asked what
upper bounds can one give for the bottom of the spectrum of complete
immersed minimal surfaces in R3 In this note we give a fairly general
answer to Yau’s question proving a Brook’s type upper estimate for
the bottom of the essential spectrum of properly immersed minimal
m-submanifolds of the Euclidean n-space. The extrinsic geodesic ball
Q, C M of radius r > 0 of a properly minimal immersion £&: M — R"
of a complete Riemannian m-manifold M into R™ with £(p) = o is the
pre-image £ ~1(B,(r)). The following result is an extrinsic Brook’s type
estimate for properly immersed minimal submanifolds.



Theorem 1.1 Let & M — R™ be a proper isometric minimal immersion
of a complete m-submanifold M of R™ with £(p) = o. The bottom of the
essential spectrum is bounded above by

inf oess(M) < m - liminf [r_2 log(vol(QT))] .

r—00

Theorem 1.1 has a number of corollaries. Let O(r) = vol(£2,)/vol(B™(r),
where B™(r) is a geodesic ball of radius r in the Euclidean space R™.
In [18], Lima et al., proved that if liminf,_,~ (log(©(s))/log(s)) = 0
then o(M) = [0,00). In particular inf oees(M) = 0.

Corollary 1.2 Let & M —R"™ be a complete properly immersed minimal
m-submanifold M of R™ with {(p) = o. If

lim inf 710{,{(@(7“))

r—00 r2

=0
then inf oe55(M) = 0.

Corollary 1.3 Let & M —R3 be a complete properly embedded minimal
surface M of R with £(p) = o and let r(r) = inf,eq, {K,, ()}, where
K,,(x) is the Gaussian curvature of M at x. If

Lo log(ls(r)

r—00 r2

=0
then inf oes5(M) = 0.
Corollary 1.4 Let £: M — R"™ be an isometric minimal immersion of

a complete m-dimensional Riemannian manifold into R™ with £(p) = o.
Suppose that for some o > 0

/ e~ IE@IP 41y (2) < oo,
M

Then the immersion £ is proper, see [14, Thm.1.1], and

inf oes5(M) < mo.



2 Poof of Theorem 1.1

A model n-manifold M}, with radial sectional curvature —G(r) along
the geodesics issuing from the origin, where G: R — R is a smooth even
function, is the quotient space

h=1[0,Rp) xS"7!/ ~

with (p,0) ~ (p,8) < p=p=0o0r p=pand § = 3, endowed with the
metric ds} = dp®+ h%(p)db? where h: [0,00) — R is the unique solution
of the Cauchy problem

W' —Gh = 0,
MO) = 1,
rR(0) = 0, k=0,1,...,

and Ry, is the largest positive real number such that h|g g,) > 0. The
model M7 is non-compact with pole at the origin o = {0} x S"~1/ ~ if
Ry, = oo. Observe that M = R", M, ) = H"(—1) and if h(t) = sin(t)
and Rj, = 7w then M:in(t) =S".

If G satisfies

1

G- e L'(R") and [*G_(s)ds < yr
then A/ > 0 in RT and M} is geodesically complete, [5, Proposition
1.21]. The geodesic ball centered at the origin with radius r < Ry, is
the set By(r) = [0,7) x S""!/ ~ whose volume and the volume of its
boundary are given respectively, by

V(r)=wn [y K" 1(s)ds and S(r) = w,h™ (r),

where w, = vol(S"~!). The Laplace operator on By (r), expressed in
polar coordinates (p, #), is given by

9?2 1h’8 1

NS U 1
a2 T = V3, Tt

Let p(z) = distmp (0, ) be the distance function to the origin o on M.
The hessian of p is given by the following expression

Hess (@) 1) = - (o(@) {{er.c) — dp@dplese)}, (1)



where {e1,..., e} is an orthormal basis of T,M}. Let ¢: M — M}
be an isometric immersion of a complete m-manifold into M. Suppose
that ¢(p) = o for some p € M. The function t: M — R given by
t(y) = p o o(y) is smooth in M \ ¢ ~1(0). The hessian of ¢ is given by

Hess ,,t(¢)(ei, e;) = Hess p plei,ei) + (grad p, a(e;, €;)).
Here we are identifying e; = dy - €;, see [17]. In particular,
m
—
Dytla) =) Hess  p(dp - ei,dy - ;) + (grad p, H). (2)
i=1

Let ¢: M — M} be a complete properly and minimally immersed m-
submanifold of M}’ with radial sectional curvature —G(p) <0, ¢(p) = o
and let . be the pre-image ¢~ (B,(r)).

Lemma 2.1 For almost any r > 0 we have that
h/
/ lgrad t| dv < m —(r) vol(€,).
o0, h

Proof: Let ¢: M — R given by
t ple(y))
o) = ([ 1sras) ooy = [ nepas.

At a point ¢ € M and an orthonormal basis {e1,..., e} of T,M that,
using (1) and (2), we have

Bt = X[l pe? + 600 (0) {lese) ~ tarad i)
=1

= mh'(p).

Since G > 0, we have that h”(s) = G(s)h(s) > 0 for s > 0, which
implies that A’ is non-decreasing. In view of Sard’s theorem, €, is
smoothly bounded for almost any r > 0. For any such r, we compute

m b (r)vol(,.) > /AM¢du
Q.

gradt >
= grad ¢, dv
/asz< jgrad?

— A / larad t|dv.
o0,
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Thus

W (r)
rad t|dv < m vol(§2,.).
[ tamadlay < ol

This proves Lemma 2.1.

Let H(l)(M ) be the space of square-integrable functions with square-
integrable gradient. Given a non-zero u € H§(M), set

Jur llgrad ul?

Jar v?

For r > 0, define u,: M — [0, +00) by

Vm—mww for z € Q,

0 else.

R(u) =

It should be noticed that u, € H(l)(M ), being compactly supported and
Lipschitz. Consider also the function

Uy

(fyu2)”

This renormalization gives rise to sequences of functions which converge
weakly to zero as the next lemma indicates.

Uy =

Lemma 2.2 For any sequence (rp)nen C (0, +00) with r,, — 400 we
have that vy, — 0 in L*(M).

Proof: For any ¢ > 0 we compute

/ W2 = fQ < rivol () < 16vol(€2.)
0 " T ﬂfﬂQ—k%A%fﬁv—%wmm>

Keeping in mind that (v, )nen is bounded in L2(M), this shows that
vy, — 0. This completes the proof Lemma 2.2.

The significance of considering sequences that converge weakly to
zero in order to estimate the bottom of the essential spectrum is illus-
trated in the following.

Proposition 2.3 Consider (vy)nen C H(M) with ||vn|lp2(a) = 1 and
vp — 0 in L2(M). Then the minimum of the essential spectrum of M
1s bounded by

inf oess(M) < limninfR(vn).



Proof: If the right hand side is infinite, there is nothing to prove. If
it is finite, we denote it by A and after passing to a subsequence if
necessary, we may suppose that R(v,) — A. Assume to the contrary
that inf oess(M) > A. Then

o(A)N (=00, Al = 0q(A) N[0, A] = {1, ., Akt

where \;’s are eigenvalues of the unique self-adjoint extension —A of
minus the Laplacian of finite multiplicity, for some k € N. Let E; be
the eigenspace corresponding to A; and denote by E their sum. Then the
spectrum of the restriction A|g1 of A to the L?-orthogonal complement
of F is given by 0(A|gL) = o(A) N~ {\1,..., A\x} and in particular, the
minimum of its spectrum is greater than A.

Writing v, = u, + w, with uv,, € F and w, 1L FE, we readily see
that u, — 0 and Au, — 0 in L?(M), since v, — 0 and F is finite
dimensional. This implies that

/ ]gradun|2 = —/ Uy, Ay, — 0.
M M

Moreover, we obtain that ||wn||f2(ar) — 1 and

/ lgrad w, |* = —/ lgrad (v, — up)|® = A
M M

We conclude that R(wy) — A, which yields that the minimum of the
spectrum of A|g. is less or equal to A, which is a contradiction, that
establishes Proposition 2.3.

Our goal now is to estimate R(v,) = R(u,). To this end, using the
co-area formula and Lemma 2.1, we compute

/]gradqu,u = /h2(t(m))]gradtl2du

T T

= /hQ(s)/ |grad t| dvds
0 s

o0
m /0 h(s)h!(s)vol(2)ds

AN

< mi(r) /0 " h(s)vol(Q,)ds.

It follows from [18, Lemma 2, Propositions 2 and 3] that vol({) is
locally absolutely continuous with

dvol(2,) / 1

ds 00, |gradt| .

7



and

/QT W = /0 (6(r) — ¢(s))? /a . |gr; s

= [ - ot s
0

) / (6(r) — B(s))¢ () vol(u)ds.

Thus, i
mh’(r)/o h(s) vol(2s)ds

2 /0 (6(r) — 6(5))h(s) vol(2,)ds

R(uy) <

Letting F(r) = /OT(¢(T) — ¢(s))h(s) vol(2s)ds we have that

F'(r) = h(r) /0 " h(s) vol(2,)ds.

Therefore,
m h'(r) F'(r)
= < = .
Relwn) = Rlur) < 530y Firy
When h(s) = s, i.e. the model Mj* = R this inequality reads as
log F'(r))
Rl < m{28E0)
T

for any r > 0. We deduce from Lemma 2.2 and Proposition 2.3 that

’
inf gegs (M) < mlim inf (log F'(r))". (3)
r——+o00 2r

Consider any ¢ € R with

!
¢ < lim inf 108 F M)

r—+oc 2r

Then for any € > 0 there exists r9 > 0 such that
(log F(r)) > 2(c —&)r
for any r > ro. Integrating gives that

log F'(r) — log F(rg) > (¢ — E)(r2 — 7’(2))

8



for any r > rg, which yields that
log F(r) — log F' (1)

log F
lim inf —2 (r) = lim inf
r—-+00 r2 r—-+00 r2 — 7*8

>c—e€.
We conclude from this together with (3) that

log I/
inf oess (M) < mliminf o8 2(1")
r—+00 T

This establishes Theorem 1.1. To prove the corollaries we proceed as
follows. Observe that vol(€2,.) = ©(r)vol(B"(r)) then

log(vol(£2;)) _ log(©(r)) n log(vol(B™(r))
2 2

r 72 r

Thus by Theorem 1.1

inf oss (M) < mlim inf <1°g(@(’"))> .

r—00 r2
This proves Corollary 1.2.

Given a unit normal vector field N : M — R3, consider the tubular
neighbourhood of ¢(£2,),

T.(Q)={yeR3: y=q+2N(q), —e<xz<e, q€M}

By [15, p.9] the volume of T¢(€2,) for € small enough is given by

62
vol(Te(€2)) = 2evol(Q,) + 23/Q K, (x)du(x)
< vol(B3(e+1))
an

= 3 (e—i—r)3.

On the other hand
2¢2 €
2evol(Q,) + 5 K, (z)du(z) > 2¢ (1 + gm(r)) vol(§2,).
o8
Choosing € < —%, 0 < a < 1 we have that

i (=)

-

- 1804(417T— a) (’" N 5(?))3 (=A(r))-

9

vol(€2,.)

IN




Thus

log([r(r)])

lim inf M < lim inf 5

T—00 7"2 r—00 'S

This proves Corollary 1.3.

Suppose that C = [}, elE@I” g (2) < oo for some o > 0. Then

C> / @I du(z) > e~ vol(Q)
Q,

for any r > 0. We derive from [14, Thm. 1.1] that the immersion ¢ is
proper, and the proof of Corollary 1.4 is completed by Theorem 1.1.
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