Asymptotically cylindrical steady Kähler-Ricci solitons

Schäfer, Johannes (2021) Asymptotically cylindrical steady Kähler-Ricci solitons. MPIM Preprint Series 2021 (10).

[thumbnail of mpim-preprint_2021-10.pdf]
Preview
Text
mpim-preprint_2021-10.pdf - Submitted Version

Download (598kB) | Preview

Abstract

Let DD be a compact Kähler manifold with trivial canonical bundle and Γ\Gamma be a finite cyclical group of order mm acting on C×D\mathbb{C} \times D by biholomorphisms, where the action on the first factor is generated by rotation of angle 2π/m2\pi /m. Furthermore, suppose that ΩD\Omega_D is a trivialisation of the canonical bundle such that Γ\Gamma preserves the holomorphic form dzΩDdz \wedge \Omega_D on C×D\mathbb C \times D, with zz denoting the coordinate on C\mathbb{C}.
The main result of this article is the construction of new examples of gradient steady Kähler-Ricci solitons on certain crepant resolutions of the orbifolds (C×D)/Γ\left( \mathbb{C}\times D \right) / \Gamma. These new solitons converge exponentially to a Ricci-flat cylinder R×(S1×D)/Γ\mathbb{R} \times(\mathbb{S}^1 \times D) / \Gamma.

Item Type: MPIM Preprint
Subjects: 3 Geometry and topology > 51-XX Geometry
Divisions: Research > Preprints
Depositing User: Andrea Kohlhuber
Date Deposited: 31 Mar 2021 09:55
Last Modified: 25 Apr 2021 17:25
URI: https://archive.mpim-bonn.mpg.de/id/eprint/4528

Actions (login required)

View Item View Item