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A.5 Zum Gradienten 75

A.5 Zum Gradienten

Wir zeigen: Sei U C R offen und zu je zwei Punkten P und @Q gebe es einen
Weg ¢ : [a,b] — U mit ¢(a) = P und ¢(b) = Q. Weiter seien fy, f; : U — R zwei
Funktionen mit grad f; = grad f;. Dann gibt es ein k € R mut fy = fo + k.

Beweis. Wir definieren eine Funktion h : U — R durch & := f; — f-. Dann
gilt wegen der Voraussetzung gradh = 0. Zu zeigen ist, das A = k fiir
ein k € R gilt. Dazu betrachten wir zwei beliebige Punkte P,Q € U und
einen Weg ¢ : [a,b] — U in U zwischen P und Q. Die Kettenregel liefert
wieder

(hoe)(t) = (grad hlc(t)), c'(2)).
Wegen gradh = 0 ist nun {grad h(c(t}), ¢'(t)) = 0, also h o ¢ konstant.
Daraus folgt, daB8 A(P) = h(c(a)) = h{c(b)) = h(Q) gilt. Also ist fur
beliebige Punkte P,Q € U gezeigt, daB A(P) = h(Q) gilt, also ist A
konstant.

A.8 Stammfunktionen zu Vektorfeldern

Es sei U eine Teilmenge des R™ und F : U — R" ein gegebenes Vektorfeld.
Eine Funktion ¢ : U — R mit grad ¢ = F' heift Stammfunktion zu F.

Uns interessiert nun, wann es solch eine Stammfunktion gibt, Dazu betrach-
ten wir zunédchst folgenden Spezialfall:

» Essei n = 2 und F gegeben durch die Funktionen f,g: U — R. Nehmen
wir an, es gebe eine Funktion ¢ mit grad¢ = F, also F' = (38,%, ::;).
Dies bedeutet, daf§ gerade f = 5‘9-3% und ¢ = -5%‘% ist. Dann ist aber

'b'zL 3—5"— und 2L = _22¢_ Wenn nun ¢ von der Klasse C! ist, dann
2 11 T2

8z, B:; £y

8 8 8
mz—: ﬁ-, also gilt dann -&—f— = 3—:9‘-

Analo 15 zei t man allgemein: Wenn es ein ¢ € C! mit F = grad ¢ gibt, dann
gllt.b—J- Fhﬁlrallezj

Wir kénnen uns nun fragen: Wenn umgekehrt -gf'- = gf;’_- gilt, gibt es dann
eine Stammfunktion ?

Die Antwort liefert der folgende

Satz. Es sef U ein Rechteck im R™, d.h ein kartesisches Produkt von offenen
fi
Intervallen in R. Weitersei F=| . | : U > R” mit f; : U — R eine
fn
differenzierbare Funktion mit 3-':’- . Dann gibt es eine Stammfunk-
tion ¢ : U — R mit F = grad ¢.

Beweis. Wir filhren den Beweis fiir den Falln =2 mit fy = f und fa =g. Im
allgemeinen Fall schlieft man ganz analog.
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1. Introduction

In a remarkable series of papers {14-17], V.A Kolyvagin introduced a new descent
method based on properties of ”Euler systems”, which enabled him to prove, among other
things, the finiteness of the Tate-Safarevi¢ groups of certain elliptic curves.

In the present work we apply the method of Euler systems to modular forms of higher
(even) weight, obtaining some information about algebraic cycles on the corresponding
Kuga-Sato varieties

More precisely, one may associate to every newform f € S7¥(I'g(NV)) with rational
coefficients a motive M = M(f) of rank 2 over Q (U.Jannsen, A.J.Scholl).Its I—adic
realization M is a two dimensional representation of G(Q/Q) which appears as a factor of
the cohomology group H2Y (Y @ Q, Qi), where Y is a suitable smooth compactification of
the (2r—2)—fold fibre product of the universal elliptic curve (with the full level N structure)
over the modular curve X(N). The I—adic Abel-Jacobi map (over any extension K of Q)

CH™(Y/K)o — Hiont(K, H T (Y © Q, Qu)())

induces a map

®:CH™(Y/K)y — H_, (K, Mi(r))

(here CH™(Y /K)o denotes the group of homologically trivial cycles on Y defined over X,
modulo rational equivalence).

If K is an imaginary quadratic field in which all primes dividing N split, we may
define a Heegner cycle

yeCH(Y/K) @ Qu

Its image yo = ®(y) lies in the (—e)—eigenspace under the action of the non-trivial
element of G(K/Q), where ¢ = %1 is the sign in the functional equation of the L—series
L(f,s).

Theorem. Suppose that [ does not divide 2(2r — 2)INp(N). If y, is non-zero, then
(Im(2))*® Qi =0, (Im(®))™" ® Q= Qiy
and an analogue of the I—primary part of the Tate-Safarevi¢ group is finite.

A similar statement is proved for newforms with not necessarily rational coefficients.
This result gives a new piece of evidence in favour of Bloch-Beilinson’s conjectures on the
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properties of motivic L—series at the centre of the critical strip (see [12]): the conjectures
predict that the dimension of Im(®) is equal to the order of vanishing of the L—function
of the modular form f over the field K at the centre of the critical strip. The results
of Gross-Zagier [10] and Brylinski [3] suggest that in our situation the order of vanishing
is equal to one precisely when the ” f-component” of the Heegner cycle y has non-trivial
height. There are some grounds to the belief that the latter occurs if and only if yo is
non-zero (cf. the discussion at the end of sec.13).

The proof follows rather closely the presentation of B.Gross in [9]. Some modifications
are necessary, however, as the whole construction is to be carried out in terms of the
Galois representation M;(r) alone. This is the reason why Kolyvagin’s corestriction and
its properties under localization are treated perhaps at greater length than necessary. The
calculations made in sec.9 confirm that the construction of "derived Euler systems” works
solely in terms of the associated "Tate module”, as suggested in [21].

This work has been done in the Max-Planck-Institute fiir Mathematik. I would like to
express my gratitude for its support and hospitality. My thanks are also due to U.Jannsen,
N.Schappacher and C.Schoen for helpful discussions.

2. Kuga-Sato varieties

In [26], A.J.Scholl constructs motives attached to holomorphic cusp forms on congru-
ence subgroups. In this section we briefly recall his results.

Fix integers N > 3, w > 1. Let Mn be the affine modular curve over @ parametrising
elliptic curves with full level N structure and let j : My — :l\—d?N be its smooth compacti-
fication classifying generalized elliptic curves.

Denote by # : Xy — My the universal elliptic curve and by ¥ : Xy — Muy the
universal generalized elliptic curve, which is smooth and proper.

Consider the w—fold fibre product Ty, : X y — M N of X § with itself over My and put
X =71 Mn).

The level N structure on X v gives a homomorphism of group schemes over M x
(Z/N? x My — Xy

where ER{ 15 the Néron model of X over HN, namely the open subscheme of X y on
which 7 is smooth. Therefore (Z/N)? acts by translations on X y. Multiplication by —1
in the fibers defines an action of the semidirect product (Z/N)*xpus on X n.

The symmetric group %, on w letters acts on T;V by permuting the factors. Hence the
semidirect product

Ty := ((Z/N)*xpz)¥%E,

acts on j(-;q by fibre-preserving automorphisms.

Let ¢ : 'y, — {£1} be the homomorphism which is trivial on (Z/N)?¥, is the product,

map on x3 and is the sign character on £,,. Let II, € Z[1/(2N.w")][T',,] be the projector
associated to e.



Consider the canonical desingularization ?: described in [5] and [26]. By its canonical

—w
nature the action of I'y, extends to X . Fix a prime number p not dividing 2N.w! . One
of the main results of [26] is the description of the parabolic cohomology group

H;t(HN ® -Qaj-ksymw(Rl W*Z/pM))

1w
in terms of the compactification X y:

Proposition 2.1.(26,1.2.1) H), (M n®Q, j.Sym®(R!7,Z/pM)) = L H: (X n®Q, Z/p™) .

Strictly speaking, the theorem stated in [26] deals only with Q,—coefficients, but its
proof is valid in our situation as well. In fact, it will be crucial to consider cohomology
with finite coefficients.

Lemma 2.2. Put Fy := Sym™(R'7,Z/p™) and let ..’F = lim 7 be the corresponding
p—adic sheaf. Then the parabolic cohomology group HL (M n ®Q, 7+F) is torsion free and

H(My ®Q,juFu) = Hoy(Mn ® Q,5.F)/p"

(always under the assumption pf2N.w!).
Proof. As My is not complete, H2(Mn ® Q, Far) = 0. The monodromy of F at cusps

is given by
1 N
Sym® (
0 1

and its SL(2, Z)—conjugates. The condition on p then implies that HSL(HN RQ, Fu) =0.
The only nonvanishing cohomology group HL(Mny ® Q,Fsm) must be, therefore, a free
Z/p* —module of rank r independent of M (by SGA 41 Rapport sur la formule des traces,

Th.4.9). Thus HL(My ® Q,F) ~ Zr  and its subgroup HY(Mny ® Q,j.F) is torsion
free. By Poincaré duality,

Hi(MNn®Q,juF) = HX(MN B Q,F) = Hy(Mn ® Q,F(1 —w))¥ =0
(as FY = F(—w)) and the second statement follows from [18,V.1.11].

We now recall the definition of Hecke operators (cf. [5],[26]). Fix a prime ! not dividing
N. Let My, be the modular curve over Q classifying elliptic curves E with a level N
structure and a subgroup C C E of order . The fibre product Xy = Xn Xary Mn1 is
the universal elliptic curve over My equipped with a level N structure and a subgroup
scheme C of order I. Write X} N for the fibre product X§ xay My .

Let @ be the quotient of Xn; by C, with the level structure coming from that on Xy
and let Q¥ be its w-fold fiber product over My ;. Consider the diagram :

oS oxp, L v Xy

! ! ! l

My «— Myi = Myi — My

P2
LN
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in which the first and third squares are cartesian. The Hecke correspondence T; on X3,
defined by

Ti= prb*ds

induces endomorphisms 7 of H} (X} ®Q,Z/pM ). Define the Hecke correspondence - still
—w =w =t

to be denoted by T; — on X  as the closure of the graph of T; on X X X .

In order to deal with forms of level N = 1,2 one replaces N by 3N and then takes invariants
under the kernel of the reduction map GL(2,Z/3N) — GL(2,Z/N). This can be done
as far as p does not divide 6(2r — 2)! .

3. Modular forms and Galois representations

The parabolic cohomology group H} (M nx ®Q, j.F) contains p—adic Galois represen-
tations associated to all cusp forms of weight w + 2 on the full congruence subgroup T'(N).
We shall be interested, however, only in forms on I'g(V) with the trivial character. Let
w + 2 = 2r > 4 be even and suppose that

F=an® € SpE(To(N))

is a normalized (a; = 1) newform of weight 2r on I'¢(N). Let B = T'o(IV)/I'(N) be the
Borel subgroup of GL(2,Z/N) and put Ilp := (§B)~" Y ,cpb € Z,[B] (assuming that
p does not divide Np(N)).

Consider . . . .
Ji=NpH\(MN ®Q,j.F)(r) = Hy(Mn ® Q,5.F)(r)®

Let T C End(J) be the subalgebra generated by the endomorphisms induced by all Hecke
operators T; for primes ! not dividing N. The field F = Q(a;, aq,...) generated by the
coefficients of f is a totally real field of finite degree over Q and the coefficients themselves
lie in its ring of integers Op. Write I for the kernel of the morphism T — OpF sending
T; to a; for all primes [ not dividing N. Put A:= {z € J|I.z =0}, Aq:= A® Q.

Since f is a newform, there exists a T[G(Q/Q)]—equivariant map r : J — A such that
r|a = p™ for some m > 0. Fix such a map.One may take m = 0 if there is no congruence
f = f*(mod p) between f and another Hecke eigenform f* on I'g(N) modulo any prime
p dividing p.

Proposition 3.1.

(1) Ais afree Op ® Z,—module of rank 2 equipped with a continuous Op—linear action

of the Galois group G(Q/Q).
(2) There exists a G(Q/Q)—equivariant skew-symmetric pairing
[, ]:AxA—Z,(1)

satisfying
[Az,y] = [z, Ay], z,y€A MIe€Or®Z, ,
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such that the induced pairings
[, Im: A/PMAx A/pM A — pyu

are non-degenerate for all M > 0.
(3) If I is a prime not dividing Np, then the characteristic polynomial of the anthmetm
Frobenius element Fr(l) acting on A is equal to

det(l1 —zFr(l)]4) =1 — a;/I" 'z + Iz?

(4) 1N, then det(1—zFr(l)]Ar) = 1—ai/I" 'z and a; = 0 or —efI" !, where ey = +1
is the eigenvalue of the Atkin-Lehner involution Wy acting on f : fIWi=e€s4.f .

Proof. (1) Since f is a newform, Aq is a free F' ® Qp—module of rank 2 and we know
that A is torsion free. As all T} are defined over Q, the Galois action is Of—linear.
(2) Poincaré duality furnishes us with a skew-symmetric G(Q/Q)—equivariant pairing

[, ]<P>;JxJ;>zp(1)

satisfying [Tiz,y]? = [z, Tiy] "), As |, ]g) is nondegenerate on Jq and the same is true
for its restriction on Aq, the dual of A

A* = {z € Aqllx, A" € Z,(1)}

has the form A* = «™! 4 for some u € Or @ Z, and we put [z,y] = [u‘lm,y]g)
(3) is the Eichler-Shimura relation (see [5,4.9]).
(4) is a combination of [4,Th.A] and [1,Th.3].

The Galois module A is a higher weight analogue of the Tate module of a modular
elliptic curve and the pairing [ , ] replaces the usual Weil pairing.

According to [26], Aq is the p—adic realization of a certain motive M = M(f) over Q
with coefficients in F. In this language, Prop. 3.1 simply says that MY = M(-1) and

L(MY,s)=L(f,s+r—-1)= Z apn =T

n=1

(including the Euler factors at primes {|N).
This L—series satisfies the functional equation (see [28,3.66])

A(s) := N*/2(2m) ™D (s +r = 1)L(MV,s) = e A(2— 5)

where e, = (=1)"" ¢



4. Algebraic cycles and Abel-Jacobi map

The value of the L—series L(MY,s) at the centre of the critical strip s = 1 is con-
jecturally related to the group of codimension r cycles on the Kuga-Sato variety. Before
we describe the conjectural relationship, which is a natural generalization of Birch and
Swinnerton-Dyer’s conjecture, we recall some definitions.

If V is a smooth variety over a field I{, p a prime number different from char( '), one
may define an étale version of the Abel-Jacobi map

$: CH(V/K)o — Hlow (K, HY (VO T, 2,(r))

where

CH"(V/K)o = Ker[CH"(V/K) — HY (V@ K, Z,(r))]

is the group of homologically trivial cycles of codimension r on V defined over I, modulo
rational equivalence. One definition of ® uses the Hochschild-Serre spectral sequence

E}Y = Hlow (K, H(V ® K, 2,(r))) = Hlgnl(V, Zp(7))

and the fact that the cohomology classof Z € CH™(V/K)p liesin F1HZ (V. Z,(r)): ®(Z)

cont
is by definition its image in Ey*"~". Alternatively, the diagram
0 — HYT(TV.2,(r) — HYTV-Z.2,0) — HEV.Z() —
0 — HY YV, Z,(r) — E — 2, Z — 0

defines an extension of continuous G(I /K )~modules Z, and HY " (V@E, Z,(r)) and the
class of this extension is ®(Z). See [11,12] for more details on continuous étale cohomology
and the Abel-Jacobi map. We shall need later on some information on its behavior over
local fields, part of which is provided by the following lemma :

Lemma 4.1. Let I{ be a finite extension of Q;, V a proper smooth variety over Ii'. Let

A=HW(VOK,2Zy(r)) =lim(4, = HI (VO K,Z/p"(r)))

If p is a prime different from !/, then

H (K, A) = HY (K*7 /K, A)
i.e. consists of unramified cohomology classes.
Proof. As ! # p, one has
Hpno(K, A) = lim HY(K, A,) = lim B (K'/K, A,)
n

—
Tt

H
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where K* is the maximal tamely ramified extension of K. The Galois group G(K*/K) is
generated by two elements ¢, T satisfying the relation prp™! = 1}, where A = I¢ is the
cardinality of the residue field of I, 7 generates G(K*'/K"") ~ [ ., Z,(1) and ¢ is a lift
of the arithmetic Frobenius Fr(A) € G(L*"/K).According to the proper and smooth base
change theorems, the modules A,, are unramified, hence we get an exact sequence

0 — HL (K*/K,A) — H! (K'JK,A) — HL_ (K'/K"" 4)FFE"/O
with Héont(Kt/Kw, A) ~ Homcom(G(I(‘/I{“’“), A) ~ A (evaluation at 7) and

Hlono (K /K7, A)FETO ~ {a € Al(p = A)(a) = 0}

which is zero by Weil’s conjectures.

=2r-2
Returning to the situation of previous sections, let V = X5  be the Kuga-Sato
variety and p a fixed prime not dividing 2(2r — 2)IN¢(N).The Abel-Jacobi map composed
with the projections I, IIp introduced in sec.2 and sec.3 induces a map

=2r—2
®: CHr(XN /I{)U - Hc]ont(Ki J)

(recall that J is the parabolic cohomology group for Io(N)).

Since the Abel-Jacobi map commutes with automorphisms of the underlying variety, @
=2r—-2

factors through HC(CH”(XJ /K)o ® Z,). According to Prop. 2.1,

MLHY Xy ©Q,Z(r)) =0
HT( Xy ®Q,Zy(r)) = )

hence
—2r—=2 . ~ =2r—2
M(CH(Xy [K)®Zy) =1l (CH'(Xy [K)®Zp)

over any extension K of Q.

Finally, composing with the map r : J — A, we obtain

—=2r—2
@faK : HC(CHF(XN /I{) ® ZP) — Hclont.(I{’ A)

Proposition 4.2. The map ®; x is T—equivariant. If K/Q is Galois, @7k is also
G(K/Q)—equivariant.

Proof. The Abel-Jacobi map commutes with correspondences and the Galois action.

Now we are ready to state the promised generalization of Birch and Swinnerton-Dyer’s
conjecture:



Conjecture 4.3. (A.A Beilinson, S.Bloch, see [12]) For each number field K,

dimq, (Im(®s k) ® Qp) = orde=1 LMY @ K, 5) = ord,=,L(f @ K, 5)

In particular, if K = Q(v/—D) is an imaginary quadratic field with discriminant —D, then
dimq, (Im(®7,x)* ® Q,) = dimq, (Im(2,q) ® Qp) = ords=,L(f, 5)

dime(Iln(quK)_ ® QP) = Ol‘d3=,..L(f ® Xa 3) )

where the signs + refer to (£1)-eigenspaces with respect to the action of the non-trivial
element in G(K/Q) and y is the Dirichlet character corresponding to K/Q.

5. CM cycles.

=2r-2
In this section we define certain algebraic cycles of codimension r on X  coming

from elliptic curves with complex multiplication. Our construction is modelled on [23,25].

Let z € Mn(C) correspond to an elliptic curve E = E; with complex multiplication
(equipped with a level N structure). Then R = End(E) is an order of discriminant —D
in the imaginary quadratic field K = Q(v/-D). Fix one of the square roots /=D € R.
Write A C E x E for the diagonal and 'y C E x E for the graph of any a € R. The
Néron-Severi group NS(E x E) is a free abelian group of rank four. Define Zg to be the
image of the divisor I' /=5 — (E x {0}) — D({0} x E) in NS(E x E). It lies in the free
rank one Z-module (E x {0}, {0} x E,A)t C NS(E x E) and changes sign when /=D is
replaced by —/—D.

The choice of \/—D fixes not only Zg, but also all Zg: for E' isogeneous to E : for
an isogeny f : E — E' we fix the sign of Zg, by requiring (f X f).Zg = cZg with ¢ > 0.
To check that this is independent of f, by composing with the dual isogeny to f one is
reduced to prove that (h X h).Zg = ¢Zg with ¢ > 0 for all A € End(E). And indeed,
(h x h). acts on NS(E x E) by deg(h). In more down-to-earth terms, we simply insist
that +/~D'/+/—D should be positive under the canonical identification R@ Q ~ R' ® Q.
Proposition 5.1. Let f : E — E’ be an isogeny between CM-elliptic curves with
R = End(E), R' = End(E"), =D = disc(R), —D' = disc(R'). Then
(1) (f x f)Zp = (deg(f))(D/D')"/*Zp.
(2) (f x £)"Zp = (deg(£))(D'/D)'/*Zp.
Proof. One has (f X f)uZg = ¢Zg: for some ¢ > 0 (in NS(E x E) @ Q, possibly). The
constant ¢ can be computed from (f X f)«Zg - (f X f)uZg = (deg(f))?, Zg - Zg = —2D
and Zg - Zg = 2D’
Similarly, (f x f)*Zg = ¢ Zg with ¢’ > 0, hence by the projection formula ¢'(f X f).Zg =
(deg(f))*Zg and we conclude by (1).
Corollary 5.2. Assume deg(f) = {is a prime.
(1) If (52) = —1, then D' = DI? and (f x f)«ZE5 = Zp.

(2) If (#) = -1, then D = D'l and (f x f)*Zg = Zp.
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Proof. In the first case, Ker(f) cannot be an R-module, hence D' = DI?. In the second
case we apply the same argument to the dual isogeny of f.

We now apply the above construction to the elliptic curve E = E, which is supposed
to have a complex multiplication. Suppose that Dy,...,D,_; are divisors in £ X E. Let
K be a common rationality field of E and all D;. Let

===2r—2
i mply(e) = B o X

be the inclusion of the fibre over z into the (desingularization of ) Kuga-Sato variety. Then
=2r—
tu(D1 X ... x D._1) is a cycle of codimension r on X y

Lemma 5.3. The Abel-Jacobi image of II,¢.(Dq X ... x D,_;) under

2r—2
$:N(CH Xy /[/K)®Z,)— HL (I, A)

depends only on the classes of D; in NS(E x E).

Proof. If D! has the same class as D; in NS(E x E) (1 £¢ < r — 1), then the cycle
z:= (D1 X ...x Dp_q)— (D] x ... x Dj_;) is homologically trivial already in the fiber
Tan_o(2). The Abel-Jacobi image of II,i,z lies, therefore, in the image of

— —2r—2 —_
Hgont(I(i Hztr‘3(7r2_rl—2(x) ® Q, Zp(r - 1)) — Hgont(I\’7 HGH:LTHI(XN ® Q) ZP(T)))‘J
which is trivial by Prop. 2.1.

Let K = Q(v/~D) — C be an imaginary quadratic field of discriminant —D, in
which all prime factors of NV split. Write Ok for the ring of integers of K. Choose an
ideal A of Ok with Oy /N ~ Z/N. The inclusion O — A ™! induces a cyclic N-isogeny
C/Oxg — CJ/N ! between two complex tori, hence a point z; of the modular curve

Xo(N). By the theory of complex multiplication, z; is rational over K, the Hilbert class
field of K.

Let n > 1 be an integer prime to N and O, := Z + nOg. Again, one has a cyclic isogeny

C/0, — C/(O, NN)™!, which defines a point z,, on Xo(N). The point z, is rational
over K,,, the ring class field of conductor n over K. In the tower of extensions

Q- Ko K — K,

one has G(K/Q) = {1,¢},G(K1/K) = Pic(Ok), Gn = G(Kw/K1) = (Ok /n)* O} (Z/n)*. "
Here c is complex conjugation, which lifts to K, and makes G([,,/Q) a semidirect product
of G(K,/K) and {1,c} with c—action on G(K,/K) by coc™ = o™!. If [ is a prime inert
in K, then I(;/K is ramified only at { and Gy = G(K;/K1) is cyclic of degree (I +1)/uy,
where ux = (§0%)/2 (= 1 for D # -3, —4).

Using our fixed embedding of I{ into C we fix square roots of discriminants of all orders
of Ok by insisting that their imaginary part should be positive. Let n be squarefree and
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prime to N - D -p. Write s for the canonical projection My — Xo(N). Choose any
z € £~ 1(z,). The corresponding elliptic curve E, has endomorphism ring End(E ) =0,

with discriminant Dn?. Let i, be the inclusion of the fibre 75" ,(z) into XNr and denote
by ya the Abel-Jacobi image of I1,(7,).(Z 11) under

—=2r—-2
N(CH'( Xy /K.)®Z,) — Hgont(K,,, J)

Note that y, is independent of the choice of z, since the averaging over all z € k™1(z,)
has been built into the definition of ®.

Proposition 5.4. Assume that n =1.m , where [ is inert in K. Then
Tiym = UK - cOrK, K, (Yn)

Proof. We first compute the action of T; ( = T}* in the notation of [25]) on (i,,)...(Z};:l)
for z € k7 '(z ) : according to Prop. 4.2, Cor. 5.2 and Lemma 5.3 it is equal to

Y (25

¥

where ! + 1 points y € My correspond to [—isogenies E, — E_, compatible with level N
structures. By the theory of complex multiplication, the set {x(y)} consists of wx orbits
of z, under the action of G(K,/Kn) ~ G(K1/K1) ~ Z/((1 + 1)/ur)Z. As the Galois
action on Zg’s comes from that on My, the claim follows.

6. The Euler system

In the last section we have constructed cohomology classes v, € HL  (K,,J). Us-
ing the map r : J — A from sec.3, we obtain new classes, still to be denoted y,, in
H} (K, A). From now on, we shall consider only square-free n of the form n = ly... I,
where all [; are primes inert in X not dividing NV - D - p. We also assume that D # -3, —4,
but the method applies for D = —3, —4 as well: sometimes the value uy appears in the
formulas and occasionally a factor p has to be taken into account to compensate for this
if uk 1s divisible by p, i.e. for p = DD = 3. The main result, Theorem 13.1, remains
unaffected, however.

Under these assumptions, we have G, = G(K,/I;) = H, in Gt with Gy cyclic of order
I+1. Fix, once for all, a generator o7 of G;. If n = m -1, then, by class field theory, A splits
completely in I{p, /I and all its factors A,, are totally ramlﬁed in Ko /Km: A = (A )H'l.
Write K, Ka,, for the corresponding completions of K, at A, resp. Ky, at Ay,
Proposition 6.1. If n =m -, then

(1) cork, K,(Yn) = Gl " Ym
(2) The local components of y, resp. ym satisfy

YnAn = Fr(D(resr,,, kx, (Ymam)) € Hiont(Kr,, A)
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(the Frobenius Fr(l) € G(K1/Qu) acts on H, (Ka,,A), as the latter group is un-
ramified by Lemma 4.1.).

Proof. (1) Follows from Prop. 5.4, as T} acts on A by the scalar a;.

(2) Since ! is inert in K, the reductions of elliptic curves E, E' corresponding to zm,zn €
My at Ap, resp. A, are both supersingular. This implies that the canonical [—isogeny
E — E’ reduces to the Frobenius and we conclude by Cor. 5.2.

Proposition 6.2. The complex conjugation acts on y, as
CYyn = —€L " OYn )

where 0 € G(K,/K) and e, = (—=1)""!¢; is the sign in the functional equation of L(f,s).
Proof. We recall that the Fricke involution acts on the modular form f by (f|Wn)(7) =
N=Tr=% f(—1/N7). One associates to f the differential form w = f(r)drdz on X?VT'(T?,
where dz = dzy ...dz,,_5 and XIZ\,"'B'Z is the Kuga-Sato variety over Xo(N). Define W :
Xlzv’:gz — Xi,':0_2 by

W:(A:E— E' 2)— (\V: E'— E, )\ 2))

A simple calculation shows that W*(f(7)drdz) = N™!(f|Wn)drdz. From Prop. 5.1 and
Lemma 5.3 we get W*(Z;;NI(T)) = N71Z7-1 Since f|[Wn = €5 - f, one has

B(Zy(ry) =€r®(277)

in HY ,.(*, A). Suppose that 7 € O,. According to [9,5.3], one has ¢(E,) = o(Ew, () for
some ¢ € G(I{,/K). As ¢ sends Zg into —Z.(g), we get

c®(217Y) = (—1)" ey - 0 B(Z17)
The statement follows if we take 7 = z,,.

The ring Or @ Z, has a canonical direct sum decomposition Op @ Z, = EBplp Op,
where O, is the completion of Or at a prime p dividing p. We fix such a prime . The
localization A, = A®orez,Op of 4 at pis afree O,—module of rank 2. The p-component
of yn € Higni(Kn, A) will be denoted by yn,, € Hlp((Kp, Ap). Put Y = A, ® Q,/Z,.
Then Y,u = A,/pMA, for all M > 0. Let L = K(Y,1(Q)) be the extension of K
trivializing Y, .

Proposition 6.3. For all n, Y, (K,,) = Ypar (K1) and this group is killed by a fixed power
pMt independent of M.

Proof. The extensions K, /K and L/ are unramified outside primes dividing n and
Np respectively, which implies that I{,, N L is unramified over I{, hence is contained in
K, (note that for pfD the same argument over Q instead of K implies that K, N L = Q).
The existence of My, i.e. the finiteness of Y'(I{;), follows from Weil’s conjectures.
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Corollary 6.4. The kernel and cokernel of the restriction map
resy, i, ¢ H' (K1, Ypr) — H' (K, Y,u )G

are both killed by p*.

Proof. Follows from the inflation-restriction sequence.

We shall now construct G, —invariant elements in H*(K,,, Y,» ). We assume from now
on that each prime factor [ of n satisfies

Friio() = Fri,qle)

where the R.H.S. is the conjugacy class of the complex conjugation. By Prop. 3.1, this
condition boils down to

(#) = -1, aIEl-J-lEO(modpM)

We define Dy, Tri € Z[Gi] by

{

{
D= Zic;, Try = Zo’;

i=1 =0
They are related by
(o1 —1)Dy=141-Tr
For n = [[{ we put D, = [[ D: € Z[Ga.].

For z € H} (%, A,) we denote by redp(z) the image of z in H'(*,Y,a ). Since
resK,, K, O ¢org, k,. = Ir;, we get from Prop. 6.1.

Daredy (yn,p) € H (Kn, Yon )"

This means that possibly after a multiplication by pM! this elements lifts to H'( K, oM ).
We shall examine this lifting, called ”Kolyvagin’s corestriction” in [21], more closely in the
following section.

7. Kolyvagin’s corestriction.

This is a purely group-theoretic construction and works in the following situation:

H is a normal subgroup in G, G/H is a cyclic group of order N with a fixed generator o,
A is a G-module killed by N, [z] € H'(H, A) a cohomology class with cory glz] = 0 €
HY(G, A).

As before, put

N-1 N-1
D=Zia', Tr=ZU'
i=1 =0
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One has (¢ —1)D = N — T'r, hence D[z] € H'(H, A)°/H.

Choose a cocycle = € Z'(H, A) representing [z]. Then cor[z] is represented by the
cocycle

N-1
cor(z) : h — Z &'a(57he) (h € H)

o— m(&N) ,

where & € G is a fixed lift of ¢ into G. Since cor[z] = 0, on the cocycle level
cor(z):gr— (g—1)a (g€ G)

for some a € A, which is determined modulo A€,
Define a cocycle Dz € Z!'(H, A) by

N-1
Dz:hv Y i5'n(67 hs")

=1

A short calculation then shows :
(1) 6(Dz)(67'he) — (Dz)(h) = —(h — 1)5a
(2) the function
fih— (Dz)(h)
d+— —6a

extends uniquelly to a 1-cocycle f € Z!(G, A) (which satisfies, of course, resg g f =

Dz) .
(3) If 2’ = = + 6b for some b € A, then the corresponding extension

' h— (Da)(R)

&+— —5d'

(with cor(z') = §a') satisfies
N-1
fl=f=60) i e 2 (G, A%
=1

In particular, if AC is killed by an integer m, then
m[f] = m[f'] € H'(G,mA)

is a lift of mD[z] which depends only on [z].

We apply this construction in our particular situation, with a slightly changed nota-
tion. Namely, we fix M > 0, put M' = M + M; (recall that p™ kills V(1)) and require
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that a; = I+ 1 = 0(mod pM') for all primes [ diving n. Denote by j : ¥, sr — Yu the
multiplication by p*t,

We are now ready to define cohomology classes Pas(n) € H'(K,Y,m), which will play
a key role in the descent.

(1) For n =1, put Pm(1) := corg,,k(redm(y1,p))-
(2) For n = I, we know that Djredps (y1,,,) = resk, k,(21) for some z; € H'(K;, pr) and
we define

Py(l) := corr, k(j«(21)) € H' (K, Y,m)

This depends only on y, as two choices of z; differ by an element in
Im(H](K,Y;,Ml) — H](K,Y;M:)) C Ker(j.)

(3) For n = j... 1 with k > 2 we have pM‘Dnrede(yn,p) = resk, K, (zn) for some
zn € H? (I(I,YPM') and we put

Pyr(n) := cori, k(ju(2n)) € H' (K, Ypm)

(this is again independent on the choice of z;,).

We shall need an information on the local behavior of the class Pas(n) at the place A
of K corresponding to a prime factor [ of n. For such a prime, fix a place A, of K, over [,
which in turn determines places A, A1, Ay In Iy, K, I§) respectively with corresponding
completions K, = Ky, , s, = K, = K, and isomorphisms

G(EKx /K)) = G(Ky, /K, ~Gi={o1)

Localizing the inflation-restriction sequence for K, / Ky we obtain the commutative diagram
with exact rows and columns :

0 0

l l

~

Hl(Ii’,\n/I(AI,YpAI’) —_— HI(I\’K::/I\FK;., TP‘“’)

inf llinf

0 — Hir(I(Al,Y;ngl) —_— H](I(’\l’};‘“’) —_— Hl(I\’}\‘:,Y;)MJ)

Jf Tes lres:D

0 — Htllr(](An,YpM,)(m) _ Hl(f\’An,anl')("') N H](I\”:\‘:,%M')(a')

All rows and columns come from various inf-res sequences; only the surjectivity of the
inflation map in the upper right corner may require an explanation: as we shall see in
Prop. 8.1, it corresponds to the map

Hom(jei41, Yoarr) — Hom(Z'(1), Your)

14



with Z'(l) = Hq#, Z,.
8. Tame duality

In order to compute the local cohomology groups in the above diagram, we shall
recall some basic facts on tame duality (cf.[27,5.5]). Assume that K is a local field with
the residue field F,.

Proposition 8.1. Suppose that A is a finite group with a trivial action of G(K /K), killed

by an integer M dividing ¢ — 1 (= upm C K). Put A' = Hom(A, par). Then

(1) One has the commutative diagram with exact rows and canonical isomorphisms in the
vertical direction

0 — HI(K,A) — HYK,A) — HYE*" A — 0
lza J’z ' laﬂ
0 — A — Hom(K*,A) — Hom(uar,A) — 0
(2) The evaluation map A x A’ — pu  yields the cup product pairing
HYWK,A)x HY(K,A") — H*(K,um) ~Z/M |

which in turn induces a perfect pairing

(,)m: HL(K,A) x  HAK,A) — Z/M
J’la J'I,B' l!
A X Hom(ua,A') — Hom(pm,pm)

Proof. All statements are well-known. The maps «, 8 are evaluations at the generators
 resp.T of G(K*/K) resp. G(K!/K*") (notation as in the proof of Lemma 4.1). Non-
degeneracy of the pairing is {27,5.5.19]. The commutativity of the last diagram is proved
in [14,Prop.8]. In fact, it is clear that it is commutative up to a constant in Z/M and it is
highly implausible that such an intrinsic constant could be different from +1.The truth is,
however, that the value of this constant is irrelevant for the success of the descent, as long
as we know that it is invertible in Z/M, which is equivalent to the fact that the pairing
( , )M is non-degenerate.

As we have seen, the choice of X, identifies o; with an element of G(Iy, /L)), which
can be lifted to a generator 7; of G(K}/K}¥") (well-defined modulo (I + 1)Z'(1)). Under
the canonical projection Z'(1) — ftpnr’, Tt gets mapped to certain primitive pM' —th root

M’
of unity (x m+ € Hpra? (Ix). Equivalently, {x a corresponds to ar,(H'l)IP via class field
theory.
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Using Prop. 8.1, we get canonical (O,—linear) isomorphisms

Q) M Hl (I\’A, YP‘"') o~ Y;,MJ (I‘f)\) R
/BA Mt H (I'"r }';M') o Hom(,u,pw(f\’)\), Y;M' (I\’,\)) >~ Y;,M' (.KA),

the last map being the evaluation at {x a, and

damr =By ap 0 eam  Hy (Kn, Yo ) = H (KX, Y a0
On the cocycle level, ¢ a interchanges cocycles with the same values on Fr(l) and
mi(mod pM ') respectively. The second statement of Prop. 8.1. can be written as

Corollary 8.2.

if[;;’;\,ﬁl’(y))A,Af' = [a/\,l\'f'(x)$a/‘\,M‘(y)]M' )

provided we identify Y,a with (Y,a)' via [, |m.
The diagram in sec.7 defines a canonical splitting
HY (K Yy ) = Hy (K5, Yo ) @ HY (K™, Y )

with both pieces isomorphic to Y;,Mv(K,\) via ax mr resp. famr. We shall see bellow that
the localization Pps(n)x lies in the ramified part HI(KI'\"',YPM) and our aim will be to
identify the element of Y,a to which it corresponds.

9. Localization of Kolyvagin’s corestriction

In order to determine Par(n)a, we return to the general context of Kolyvagin’s core-
striction as in sec.7, with some additional structures listed bellow:

(1) One starts with a profinite group G and an odd prime number p. There is a chain of
normal subgroups H 4G 4G with G/H = (o) (c) dihedral, where {7} is a cyclic group
of order N, {c) is a group of order two acting on {0} by coc™ = o7, G/H = (o),
G/G = (c).

(2) One is given a closed subgroup Go C G with Go/Ho = {og) again cyclic of order N
(where Gy = GoNG, Hy = GoN H). This implies that GO/H (c0)XZ/fZ with
f=12

(3) The group Go is equipped with a surjective homomorphism

7: Gy — Z'(1)%fZ

where Z'(l) = [115p Zi(1) and 7 have fixed generators 7 and  respectively, satisfying

-1

the usual relation @719~ = 7% for some integer d prime to p. One also requires T to

induce surjections
Go — Z'(V)%fZ, Ho — NZ'()xfZ
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under which the generator o of Go/Hy corresponds to 7 modulo N.
(4) A = lim A/p™ A is a torsion-free Z,—module of finite rank with a continuous action of
G.
(5) (% acts on A through its quotient Z.
(6) Ker(m) has order prime to p (as a profinite group).
(7) ¢ acts on A ® Q in a semisimple way, all its eigenvalues are algebraic and their
archimedean absolute values are equal to d'/? under all embeddings Q — C.
(8) Let M be a given power of p dividing N. Then (p/ — 1)?// kills A/MA.
(9) One is given y € HY . .(H,A), z € HL,,(G, A) with cory g(y) = Myz for some M;
divisible by M.
(10) (A/M A)C is killed by an integer m.
The situation the reader should keep in mind is the following: H = G(Q/K), G =
G(Q/I\l) G = G(Q/K{) (K{ is the maximal real subfield of K;), Go = G(Q;/Qu),
= G(Q,/K)), Hy = G(Q;/K»), A=Ap, f=2,d=1, N=14+1,2=Y1,0, ¥ = Yip-
‘vVe have included the case f = 1 for the sake of completeness it corresponds to a related
construction using primes split in K (cf. [16]).

As we have seen in the proof of Lemma 4.1, (5)-(7) imply that

Hloot(Goy A) = Hlgni(Ho, A) = Hio(f2,4) = A/(¢! ~1)A
On the cocycle level, this means that each 1-cocycle F' € Z1(Z'(1)xfZ, A) has a form
F(rio™) =1 +¢  +... 40 )a+ (o — 1)
and its cohomology class is

[F] = a(mod(p’ —1)4) € 4/(p? ~1)4

Thank to the assumptions (9)-(10), we may define Kolyvagin’s corestriction
z € HY(G,mA/MA) satisfying resg n(z) = mDredp(y) € H'(H,mA/MA) (as be-
fore, redps(y) is the image of y in H'(H,A/MA)). By (3) and (5), D acts on A as
the scalar N(N — 1)/2, which is divisible by M, hence resg n,(2) = 0 and resg g,(z) =
inf g,/ Ho,Go(20) for some zg € H'(Go/Hy,mA/MA) = Hom({og), mA/M A).

Our task is to compute z¢{0y) € mA/MA. To achieve that, we must do calculations
on the level of cocycles, to be denoted by the same letters : y € Z'(H, 4), z € Z'(G, A).
According to (9), there is an a € A satisfying

(cor(y))g) — Myz(9) = (9 —1)e (g9 € G).

We know from sec.7 that z¢(o¢) = —ma(mod M A), which means that it is the value of a
modulo M A we have to compute. Restricting ourselves to ¢ = g9 € Gy, we get

N1
> y(55 9068) — Maiz(go) = (9o — 1)a

1=0
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At the same time, the calculation of H},,,(Go, A) above implies that for 7(gy) = ol ?

one has
2(g0) = (1+ ¢ +... + 0" )a, + (7 = 1)1,

v(90) = (L+ o  +...+ 0" )ay + (o7 — 1y

for some az, ay, by, by € A. Putting the last three equations together, we obtain
A+ +.. + VN Na, — Mya,) = (¢ — 1)(a+ Mb, — Nb,)

For v = 1 this reads as

Mla ‘Pf—l
M

(a+ M - sth.)

(as A is torsion-free).
In this formula, )
az(mOd((pf - 1)"4') = I'ESG’GO($) € Hgont(fza A)

ay(mOd((Pf - 1)A) = reSH,HD(y) € Hgont(fzaA)

are "local components” of z and y respectively.
We now impose the last two assumptions

(11) o> —Myp+d=00n A

(12) ay = pla;) mod(p! —1)4

Then we get from the previous discussion the

f
o1 (N,
i (a+ M sth.)—(Mtp M)az

Key formula :

The question is, under which circumstances this allows us to compute the value of zy(oy) =
—ma (mod M A). We discuss several cases when this is possible.

(I) ”Genuine” Euler systems (this is the most favourable case, which occurs for elliptic
f_n2r .
modular curves): A} divides %c,o - ‘2—\4} in End(A4).

(Ia) f=1, M|(¢—1)? = M|(d=1), M|(My—2). U N =d—1, M; = M, — 2 (the case
of elliptic curves), then

a=(p—1)a; (mod MA)
(Ib) f=2, Ml(¢*-1) = M|(d+1), M|M,. f N=d+ 1, M; = M,, then

a = —pa; (mod MA)

(II) 9% =Mz, 4l s invertible in End(A) (assuming f = 2): then

M. d+1._,,N M
a=(ﬁzw——M—) l(ﬁso—ﬁ)az (mod MA)
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In the situation we have in mind, when My = a;/I""', N =141, M; = a;, d = |,
we neither have a ”genuine” Euler system, thank to the factor {"~! coming from the Tate
twist, nor can we rely on (¢? — 1)}/M being invertible. As a result, we can not obtain in
general the precise value of Pps(n)y, but as we shall see in 12.2.3; the loss of information
is relatively mild.

10. The Euler system revisited

The complex conjugation ¢ € G(K/Q) = G(Kx, Qi) acts on Y,m (Kz), H'(Kx, Y ),
H'(K,Y,»') and various other groups. Let (.. ) be the correspondmg +1-eigenspaces.
By our assumptlons on I, one has pa (Ka) = t,n (I{x)” and the eigenspaces Y, u- (Ky\)*
are free O, /pM —modules of rank 1. As the pairing { , )a am is c—equivariant, we get
non-degenerate pairings

(o Ve o Hyp(Fn, Yy )® x HY KR, Yo ) — Z/p™
Note that the map ¢a a is c—antiequivariant :

ot Hyo (I, Your )* o HY (KT, Y000 )T

Before we establish the main properties of the cohomology classes Pps(n), we need a
simple lemma.

Lemma 10.1. There exists a constant M, such that pM2 annihilates all cohomology
groups H'(K,, A/pM A) for primes v|N in K and M > 0.

Proof. Let v be such a prime. Then K, = Qq for some rational prime ¢|N. The formula
for the local Euler characteristic ([27,5.7]) gives }H(Q,, A/p™ A) = (1H’(Qq, A/pM A))2.
We are thus reduced to find a bound for the latter group. Let I = G(Qq/Qur) be the
inertia group. We distinguish two possibilities:

(a) AT =0 = H%(Q,,A®Q,/Z,) is finite .

(b) AT # 0 = according to Prop. 3.1, det(1 — Fr(¢q)z|4?) = 1 + gesiz. The exact

sequence
0 — (Al/pM AT — HO(Q,, A/p™ A) — HY(1, )0
then shows that Ho(Qq,A/pMA) is killed by 1 + gef,1-

Proposition 10.2. Let v be a non-archimedean place of I{. Then
(1) Pu(n) € HY(K,Y,m)* with e, = (-1)""Ter

(2) f vfN -n-p, then Py(n), € Hy (K,Y,n).

(3) If v|N, then p™2 Pp(n), = 0.

(4) f n=m-1, then

-1 ‘"—lsnag [+1 I+1 ar
i = SPu(ns = (Cagren = S i (Pr(m)s)
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where d = 1 if n is a product of two primes and d = 0 otherwise. In particular, if both
(a; & (1 +1))/pM are p—adic units, then

Prr(n)a = ure, p™ 4,1 (Pr(n)r)

with
Qe — (I -+ ].)

(1) laie = (I+1)
(note that u;, = —e for r odd).

Proof. (1) follows from Prop. 6.2 and the fact that ¢cD, = (~1)"D,ec.

(2) Both Kp/K and y, are unramified at v.

(3) Follows from Lemma 10.1.

(4) We apply the discussion in sec.9 first in the particular situation described there, i.e.
T = Y10, Y = Y. Then Pp(l) = cory, i (2). The formula resg p, = 0 implies that Pps(1)x
indeed lies in the ramified subspace H!(K}", an}) and the statement of the proposition
is equivalent to the key formula of sec.9. If m > 1, we apply the same formula to G =

G(Ga I\’n)a H = G(Q I(n): T = Dmym,p € Hgéné(G:Ap)’ y= Dmyn,p € Hclom(H: AP)‘

€ (0u/p")*

Ule, = —€

Corollary 10.3. Assume that both [+ 1+ a; divide p™'+* in Op. Then

¥ Pp(n 3
S P oy (), e D™ R e (Pat (n/ D]

).

Afy

for all sy € HL, (K, Y,ar) (with Cxar = (Coar )P
11. Selmer group

The reciprocity law tells us that for all z,y € H'(K,Y,») one has
D (ou,wo)um =0€Z/pM |

where the sum is finite, since the local product {(z,, ¥}y a vanishes whenever both z and
y are unramified at v.

We have seen that pM2 Pjs(n) is unramified at places not dividing n - p. We shall now
investigate its behaviour at a prime v of K dividing p. Let V be a finite dimensional vector

space over Q, equipped with a continuous action of G(X,/K,). In [2], Bloch and Kato
defined

H}(Ix’v, V) = Ker(Hly (Ko, V) — HL (K., V ® Briy))
H;(-‘KUJV) = I<er(Hgom(‘Kv) V) - H:,ont(‘[{vvv ® BDR)) )

where B, and Bppg are rings originally defined by Fontaine (see also [2]). Put V = AQQ
and define (for * = f, ) H}(Ky, A) resp. H}(I,,Y,n) to be the preimage of H}(K,,V)
in HY,(Ky, A) resp. the image of H}(K,, A) in H(K,,Y,n).
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Lemma 11.1. Let v be a prime of I dividing p. Then

(1) For any finite extension K' of I, one has H}(K', A) = H,(K', A) and the Abel-Jacobi
map over K’ factors through H;(K', A).

(2) For all n, Pp(n), lies in H}(K,,Y,a).

Proof. (1) It follows from the de Rham conjecture for open varieties proved in [6] that

the Abel-Jacobi map factors through H)(K', A). As V = A ® Q is crystalline (again by

[6]), we infere from [13] and Prop. 3.1.3 (where the roles of p and [ are interchanged) that

the characteristic polynomial of the crystalline Frobenius f on H°(K,,V @ B..is) is equal

to 1 —ap/p"z + z2/p, hence f — 1 acts invertibly and since VY(1) = V, we get H}=H,

from [238384]

(2) Hf depends only on the action of the inertia subgroup of G(IN,/K,). As K, /K is

unramified at v, we conclude by (1).

Define the Selmer group SM) C H(K,Y,n) to consist of those cohomology classes
whose localizations lie in H, (K, Ypsr) for ofN - p and in H (K, Y, ) for vlp. It is an
Op~submodule of H (K, Y, ).

Proposition 11.2. (1) The global Abel-Jacobi map factors through

—2r-2
:CH Xy [K)®0,/pM0, — 5.

(2) For all s € S™M) one has

p™2 Z(SA,PM(R)»\)A,M =0¢€ Z/p

i|n

Proof. (1) Follows from Lemma 4.1 and Lemma 11.1.

(2) According to [2,3.8], H}(K,,Y,m) is isotropic in H'(K,,Y,n) for all v dividing p. The
statement follows from Prop. 10.2 and the reciprocity law alluded to at the beginning of
this section.

Taking the inductive limit, one gets a map

==2r—2
3:CH Xy [K)@K, 0, — § .

Denote its cokernel by L1, — the p—primary part of the Tate-Safarevic group.

See also [2},{7] and [8] for a general cohomological treatment of Selmer and Tate-
Safarevi¢ groups. Note that our Lil,e, defined as the factor of the Selmer group by the
image of the Abel-Jacobi map can in principle differ from that defined in [2], which is the
quotient of the Selmer group by its maximal divisible subgroup.

12. Globalization

We now consider the formula of Cor. 8.2 in the global context. Let L = I((Y; A (_Q))
and choose a primitive p™' —th root of unity Cagr € ;LPMI(L). For each I with Frp;q(l) =
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Fr(c) choose some place Ay, of L such that the corresponding embedding L — Ly, = K,

maps Carr to (a am¢ and put (g = (CMr)Pml. This may not always be possible in the case
p|D, when we might be forced to redefine ;. The remedy would be to choose Ay and (ar
first and then define (i m/ and o} reversing the above procedure. The choice of Ay enables
one to identify Y s (Ky) ~ Yom(Lar,) = Ypm(L). The maps ax m, ¢anm have obvious
analogues over Ly, ; call them ay, a and ¢x, pm respectively. Consider the restriction
map

P HY(K, Ypu) — H'(L, Y )5S = Homg 116 (G(Q/L), Ypu (L))
Define a map, still to be denoted «x, a1,
Qrp M- H](L,Y;,Al) — YPM(L)

as the composition of the old e, s, the canonical projection from H'(La,,Y,ar) to its
unramified part and the localization map at Az. It is simply the evaluation map at Fr{Ap).

Then the global version of the formula in 8.2 reads as follows:
Lemma 12.1. Let z,y € HY(K,Y,») with zx,yx € H} (K, Y,a). Then

Cg’mL'”(y))A'M = [aay, m(r(z)), ca, M (r(¥))) M

Let Ty be a finite Oy, —submodule of H'(K,Y,» ). Denote by T its image in
Homg(L/k)(G(Q/L), Y, (L)). The evaluation pairing

T x G(L**/L) — Y,m(L)

is G(L/Q)—equivariant (the action on T factors through G(K/Q)). Let L be the fixed
field of the annihilator of T. Then one has a G(L/Q)—equivariant map

j:Gr =G(Lr/L) — Hom(T,Y,»(L))
and a c—equivariant map
T s Homg(L/K)(GT, YPM (L)) R

both being injective.

Proposition 12.2. There exist integers a,b > 0 with the following property: for all
M'> M > a and all finite Op—submodules Ty C H'(I{, Y, ) one has

(1) p* HI(K(Y;,W)/K, You)=0

(2) LrnN IX’(cho) - I((l/pM"+u)

(3) For each g € G} one can find infinitely many primes [ inert in I with

FrigeMN =g, pMli+1xa, p"+  l41ta
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(4) p® Cokerlj : Gr — Hom(T,Y,2)] =0
Proof. (1) Fix an isomorphism A, o~ OZ so that ¢ acts as a diagonal matrix (with eigenval-

ues £1, of course). According to [22,5.7],[19,4.1] and the theory of complex multiplication,
the image of G(Q/K) in Aute,(A,) 2 GL2(O,) contains the subgroup of scalar matrices

z 0
D= |z el+p*Z,
0 =z

for some a. Then, by Sah’s lemma, p* kills all cohomology groups HY(K(Y, s}/ K, Ypm).
(2) Put Ly, := K(Y,m4n). The group D acts trivially on all groups H, := G(L,/L).As
a < M', H, is abelian for n < M’. Put E = Ly N La. Then, again by Sah’s lemma, p®
kills Homg(z/)(GT, G(E/L)), which proves the claim, as H, has exact exponent p” for
a<n< M.

(3) Each element h € Hyps is of the form

10 (A B ,
+p™ (mod p**")
01 C D

If ch = Frg,,,;q(l), then pM'*7 M4 1+ ap iff p*fA, D. We know that G(Lp/E) contains |

p® Hagr, hence also
1+pMz 0 ,
{( o] |z ep*z2/pMZ
0 14+pMg

This means that by making a suitable choice of £ we may extend every h € Gr to an
element k' € G(LrLa /L) with p**+!JA, D. By the Cebotarev density theorem one can
find infinitely many primes [ with Fr(I) = ch'. The statement follows, since each g € G+
is of the form g = h°*! = (ch)? and ¢ = Fry, k()) if Fri,q(l) = ch.

(4) Let x : G(Q/Q) — {£1} be the quadratic character corresponding to K/Q. Denote
by p : G(Q/Q) — Autp (A,) the Galois action on A,. Then p ® x is the Galois
representation associated to the modular form f ® x. Let Zar be the subalgebra of scalar
matrices in My(O,/pM).

Lemma 12.3. There exist integers m,n > 0 with the following property: let V be one of

Ay /pM or (A, /pM)® x. H Vi resp. Vs is a G(Q/Q)—submodule resp. factormodule of V
with V7 € pV, then

p" (V/V1)=0, p" (HomG(E/Q)(Vl:V?)/ZM) =0

Proof of the lemma. The existence of m follows from the fact that p and p ® x are
irreducible ([22,2.3]): we may work with V = A, or V; = A, ® x and the pull-backs of
V1,Va to Vg at this point; if there was a sequence of V) C V; with m tending to infinity, we
could choose a subsequence converging to an invariant subspace in Vp, a contradiction.
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To establish the existence of n, we first note that p™+t*¥+1V C V, C p*V for some k.
Then the kernels and cokernels of both maps

Homg(Vi, V2) — Homg(V1, V/p*V) «— Homg(V, V/p*V)
are killed by p™*!, where we have put G = G(Q/Q). But
Homg(V, V/p*V) = Homea(Vy /p™ =%, Vo /pM %)

and the existence of n again follows from the irreducibility of V4.
We now continue the proof of 12.2. As a G(K/Q)—module,

. k
T = @ T.'/pm ,
i=1
where each T; is either O, or O, ® x. Then

k
V := Hom(T,Y,») = P Vi

=1

with V; = A, /p™ or (A,/p™ )®x. We know that W = G is an Oy [G(L/Q)]—submodule
of V satisfying the following property:
(P) The composed map T — Hom(V,Y,» ) — Hom(W,Y,» ) is injective.

We shall prove by induction on k that V/W is killed by p¢ with ¢ = max(m,n). For
k = 1 this follows from the definition of m. Let now k& > 2 and assume that we know that
p°¢ kills V/W in all situations with k replaced by k& — 1. Let

k—1
.V —V :=@V;
i=1

be the projection on the first k—1 factors. Then WNKer(r) is isomorphic to its projection
on Vi, to be called Wy, and
(W)= W' = oW;

with W; CV; (for 1 <1 < k —1) satisfying W; € pV; due to the property (P). "Inverting”
the projection w|w we get a G-map

f:W — Vi/W,
with Im(f) not contained in p(Vi/W;) again by (P). According to the lemma,
f(wl, P ,'U.)k_l) =aqw; + ...+ Qr—1Wk—1

modulo p™ —torsion. The condition (P) then implies that p® must kill Vi /W; ; otherwise
a suitable multiple of (a;,...,ax-1,—1) € T would be trivial on W: a contradiction. As
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W'e Wiy C W and p© kills V'/W' by induction hypothesis, we get p*(V/W) = 0 as

claimed.

Remark. It follows from the proof that one can take a = b = 0 in the following two cases:
(1) If f is a CM-form (as pfN and K is not the field of complex multiplication, the Galois
group G(L/K) is equal to the normalizer of a Cartan subgroup).

(2) If in the non-CM case the Galois group G(L/Q) is as big as possible, i.e. equal to
GLy(0O,/p™"), and p is unramified in F.

13. Main theorem.

We are now ready to prove our main result. Recall that f € S5¢¥(Ty(N)) is a newform
of weight 2r > 4, p a prime not dividing Np(N)(2r —2)! (x3if N = 1,2), F the extension
of Q generated by the Hecke eigenvalues of f, Op the ring of integers of F', p a prime of
Op over p, I{ an imaginary quadratic field in which all primes dividing N split, A the free
OF @ Z,—module of rank 2 carrying the p—adic realization of the motive M( f) satisfying

2r—2

L(M(f),s) = L(f,s + 1), Ap the localization of A at p, ¥ = X the non-singular
compactification of the (2r — 1)—dimensional Kuga-Sato variety over the modular curve
Mn, e, = %1 the sign in the functional equation of the L—series L( f, s),

®:CH'(Y/K)o® Op — Hiy (K, Ay)
the p—localization of the f—component of the Abel-Jacobi map. Let

Yo 1= otk ik (¥1,p) € Hoon (K, Ap)
Theorem 13.1. Suppose that yo is not torsion. Then Ll e is finite and

(In())* @ Fp =0, (Im(®))™* ® F, = Fy - yo

Proof. As before, we pick a sufficiently large M >> 0 and put M' = M + M;. We

shall give bounds for the Selmer group introduced in sec.11. According to [29,2.1.Cor] and
[27,6.2.Th.7], hm StM) is a finitely generated Z,—module. Put, as before, L = K (Y, 1)

and for m > 0 let A, be the set of primes [ inert in K sa.t1sfy1ng
PMli+1ta, pMAtmtifi41ta.
Put Ty = S™) and let T be its image under the restriction map
ro HY(K,Yps ) — HY(L,Y,»)
If n 1s a product of distinct primes from A,, we define
u(n) := r(Pp(n)) € H'(L, Ypn).
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By hypothesis, yo is not torsion in H) (K, A,). Then, according to [29,2.1], there exists
My > 0 such that yo is not divisible by pMe+! in H! (K, A,)/torsion (the torsion, of
course, being killed by p*1). Denote e(z) = min{m[p™z = 0} whenever z is an element
of an abelian group of the group itself. In this notation,

e(Pym(l)) =M — M,
e(u(n)) 2 e(Pu(n)) — a. .

Consider first T¢*. Choose fif : T+ — Yp‘ff, satisfying
e(f£*) = e(Hom(T**, Y55)) = (T*)
e(fr " (u(1)) = e(u(l)) (2 M — Mo —a).
According to Prop. 12.2, one can find ! € A, with
ai M= be1ﬂE
Let t € T°t. The reciprocity law (Prop. 11.2.2) yields
(tr, pM2 Ppg(Dada e =0

Asle Ag, Cor. 10.3 tells us that

Ma+4a+1

[oa, m(t),p ang,m(u()a)ar =1

hence
[FrE (), pMetet B s (w1 =1,

which implies that

pMo+Mg+2a+26+l T!L =0 s pMu+Mg+3a+26+l (S(M))EL =0.

Let us now turn to 77, We can find f2i T — Ypij,, satisfying

e(f7" (w(1))) = e(u(l))

(5 mod Op - f7*%) = e(Hom(T ™5, Y364) 0, - f7°F) = e(Ker( f)).
According to our choice of [ we have e(u(l)) > e(Pup(l))—a > e(Pu()r)—a > e(Pup(1)r)~
2a = e(p® i *(u(1))) — 2a = e(u(1)) —=2a — b > M — My — 3a — b. We can again find
I'"e Ay — {a} with pbfz = o\, M

Let ¢t € Ker(f; *¢) € T~¢%. Then the reciprocity law

Z(tu,PM(”')v)u,M =0

v

26



implies by Lemma 12.1

[ f7 5 (tor), pPH M Matatt 20 (D) aem = 1,

hence the kernel of
° I—EL -TfL };;fz.

is killed by pMo+Mi+Matdatabt1

We know that u(1) = pMez 4 ¢ with z,t € Im(®) and ¢ killed by pMt. This implies
that (for sufficiently big M)

e(f7 5 (x)) = e(2) 2 M —a.

In the exact sequence

Ker(f %) T-°r oL Yot
sth. Op - t+0p-2 Op - [T (t) + Op - fT**(2)

the first term is killed by pMotMi+Mo+4a+3b+l 511 the last one by p®. This shows that

pMo+M1+Mz+6a+3b+1(S(M))—cL /(Op t 4 Op . :E) = 0.

Letting M tend to infinity, we see that

p°S [(Fo/Op) - 0) = 0

for some ¢. As the image of ® in $(° is divisible, this proves the statement about Im(®),
shows that JIFA = (S(*))eL and that (SU))=°L /(O -z + O, - t) surjects on LI Z* for
sufficiently big M. Theorem follows.

Remark. The bounds given in the course of the proof are by no means ideal. The power
p! is not necessary if p is unramified in F and we suspect that the factor p1 could be
eliminated by a more detailed analysis of Kolyvagin’s corestriction. If the same could be
done also for the remaining parasitic factor pM2, then in a situation with a = b = 0 (cf.
remark at the end of sec.12) the methods of [17] would probably apply in a completely
formal way and one could describe the structure of the Tate-Safarevié group LI, solely

in terms of the classes Pp(n).

Remark. It would be desirable to find a criterion to check whether yg is torsion. In
the weight 2 case, such a criterion is provided by the theorem of Gross and Zagier {10],
which asserts that the value of the first derivative of the corresponding L—series at 1 is a
multiple of the height of yo. In conjunction with [3], the result of Gross and Zagier suggests
that the same is true also in the higher weight case. Unfortunately, our understanding
of the relationship between the Abel-Jacobi map and the real-valued height pairing is
unsatisfactory. We hope that p—adic methods will have some bearing on this problem:
one may indeed define a p—adic height pairing which factors through the Abel-Jacobi map
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(this will be discussed in a future paper) and the hope is that a p—adic version of the Gross-
Zagier theorem, relating the p—adic height of yo to the derivative of a p—adic L—function,
is valid in our situation as well (the weight two case is treated in [20]). Note that In [24]
C.Schoen investigates the transcendental Abel-Jacobi map on a threefold associated to the
unique form f € S4(To(9)), which provides the simplest situation when the hypothetic
criterion could prove useful.
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