Max-Planck-Institut für Mathematik Bonn

Polynomial functors from algebras over a set-operad and non-linear Mackey functors

by

Manfred Hartl
Teimuraz Pirashvili
Christine Vespa

Max-Planck-Institut für Mathematik
Preprint Series 2012 (64)

Polynomial functors from algebras over a set-operad and non-linear Mackey functors

Manfred Hartl
 Teimuraz Pirashvili
 Christine Vespa

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Université Lille Nord de France
59044 Lille
France

UVHC, LAMAV and FR CNRS 2956
59313 Valenciennes
France

Department of Mathematics
University of Leicester
University Road
Leicester LE1 7RH
UK

Université de Strasbourg
Institut de Recherche Mathématique Avancée
Strasbourg
France

POLYNOMIAL FUNCTORS FROM ALGEBRAS OVER A SET-OPERAD AND NON-LINEAR MACKEY FUNCTORS

MANFRED HARTL \&TEIMURAZ PIRASHVILI \& CHRISTINE VESPA

Dedicated to the memory of Jean-Louis Loday for his generosity and benevolence.

Abstract

In this paper, we give a description of polynomial functors from (finitely generated free) groups to abelian groups in terms of non-linear Mackey functors generalizing those given in a paper of Baues-Dreckmann-Franjou-Pirashvili published in 2001. This description is a consequence of our two main results: a description of functors from (finitely generated free) \mathcal{P}-algebras (for \mathcal{P} a set-operad) to abelian groups in terms of non-linear Mackey functors and the isomorphism between polynomial functors on (finitely generated free) monoids and those on (finitely generated free) groups. Polynomial functors from (finitely generated free) \mathcal{P}-algebras to abelian groups and from (finitely generated free) groups to abelian groups are described explicitely by their cross-effects and maps relating them which satisfy a list of relations.

Mathematics Subject Classification: 18D; 18A25; 55U

Keywords: polynomial functors; non-linear Mackey functors; set-operads
!
Polynomial functors play a prominent role in the representation theory of algebraic groups, algebraic K-theory as well as in the theory of modules over the Steenrod algebra (see, for instance, [11). In particular it is a main computational tool for computing the stable cohomology of classical groups (considered as discrete groups) with twisted coefficients (see 4], [12] and [7]).

The study of polynomial functors, in their own right, has a long history starting with the work of Schur in 1901 in [27], even before the notion of a functor was defined by Eilenberg and MacLane. In fact, without using the language of functors, Schur proved that over a field of characteristic zero any polynomial functor is a direct sum of homogeneous functors and the category of homogeneous functors of degree d is equivalent to the category of representations of the symmetric group on d letters. There were many attempts to generalize Schur's theorem for general rings. For polynomial functors from (finitely generated free) abelian groups to abelian groups a satisfactory answer is given in [2] where the authors obtained a description of those polynomial functors in terms of non linear Mackey functors.

The principal aim of this paper is to generalize this result. The two main results of this paper are a description of functors from (finitely generated free) \mathcal{P}-algebras (for \mathcal{P} a set-operad) to abelian groups and a description of polynomial functors from (finitely generated free) groups to abelian groups, obtained from the first result and an isomorphism between polynomial functors on (finitely generated free) monoids and those on (finitely generated free) groups.

More precisely, for \mathcal{P} a set-operad, $\operatorname{Free}(\mathcal{P})$ the category of (finitely generated free) \mathcal{P} algebras and $A b$ the category of abelian groups, we consider the category Func $(F r e e(\mathcal{P}), A b)$ of functors $F: \operatorname{Free}(\mathcal{P}) \rightarrow A b$. The first principal result of this paper is the following:

[^0]Theorem 0.1. There is a natural equivalence of categories:

$$
\operatorname{Func}(\operatorname{Free}(\mathcal{P}), A b) \simeq \operatorname{PMack}(\Omega(\mathcal{P}), A b)
$$

where $\operatorname{PMack}(\Omega(\mathcal{P}), A b)$ is the category of pseudo-Mackey functors defined in Definition 1.28.

This theorem is the generalization of Theorem 0.2 in [2] giving an equivalence of categories between the functors from (finitely generated free) commutative monoids and pseudo-Mackey functors. In fact, applying Theorem 0.1 to the operad \mathcal{C} om we recover Theorem 0.2 in [2] since Free (Com) is the category of (finitely generated free) commutative monoids (see Example 1.3).

In [2], in order to prove Theorem 0.2 the authors consider the category of finite pointed sets Γ and the category of sets where the morphisms are the surjections Ω. An essential tool of the proof is the Dold-Kan type theorem proved in [23], giving a Morita equivalence between the categories Γ and Ω. In this paper, we replace the categories Γ and Ω by categories associated to the operad \mathcal{P} denoted by $\Gamma(\mathcal{P})$ and $\Omega(\mathcal{P})$ (see Definitions 1.10 and 1.12) having the same objects as Γ resp. Ω and whose morphisms are set maps decorated by certain elements depending on \mathcal{P}. The extension of the Dold-Kan type theorem to this context (see Theorem 3.1) is an application of the general result of Słomińska in [28] describing general conditions which imply Morita equivalences of functor categories. In this paper, however, we give another proof of this result which has the advantage to provide an explicit description of the functors constituting the equivalence. Theorem [0.1, proved in section 4, then is obtained by combining the following equivalences of categories:

- by Proposition 4.2 the category $\operatorname{Free}(\mathcal{P})$ is equivalent to the category of Spans on the double category $\mathcal{S}(\mathcal{P})_{2}$ having as objects finite sets and where horizontal maps are set maps and vertical maps are set maps decorated by certain elements depending on \mathcal{P} (see Definition 1.16);
- in Proposition 4.6 we obtain an equivalence of categories between the functors on this category of Spans and the \mathcal{M}-functors on $\Gamma(\mathcal{P})$ defined in Definition 4.4;
- in Proposition 4.8 we prove that the Morita equivalence between $\Gamma(\mathcal{P})$ and $\Omega(\mathcal{P})$ provides an equivalence of categories between the \mathcal{M}-functors on $\Gamma(\mathcal{P})$ and the pseudo-Mackey functors on $\Omega(\mathcal{P})$ to $A b$.
Applying Theorem 0.1 to the operad $\mathcal{A} s$, since $\operatorname{Free}(\mathcal{A} s)$ is the category of (finitely generated free) monoids (see Example 1.3), we obtain a description of functors from (finitely generated free) monoids to abelian groups in terms of pseudo-Mackey functors. In order to obtain a description of polynomial functors from (finitely generated free) groups to abelian groups we would like to obtain a relationship between polynomial functors from (finitely generated free) monoids to abelian groups and those from (finitely generated free) groups to abelian groups. This relation is the second main result of this paper (see Proposition 5.34). Recall that a reduced functor is a functor such that $F(0)=0$.
Theorem 0.2. There is an isomorphism of categories between the reduced polynomial functors of degree n from (finitely generated free) monoids to abelian groups and those from (finitely generated free) groups to abelian groups.

This theorem is the generalization of Proposition 8.3 in [2] giving the equivalence of categories between the reduced polynomial functors of degree n from (finitely generated free) commutative monoids to abelian groups and those from (finitely generated free) abelian groups to abelian groups. In [2] the sketched proof of Proposition 8.3 use, in an essential way, the fact that the composition:

$$
\operatorname{Hom}_{\text {com-mon }}(B, C) \times \operatorname{Hom}_{\text {com-mon }}(A, B) \rightarrow \operatorname{Hom}_{\text {com-mon }}(A, C)
$$

is a bilinear map. In the non-commutative case, this map is linear in the second variable (i.e. $f(g+h)=f g+f h$) but no more linear in the first variable. So we can't adapt directly the proof proposed in [2] in the non-commutative setting. Consequently, to prove Theorem 0.2 we have to introduce, in section 5 , several new tools of independent interest. In particular, in Definition 5.19 we extend the notion of polynomial maps in the sense of Passi (from monoids to abelian groups) to maps from a set of morphisms in a (suitable) category to abelian groups. Using this notion we can characterize, in Theorem 5.23. polynomial functors in terms of their effect on morphism sets, like in the classical case of polynomial functors between abelian categories. This leads us to introduce, in Proposition 5.21, the categories $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ extending the categories $P_{n}(\mathcal{A})$ for \mathcal{A} an additive category introduced in [22]. These categories have the following important property (see Corollary 5.25): polynomial functors of degree n from \mathcal{C} to $A b$ are equivalent to additive functors from $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ to $A b$. We then compute, in Corollary 5.31, the category $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ for \mathcal{C} being the category of \mathcal{P}-algebras (for \mathcal{P} a set-operad having a binary operation for which $0_{\mathcal{P}} \in \mathcal{P}(0)$ is a unit). The desired equivalence between polynomial functors from monoids and those from groups then follows from a canonical isomorphism $T_{n} \overline{\mathbb{Z}}[\mathrm{mon}] \simeq T_{n} \overline{\mathbb{Z}}[g r]$ obtained in Theorem 5.33 from the computation of these categories given in Corollary 5.31.

We point out that these methods also allow to establish a similar isomorphism between polynomial functors from (finitely generated free) loops (i.e. quasigroups with unit) and polynomial functors from (finitely generated free) $\mathcal{M} a g$-algebras where $\mathcal{M a g}$ is the setoperad encoding magmas with unit; the latter can be computed using the results of this paper. This will be considered elsewhere.

Combining Theorems 0.1 (for $\mathcal{P}=\mathcal{A} s$) and 0.2 we obtain in section 6;
Theorem 0.3. There is an equivalence of categories between the reduced polynomial functors of degree n from (finitely generated free) groups to abelian groups and the category $(\operatorname{PMack}(\Omega(\mathcal{A} s), A b))_{\leq n}$ where $(\operatorname{PMack}(\Omega(\mathcal{A} s), A b))_{\leq n}$ is the full subcategory of $\operatorname{PMack}(\Omega(\mathcal{A} s), A b)$ having as objects the functors which vanish on the sets X of cardinality greater than n and on $\underline{0}$.

Applying our results to $\mathcal{P}=\mathcal{C}$ om we recover the result of [2].
In section 7 we give a presentation of reduced polynomial functors generalizing the one given in [2]. In particular we obtain an explanation of a phenomenon which could, at first glance seem mysterious in [2]. In fact, in the presentation of reduced polynomial functors given in [2] the longest relation curiously has only 8 terms, independantly of the degree of the functor under consideration. In section 7 we see that this property arises from the fact that the operad \mathcal{C} om is generated by a binary operation. Since $\mathcal{A} s$ is generated also by a binary operation the corresponding longest relation also has only 8 terms. But, for an operad which has genuine higher than binary operations the corresponding relation has a number of terms growing exponentially with the arity of the generating operations.

In the case of reduced polynomial functors of degree two from (finitely generated free) groups to abelian groups we recover the corresponding result obtained in [3].

Contents

1.	Recollections on set-operads, double categories and Mackey functors	4
1.1.	Symmetric set-operads	4
1.2.	May-Thomason category $\mathcal{S}(\mathcal{P})$ and the categories $\Gamma(\mathcal{P})$ and $\Omega(\mathcal{P})$	4
1.3.	Double categories, Mackey and pseudo-Mackey functors	7
2.	Polynomial functors	13
2.1.	Cross-effects of covariant functors	13

2.2. Cross-effects of contravariant functors 14
2.3. Polynomial functors on a pointed category having finite coproducts 15
3. Dold-Kan type theorem for $\Gamma(\mathcal{P})$ 17
4. Equivalence between functors from \mathcal{P}-alg and pseudo Mackey functors 23
5. Polynomial maps and polynomial functors 32
5.1. Passi polynomial maps 32
5.2. Polynomial maps on the morphism sets of a category 38
5.3. Characterization of polynomial functors 39
5.4. Description of $T_{n} \mathbb{Z}[\mathcal{P}$-alg] in terms of the generalized Passi functor 41
6. Application: polynomial functors from abelian groups and from groups 44
6.1. Polynomial functors from abelian groups 44
6.2. Polynomial functors from groups 45
7. Presentation of polynomial functors 46
7.1. Generators of $\Omega(\mathcal{P})_{2}$ 46
7.2. Presentation of polynomial functors 49
7.3. Examples 53
References 57

Notations: We denote by $G r$ the category of groups, $A b$ the category of abelian groups, Mon the category of monoids and by ComMon the category of commutative monoids. We denote by $g r$ (resp. $a b$, mon and common) the fullsubcategory of $G r$ (resp. Ab, Mon and ComMon) having as objects finitely generated free objects.

1. Recollections on set-operads, double categories and Mackey FUNCTORS

1.1. Symmetric set-operads. Let \mathcal{S} be the skeleton of the category of finite sets with objects $\underline{n}=\{1, \ldots, n\}$ for $n \geq 0$. We have $\underline{0}=\emptyset$ which is the initial object of \mathcal{S}.

The category \mathcal{S} is a symmetric monoidal category with product the cartesian product \times and unit object $\underline{1}$.

A set-operad \mathcal{P} consists of sets $\mathcal{P}(j)$ with right actions by the symmetric groups \mathfrak{S}_{j} for $j \geq 0$ (with $\mathfrak{S}_{0}=\{I d\}$), a unit element $1_{\mathcal{P}} \in \mathcal{P}(1)$ and product maps:

$$
\gamma_{\left(n ; m_{1}, \ldots, m_{n}\right)}: \mathcal{P}(n) \times \mathcal{P}\left(m_{1}\right) \times \ldots \times \mathcal{P}\left(m_{n}\right) \rightarrow \mathcal{P}\left(m_{1}+\ldots+m_{n}\right)
$$

that are suitably associative, unital and equivariant. For brevity, we will often write γ instead of $\gamma_{\left(n ; m_{1}, \ldots, m_{n}\right)}$. (For further information about operads, see for instance [16]).

We will assume that the operad \mathcal{P} is unitary that is $\mathcal{P}(0)=\underline{1}$. We denote by $0_{\mathcal{P}}$ the unique element of $\mathcal{P}(0)$.

Example 1.1. (1) For a set X, we have an associated set-operad \mathcal{E}_{X} such that $\mathcal{E}_{X}(n)=\operatorname{Hom}_{\mathcal{S}}\left(X^{n}, X\right)$.
(2) The unitary set-operad \mathcal{I} is defined by $\mathcal{I}(0)=\mathcal{I}(1)=\underline{1}$ and $\mathcal{I}(n)=\emptyset$ for $n>1$. It is the initial object in the category of unitary set-operads.
(3) The unitary commutative set-operad $\mathcal{C o m}$ is defined by $\forall n \in \mathbb{N} \mathcal{C o m}(n)=\underline{1}$ equipped with the trivial \mathfrak{S}_{n}-action. It is the terminal object in the category of unitary set-operads. In fact, for \mathcal{P} a unitary set operad the constant maps:

$$
\forall j \in \mathbb{N}, \quad \mathcal{P}(j) \rightarrow \operatorname{Com}(j)=\underline{1}
$$

form a morphism of operads: $\mathcal{P} \rightarrow \mathcal{C}$ om.
(4) The unitary associative set-operad $\mathcal{A} s$ is defined by $\forall n \in \mathbb{N}, \mathcal{A} s(n)=\left|\mathfrak{S}_{n}\right|$, where $|X|$ denotes the cardinality of the set X, equipped with the action of \mathfrak{S}_{n} given by right translations.

Let \mathcal{P} be a set-operad. A \mathcal{P}-algebra is a set X and a morphism of operads $\mathcal{P} \rightarrow \mathcal{E}_{X}$. We denote by \mathcal{P} - $A l g$ the category of \mathcal{P}-algebras. More explicitely, a \mathcal{P}-algebra is a set X together with a family of maps:

$$
\mu_{j}: \mathcal{P}(j) \times_{\mathfrak{S}_{j}} X^{j} \rightarrow X, \quad j \in \mathbb{N}
$$

that is associative and unital. We denote by 1_{X} the element of X given by $\mu_{0}\left(0_{\mathcal{P}}, *\right)$ where $* \in X^{0}=\underline{1}$.

The forgetful functor $\mathcal{P}-A l g \rightarrow$ Set has a left adjoint functor $\mathcal{F}_{\mathcal{P}}:$ Set $\rightarrow \mathcal{P}-A l g$, where S et is the category of all sets. The category of finitely generated free \mathcal{P}-algebras $\operatorname{Free}(\mathcal{P})$ is the full subcategory of \mathcal{P} - Alg whose objects are $\mathcal{F}_{\mathcal{P}}(\underline{n})$ for $n \geq 0$. Recall that $\mathcal{F}_{\mathcal{P}}(X)=\underset{n \geq 0}{\amalg} \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} X^{n}$.

Remark 1.2. There is an isomorphism of categories between $\operatorname{Free}(\mathcal{P})$ and the category $\mathcal{F}(\mathcal{P})$ whose objects are the sets \underline{n} and whose morphisms are given by $\mathcal{F}(\mathcal{P})(\underline{n}, \underline{m})=$ $\operatorname{Free}(\mathcal{P})\left(\mathcal{F}_{\mathcal{P}}(\underline{n}), \mathcal{F}_{\mathcal{P}}(\underline{m})\right)$.

Example 1.3. (1) We have $\operatorname{Free}(\mathcal{I})=\Gamma$ where Γ is the skeleton of the category of finite pointed sets having as objects $[n]=\{0,1, \ldots, n\}$ with 0 as basepoint and morphisms the pointed set maps $f:[n] \rightarrow[m]$.
(2) We have Free $(\mathcal{C o m})=$ common where common is the category of finitely generated free commutative monoids with unit.
(3) We have $\operatorname{Free}(\mathcal{A} s)=$ mon where mon is the category of finitely generated free monoids with unit.

Remark 1.4. Recall that a bijection $h: \underline{n} \rightarrow \underline{n}$ induces a bijection $\hat{h}: \mathcal{P}(n) \rightarrow \mathcal{P}(n)$ given by $\hat{h}(\omega)=\omega \cdot h^{-1}$.
1.2. May-Thomason category $\mathcal{S}(\mathcal{P})$ and the categories $\Gamma(\mathcal{P})$ and $\Omega(\mathcal{P})$. The following construction is due to May and Thomason in [18].

Definition 1.5. Let \mathcal{P} be a unitary set-operad. The May-Thomason category associated to \mathcal{P} (or the category of operators): $\mathcal{S}(\mathcal{P})$, has as objects the finite sets $\underline{n}=\{1, \ldots, n\}$, and morphisms from \underline{n} to \underline{m} in $\mathcal{S}(\mathcal{P})$ are the pairs $\left(f, \omega^{f}\right)$ where $f \in \mathcal{S}(\underline{n}, \underline{m}), \omega^{f} \in \Pi_{y \in Y} \mathcal{P}\left(\left|f^{-1}(y)\right|\right)$. For $\left(f, \omega^{f}\right): \underline{n} \rightarrow \underline{m}$ and $\left(g, \omega^{g}\right): \underline{m} \rightarrow \underline{l}$ morphisms in $\mathcal{S}(\mathcal{P})$, the composition $\left(g, \omega^{g}\right) \circ\left(f, \omega^{f}\right)$ in $\mathcal{S}(\mathcal{P})$ is the pair $\left(g \circ f, \omega^{g \circ f}\right)$ where, for $i \in\{1, \ldots l\}$ we have:

$$
\omega_{i}^{g \circ f}=\gamma\left(\omega_{i}^{g} ; \omega_{j_{1}}^{f}, \ldots, \omega_{j_{s}}^{f}\right) \cdot \sigma_{i}
$$

where $g^{-1}(i)=\left\{j_{1}, \ldots, j_{s}\right\}$ with $j_{1}<\ldots<j_{s}$, for $h: \underline{p} \rightarrow \underline{q}$ and $\alpha \in \underline{q}$, $\omega_{\alpha}^{h} \in \mathcal{P}(\mid$ $\left.h^{-1}(\alpha) \mid\right)$ is the component of ω^{h} and σ_{i} is the permutation of $\left|(g \circ f)^{-1}(i)\right|$ defined in the following way: let $A_{i}=\left(x_{1}, \ldots, x_{n_{j}}\right)$ be the natural ordering of $(g \circ f)^{-1}(i)$ and let $B_{i}=\left(y_{1}, \ldots, y_{n_{j}}\right)$ be its ordering obtained by regarding it as $\amalg_{g(j)=i} f^{-1}(j)$ so ordered that:

- if $j<j^{\prime}$, all elements of $f^{-1}(j)$ precede all elements of $f^{-1}\left(j^{\prime}\right)$;
- each $f^{-1}(j)$ has its natural ordering as a subset of \underline{n};
σ_{i} then is defined by: $\forall k \in\left\{1, \ldots n_{j}\right\}, \sigma_{i}(k)=l$ such that $y_{l}=x_{k}$.
Remark 1.6. For $\underline{n} \in \mathcal{S}(\mathcal{P})$ the identity morphism of \underline{n} is $\left(I d_{\underline{n}},\left(1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}\right) \in \mathcal{P}(1)^{n}\right)$ and the associativity of composition follows from the definition of operads.

Example 1.7 (Example of composition in $\mathcal{S}(\mathcal{P}))$. Let $\left(f, \omega_{1} \in \mathcal{P}(1), \omega_{2} \in \mathcal{P}(2)\right): \underline{3} \rightarrow \underline{2}$ be the morphism in $\mathcal{S}(\mathcal{P})$ defined by $f(1)=f(3)=2$ and $f(2)=1$ and $\left(g, \alpha_{1} \in\right.$ $\left.\mathcal{P}(2), \alpha_{2} \in \mathcal{P}(1), \alpha_{3} \in \mathcal{P}(3)\right): \underline{6} \rightarrow \underline{3}$ defined by $g(1)=g(5)=1, g(2)=2$ and $g(3)=g(4)=g(6)=3$. We have:

$$
\left(f, \omega_{1}, \omega_{2}\right)\left(g, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(f g, \gamma\left(\omega_{1}, \alpha_{2}\right) \in \mathcal{P}(1), \gamma\left(\omega_{2}, \alpha_{1}, \alpha_{3}\right) \cdot \sigma \in \mathcal{P}(5)\right)
$$

where $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 2 & 5\end{array}\right)$ (in this example $A_{2}=(1,3,4,5,6)$ and $B_{2}=(1,5,3,4,6)$).

Example 1.8.

- For $\mathcal{P}=\mathcal{I}, \mathcal{S}(\mathcal{I})$ is the subcategory of \mathcal{S} having as morphisms the injections.
- For $\mathcal{P}=\mathcal{C}$ om. Since $\forall n \geq 0 \quad \mathcal{C}$ om $(n)=\underline{1}$, a morphism in $\mathcal{S}(\mathcal{P})$ is a pair $\left(f, \omega^{f}\right)$ where $f \in \operatorname{Hom}_{\mathcal{S}}(X, Y)$ and $\omega^{f} \in \Pi_{y \in Y} \mathcal{C} \operatorname{Com}\left(\left|f^{-1}(y)\right|\right)=\Pi_{y \in Y}$. Consequently, $\mathcal{S}($ Com $)=\mathcal{S}$.
- For $\mathcal{P}=\mathcal{A} s, \mathcal{S}(\mathcal{A} s)$ is the category of non-commutative sets (see [24]) having as objects the sets \underline{n} and for \underline{n} and \underline{m} objects in $\mathcal{S}(\mathcal{A} s)$, an element of $\operatorname{Hom}_{\mathcal{S}(\mathcal{A s})}(\underline{n}, \underline{m})$ is a set map $f: \underline{n} \rightarrow \underline{m}$ together with a total ordering of the fibers $f^{-1}(j)$ for all $j \in \underline{m}$. The morphisms of $\mathcal{S}(\mathcal{A} s)$ are called non-commutative maps. For $f: \underline{n} \rightarrow \underline{m}$ and $g: \underline{m} \rightarrow \underline{k}$ two non-commutative maps, the composition $g \circ f \in \operatorname{Hom}_{\mathcal{S}(\mathcal{A s})}(\underline{n}, \underline{k})$ is the set map $g \circ f: \underline{n} \rightarrow \underline{k}$ and the total ordering in $(g \circ f)^{-1}(i)$ for $i \in \underline{n}$ is given by the ordered union of ordered sets:

$$
(g \circ f)^{-1}(i)=\amalg_{j \in g^{-1}(i)} f^{-1}(j) .
$$

In general, the disjoint union \amalg is not a coproduct in the category $\mathcal{S}(\mathcal{P})$ but it defines a symmetric monoidal category structure on $\mathcal{S}(\mathcal{P})$. The following straightforward lemma will be useful in the sequel.
Lemma 1.9. Let $\left(f, \omega^{f}\right): X \rightarrow S_{1} \amalg S_{2}$ be a morphism in $\mathcal{S}(\mathcal{P})$ then:

$$
\left(f, \omega^{f}\right)=\left(f_{1}, \omega^{f_{1}}\right) \amalg\left(f_{2}, \omega^{f_{2}}\right)
$$

where f_{i} is the restriction of f on $f^{-1}\left(S_{i}\right)$ for $i \in\{1,2\}$ and $\omega^{f_{1}}$ and $\omega^{f_{2}}$ are defined by:

$$
\begin{gathered}
\omega^{f}=\left(\omega^{f_{1}}, \omega^{f_{2}}\right) \in \prod_{y \in S_{1} \amalg S_{2}} \mathcal{P}\left(\left|f^{-1}(y)\right|\right)=\prod_{y_{1} \in S_{1}} \mathcal{P}\left(\left|f^{-1}\left(y_{1}\right)\right|\right) \times \prod_{y_{2} \in S_{2}} \mathcal{P}\left(\left|f^{-1}\left(y_{2}\right)\right|\right) \\
=\prod_{y_{1} \in S_{1}} \mathcal{P}\left(\left|f_{1}^{-1}\left(y_{1}\right)\right|\right) \times \prod_{y_{2} \in S_{2}} \mathcal{P}\left(\left|f_{2}^{-1}\left(y_{2}\right)\right|\right) .
\end{gathered}
$$

In the sequel, we adapt the definition of May-Thomason category to the categories Γ and Ω.

Definition 1.10. Let \mathcal{P} be a unitary set-operad. Let $\Gamma(\mathcal{P})$ be the category of \mathcal{P}-pointed sets having as objects the pointed sets $[n]$ and an element of $\operatorname{Hom}_{\Gamma(\mathcal{P})}([n],[m])$ is a pair $\left(f, \omega^{f}\right)$ where f is a pointed set map $f:[n] \rightarrow[m]$ and $\omega^{f} \in \Pi_{y \in[m], y \neq 0} \mathcal{P}\left(\left|f^{-1}(y)\right|\right)$. The composition is defined in the same way as in the category $\mathcal{S}(\mathcal{P})$.

Example 1.11.

- For $\mathcal{P}=\mathcal{I}, \Gamma(\mathcal{I})$ is the subcategory of Γ having as morphisms the pointed injections.
- For $\mathcal{P}=\mathcal{C}$ om, we have $\Gamma(\mathcal{C o m})=\Gamma$.
- For $\mathcal{P}=\mathcal{A} s$, we have $\Gamma(\mathcal{P})=\Gamma(\mathcal{A} s)$ where $\Gamma(\mathcal{A} s)$ is the category of noncommutative pointed sets having as objects the sets $[n]$ and for $[n]$ and $[m]$ objects in $\Gamma($ as $)$, an element of $\operatorname{Hom}_{\Gamma(a s)}([n],[m])$ is a set map $f:[n] \rightarrow[m]$ such that $f(0)=0$ together with a total ordering of the fibers $f^{-1}(j)$ for all $j=1, \ldots, m$. We remark that this definition differs from the one given in [20]: here, we do not suppose to have an ordering of $f^{-1}(0)$.

Let Ω be the category having as objects the sets \underline{n}, for $n \geq 0$ and as morphisms the surjective maps.

Definition 1.12. Let \mathcal{P} be a unitary set-operad. Let $\Omega(\mathcal{P})$ be the subcategory of $\mathcal{S}(\mathcal{P})$ having as morphisms the morphisms of $\mathcal{S}(\mathcal{P}):\left(f, \omega^{f}\right)$ such that f is a surjective map.

Example 1.13.

- For $\mathcal{P}=\mathcal{I}, \Omega(\mathcal{I})$ is the subcategory of \mathcal{S} having as morphisms the bijections.
- For $\mathcal{P}=\mathcal{C}$ om, we have $\Omega(\mathcal{C o m})=\Omega$.
- For $\mathcal{P}=\mathcal{A} s, \Omega(\mathcal{A} s)$ is the category having as objects the non-commutative sets and as morphisms the surjective maps.

The following proposition is a direct consequence of definitions.
Proposition 1.14. A morphism of unitary set-operad $\phi: \mathcal{P} \rightarrow \mathcal{Q}$ gives rise to functors $\mathcal{S}(\phi): \mathcal{S}(\mathcal{P}) \rightarrow \mathcal{S}(\mathcal{Q}), \Omega(\phi): \Omega(\mathcal{P}) \rightarrow \Omega(\mathcal{Q})$ and $\Gamma(\phi): \Gamma(\mathcal{P}) \rightarrow \Gamma(\mathcal{Q})$.

For $\phi: \mathcal{P} \rightarrow \mathcal{Q}$ a morphism of set-operad, the categories $\Gamma(\mathcal{P}), \mathcal{S}(\mathcal{P}), \Omega(\mathcal{P}), \Gamma(\mathcal{Q})$, $\mathcal{S}(\mathcal{Q}), \Omega(\mathcal{Q})$ are connected by the functors in the following diagram:

where

- ι is the obvious faithful functor;
- j is the functor which adds a basepoint to a set, that is: $j(\underline{n})=[n]$ and for an arrow $\left(g, \omega^{g}\right) \in \operatorname{Hom}_{\mathcal{S}(\mathcal{P})}(\underline{n}, \underline{m})$ we define $j\left(g, \omega^{g}\right)=\left(g_{+}, \omega^{g_{+}}\right)$where the map $g_{+} \in \operatorname{Hom}_{\Gamma}([n],[m])$ is given by $g_{+}(0)=0$ and $g_{+\mid\{1, \ldots, n\}}=g$ and

$$
\omega^{g_{+}}=\omega^{g} \in \prod_{x \in[m], x \neq 0} \mathcal{P}\left(\left|g_{+}^{-1}(x)\right|\right)=\prod_{x \in \underline{m}} \mathcal{P}\left(\left|g_{+}^{-1}(x)\right|\right)=\prod_{x \in \underline{m}} \mathcal{P}\left(\left|g^{-1}(x)\right|\right) .
$$

1.3. Double categories, Mackey and pseudo-Mackey functors. First we recall the notion of double category due to Ehresmann [8]. We refer the reader to [10] for a complete definition of a double category.

Definition 1.15. A double category \mathbb{D} consists of a set of objects, a set of horizontal
arrows $A \rightarrow B$, a set of vertical arrows $\begin{gathered}1 \\ \vdots \\ \vdots\end{gathered}$ and a set of squares: $\stackrel{\vee}{C}$

satisfying natural conditions. The objects and the horizontal arrows form a category denoted by \mathbb{D}^{h}. The objects and vertical arrows form a category denoted by \mathbb{D}^{v}.

The following examples of double category will be useful in the sequel.
Definition 1.16. For the category $\mathcal{S}(\mathcal{P})$ (resp. $\Gamma(\mathcal{P})$, resp. $\Omega(\mathcal{P})$) we define the double category $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\Gamma(\mathcal{P})_{2}$, resp. $\left.\Omega(\mathcal{P})_{2}\right)$ whose objects are objects of \mathcal{S} (resp. Γ,
resp. Ω), horizontal arrows are morphisms in \mathcal{S} (resp. Γ, resp. Ω), and vertical arrows are morphisms of $\mathcal{S}(\mathcal{P})$ (resp. $\Gamma(\mathcal{P})$, resp. $\Omega(\mathcal{P})$). Squares are diagrams
where f and g are horizontal maps and $\left(\phi, \omega^{\phi}\right)$ and $\left(\psi, \omega^{\psi}\right)$ are vertical maps of $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\Gamma(\mathcal{P})_{2}$, resp. $\left.\Omega(\mathcal{P})_{2}\right)$, satisfying the following conditions:
(1) the image of \mathcal{D} in \mathcal{S} is a pullback diagram of sets,
(2) for all $c \in C$ the bijection $g_{*}: \mathcal{P}\left(\left|\phi^{-1}(c)\right|\right) \rightarrow \mathcal{P}\left(\left|\psi^{-1}(g(c))\right|\right)$ induced by the bijection $\phi^{-1}(c) \rightarrow \psi^{-1}(g(c))$ (see Remark 1.4) satisfies

$$
g_{*}\left(\omega_{c}^{\phi}\right)=\omega_{g(c)}^{\psi} .
$$

Example 1.17. For $\mathcal{P}=\mathcal{A} s, \mathcal{S}(\mathcal{P})_{2}=\mathcal{S}(\mathcal{A} s)_{2}$ where $\mathcal{S}(\mathcal{A} s)_{2}$ is the double category defined in [24]. The condition (2) in the previous definition becomes: for all $c \in C$ the induced map $g_{*}: \phi^{-1}(c) \rightarrow \psi^{-1}(g(c))$ is an isomorphism of ordered sets.

The following diagram generalizes the diagram (1.17.1):

Remark that a vertical arrow of $\Gamma(\mathcal{P})_{2}:\left(f, \omega^{f}\right) \in \operatorname{Hom}_{\Gamma(\mathcal{P})}([n],[m])$ is of the form $j\left(\tilde{f}, \omega^{\tilde{f}}\right)$ if and only if $f^{-1}(0)=0$.

For an operad \mathcal{P} such that $\mathcal{P}(1)=\left\{1_{\mathcal{P}}\right\},\left(\mathcal{S}(\mathcal{P})_{2}\right)^{h}$ and $\left(\mathcal{S}(\mathcal{P})_{2}\right)^{v}$ have the same class of isomorphisms but, in general, the class of isomorphisms of $\left(\mathcal{S}(\mathcal{P})_{2}\right)^{v}$ is bigger than that of $\left(\mathcal{S}(\mathcal{P})_{2}\right)^{h}$. So we can not apply directly the construction considered in section 5 in [24]. Nevertheless, we can adapt the construction of the Span category in our situation considering the notion of double isomorphisms in a double category.

Let \mathbb{D} be a double category and A, B be two objects of \mathbb{D}. Consider a pair (f, u) where:

- $f: A \rightarrow B$ is a horizontal isomorphism of \mathbb{D};
- $u: A-->B$ is a vertical isomorphism of \mathbb{D};
provided with a square \mathcal{D} in \mathbb{D} :

Equivalently, the pair (f, u) is provided with the square:
since we have:
where the left-hand square of \mathbb{D} is the horizontal inverse of \mathcal{D}^{*} and the right-hand square is the square of \mathbb{D} associated to the horizontal map f.

Definition 1.18. [13] Let \mathbb{D} be a double category and A, B be two objects of \mathbb{D}. A double isomorphism from A to B is a pair (f, u) where:

- $f: A \rightarrow B$ is a horizontal isomorphism of \mathbb{D};
- $u: A-->B$ is a vertical isomorphism of \mathbb{D}.
equipped with a square \mathcal{D} (or equivalently with \mathcal{D}^{*}) in \mathbb{D} :

Definition 1.19. Two squares of \mathbb{D}

are isomorphic in \mathbb{D} if there exists a double isomorphism (f, u) from A^{\prime} to A and a double isomorphism (f^{\prime}, u^{\prime}) from D to D^{\prime}
such that $\alpha^{\prime}=\alpha f, a^{\prime}=a u, \beta^{\prime}=f^{\prime} \beta$ and $b^{\prime}=u^{\prime} b$.
The following lemma which describes double isomorphisms in the double categories $\mathcal{S}(\mathcal{P})_{2}, \Omega(\mathcal{P})_{2}$ and $\Gamma(\mathcal{P})_{2}$ is a straightforward consequence of the definition of squares in these categories.

Lemma 1.20. Double isomorphisms in $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\Omega(\mathcal{P})_{2}$ resp. $\left.\Gamma(\mathcal{P})_{2}\right)$ are pairs $\left(f,\left(f, 1_{\mathcal{P}}^{\times|A|}\right)\right)$ where $f: A \rightarrow A$ is a bijection.

Proof. Let $\left(f,(g, \omega)\right.$) be a double isomorphism in $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\Omega(\mathcal{P})_{2}$ resp. $\left.\Gamma(\mathcal{P})_{2}\right)$ from A to A^{\prime} provided with the square:

By definition, f is an isomorphism in \mathcal{S} (resp. Ω resp. Γ) from A to A^{\prime} so f is a bijection and $A=A^{\prime}$ since we consider skeleton of categories. Since the image of \mathcal{D} in \mathcal{S} (resp. Ω resp. Γ) is a pullback diagram of sets we have $g=f$. Condition (2) in the definition of $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\Omega(\mathcal{P})_{2}$ resp. $\left.\Gamma(\mathcal{P})_{2}\right)$ implies that $\omega=1_{\mathcal{P}}^{\times|A|}$.

In order to define Mackey functors from $\mathcal{S}(\mathcal{P})_{2}$ and pseudo-Mackey functors from $\Omega(\mathcal{P})_{2}$ we need the following lemma.

Lemma 1.21. Let $g: C \rightarrow D$ be a horizontal arrow of $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\left.\Omega(\mathcal{P})_{2}\right)$ and $\left(\psi, \omega^{\psi}\right): B \rightarrow D$ be a vertical arrow of $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\left.\Omega(\mathcal{P})_{2}\right)$, there exists a unique square in $\mathcal{S}(\mathcal{P})_{2}$ (resp. $\left.\Omega(\mathcal{P})_{2}\right)$ up to isomorphism, of the form:

Proof. For $\mathcal{S}(\mathcal{P})_{2}$, since the image of \mathcal{D} in \mathcal{S} is a pullback diagram of sets, A is the pullback of sets

defined up to a bijection $\alpha: A^{\prime} \rightarrow A$. Then we lift the set map ϕ into $\mathcal{S}(\mathcal{P})_{2}$ according to property (2). Indeed, $\omega^{\phi} \in \prod_{c \in C} \mathcal{P}\left(\left|\phi^{-1}(c)\right|\right)$ and for $c \in C, \omega_{c}^{\phi} \in \mathcal{P}\left(\left|\phi^{-1}(c)\right|\right)$ such that $g_{*}\left(\omega_{c}^{\phi}\right)=\omega_{g(c)}^{\psi}$, so the lifting $\left(\phi, \omega^{\phi}\right)$ of ϕ in $\mathcal{S}(\mathcal{P})_{2}$ exists and is unique. The square

is defined up to the double isomorphism $\left(\alpha,\left(\alpha, 1_{\mathcal{P}}^{\times\left|A^{\prime}\right|}\right)\right)$ from A^{\prime} to A.
For $\Omega(\mathcal{P})_{2}$, in the pullback diagram of sets, since g and ψ are surjective, f and ϕ are also surjective. We lift the set map ϕ into $\Omega(\mathcal{P})_{2}$ as previously.

Remark 1.22. If we replace the category $\mathcal{S}(\mathcal{P})_{2}$ by $\Gamma(\mathcal{P})_{2}$ in Lemma 1.21 , the statement is no more true. If fact, for $g: C \rightarrow D$ a horizontal arrow of $\Gamma(\mathcal{P})_{2}$ and $\left(\psi, \omega^{\psi}\right): B \rightarrow D$ a vertical arrow of $\Gamma(\mathcal{P})_{2}$, for $c \in C \backslash\{0\}$ such that $g(c)=0$, there is not a unique way to define ω_{c}^{ϕ}. However we have the following analogue of Lemma 1.21 for $\Gamma(\mathcal{P})_{2}$.

Lemma 1.23. Let $g: C \rightarrow D$ be a horizontal arrow of $\Gamma(\mathcal{P})_{2}$ such that $g^{-1}(0)=0$ and $\left(\psi, \omega^{\psi}\right): B \rightarrow D$ be a vertical arrow of $\Gamma(\mathcal{P})_{2}$ there exists a unique square in $\Gamma(\mathcal{P})_{2}$ up to isomorphism, of the form:

Proof. Since $g^{-1}(0)=0$ the lifting $\left(\phi, \omega^{\phi}\right)$ of ϕ into $\Gamma(\mathcal{P})_{2}$ exists and is unique.
Definition 1.24. Let \mathcal{A} be a category.

- A Janus functor M from a double category \mathbb{D} to \mathcal{A} is:
(1) a covariant functor $M_{*}: \mathbb{D}^{h} \rightarrow \mathcal{A}$
(2) a contravariant functor $M^{*}:\left(\mathbb{D}^{v}\right)^{o p} \rightarrow \mathcal{A}$
such that, for each object $A \in \mathbb{D}$ we have $M_{*}(A)=M^{*}(A)=M(A)$.
- A Mackey functor $M=\left(M_{*}, M^{*}\right)$ from a double category \mathbb{D} to \mathcal{A} is a Janus functor M from \mathbb{D} to \mathcal{A} such that for each square in \mathbb{D},

we have:

$$
M^{*}(\psi) M_{*}(g)=M_{*}(f) M^{*}(\phi) .
$$

The category of Mackey functors from \mathbb{D} to \mathcal{A} is denoted by $\operatorname{Mack}(\mathbb{D}, \mathcal{A})$.
We give the construction of the category of spans of a double category:
Definition 1.25. Let \mathbb{D} be a double category, such that for $f \in \operatorname{Hom}_{\mathbb{D}^{h}}(X, B)$ and $\psi \in \operatorname{Hom}_{\mathbb{D}^{v}}(Y, B)$ there exists a unique square of \mathbb{D}, up to isomorphism, of the form

The category of spans of \mathbb{D}, denoted by $\operatorname{Span}(\mathbb{D})$ is defined in the following way:
(1) the objects of $\operatorname{Span}(\mathbb{D})$ are those of \mathbb{D};
(2) for A and B objects of $\mathbb{D}, \operatorname{Hom}_{\text {Span }(\mathbb{D})}$ is the set of equivalence classes of diagrams

where $\phi \in \operatorname{Hom}_{\mathbb{D}^{v}}(X, A)$ and $f \in \operatorname{Hom}_{\mathbb{D}^{h}}(X, B)$, for the equivalence relation which identifies the two diagrams $\left(A<-\frac{\phi}{-} X \xrightarrow{f} B\right)$ and $\left(A<\stackrel{\phi^{\prime}}{-}-X^{\prime} \xrightarrow{f^{\prime}} B\right)$ if there exists a double isomorphism (h, u) from X^{\prime} to X in \mathbb{D} such that:

$$
\left(A<\stackrel{\phi^{\prime}}{-}-X^{\prime} \xrightarrow{f^{\prime}} B\right)=\left(A<-\frac{\phi u}{-}-X^{\prime} \xrightarrow{f h} B\right) .
$$

We denote by $\left[A<\frac{\phi}{-}-X \xrightarrow{f} B\right]$ the map of $\operatorname{Hom}_{\text {Span }(\mathbb{D})}(A, B)$ represented by the diagram $A<--X \xrightarrow{f} B$.
(3) the composition of $\left[A<\frac{\phi}{-}-X \xrightarrow{f} B\right]$ and $\left[B<\frac{\psi}{-}-Y \xrightarrow{g} C\right]$ is the class of the diagram $A \stackrel{\phi \phi_{1}}{-} Z \xrightarrow{g f_{1}} C$ where
is a square in \mathbb{D}.
The following lemma is a generalization of a result of Lindner [17] in the context of classical Mackey functors.

Lemma 1.26. Let \mathbb{D} be a double category satisfying the hypothesis of Definition 1.25 , there is a natural equivalence:

$$
\operatorname{Mack}(\mathbb{D}, \mathcal{A}) \simeq \operatorname{Func}(\operatorname{Span}(\mathbb{D}), \mathcal{A})
$$

According to Lemma 1.21 the category $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$ exists. We have the following result.

Proposition 1.27. The disjoint union \amalg is a coproduct in $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$.
Proof. Let S_{1}, S_{2} and T be objects of $\mathcal{S}(\mathcal{P})_{2}$ and $\beta=\left[S_{1} \stackrel{\left(f, \omega^{f}\right)}{\leftarrow}-A \xrightarrow{f^{\prime}} T\right], \gamma=$
 morphisms of $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$.

For $\alpha=\left[S_{1} \amalg \stackrel{\left(f, \omega_{2}^{f}\right) \amalg\left(g, \omega^{g}\right)}{\leftarrow} \amalg B \xrightarrow{f^{\prime} \amalg g^{\prime}} T\right]$ we have:

$$
\alpha \circ I_{1}=\beta \quad \text { and } \quad \alpha \circ I_{2}=\gamma .
$$

The uniqueness of α is obtained according to Lemma 1.9.
Although the notion of Mackey functors from $\Omega(\mathcal{P})_{2}$ is well defined, we need to introduce the notion of pseudo-Mackey functors from $\Omega(\mathcal{P})_{2}$ in order to obtain a description of functors from finitely generated free \mathcal{P}-algebras to $A b$. Let
be a square in $\Omega(\mathcal{P})_{2}$. (For fixed morphisms g and $\left(\psi, \omega^{\psi}\right), \mathcal{D}$ is unique up to isomorphism according to Lemma 1.21). For any subset A^{\prime} of A we let $f_{A^{\prime}}$ and $\left(\phi, \omega^{\phi}\right)_{A^{\prime}}$ be the restrictions of f and $\left(\phi, \omega^{\phi}\right)$ on A^{\prime} (i.e., if $i: A^{\prime} \rightarrow A$ is the inclusion, we have $\left(i, \omega^{i}\right) \in$ $\operatorname{Hom}_{\mathcal{S}(\mathcal{P})}\left(A^{\prime}, A\right)$ where $\omega^{i}=\left(1_{\mathcal{P}}^{\times\left|A^{\prime}\right|}, 0_{\mathcal{P}}^{\times\left|A^{\prime c}\right|}\right) \in \Pi_{y \in i\left(A^{\prime}\right)} \mathcal{P}\left(\left|i^{-1}(y)\right|\right) \times \Pi_{y \in i\left(A^{\prime}\right) c} \mathcal{P}(0)$, so $\left(\phi, \omega^{\phi}\right)_{A^{\prime}}=\left(\phi, \omega^{\phi}\right) \circ\left(i, \omega^{i}\right)$.) Following [2], we call A^{\prime} a \mathcal{D}-admissible subset of A if $f_{A^{\prime}}$ and $\phi_{A^{\prime}}=\phi \circ i$ are surjections. We denote by $\operatorname{Adm}(\mathcal{D})$ the set of all \mathcal{D}-admissible subsets of A.

Definition 1.28. A pseudo-Mackey functor $M: \Omega(\mathcal{P})_{2} \rightarrow A b$ is a Janus functor such that:
(1) For a double isomorphism (f, u) of $\Omega(\mathcal{P})_{2}$ we have:

$$
M_{*}(f) M^{*}(u)=I d .
$$

(2) For a pair of horizontal and vertical morphisms of $\Omega(\mathcal{P})_{2}$ having the same target: $g: C \rightarrow D$ and $\left(\psi, \omega^{\psi}\right): B-->D$ and the unique square, up to isomorphism, in $\Omega(\mathcal{P})_{2}$
we have

$$
M^{*}\left(\psi, \omega^{\psi}\right) \circ M_{*}(g)=\sum_{A^{\prime} \in \operatorname{Adm}(A)} M_{*}\left(f_{A^{\prime}}\right) \circ M^{*}\left(\phi, \omega^{\phi}\right)_{A^{\prime}} .
$$

Note that the notion of pseudo-Mackey functor is not weaker than that of Mackey functor. There is no obvious link between the categories of pseudo-Mackey functors and of Mackey functors of $\Omega(\mathcal{P})_{2}$.

2. Polynomial functors

In this section we generalize the definition of polynomial functors introduced by Eilenberg and MacLane [9] for covariant and contravariant functors from a pointed monoidal category.

Let \mathcal{C} be a pointed category (i.e. having a null object denoted by 0) and equipped with a monoidal structure \vee, whose neutral object is 0 . In other words, there is a bifunctor $\vee: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ together with isomorphisms $X \vee 0 \simeq X$ and $0 \vee X \simeq X$ such that usual properties (associativity, etc) hold.
Example 2.1. (1) Any pointed category with finite coproducts is an example of such category. In particular, the categories $G r, A b, M o n$ and ComMon are pointed categories with finite coproducts.
(2) Although $\Gamma(\mathcal{P})$ has no coproduct, it is an example of such a category. In fact, the null object of $\Gamma(\mathcal{P})$ is $[0]$ and the symmetric monoidal structure is given by the wedge operation of pointed sets: $[n] \vee[m]=[n+m]$.
In the sequel, we need the following notations: for $X_{1}, X_{2}, \ldots X_{n} \in \mathcal{C}$, let

$$
i_{\hat{k}}^{n}: X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n} \rightarrow X_{1} \vee \ldots \vee X_{k} \vee \ldots \vee X_{n}
$$

be the composition:

$$
X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n} \simeq X_{1} \vee \ldots \vee 0 \vee \ldots \vee X_{n} \rightarrow X_{1} \vee \ldots \vee X_{k} \vee \ldots \vee X_{n}
$$

where the second map is induced by the unique map $0 \rightarrow X_{k}$. Similarly one obtains morphisms:
$r_{\hat{k}}^{n}=\left(1_{X_{1}}, \ldots, 1_{X_{1}}, 0,1_{X_{1}}, \ldots, 1_{X_{n}}\right): X_{1} \vee \ldots \vee X_{k} \vee \ldots \vee X_{n} \rightarrow X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}$. We have the relation:

$$
r_{\hat{k}}^{n} i_{\hat{k}}^{n}=1_{X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}} .
$$

In the following, \mathcal{D} is an abelian category.

2.1. Cross-effects of covariant functors. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor.

Definition 2.2. The n-th cross-effect of F is a functor $c r_{n} F: \mathcal{C}^{\times n} \rightarrow \mathcal{D}$ (or a multifunctor) defined inductively by

$$
\begin{gathered}
\operatorname{cr}_{1} F(X)=\operatorname{ker}(F(0): F(X) \rightarrow F(0)) \\
\operatorname{cr}_{2} F\left(X_{1}, X_{2}\right)=\operatorname{ker}\left(\left(F\left(r_{2}^{2}\right), F\left(r_{\hat{1}}^{2}\right)\right)^{t}: F\left(X_{1} \vee X_{2}\right) \rightarrow F\left(X_{1}\right) \oplus F\left(X_{2}\right)\right)
\end{gathered}
$$

and, for $n \geq 3$, by

$$
c r_{n} F\left(X_{1}, \ldots, X_{n}\right)=c r_{2}\left(c r_{n-1} F\left(-, X_{3}, \ldots, X_{n}\right)\right)\left(X_{1}, X_{2}\right) .
$$

We write also $F\left(X_{1}|\ldots| X_{n}\right)$ instead of $c r_{n} F\left(X_{1}, \ldots, X_{n}\right)$.
Recall that a reduced functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor satisfying $F(0)=0$. We denote by Func $_{*}(\mathcal{C}, \mathcal{D})$ the category of reduced functors $F: \mathcal{C} \rightarrow \mathcal{D}$.

There is an alternative description of cross-effects.
Proposition 2.3. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. Then the n-th cross-effect $\operatorname{cr}_{n} F\left(X_{1}, \ldots, X_{n}\right)$ is equal to the kernel of the natural homomorphism

$$
\hat{r}^{F}: F\left(X_{1} \vee \ldots \vee X_{n}\right) \longrightarrow \bigoplus_{k=1}^{n} F\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right)
$$

where \hat{r}^{F} is the map $\left(F\left(r_{\hat{1}}^{n}\right), \ldots, F\left(r_{\hat{n}}^{n}\right)\right)^{t}$.

The next proposition gives the cross-effect decomposition of $F\left(X_{1} \vee \ldots \vee X_{n}\right)$.
Proposition 2.4. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a reduced functor. Then there is a natural decomposition

$$
F\left(X_{1} \vee \ldots \vee X_{n}\right) \simeq \bigoplus_{k=1}^{n} \bigoplus_{1 \leq i_{1}<\ldots<i_{k} \leq n} c r_{k} F\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

The cross-effects have the following crucial property.
Proposition 2.5. The functor $\operatorname{cr}_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow \operatorname{Func}\left(\mathcal{C}^{\times n}, \mathcal{D}\right)$ is exact for all $n \geq 1$.
Proof. For $n=1$ it is a consequence of the natural decomposition $F(X) \simeq c r_{1} F(X) \oplus$ $F(0)$. For $n=2$ this follows from the snake-lemma. For higher n use induction.
Definition 2.6. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is said to be polynomial of degree lower or equal to n if cr $r_{n+1} F=0$. A reduced functor F is called linear if $n=1$ and is called quadratic if $n=2$.

We denote by $\operatorname{Pol}_{n}(\mathcal{C}, \mathcal{D})$ the full subcategory of $\operatorname{Func}_{*}(\mathcal{C}, \mathcal{D})$ consisting of reduced polynomial functors of degree lower or equal to n from \mathcal{C} to $\mathcal{D}, \operatorname{Lin}(\mathcal{C}, \mathcal{D})$ the subcategory of linear functors and $\operatorname{Quad}(\mathcal{C}, \mathcal{D})$ those of quadratic functors.

If \mathcal{C} is a preadditive category, the linear functors are precisely the additive functors. In this case, we will denote $\operatorname{Add}(\mathcal{C}, \mathcal{D})$ instead of $\operatorname{Lin}(\mathcal{C}, \mathcal{D})$.

The category $\operatorname{Pol}_{n}(\mathcal{C}, \mathcal{D})$ has the following fundamental property which is an immediate consequence of Proposition 2.5.
Proposition 2.7. The category $\operatorname{Pol}_{n}(\mathcal{C}, \mathcal{D})$ is thick i.e. closed under quotients, subobjects and extensions.

For X a fixed object of \mathcal{C} we define the universal functor $U_{X}^{\mathcal{C}}: \mathcal{C} \rightarrow A b$ as follows. For a set S, let $\mathbb{Z}[S]$ denote the free abelian group with basis S. Since for all $Y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is pointed with basepoint the zero map, we can define a subfunctor $\mathbb{Z}[0]$ of $\mathbb{Z}\left[\operatorname{Hom}_{\mathcal{C}}(X,-)\right]$ by $\mathbb{Z}[0](Y)=\mathbb{Z}[\{X \xrightarrow{0} Y\}]$ for $Y \in \mathcal{C}$.
Definition 2.8. The universal functor $U_{X}^{\mathcal{C}}: \mathcal{C} \rightarrow$ Ab relative to X is the quotient of $\mathbb{Z}\left[\operatorname{Hom}_{\mathcal{C}}(X,-)\right]$ by the subfunctor $\mathbb{Z}[0]$.

Note that $U_{X}^{\mathcal{C}}$ is the reduced standard projective functor associated with X.
To keep notation simple we write f also for the equivalence class in $U_{X}^{\mathcal{C}}(Y)$ of an element f of $H o m_{\mathcal{C}}(X, Y)$.
2.2. Cross-effects of contravariant functors. Let G be a contravariant functor from \mathcal{C} to \mathcal{D}.

Definition 2.9. The n-th cross-effect of G is a functor $\tilde{c} r_{n} G:\left(\mathcal{C}^{o p}\right)^{\times n} \rightarrow \mathcal{D}$ (or a multi-functor) defined inductively by

$$
\begin{gathered}
\tilde{c r}_{1} G(X)=\operatorname{ker}(G(0): G(X) \rightarrow G(0)) \\
\tilde{c r}_{2} G\left(X_{1}, X_{2}\right)=\operatorname{ker}\left(\left(G\left(i_{\hat{2}}^{2}\right), G\left(i_{\hat{1}}^{2}\right)\right)^{t}: G\left(X_{1} \vee X_{2}\right) \rightarrow G\left(X_{1}\right) \oplus G\left(X_{2}\right)\right)
\end{gathered}
$$

and, for $n \geq 3$, by

$$
\tilde{c r}_{n} G\left(X_{1}, \ldots, X_{n}\right)=\tilde{c r} r_{2}\left(\tilde{c r}_{n-1} G\left(-, X_{3}, \ldots, X_{n}\right)\right)\left(X_{1}, X_{2}\right) .
$$

Proposition 2.10. Let G be a contravariant functor from \mathcal{C} to \mathcal{D}. Then the n-th crosseffect
$\tilde{c r}{ }_{n} G\left(X_{1}, \ldots, X_{n}\right)$ is equal to the kernel of the natural homomorphism

$$
\hat{i}^{G}: G\left(X_{1} \vee \ldots \vee X_{n}\right) \longrightarrow \bigoplus_{k=1}^{n} G\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right)
$$

where \hat{i}^{G} is the map $\left(G\left(i_{\hat{\mathrm{i}}}^{n}\right), \ldots, G\left(i_{\hat{k}}^{n}\right)\right)^{t}$.
Proposition 2.11. If G is a contravariant functor from \mathcal{C} to \mathcal{D} then for all $n \in \mathbb{N}$:
$\tilde{c r}{ }_{n} G\left(X_{1}, \ldots, X_{n}\right) \simeq \operatorname{coker}\left(\bigoplus_{k=1}^{n} G\left(r_{\hat{k}}^{n}\right): \bigoplus_{k=1}^{n} G\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right) \longrightarrow G\left(X_{1} \vee \ldots \vee X_{n}\right)\right)$.
Definition 2.12. A contravariant functor G from \mathcal{C} to \mathcal{D} is said to be polynomial of degree lower or equal to n if $\tilde{c r}_{n+1} G=0$. A reduced functor is called linear if $n=1$ and is called quadratic if $n=2$.

Let G be a contravariant functor from \mathcal{C} to \mathcal{D}. We can consider the covariant functor $G^{o p}: \mathcal{C} \rightarrow \mathcal{D}^{o p}$ associated to G.
Proposition 2.13. Let G be a contravariant functor from \mathcal{C} to \mathcal{D} and $G^{o p}: \mathcal{C} \rightarrow \mathcal{D}^{o p}$ be the covariant functor associated to G. If \mathcal{D} is an abelian category, then:

$$
c r_{n}\left(G^{o p}\right) \simeq \tilde{c} r_{n}(G) \quad \forall n \in \mathbb{N} .
$$

Proof. In an abelian category, finite products and coproducts coincide.

$$
\begin{aligned}
& \operatorname{cr}_{n}\left(G^{o p}\right)\left(X_{1}, \ldots, X_{n}\right) \\
& =\operatorname{Ker}^{A b^{o p}}\left(\hat{r}^{G^{o p}}: G^{o p}\left(X_{1} \vee \ldots \vee X_{n}\right) \longrightarrow \bigoplus_{k=1}^{n} G^{o p}\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right)\right) \\
& =\operatorname{coker}^{A b}\left(\hat{r}^{G}: G\left(X_{1} \vee \ldots \vee X_{n}\right) \longleftarrow \bigoplus_{k=1}^{n} G\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right)\right) \\
& \simeq \tilde{c r}_{n} G\left(X_{1}, \ldots, X_{n}\right) .
\end{aligned}
$$

Where the latter isomorphism is given by Proposition 2.11.
Remark 2.14. When we consider polynomial functors with values in a suitable nonabelian category \mathcal{D} (for example, the category of groups or, more generally, a semiabelian category (see [6])) and suppose that $\mathcal{D}^{o p}$ has products and kernels, $c r_{n}\left(G^{o p}\right)$ is defined but in general $c r_{n}\left(G^{o p}\right) \not 千 \tilde{c} r_{n}(G)$.
2.3. Polynomial functors on a pointed category having finite coproducts. In section 5 we will consider polynomial functors on a pointed category having finite coproducts \mathcal{C}. In this setting the existence of the folding map $\nabla^{n}: \vee_{i=1}^{n} X \rightarrow X$ gives us an explicit description of the n-Taylorisation functor (see Definition 2.16). Then, using this description, we give several results on polynomial functors in this setting which will be useful in section 5 .

We denote by $\Delta_{\mathcal{C}}^{n}: \mathcal{C} \rightarrow \mathcal{C}^{\times n}$ the diagonal functor. For $n=2$ we write $\Delta_{\mathcal{C}}$ instead of $\Delta_{\mathcal{C}}^{2}$.
Definition 2.15. For $F \in \operatorname{Func}(\mathcal{C}, \mathcal{D})$ and $X \in \mathcal{C}$, we denote by S_{n}^{F} the natural transformation $S_{n}^{F}:\left(c r_{n} F\right) \Delta_{\mathcal{C}}^{n} \rightarrow F$ given by the composition

$$
c r_{n} F(X, \ldots, X) \xrightarrow{i n c} F\left(\vee_{i=1}^{n} X\right) \xrightarrow{F\left(\nabla^{n}\right)} F(X)
$$

where $\nabla^{n}: \bigvee_{i=1}^{n} X \rightarrow X$ is the folding map.
In the sequel we denote by $\operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n}$ the full subcategory of $\operatorname{Func}(\mathcal{C}, \mathcal{D})$ consisting of polynomial functors of degree lower or equal to n.
Definition 2.16. The n-Taylorisation functor $T_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow \operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n}$ is defined by: $T_{n} F=\operatorname{coker}\left(\left(c r_{n+1} F\right) \Delta_{\mathcal{C}}^{n+1} \xrightarrow{S_{n+1}^{F}} F\right)$ for $F \in \operatorname{Func}(\mathcal{C}, \mathcal{D})$. We call T_{1} the linearization functor and T_{2} the quadratization functor.

Let $U_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n} \rightarrow \operatorname{Func}(\mathcal{C}, \mathcal{D})$ denote the forgetful (i.e. inclusion) functor.
Proposition 2.17. The $n-$ Taylorisation functor $T_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow(\operatorname{Func}(\mathcal{C}, \mathcal{D}))_{\leq n}$ is a left adjoint to U_{n}. The unit of the adjunction is the natural epimorphism $t_{n}^{F}: F \rightarrow \bar{T}_{n} F$ which is an isomorphism if F is polynomial of degree $\leq n$.

Thus, we obtain the diagram:

$$
\ldots \longrightarrow T_{n+1} \stackrel{t_{n+1}}{t_{n+1}^{F}} \stackrel{t_{n}^{F}}{\pi_{n}} T_{n} F \xrightarrow{\pi_{n}} T_{n-1} F \xrightarrow{t_{n-1}^{F}} \ldots T_{1} F \longrightarrow T_{0} F=0 .
$$

To keep notation simple we write t_{n} instead of t_{n}^{F} when the functor F is understood.
Lemma 2.18. Let \mathcal{C}, \mathcal{D} be pointed categories with finite sums, \mathcal{E} be an abelian category and $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ be functors where F is reduced. Then the natural transformation

$$
T_{n}\left(F^{*} t_{n}^{G}\right): T_{n}(G \circ F) \longrightarrow T_{n}\left(T_{n} G \circ F\right)
$$

is an isomorphism.
Proof. To construct an inverse of $T_{n}\left(F^{*} t_{n}^{G}\right)$ we first show that the epimorphism $t_{n}^{G F}: G \circ F \longrightarrow T_{n}(G \circ F)$ factors through the epimorphism $F^{*} t_{n}^{G}$.
Consider the following diagram.

The right-hand square commutes: for $1 \leq k \leq n+1$, denoting by $p r_{k}$ the projection to the k-th factor, we have

$$
\begin{aligned}
p r_{k} \circ \hat{r}^{G F} \circ G\left(\left(F i_{1}, \ldots, F i_{n+1}\right)\right) & =G F\left(r_{\hat{k}}^{n+1}\right) G\left(\left(F i_{1}, \ldots, F i_{n+1}\right)\right) \\
& =G\left(\left(F\left(r_{\hat{k}}^{n+1} i_{1}\right), \ldots, F\left(r_{\hat{k}}^{n+1} i_{n+1}\right)\right)\right. \\
& =G\left(\left(F i_{1}, \ldots, F i_{n}\right) r_{\hat{k}}^{n+1}\right) \quad \text { since } F \text { is reduced } \\
& =G\left(\left(F i_{1}, \ldots, F i_{n}\right)\right) G\left(r_{\hat{k}}^{n+1}\right) \\
& =p r_{k} \circ \prod G\left(\left(F i_{1}, \ldots, F i_{n}\right)\right) \circ \hat{r}^{G}
\end{aligned}
$$

whence the dotted arrow exists making the left-hand square commute. By definition of the map S_{n+1} the right-hand triangle commutes, and so does the (graphically degenerate) left-hand triangle since $G F\left(\nabla_{X}^{n+1}\right) G\left(\left(F i_{1}, \ldots, F i_{n+1}\right)\right)=G\left(\nabla_{F X}^{n+1}\right)$. Thus S_{n+1}^{G} factors through $S_{n+1}^{G F}$ which means that $t_{n}^{G F}=\operatorname{coker}\left(S_{n+1}^{G F}\right)$ factors through $F^{*} t_{n}^{G}=\operatorname{coker}\left(t_{n}^{G}\right)_{F X}$, as $t_{n}^{G F}:(G \circ F)(X) \xrightarrow{F^{*} t_{n}^{G}}\left(T_{n} G\right) \circ F(X) \xrightarrow{\overline{t_{n}^{G F}}} T_{n}(G \circ F)(X)$. As $T_{n}(G \circ F)$ is polynomial of degree $\leq n$, the map $\overline{t_{n}^{G F}}$ further factors as a composition

$$
\overline{t_{n}^{G F}}:\left(T_{n} G\right) \circ F \xrightarrow{t_{n}^{H}} T_{n}\left(T_{n} G \circ F\right) \xrightarrow{\overline{\overline{t_{n}^{G F}}}} T_{n}(G \circ F)
$$

where $H=\left(T_{n} G\right) \circ F$. It remains to check that $\overline{\overline{t_{n}^{G F}}}$ is an inverse of $T_{n}\left(F^{*} t_{n}^{G}\right)$:

$$
\begin{aligned}
\left(\overline{\overline{t_{n}^{G F}}} \circ T_{n}\left(F^{*} t_{n}^{G}\right)\right) t_{n}^{G F} & =\overline{\overline{t_{n}^{G F}}} \circ t_{n}^{H} \circ F^{*} t_{n}^{G} \\
& =\overline{t_{n}^{G F}} \circ F^{*} t_{n}^{G} \\
& =t_{n}^{G F}
\end{aligned}
$$

whence $\overline{\overline{t_{n}^{G F}}} \circ T_{n}\left(F^{*} t_{n}^{G}\right)=1$. As $T_{n}\left(F^{*} t_{n}^{G}\right)$ is an epimorphism this suffices to conclude.
Lemma 2.19. Let \mathcal{C} be a pointed category with finite sums and \mathcal{D} be abelian. Let $M: \mathcal{C}^{m} \rightarrow \mathcal{D}$ be a multireduced multifunctor (i.e. such that $M\left(X_{1}, \ldots, X_{n}\right)=0$ if $X_{k}=0$ for some $\left.1 \leq k \leq m\right)$. Denote by $\Delta^{m}: \mathcal{C} \rightarrow \mathcal{C}^{m}$ the diagonal functor. Then for $1 \leq n<m$ one has $T_{n}\left(M \Delta^{m}\right)=0$ (in other words, $M \Delta^{m}$ is cohomogenous of degree $\leq n$).

Proof. We may assume that $n=m-1$, thanks to the natural factorization of the morphism $t_{n}: M \Delta^{m} \xrightarrow{t_{m-1}} T_{m-1}\left(M \Delta^{m}\right) \xrightarrow{\overline{t_{n}}} T_{n}\left(M \Delta^{m}\right)$, where $\overline{t_{n}}=\pi_{n+1} \ldots \pi_{m-1}$ (see the diagram after the Proposition 2.17). So it suffices to show that the map $S_{m}^{M \Delta^{m}}: c r_{m}\left(M \Delta^{m}\right) \circ$ $\Delta^{m} \rightarrow M \Delta^{m}$ is a pointwise epimorphism. For $X \in \mathcal{C}$,

$$
\left(S_{m}^{M \Delta^{m}}\right)_{X}: c r_{m}\left(M \Delta^{m}\right)(X, \ldots, X) \xrightarrow{\substack{M \Delta^{m} \\ X, \ldots, X}} M\left(X^{\vee m}, \ldots, X^{\vee m}\right) \xrightarrow{M\left(\nabla^{m}, \ldots, \nabla^{m}\right)} M(X, \ldots, X) .
$$

But $M\left(i_{1}, \ldots, i_{m}\right): M(X, \ldots, X) \rightarrow M\left(X^{\vee m}, \ldots, X^{\vee m}\right)$ is a section of $M\left(\nabla^{m}, \ldots, \nabla^{m}\right)$ which takes values in $c r_{m}\left(M \Delta^{m}\right)(X, \ldots, X)$ since for $1 \leq k \leq m, M \Delta^{m}\left(r_{\hat{k}}^{m}\right) M\left(i_{1}, \ldots, i_{m}\right)$ $=0$ since $r_{\hat{k}}^{m} i_{k}=0$ and M is multireduced. Hence $\left(\iota_{X, \ldots, X}^{M \Delta^{m}}\right)^{-1} M\left(i_{1}, \ldots, i_{m}\right)$ is a section of $\left(S_{m}^{M \Delta^{m}}\right)_{X}$, whence the latter indeed is an epimorphism.

The following proposition will be useful in section 5 .
Proposition 2.20. [Theorem 1.9 in [21] or Proposition 1.6 in [15]] Let $\mathcal{C} \xrightarrow{F} \mathcal{A} \xrightarrow{G} \mathcal{B}$ be functors where \mathcal{A} and \mathcal{B} are abelian categories. If F is polynomial of degree $\leq n$ and G is polynomial of degree $\leq m$ then $G \circ F$ is polynomial of degree $\leq n m$.

3. Dold-Kan type theorem for $\Gamma(\mathcal{P})$

In [23] it is proved that the categories Γ and Ω are Morita equivalent i.e. we have an equivalence of categories $\operatorname{Func}(\Gamma, A b) \simeq \operatorname{Func}(\Omega, A b)$. In [2], the authors use this result and its contravariant version. The aim of this section is to generalize this Morita equivalence to the category $\Gamma(\mathcal{P})$. More precisely, we have the following result.

Theorem 3.1. Let \mathcal{P} be a unitary set operad, there are natural equivalences:

$$
\begin{gathered}
\operatorname{Func}(\Gamma(\mathcal{P}), A b) \underset{c r}{\stackrel{i_{1}}{\leftrightarrows}} \operatorname{Func}(\Omega(\mathcal{P}), A b) \\
\operatorname{Func}\left(\Gamma(\mathcal{P})^{o p}, A b\right) \underset{c r}{\stackrel{i_{*}}{\leftrightarrows}} \operatorname{Func}\left(\Omega(\mathcal{P})^{o p}, A b\right)
\end{gathered}
$$

These equivalences are already established in [28]. In this paper, Słomińska describes general conditions which imply Morita equivalences of functor categories. The previous theorem is an application, given in section 2.7, of her general result. However, we here give another proof of this theorem. We obtain the following explicit description of the natural equivalences appearing in the previous theorem.
Proposition 3.2. For $F_{*} \in \operatorname{Func}(\Gamma(\mathcal{P}), A b)$

$$
\operatorname{cr}\left(F_{*}\right)(\underline{n})=c r_{n} F_{*}([1], \ldots,[1])
$$

where $c r_{n}$ is the n-th cross-effect of a covariant functor, and for $\left(f, \omega^{f}\right) \in \operatorname{Hom}_{\Omega(\mathcal{P})}(\underline{n}, \underline{m})$ we denote by $\left(f_{+}, \omega^{f_{+}}\right)$the unique extension of $\left(f, \omega^{f}\right)$ in $\Gamma(\mathcal{P}), \operatorname{cr}\left(F_{*}\right)\left(f, \omega^{f}\right)$ is the morphism induced by restriction of $F\left(f_{+}, \omega^{f_{+}}\right)$.

For $\left.F^{*} \in \operatorname{Func}\left(\Gamma(\mathcal{P})^{o p}, A b\right)\right)$

$$
\tilde{c r}\left(F^{*}\right)(\underline{n})=c \tilde{r}_{n} F^{*}([1], \ldots,[1])
$$

where \tilde{r}_{n} is the n-th cross-effect of a contravariant functor, and for $\left(f, \omega^{f}\right) \in \operatorname{Hom}_{\Omega(\mathcal{P})}(\underline{n}, \underline{m})$ $\tilde{c r}\left(F^{*}\right)\left(f, \omega^{f}\right)$ is defined as previously.

For $G_{*} \in \operatorname{Func}(\Omega(\mathcal{P}), A b)$,

$$
i_{!}\left(G_{*}\right)([n])=\bigoplus_{\mu \subset \underline{n}} G_{*}(\underline{|\mu|}) .
$$

For $\left(g, \omega^{g}\right) \in \operatorname{Hom}_{\Gamma(\mathcal{P})}([n],[m])$ the restriction of the morphism $i_{!}\left(G_{*}\right)\left(g, \omega_{g}\right)$ to the summand $G_{*}(\underline{\mu \mid})$ of $i_{!}\left(G_{*}\right)([n])$ is 0 if $0 \in g(\mu)$ and is the morphism:

$$
G_{*}\left(g_{\mid \mu}, \omega^{g_{\mid \mu}}\right): G_{*}(\underline{|\mu|}) \rightarrow G_{*}(\underline{|g(\mu)|})
$$

followed by the injection into $i_{!}\left(G_{*}\right)([m])$ otherwise.
For $G^{*} \in \operatorname{Func}\left(\Omega(\mathcal{P})^{o p}, A b\right)$,

$$
i_{*}\left(G^{*}\right)([n])=\bigoplus_{\mu \subset \underline{n}} G^{*}(\underline{|\mu|}) .
$$

For $\left(h, \omega^{h}\right) \in \operatorname{Hom}_{\Gamma(\mathcal{P})^{\text {op }}}([n],[m])$ the restriction of the morphism $i_{*}\left(G^{*}\right)\left(h, \omega_{h}\right)$ to the summand $G^{*}\left(\underline{|\mu|)}\right.$) of $i_{*}\left(G^{*}\right)([n])$ is 0 to the factors $G^{*}(\underline{|\nu|})$ such that $h(\nu) \neq \mu$ and is the morphism:

$$
G^{*}\left(h_{\mid \nu}, \omega^{h_{\mid \nu}}\right): G^{*}(\underline{|\mu|}) \rightarrow G^{*}(\underline{|\nu|})
$$

to the factors $G^{*}(\underline{|\nu|})$ such that $h(\nu)=\mu$.
The previous explicit description of natural equivalences let us to prove the following result.

Proposition 3.3. The natural equivalences of Theorem 3.1 are natural in \mathcal{P} (i.e. for a morphism of set-operad $\alpha: \mathcal{P} \rightarrow \mathcal{Q}$ we have commutative diagrams

$$
\begin{array}{cc}
\operatorname{Func}(\Gamma(\mathcal{P}), A b) \underset{c r}{\stackrel{i_{1}}{\leftrightarrows}} \operatorname{Func}(\Omega(\mathcal{P}), A b) & \operatorname{Func}\left(\Gamma(\mathcal{P})^{o p}, A b\right) \underset{\underset{c r}{\leftrightarrows}}{\stackrel{i_{*}}{\leftrightarrows}} F u n c\left(\Omega(\mathcal{P})^{o p}, A b\right) \\
\operatorname{Func}(\Gamma(\mathcal{Q}), A b) \underset{c r}{\stackrel{i_{1}}{\leftrightarrows}} \operatorname{Func}(\Omega(\mathcal{Q}), A b) & \operatorname{Func}\left(\Gamma(\mathcal{Q})^{o p}, A b\right) \underset{\underset{c r}{ }}{\stackrel{i_{*}}{\leftrightarrows}} F u n c\left(\Omega(\mathcal{Q})^{o p}, A b\right)
\end{array}
$$

where the vertical maps are induced by precomposition by the functors $\Gamma(\mathcal{P}) \rightarrow \Gamma(\mathcal{Q})$ and $\Omega(\mathcal{P}) \rightarrow \Omega(\mathcal{Q})$ induced by α.

Remark 3.4. For \mathcal{P} a unitary set-operad, we have a unique morphism $\mathcal{P} \rightarrow \mathcal{C}$ om since \mathcal{C} om is the terminal object in the category of unitary set-operads (see Example 1.1 (2)). So, we obtain that the natural equivalences $c r, i_{1}, \tilde{c r}, i_{*}$ extend the Morita equivalence between Γ and Ω in [23], i.e. we have commutative diagrams

where the vertical functors are induced by precomposition by the functors $\Omega(\mathcal{P}) \rightarrow$ $\Omega(\mathcal{C o m})=\Omega$ and $\Gamma(\mathcal{P}) \rightarrow \Gamma(\mathcal{C}$ om $)=\Gamma$ induced by the unique morphism $\mathcal{P} \rightarrow \mathcal{C}$ om .

To prove Proposition 3.2, we use an argument combining the Moebius inversion and the theorem of Gabriel-Popescu. This argument has been used in [30] to obtain a description of the category $\operatorname{Func}\left(\operatorname{Span}\left(\mathcal{E}_{\text {deg }}^{q}\left(\mathbb{F}_{2}\right)\right), \mathcal{E}\right)$ in terms of modules over orthogonal groups where $\mathcal{E}_{\text {deg }}^{q}\left(\mathbb{F}_{2}\right)$ is the category of \mathbb{F}_{2}-quadratic spaces and \mathcal{E} is the category of \mathbb{F}_{2}-vector spaces and in the appendix of [7] to give an alternative proof of the Dold-Kan
type theorem given in [23] which is very similar to the proof of Theorem 3.1 presented here.

First, we recall the two principal ingredients.
Theorem 3.5 (Theorem 3.9.2 [29]). Let (X, \leq) be a finite poset, in which every pair $\{x, y\}$ has a greatest lower bound $x \wedge y$. Let 0 denote the smallest element in X. Suppose that X has a greatest element 1 . Let R be a ring (with identity element 1_{R}), and suppose that $\alpha \mapsto e_{\alpha}$ is a map from X to R with the properties that $e_{\alpha} e_{\beta}=e_{\alpha \wedge \beta}$ for any $\alpha, \beta \in X$, and $e_{1}=1_{R}$. For $\alpha \in X$, define

$$
f_{\alpha}=\sum_{\beta \leq \alpha} \mu_{X}(\beta, \alpha) e_{\beta},
$$

where μ_{X} is the Möbius function of X. Then the elements f_{α}, for $\alpha \in X$, are orthogonal idempotents of R, whose sum is equal to 1_{R}. Furthermore, we have $e_{\alpha}=\sum_{\beta \leq \alpha} f_{\beta}$.

Theorem 3.6 (Gabriel-Popescu theorem; [26] Corollaire 6.4 p 103). For any abelian category \mathcal{C} the following assertions are equivalent.
(1) The category \mathcal{C} has arbitrary direct sums and a set $\left\{P_{i}\right\}_{i \in I}$ of small projective generators of \mathcal{C}.
(2) The category \mathcal{C} is equivalent to the subcategory $F u n c^{\text {add }}\left(\mathcal{Q}^{o p}, A b\right)$ of $F u n c\left(\mathcal{Q}^{o p}, A b\right)$ whose objects are additive functors (i.e. functors satisfying $F(f+g)=F(f)+$ $F(g)$ where f and g are morphisms of $\left.H_{\mathcal{Q}^{o p}}(V, W)\right)$ and \mathcal{Q} is the full subcategory of \mathcal{C} whose set of objects is $\left\{P_{i} \mid i \in I\right\}$.

The proof of Proposition 3.2 relies on the following lemmas.
Lemma 3.7. Let R be the ring $\mathbb{Z}\left[\operatorname{End}_{\Gamma(\mathcal{P})}([n])\right]$ (the identity element of R is $\left(I d_{[n]}, 1_{\mathcal{P}}^{\times n}\right)$), A be a subset of $[n]$ containing 0 and $\left(e_{A}, \omega^{e_{A}}\right) \in \operatorname{End}_{\Gamma(\mathcal{P})}([n])$ given by $e_{A}(j)=j$ if $j \in A$ and $e_{A}(j)=0$ else, and

$$
\omega^{e_{A}}=\left(1_{\mathcal{P}}, \ldots 1_{\mathcal{P}}, 0_{\mathcal{P}}, \ldots, 0_{\mathcal{P}}\right) \in \prod_{y \in[n], y \neq 0} \mathcal{P}\left(\left|e_{A}^{-1}(y)\right|\right)=\prod_{a \in A, a \neq 0} \mathcal{P}(1) \times \prod_{a^{\prime} \in A^{c}} \mathcal{P}(0)
$$

where $1_{\mathcal{P}} \in \mathcal{P}(1)$ and $0_{\mathcal{P}} \in \mathcal{P}(0)$. Then the elements f_{A} defined by:

$$
f_{A}=\sum_{B \subset A} \mu_{\mathcal{P o s}([n])}(B, A)\left(e_{B}, \omega^{e_{B}}\right)=\sum_{B \subset A}(-1)^{|A \backslash B|}\left(e_{B}, \omega^{e_{B}}\right)
$$

are orthogonal idempotents of R such that $\sum_{A \subset[n]} f_{A}=\left(I d_{[n]},\left(1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}\right) \in \mathcal{P}(1)^{\times n}\right)$, for $\mathcal{P o s}([n])$ the poset of subsets of $[n]$ containing 0 ordered by the inclusion.

Proof. Let $[n]$ be an object in $\Gamma(\mathcal{P})$. The pointed set $[n]$ is a greatest element of $\mathcal{P o s}([n])$. Every pair $\{A, B\}$ of elements of $\mathcal{P o s}([n])$ admits a greatest lower bound given by the intersection $A \cap B$. Let R be the $\operatorname{ring} \mathbb{Z}\left[E n d_{\Gamma(\mathcal{P})}([n])\right]$. To an element A of $\mathcal{P o s}([n])$ we associate the endomorphism of $[n]$ in $\Gamma(\mathcal{P})\left(e_{A}, \omega^{e_{A}}\right)$ defines in the statement. We have, $\left(e_{[n]}, \omega^{e_{[n]}}\right)=\left(I d_{[n]},\left(1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}\right) \in \mathcal{P}(1)^{\times n}\right) \quad$ and $\quad\left(e_{A}, \omega^{e_{A}}\right)\left(e_{B}, \omega^{e_{B}}\right)=\left(e_{A \cap B}, \omega^{e_{A \cap B}}\right)$. Consequently, by Theorem 3.5 the elements f_{A} defined in the statement are orthogonal idempotents of R such that $\sum_{A \subset[n]} f_{A}=\left(\operatorname{Id}_{[n]},\left(1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}\right)\right)$.

In the following proposition we give another description of the idempotents f_{A} which will be useful in the sequel.

Proposition 3.8. Let A be a subset of $[n]$. We have the following identity:

$$
f_{A}=\left(e_{A}, \omega^{e_{A}}\right) \prod_{B \subsetneq A}\left(\left(I d_{[n]}, 1_{\mathcal{P}}^{\times n}\right)-\left(e_{B}, \omega^{e_{B}}\right)\right) .
$$

Proof. The proof of this proposition is the same that the proof of Proposition 4.39 in [30] mutatis mutandis.

Let $P_{[n]}^{\Gamma(\mathcal{P})}=\mathbb{Z}\left[\operatorname{Hom}_{\Gamma(\mathcal{P})}([n],-)\right]$ be the standard projective objects of $\operatorname{Func}(\Gamma(\mathcal{P}), A b)$.
Lemma 3.9. Let A be a subset of $[n]$ and B be a subset of $[m]$, we have:

$$
\operatorname{Hom}_{\text {Func }(\Gamma(\mathcal{P}), A b)}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}, P_{[m]}^{\Gamma(\mathcal{P})} f_{B}\right) \simeq \mathbb{Z}\left[\operatorname{Hom}_{\Omega(\mathcal{P})}(|B \backslash\{0\}|,|A \backslash\{0\}|)\right]
$$

Proof. By the Yoneda lemma, we have

$$
\begin{aligned}
\operatorname{Hom}_{\text {Func }(\Gamma(\mathcal{P}), A b)}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}, P_{[m]}^{\Gamma(\mathcal{P})} f_{B}\right) & \simeq f_{A} P_{[m]}^{\Gamma(\mathcal{P})}([n]) f_{B} \\
& =f_{A} \mathbb{Z}\left[\operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n])\right] f_{B}
\end{aligned}
$$

Consider the linear map

$$
\kappa: \mathbb{Z}\left[\operatorname{Hom}_{\Omega(\mathcal{P})}(\underline{|B \backslash\{0\}|,|A \backslash\{0\}|})\right] \rightarrow f_{A} \mathbb{Z}\left[\operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n])\right] f_{B}
$$

given by

$$
\kappa\left(\alpha, \omega^{\alpha}\right)=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) f_{B}
$$

where $\tilde{\alpha}$ is the unique extension of α such that $\tilde{\alpha}=0$ on $(B \backslash\{0\})^{c}$ and $\omega^{\tilde{\alpha}}=$ $\left(\omega^{\alpha}, 0_{\mathcal{P}}, \ldots, 0_{\mathcal{P}}\right) \in \Pi_{y \in[n], y \neq 0} \mathcal{P}\left(\left|\tilde{\alpha}^{-1}(y)\right|\right)=\Pi_{y \in A \backslash\{0\}} \mathcal{P}\left(\left|\alpha^{-1}(y)\right|\right) \times \Pi_{y \in A^{c}} \mathcal{P}(0)$. We will prove that κ is an isomorphism. First, it is straightforward to see that, for $\left(t, \omega^{t}\right) \in \operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n]):$
(1) $\left(e_{A}, \omega^{e_{A}}\right)\left(t, \omega^{t}\right)=\left(t, \omega^{t}\right)\left(e_{t^{-1}(A)}, \omega^{t^{-1}(A)}\right)$;
(2) $\left(t, \omega^{t}\right)=\left(t, \omega^{t}\right)\left(e_{E}, \omega^{e_{E}}\right)$ for $E=\{0\} \cup\left(t^{-1}(0)\right)^{c}$;
(3) $\left(e_{C}, \omega^{e_{C}}\right) f_{D}= \begin{cases}f_{D} & \text { if } D \subset C \\ 0 & \text { otherwise } .\end{cases}$

We compute

$$
\begin{aligned}
f_{A}\left(t, \omega^{t}\right) f_{B} & =\sum_{C \subset A} \mu_{\mathcal{P}_{o s}}(C, A)\left(e_{C}, \omega^{e_{C}}\right)\left(t, \omega^{t}\right) f_{B} \text { by definition of } f_{A} \\
& =\left(t, \omega^{t}\right) \sum_{C \subset A} \mu_{\mathcal{P}_{o s}}(C, A)\left(e_{t^{-1} C}, \omega^{e_{t}-1} C\right) f_{B} \text { by (1) } \\
& =\left(t, \omega^{t}\right) \sum_{t(B) \subset C \subset A} \mu_{\mathcal{P}_{o s}}(C, A) f_{B} \text { by (3) } \\
& = \begin{cases}\left(t, \omega^{t}\right) f_{B} & \text { if } t(B)=A \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\left(t, \omega^{t}\right)\left(e_{E}, \omega^{e_{E}}\right) f_{B} & \text { if } t(B)=A, \text { for } E=\{0\} \cup\left(t^{-1}(0)\right)^{c} \\
0 & \text { otherwise by }(2)\end{cases} \\
& = \begin{cases}\left(t, \omega^{t}\right) f_{B} & \text { if } t(B)=A \text { and } B \subset E=\{0\} \cup\left(t^{-1}(0)\right)^{c} \\
0 & \text { otherwise by }(3) .\end{cases}
\end{aligned}
$$

Since $\left(t, \omega^{t}\right) f_{B}$ depends only of the restriction of t on B, we deduce from the previous calculation that a non-zero element of the form $f_{A}\left(t, \omega^{t}\right) f_{B}$ induces a map in $\Omega(\mathcal{P})$ from $B \backslash\{0\}$ to $A \backslash\{0\}:\left(t, \omega^{t}\right)\left(e_{B}, \omega^{e_{B}}\right)_{\mid B \backslash\{0\}}$. Furthermore

$$
\kappa\left(\left(t, \omega^{t}\right)\left(e_{B}, \omega^{e_{B}}\right)_{\mid B \backslash\{0\}}\right)=f_{A}\left(t, \omega^{t}\right)\left(e_{B}, \omega^{e_{B}}\right) f_{B}=f_{A}\left(t, \omega^{t}\right) f_{B}
$$

where the last equality is given by (3). We deduce that κ is surjective.
To prove that κ is bijective, we use a rank argument. On the one hand we have the isomorphism:

$$
\bigoplus_{A \subset[n] ; B \subset[m]} f_{A} \mathbb{Z}\left[\operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n])\right] f_{B} \simeq \mathbb{Z}\left[\operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n])\right]
$$

and, on the other hand, the bijection

$$
\operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n]) \simeq \coprod_{A \subset[n] ; B \subset[m]} \operatorname{Hom}_{\Omega(\mathcal{P})}(B \backslash\{0\}, A \backslash\{0\})
$$

which associates to $\left(t, \omega^{t}\right) \in \operatorname{Hom}_{\Gamma(\mathcal{P})}([m],[n])$ the elements $B=\{0\} \cup\left(t^{-1}(0)\right)^{c}$, $A=t([m])$ and the map in $\operatorname{Hom}_{\Omega(\mathcal{P})}(B \backslash\{0\}, A \backslash\{0\})$ induced by $\left(t, \omega^{t}\right)$.

Lemma 3.10. Let Q be the full subcategory of $\operatorname{Func}(\Gamma(\mathcal{P}), A b)$ whose set of objects is $\left\{P_{[n]}^{\Gamma(\mathcal{P})} f_{A}\right\}_{n, A \subsetneq[n]}$, there is a natural equivalence of categories:

$$
Q^{o p} \simeq \mathbb{Z}[\Omega(\mathcal{P})]
$$

where $\mathbb{Z}[\Omega(\mathcal{P})]$ is the linearization of the category $\Omega(\mathcal{P})$ (i.e. $\operatorname{Obj}(\mathbb{Z}[\Omega(\mathcal{P})])=\operatorname{Obj}(\Omega(\mathcal{P}))$ and $\left.\operatorname{Hom}_{\mathbb{Z}[\Omega(\mathcal{P})]}(A, B)=\mathbb{Z}\left[\operatorname{Hom}_{\Omega(\mathcal{P})}(A, B)\right]\right)$.

Proof. Let $\Phi: Q^{o p} \rightarrow \mathbb{Z}[\Omega(\mathcal{P})]$ be the functor defined by:

$$
\Phi\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}\right)=\underline{|A \backslash\{0\}|}
$$

and for $f \in \operatorname{Hom}_{Q_{[n]}^{o p}}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}, P_{[n]}^{\Gamma(\mathcal{P})} f_{B}\right)$ we define $F(f)$ using the morphism κ^{-1} introduced in the proof of Lemma 3.9. To prove that Φ is a functor we have to verify that κ is compatible with the composition. Let $c_{\mathcal{C}}$ be the composition map in the category \mathcal{C} and consider $\left(\alpha, \omega^{\alpha}\right) \in \operatorname{Hom}_{\Omega(\mathcal{P})}(B \backslash\{0\}, A \backslash\{0\})$ and $\left(\beta, \omega^{\beta}\right) \in \operatorname{Hom}_{\Omega(\mathcal{P})}(C \backslash\{0\}, B \backslash\{0\})$. In one hand we have:

$$
\kappa c_{\mathbb{Z}[\Omega(\mathcal{P})]}\left(\left(\alpha, \omega^{\alpha}\right),\left(\beta, \omega^{\beta}\right)\right)=f_{A}\left(\widetilde{\alpha \circ \beta}, \omega^{\widetilde{\alpha \circ \beta}}\right) f_{C}
$$

and in the other hand we have:

$$
c_{Q^{o p}}\left(\kappa\left(\alpha, \omega^{\alpha}\right), \kappa\left(\beta, \omega^{\beta}\right)\right)=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) f_{B} f_{B}\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C}
$$

We have:
$f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) f_{B} f_{B}\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C}=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) f_{B}\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C} \quad$ since f_{B} is an idempotent
$=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) \sum_{D \subset B} \mu_{\mathcal{P}}(D, B)\left(e_{D}, \omega^{e_{D}}\right)\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C} \quad$ by definition of f_{B}
$=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) \sum_{D \subset B} \mu_{\mathcal{P}}(D, B)\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right)\left(e_{\tilde{\beta}^{-1}(D)}, \omega^{e_{\tilde{\beta}}-1(D)}\right) f_{C} \quad$ by (1) in the proof of Lemma 3.9
$=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) \sum_{\tilde{\beta}(C) \subset D \subset B} \mu_{\mathcal{P}}(D, B)\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C} \quad$ by (3) in the proof of Lemma 3.9
$= \begin{cases}f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right)\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C} & \text { if } \tilde{\beta}(C)=B \\ 0 & \text { otherwise }\end{cases}$
Since $\left(\beta, \omega^{\beta}\right) \in \operatorname{Hom}_{\Omega(\mathcal{P})}(C \backslash\{0\}, B \backslash\{0\}), \beta$ is a surjective map and $\tilde{\beta}(C)=B$ so:

$$
f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right) f_{B} f_{B}\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C}=f_{A}\left(\tilde{\alpha}, \omega^{\tilde{\alpha}}\right)\left(\tilde{\beta}, \omega^{\tilde{\beta}}\right) f_{C}=f_{A}\left(\widetilde{\alpha \circ \beta}, \omega^{\widetilde{\alpha \circ \beta}}\right) f_{C}
$$

and Φ is a functor.
Since the morphism κ is bijective, Φ is fully faithful. For $\underline{k} \in \Omega(\mathcal{P})$, the relation $\Phi\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{[k]}\right)=\underline{k}$ proves that Φ is essentially surjective.
Proof of Theorem 3.1. By Lemma 3.7, we have the decomposition

$$
P_{[n]}^{\Gamma(\mathcal{P})}=\bigoplus_{A \subset[n]} P_{[n]}^{\Gamma(\mathcal{P})} f_{A} .
$$

Applying Theorem 3.6 to $\mathcal{C}=\operatorname{Func}(\Gamma(\mathcal{P}), A b)$ and Q being the full subcategory of Func $(\Gamma(\mathcal{P}), A b)$ whose set of objects is $\left\{P_{[n]}^{\Gamma(\mathcal{P})} f_{A}\right\}_{n, A \subset[n]}$ we obtain an equivalence of categories:

$$
\left.\sigma: F u n c\left(\Gamma(\mathcal{P})_{n}, A b\right) \rightarrow \text { Func }^{\text {add }}\left(Q_{n}^{o p}, A b\right)\right)
$$

given by: $\sigma(G)\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}\right)=\operatorname{Hom}_{F u n c\left(\Gamma(\mathcal{P})_{n}, A b\right)}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}, G\right)$ for $G \in \operatorname{Func}\left(\Gamma(\mathcal{P})_{n}, A b\right)$. So, we have the following sequence of natural equivalences:

$$
\begin{aligned}
\operatorname{Func}(\Gamma(\mathcal{P}), A b) & \simeq \operatorname{Func}^{\text {add }}\left(Q^{o p}, A b\right) \\
& \simeq \operatorname{Func}^{\text {add }}(\mathbb{Z}[\Omega(\mathcal{P})], A b) \quad \text { by Lemma } 3.10 \\
& \simeq \operatorname{Func}(\Omega(\mathcal{P}), A b)
\end{aligned}
$$

Now we prove the explicit formulae of the natural equivalences given in the statement.
To obtain the explicit description of $c r$, recall that $c r$ is given by the composition:

$$
c r: \operatorname{Func}(\Gamma(\mathcal{P}), A b) \xrightarrow{\simeq} F u n c^{\text {add }}\left(Q^{o p}, A b\right) \xrightarrow{(\hat{\Phi})^{*}} \operatorname{Func}(\mathbb{Z}[\Omega(\mathcal{P})], A b) \rightarrow F u n c(\Omega(\mathcal{P}), A b)
$$

where $\hat{\Phi}: \mathbb{Z}[\Omega(\mathcal{P})] \rightarrow Q^{o p}$ is an inverse of Φ given by:

$$
\hat{\Phi}(\underline{n})=P_{[n]}^{\Gamma(\mathcal{P})} f_{[n]}
$$

and by κ on morphisms. For a functor $F: \mathcal{C} \rightarrow A b$ let $\hat{F}: \mathbb{Z}[\mathcal{C}] \rightarrow A b$ denote the \mathbb{Z}-linear extension of F. Then:

$$
\operatorname{cr}(F)(\underline{n})=\operatorname{Hom}_{F u n c(\Gamma(\mathcal{P}), A b)}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{[n]}, F\right) \simeq \hat{F}\left(f_{[n]}\right) F([n]) \simeq \operatorname{Im}\left(\hat{F}\left(f_{[n]}\right)\right) .
$$

By Proposition 3.8 we have:

$$
f_{[n]}=\prod_{B \subsetneq[n]}\left(\left(I d_{[n]}, 1_{\mathcal{P}}^{\times n}\right)-\left(e_{B}, \omega^{e_{B}}\right)\right)
$$

so

$$
\begin{equation*}
\hat{F}\left(f_{[n]}\right)=\prod_{B \subseteq[n]} \hat{F}\left(\left(I d_{[n]}, 1_{\mathcal{P}}^{\times n}\right)-\left(e_{B}, \omega^{e_{B}}\right)\right)=\prod_{B \subseteq[n]}\left(1-F\left(e_{B}, \omega^{e_{B}}\right)\right) . \tag{3.10.1}
\end{equation*}
$$

Recall that for two commuting idempotents E_{A}, E_{B} we have:

$$
\operatorname{Im}\left(E_{A} E_{B}\right)=\operatorname{Im}\left(E_{A}\right) \cap \operatorname{Im}\left(E_{B}\right) .
$$

So, by (3.10.1) we obtain:

$$
\operatorname{Im}\left(F\left(f_{[n]}\right)\right)=\bigcap_{B \subseteq[n]} \operatorname{Im}\left(1-F\left(e_{B}, \omega^{e_{B}}\right)\right)=\bigcap_{B \subseteq[n]} \operatorname{Ker}\left(F\left(e_{B}, \omega^{e_{B}}\right)\right) .
$$

For $B \in \mathcal{P}$ os $([n])$ such that $B \neq[n]$, let $p_{B}:[n] \rightarrow B$ (resp. $\left.i_{B}: B \rightarrow[n]\right)$ be the epimorphism (resp. monomorphism) such that:

$$
e_{B}=i_{B} \circ p_{B} .
$$

We have $\left(e_{B}, \omega^{e_{B}}\right)=\left(i_{B}, \omega^{e_{B}}\right) \circ\left(p_{B}, 1_{\mathcal{P}}^{\times|B|}\right)$. Since $\left(I d_{B}, 1_{\mathcal{P}}^{\times|B|}\right)=\left(p_{B}, 1_{\mathcal{P}}^{\times|B|}\right) \circ\left(i_{B}, \omega^{e_{B}}\right)$ we have:

$$
\operatorname{Ker}\left(F\left(e_{B}, \omega^{e_{B}}\right)\right)=\operatorname{Ker}\left(F\left(p_{B}, 1_{\mathcal{P}}^{\times|B|}\right)\right) .
$$

Therefore:

$$
\operatorname{Im}\left(F\left(f_{[n]}\right)\right)=\bigcap_{B \subseteq[n]} \operatorname{Ker}\left(F\left(p_{B}, 1_{\mathcal{P}}^{\times|B|}\right)\right)=\bigcap_{B \subsetneq[n],|B|=n} \operatorname{Ker}\left(F\left(p_{B}, 1_{\mathcal{P}}^{\times|B|}\right)\right)
$$

since for $B \subsetneq[n]$ such that $|B|<n$ there exists $B^{\prime} \subsetneq[n]$ with $\left|B^{\prime}\right|=n$ such that p_{B} factors through $p_{B^{\prime}}$. We deduce that:

$$
\operatorname{cr}(F)(\underline{n})=c r_{n} F([1], \ldots,[n])
$$

by Proposition 2.3.

Now we show that for $G \in \operatorname{Func}(\Omega(\mathcal{P}), A b)$, the functor $i_{!}(G): \Gamma(\mathcal{P}) \rightarrow A b$ corresponds to G under the above equivalences. We must check that:

$$
\Phi^{*} \hat{G}=\operatorname{Hom}\left(-, i_{!}(G)\right): Q^{o p} \rightarrow A b
$$

We have $\Phi^{*} \hat{G}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}\right)=G(\underline{|A \backslash\{0\}|})$ while

$$
\begin{gathered}
\operatorname{Hom}\left(P_{[n]}^{\Gamma(\mathcal{P})} f_{A}, i_{!}(G)\right) \simeq \operatorname{Im}\left(i_{!}(G)\left(f_{A}\right)\right) \\
=\operatorname{Im}\left(\sum_{B \subset A} \mu_{\mathcal{P} o s[n]}(B, A) i_{!}(G)\left(e_{B}, \omega^{e_{B}}\right): i_{!}(G)([n]) \rightarrow i_{!}(G)([n])\right) .
\end{gathered}
$$

Let $\mu \subset \underline{n}$. Then $i_{!}(G)\left(e_{B}, \omega^{e_{B}}\right)_{\mid G(\underline{|\mu|})}$ is 0 if $\mu \not \subset B$ and is the injection

$$
I_{\mu}: G(\underline{|\mu|}) \hookrightarrow i_{!}(G)([n])
$$

if $\mu \subset B$. In particular, it is 0 if $\mu \not \subset A$. For $\mu \subset A$, we have:

$$
\sum_{B \subset A} \mu_{\mathcal{P o s}[n]}(B, A) i_{!}(G)\left(e_{B}, \omega^{e_{B}}\right)_{\mid G(|\mu|)}=\sum_{\mu \subset B \subset A}(-1)^{|A \backslash B|} I_{\mu}= \begin{cases}I_{\mu} & \text { if } \mu=A \backslash\{0\} \\ 0 & \text { otherwise }\end{cases}
$$

since B contains 0 while μ does not. It follows that $\operatorname{Hom}\left(P_{[n]}^{\Gamma(\mathcal{P})} \cdot f_{A}, i_{!}(G)\right) \simeq G(\underline{|A \backslash\{0\}|})$, as desired.

4. Equivalence between functors from \mathcal{P}-alg and pseudo Mackey FUNCTORS

The aim of this section is to prove the following theorem.
Theorem 4.1. There is a natural equivalence of categories

$$
\operatorname{Func}(\operatorname{Free}(\mathcal{P}), A b) \simeq \operatorname{PMack}(\Omega(\mathcal{P}), A b)
$$

where $\operatorname{Free}(\mathcal{P})$ is the category of finitely generated free \mathcal{P}-algebras and $\Omega(\mathcal{P})$ is the category defined in 1.12.

The proof is divided into three steps. In the first one, we prove the equivalence of categories $\operatorname{Free}(\mathcal{P}) \simeq \operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$ where $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$ is the category of Spans given in Definition 1.25. Then, we define in Definition 4.4 the notion of \mathcal{M}-functor from \mathcal{P}-pointed sets. In the second part, we prove in Proposition 4.6 the equivalence of categories $\operatorname{Mack}\left(\mathcal{S}(\mathcal{P})_{2}, A b\right) \simeq \mathcal{M}$-func $(\Gamma(\mathcal{P}), A b)$. Recall that $\operatorname{Mack}\left(\mathcal{S}(\mathcal{P})_{2}, A b\right) \simeq$ Func $\left(\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right), A b\right)$ by Lemma 1.26. Finally, we prove in Proposition 4.8 the equivalence \mathcal{M}-func $(\Gamma(\mathcal{P}), A b) \simeq \operatorname{PMack}(\Omega(\mathcal{P}), A b)$.

In the following proposition we extend an analogous result already present in [24] and corresponding to the particular case of a set-operad satisfying $\mathcal{P}(1)=\left\{1_{\mathcal{P}}\right\}$.

Proposition 4.2. For \mathcal{P} a unitary set-operad, there is an equivalence of categories:

$$
\operatorname{Free}(\mathcal{P}) \simeq \operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)
$$

where $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$ is the category of Spans defined in Definition 1.25 .
The proof of this result relies on the following lemma.
Lemma 4.3. (1) Let $f, f^{\prime} \in \operatorname{Hom}_{\mathcal{S}}(\underline{n}, \underline{m})$ and $\omega, \omega^{\prime} \in \mathcal{P}(n)$. The following assertions are equivalent in the double category $\mathcal{S}(\mathcal{P})_{2}$:
(a) The diagrams $\underline{1} \stackrel{(s, \omega)}{-}-\underline{n} \xrightarrow{f} \underline{m}$ and $\underline{1} \stackrel{\left(s, \omega^{\prime}\right)}{\leftarrow}-\underline{n} \xrightarrow{f^{\prime}} \underline{m}$ are equivalent.
(b) $(\omega,(f(1), \ldots, f(n)))=\left(\omega^{\prime},\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right) \in \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m}^{n}$.
(2) We have: $\operatorname{Hom}_{\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)}(\underline{1}, \underline{m}) \simeq \amalg_{n} \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{\underline{m}^{n}}$.

Proof. (1) If the two diagrams in the statement are equivalent, by definition, there exists a double isomorphism in $\mathcal{S}(\mathcal{P})_{2}:\left(h,\left(h, 1_{\mathcal{P}}^{\times n}\right)\right)$ where $h: \underline{n} \rightarrow \underline{n}$ is a bijection such that: $f^{\prime}=f h$ and $\left(s^{\prime}, \omega^{\prime}\right)=(s, \omega)\left(h, 1_{\mathcal{P}}^{\times n}\right)=(s, \omega h)$. So, we have:

$$
\begin{gathered}
h .\left(\omega^{\prime},\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right)=\left(\omega^{\prime} \cdot h^{-1}, h \cdot\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right)=\left(\omega^{\prime} \cdot h^{-1},\left(f^{\prime}\left(h^{-1}(1)\right), \ldots, f^{\prime}\left(h^{-1}(n)\right)\right)\right) \\
=(\omega,(f(1), \ldots, f(n)) .
\end{gathered}
$$

Therefore: $(\omega,(f(1), \ldots, f(n)))=\left(\omega^{\prime},\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right) \in \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m^{n}}$.
Conversely, if $(\omega,(f(1), \ldots, f(n)))=\left(\omega^{\prime},\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right) \in \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m}^{n}$, there exists $\sigma \in \mathfrak{S}_{n}$ such that

$$
\begin{gathered}
\left(\omega^{\prime},\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right)=\sigma \cdot(\omega,(f(1), \ldots, f(n)))=\left(\omega \cdot \sigma^{-1}, \sigma \cdot(f(1), \ldots, f(n))\right) \\
=\left(\omega \cdot \sigma^{-1},\left(f\left(\sigma^{-1}(1)\right), \ldots, f\left(\sigma^{-1}(n)\right)\right)\right.
\end{gathered}
$$

So the double isomorphism $\left(\sigma^{-1},\left(\sigma^{-1}, 1_{\mathcal{P}}^{\times n}\right)\right)$ provides an isomorphism between the two diagrams.
(2) Consider the map : $\phi: \operatorname{Hom}_{\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)}(\underline{1}, \underline{m}) \rightarrow \amalg_{n} \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{\underline{m}}^{n}$ given by:

$$
\phi([\underline{1} \stackrel{(s, \omega)}{\leftarrow}-\underline{n} \xrightarrow{f} \underline{m}])=(\omega,(f(1), \ldots, f(n))) .
$$

This map is well-defined and is an injection by (1) and obviously is a surjection.

Proof of Proposition 4.2. We define a functor $F: \operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right) \rightarrow \operatorname{Free}(\mathcal{P})$. On objects we take $F(\underline{n})=\mathcal{F}_{\mathcal{P}}(\underline{n})$. Proposition 1.27 gives the existence of coproducts in $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$ so $\operatorname{Hom}_{\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)}(\underline{k}, \underline{m})=\amalg \operatorname{Hom}_{\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)}(\underline{1}, \underline{m})$. Consequently, it is sufficient to define F on morphisms of the type $[\underline{1} \stackrel{(s, \omega)}{-} \underline{n} \xrightarrow{f} \underline{m}$]. Let $D=$ $(\underline{1} \stackrel{(s, \omega)}{\sim}-\underline{n} \xrightarrow{f} \underline{m})$ be a diagram. Since $\mathcal{F}_{\mathcal{P}}$ is the left adjoint to the forgetful functor $U: \mathcal{P}$ - $\operatorname{Alg} \rightarrow$ Set, to define a morphism in \mathcal{P} - $\operatorname{Alg}: \mathcal{F}_{\mathcal{P}}(\underline{1}) \rightarrow \mathcal{F}_{\mathcal{P}}(\underline{m})$ is equivalent to define a set morphism $\underline{1} \rightarrow U\left(\mathcal{F}_{\mathcal{P}}(\underline{m})\right)=\amalg_{n} \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m}^{n}$ i.e. an element of $U\left(\mathcal{F}_{\mathcal{P}}(\underline{m})\right)=\amalg_{n} \mathcal{P}(n) \operatorname{timeses}_{\mathfrak{S}_{n}} \underline{m}^{n}$. So let

$$
F(\underline{1} \stackrel{(s, \omega)}{\leftarrow}-\underline{n} \xrightarrow{f} \underline{m})=(\omega,(f(1), \ldots, f(n))) \in \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m}^{n} .
$$

 diagram such that D and D^{\prime} are equivalent in $\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)$. By Lemma 4.3

$$
(\omega,(f(1), \ldots, f(n)))=\left(\omega^{\prime},\left(f^{\prime}(1), \ldots, f^{\prime}(n)\right)\right) \in \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m}^{n} .
$$

So we can define:

$$
F([\underline{1} \stackrel{(s, \omega)}{\leftarrow}-\underline{n} \xrightarrow{f} \underline{m}])=(\omega,(f(1), \ldots, f(n))) \in \mathcal{P}(n) \underset{\mathfrak{S}_{n}}{\times} \underline{m}^{n} .
$$

One verifies that F preserves composition. Furthermore F is essentially surjective and fully faithful since:

$$
\begin{gathered}
\operatorname{Hom}_{\text {Free }(\mathcal{P})}\left(\mathcal{F}_{\mathcal{P}}(\underline{p}), \mathcal{F}_{\mathcal{P}}(\underline{m}) \simeq \operatorname{Hom}_{\text {Set }}\left(\underline{p}, U\left(\mathcal{F}_{\mathcal{P}}(\underline{m})\right)\right) \simeq \amalg_{p} \operatorname{Hom}_{\text {Set }}\left(\underline{1}, U\left(\mathcal{F}_{\mathcal{P}}(\underline{m})\right)\right)\right. \\
\simeq \amalg_{p}\left(\amalg_{k} \mathcal{P}(k) \underset{\mathfrak{G}_{n}}{\times} \underline{m}^{k}\right) \simeq \amalg_{p} \operatorname{Hom}_{\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)}(\underline{1}, \underline{m}) \simeq \operatorname{Hom}_{\operatorname{Span}\left(\mathcal{S}(\mathcal{P})_{2}\right)}(\underline{p}, \underline{m}) .
\end{gathered}
$$

(1) for a standard inclusion $i:[n] \rightarrow[n] \vee[m]$ and a standard retraction $r:[n] \vee$ $[m] \rightarrow[n]$ one has

$$
\begin{aligned}
& M_{*}(r)=M^{*}\left(i, \omega^{i}\right): M([n] \vee[m]) \rightarrow M([n]) \\
& M^{*}\left(r, \omega^{r}\right)=M_{*}(i): M([n]) \rightarrow M([n] \vee[m])
\end{aligned}
$$

where $\omega^{i}=\left(1_{\mathcal{P}}^{\times n}, 0_{\mathcal{P}}^{\times m}\right)$ and $\omega^{r}=1_{\mathcal{P}}^{\times n}$;
(2) for any square in $\Gamma(\mathcal{P})_{2}$
with $f^{-1}(0)=0$ we have:

$$
M^{*}\left(\psi, \omega^{\psi}\right) M_{*}(f)=M_{*}\left(f_{1}\right) M^{*}\left(\phi, \omega^{\phi}\right)
$$

The category of \mathcal{M}-functors is denoted by \mathcal{M}-func $(\Gamma(\mathcal{P}), A b)$.
Remark 4.5. (1) For M a \mathcal{M}-functor, by condition (2) we have, in particular, that for an isomorphism $f:[n] \rightarrow[n]$ of $\Gamma: M_{*}(f)=M^{*}\left(f^{-1}, 1_{\mathcal{P}}^{\times n}\right)$.
(2) Condition (1) of the proposition also holds for all injections $i^{\prime}:[n] \rightarrow[n] \vee[m]$ in $\Gamma(\mathcal{P})$ and their dual retraction $r^{\prime}:[n] \vee[m] \rightarrow[n]$. To see this choose a permutation σ of $[n] \vee[m]$ s.t. $i^{\prime}=\sigma i$ and $r^{\prime}=r \sigma$ and use point (1).
Proposition 4.6. There is an equivalence of categories:

$$
\operatorname{Mack}\left(\mathcal{S}(\mathcal{P})_{2}, A b\right) \simeq \mathcal{M}-\operatorname{func}(\Gamma(\mathcal{P}), A b)
$$

In order to prove this proposition, we need the following construction and result. For a horizontal morphism $h: X \rightarrow Y$ in $\Gamma(\mathcal{P})_{2}$ we consider the restriction of h on $X \backslash h^{-1}(0): h_{-}: X \backslash h^{-1}(0) \rightarrow Y \backslash\{0\}$ and the inclusion: $i_{h}: X \backslash h^{-1}(0) \rightarrow X \backslash\{0\}$. Similarly, for a vertical map $\left(\phi, \omega^{\phi}\right): X \rightarrow Y$ in $\Gamma(\mathcal{P})_{2}$ where

$$
\omega^{\phi} \in \prod_{y \in Y \backslash\{0\}} \mathcal{P}\left(\left|\phi^{-1}(y)\right|\right)
$$

we define the restriction of $\left(\phi, \omega^{\phi}\right)$ on $X \backslash \phi^{-1}(0):\left(\phi_{-}, \omega^{\phi}\right): X \backslash \phi^{-1}(0) \rightarrow Y \backslash\{0\}$ and the inclusion: $\left(i_{\phi}, \omega^{i_{\phi}}\right): X \backslash \phi^{-1}(0) \rightarrow X \backslash\{0\}$ where $\omega^{i_{\phi}}=\left(1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}, 0_{\mathcal{P}}, \ldots, 0_{\mathcal{P}}\right) \in$ $\prod_{x \in X \backslash\{0\}} \mathcal{P}\left(\left|i_{\phi}^{-1}(x)\right|\right)$.

Lemma 4.7. If

is a square in $\Gamma(\mathcal{P})_{2}$ such that $f^{-1}(0)=0$ then
and
are squares in $\mathcal{S}(\mathcal{P})_{2}$.
Proof. Since the image of \mathcal{D} in Γ is a pullback diagram we have bijections:

$$
g^{-1}(0) \simeq f^{-1}(0)=\{0\} \quad \text { and } \quad \psi^{-1}(0) \simeq \phi^{-1}(0)
$$

We compute the pullback of

$[l] \backslash$	$\psi^{-1}(0)$
1	
$1\left(\psi_{-}, \omega^{\psi}\right)$	
	in \mathcal{S}.

$$
\begin{aligned}
\underline{m} \times_{\underline{n}}\left([l] \backslash \psi^{-1}(0)\right) & =\left\{(c, e) \in \underline{m} \times\left([l] \backslash \psi^{-1}(0)\right) \mid f_{-}(c)=\psi_{-}(e)\right\} \\
& =\{(c, e) \in[m] \times[l] \mid f(c)=\psi(e)\} \backslash\{(c, e) \in[m] \times[l] \mid f(c)=\psi(e)=0\} \\
& =[m] \times_{[n]}[l] \backslash\left(f^{-1}(0) \times \psi^{-1}(0)\right) \\
& \simeq[k] \backslash \phi^{-1}(0) .
\end{aligned}
$$

So, the image of \mathcal{D}^{\prime} in \mathcal{S} is a pullback diagram. Furthermore, for $y \in \underline{m}$ we have $\left(\phi_{-}\right)^{-1}(y)=\phi^{-1}(y)$ and $\left(\psi_{-}\right)^{-1}(y)=\psi^{-1}(y)$ so the second condition to be a square in $\Gamma(\mathcal{P})_{2}$ is satisfied by \mathcal{D}^{\prime} since it is satisfied by \mathcal{D}.

$$
\begin{aligned}
& \begin{array}{ll}
{[l] \backslash} & \psi^{-1}(0) \\
\\
\\
1\left(i_{\psi}, \omega^{i} \psi\right) & \text { in } \mathcal{S} .
\end{array} \\
& \underline{k} \longrightarrow g_{-} \xrightarrow{\underline{l}} \\
& \underline{k} \times \underline{\underline{l}}\left([l] \backslash \psi^{-1}(0)\right)=\left\{(c, e) \in \underline{k} \times\left([l] \backslash \psi^{-1}(0)\right) \mid g_{-}(c)=e\right\} \\
& \simeq\left\{c \in \underline{k} \mid g_{-}(c) \in[l] \backslash \psi^{-1}(0)\right\} \\
& =\left\{c \in \underline{k} \mid c \in[k] \backslash \phi^{-1}(0)\right\} \text { since } g_{-}(c) \in \psi^{-1}(0) \text { iff } c \in \phi^{-1}(0) \\
& =[k] \backslash \phi^{-1}(0) \text {. }
\end{aligned}
$$

So, the image of $\mathcal{D}^{\prime \prime}$ in \mathcal{S} is a pullback diagram. Furthermore, for $y \in \underline{k}$ since \mid $\left(i_{\phi}\right)^{-1}(y)\left|=1=\left|\left(i_{\psi}\right)^{-1}(g(y))\right|\right.$, we have a bijection $\left(i_{\phi}\right)^{-1}(y) \rightarrow\left(i_{\psi}\right)^{-1}(g(y))$ such that the induced bijection $\mathcal{P}(1) \rightarrow \mathcal{P}(1)$ is the identity and satisfies $\omega_{y}^{i_{\phi}}=1_{\mathcal{P}} \mapsto \omega_{g(y)}^{i_{\psi}}=$ $1_{\mathcal{P}}$.

Proof of Proposition 4.6. Let $M: \Gamma(\mathcal{P})_{2} \rightarrow A b$ be a \mathcal{M}-functor. We define a Janus functor $F(M)=\left(F(M)_{*}, F(M)^{*}\right): \mathcal{S}(\mathcal{P})_{2} \xrightarrow{j} \Gamma(\mathcal{P})_{2} \xrightarrow{M=\left(M_{*}, M^{*}\right)} A b$ by precomposition of M with the functor of double categories j. Let
be a square in $\mathcal{S}(\mathcal{P})_{2}$,
is a square in $\Gamma(\mathcal{P})_{2}$ such that $f_{+}^{-1}(0)=0$. Since M is a \mathcal{M}-functor we have:

$$
M^{*}\left(\psi_{+}, \omega^{\psi}\right) \circ M_{*}\left(f_{+}\right)=M_{*}\left(f_{1+}\right) \circ M^{*}\left(\phi_{+}, \omega^{\phi}\right)
$$

i.e.

$$
F(M)^{*}\left(\psi, \omega^{\psi}\right) \circ F(M)_{*}(f)=F(M)_{*}\left(f_{1}\right) \circ F(M)^{*}\left(\phi, \omega^{\phi}\right)
$$

so, $F(M)$ is a Mackey functor and we defined a functor $F: \mathcal{M}$ - $\operatorname{func}\left(\Gamma(\mathcal{P})_{2}, A b\right) \rightarrow$ $\operatorname{Mack}\left(\mathcal{S}(\mathcal{P})_{2}, A b\right)$.

Let $N: \mathcal{S}(\mathcal{P})_{2} \rightarrow A b$ be a Mackey functor. We define $G(N)=\left(G(N)_{*}, G(N)^{*}\right)$: $\Gamma(\mathcal{P})_{2} \rightarrow A b$ by:

$$
G(N)_{*}([k])=G(N)^{*}([k])=N(\underline{k})
$$

and, for $h: X \rightarrow Y \in \Gamma(\mathcal{P})_{2}^{h}$

$$
G(N)_{*}(h)=N_{*}\left(h_{-}\right) \circ N^{*}\left(i_{h}, \omega^{i_{h}}\right)
$$

and for $\left(\phi, \omega^{\phi}\right): X \rightarrow Y \in \Gamma(\mathcal{P})_{2}^{v}$

$$
G(N)^{*}\left(\phi, \omega^{\phi}\right)=N_{*}\left(i_{\phi}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right) .
$$

Let $i:[n] \rightarrow[n] \vee[m]$ be a standard inclusion and $r:[n] \vee[m] \rightarrow[n]$ be a standard retraction. We have:

$$
\begin{gathered}
r_{-}=i_{i}=I d_{[n] \backslash\{0\}}:[n] \backslash\{0\} \rightarrow[n] \backslash\{0\} \\
i_{r}=i_{-}:([n] \vee[m]) \backslash(\{0\} \vee[m])=[n] \backslash\{0\} \rightarrow([n] \vee[m]) \backslash\{0\} .
\end{gathered}
$$

So, we have

$$
G(N)_{*}(r)=G(N)^{*}\left(i, \omega^{i}\right) \text { and } G(N)^{*}\left(r, \omega^{r}\right)=G(N)_{*}(i)
$$

since
$G(N)_{*}(r)=N_{*}\left(r_{-}\right) \circ N^{*}\left(i_{r}, \omega^{i_{r}}\right)=N^{*}\left(i_{r}, \omega^{i_{r}}\right)$ and $G(N)^{*}\left(i, \omega^{i}\right)=N_{*}\left(i_{i}\right) \circ N^{*}\left(i_{-}, \omega^{i}\right)=N^{*}\left(i_{-}, \omega^{i}\right)$
and
$G(N)^{*}\left(r, \omega^{r}\right)=N_{*}\left(i_{r}\right) \circ N^{*}\left(r_{-}, \omega^{r}\right)=N_{*}\left(i_{r}\right)$ and $G(N)_{*}(i)=N_{*}\left(i_{-}\right) \circ N^{*}\left(i_{i}, \omega^{i}\right)=N_{*}\left(i_{-}\right)$.
Let
be a square in $\Gamma(\mathcal{P})_{2}$ such that $f^{-1}(0)=\{0\}$, according to Lemma 4.7 the squares \mathcal{D}^{\prime} and $\mathcal{D}^{\prime \prime}$ in this lemma are squares of $\mathcal{S}(\mathcal{P})_{2}$. Since N is a Mackey functor we deduce that:

$$
N^{*}\left(\psi_{-}, \omega^{\psi}\right) \circ N_{*}\left(f_{-}\right)=N_{*}\left(g_{[k] \backslash \phi^{-1}(0)}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right)
$$

and

$$
N^{*}\left(i_{\psi}, \omega^{i_{\psi}}\right) \circ N_{*}\left(g_{-}\right)=N_{*}\left(g_{[k] \backslash \phi^{-1}(0)}\right) \circ N^{*}\left(i_{\phi}, \omega^{i_{\phi}}\right) .
$$

Furthermore, since $f^{-1}(0)=g^{-1}(0)=\{0\}$ we have $i_{f}=I d_{\underline{m}}$ and $i_{g}=I d_{\underline{k}}$. We compute on the one hand:

$$
\begin{aligned}
G(N)^{*}\left(\psi, \omega^{\psi}\right) \circ G(N)_{*}(f) & =N_{*}\left(i_{\psi}\right) \circ N^{*}\left(\psi_{-}, \omega^{\psi}\right) \circ N_{*}\left(f_{-}\right) \circ N^{*}\left(i_{f}, \omega^{i_{f}}\right) \\
& =N_{*}\left(i_{\psi}\right) \circ N_{*}\left(g_{[k] \backslash \phi^{-1}(0)}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right) \circ N^{*}\left(i_{f}, \omega^{i_{f}}\right) \\
& =N_{*}\left(i_{\psi}\right) \circ N_{*}\left(g_{[k] \backslash \phi^{-1}(0)}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right) \\
& =N_{*}\left(i_{\psi} \circ g_{[k] \backslash \backslash \phi^{-1}(0)}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right)
\end{aligned}
$$

and on the other hand:

$$
\begin{aligned}
G(N)_{*}(g) \circ G(N)^{*}\left(\phi, \omega^{\phi}\right) & =N_{*}\left(g_{-}\right) \circ N^{*}\left(i_{g}, \omega^{i_{g}}\right) \circ N_{*}\left(i_{\phi}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right) \\
& =N_{*}\left(g_{-}\right) \circ N_{*}\left(i_{\phi}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right) \\
& =N_{*}\left(g_{-} \circ i_{\phi}\right) \circ N^{*}\left(\phi_{-}, \omega^{\phi}\right) .
\end{aligned}
$$

Since $i_{\psi} \circ g_{\left[k k \backslash \phi^{-1}(0)\right.}=g_{-} \circ i_{\phi}$ we conclude that $G(N)$ is a \mathcal{M}-functor.
We verify easily that the functors F and G define an equivalence of categories.
Proposition 4.8. There is an equivalence of categories:

$$
\mathcal{M}-f u n c(\Gamma(\mathcal{P}), A b) \simeq \operatorname{PMack}(\Omega(\mathcal{P}), A b)
$$

Proof. (1) Let $M=\left(M_{*}, M^{*}\right)$ be a \mathcal{M}-functor, we prove that $\left(\operatorname{cr}\left(M_{*}\right), \tilde{c r}\left(M^{*}\right)\right)$ is a pseudo-Mackey functor.

First, we prove that $\left(\operatorname{cr}\left(M_{*}\right), \tilde{c r}\left(M^{*}\right)\right)$ is a Janus functor. Let $\underline{n} \in \operatorname{Ob}\left(\Omega(\mathcal{P})_{2}\right)$ we have:

$$
\begin{align*}
\operatorname{cr}\left(M_{*}\right)(\underline{n}) & =\operatorname{cr}_{n} M_{*}([1], \ldots,[1]) \\
& =\operatorname{Ker}\left(\prod_{k=1}^{n} M_{*}\left(r_{\hat{k}}^{n}\right)\right) \\
& =\operatorname{Ker}\left(\prod_{k=1}^{n} M^{*}\left(i_{\hat{k}}^{n}, \omega^{i^{n}}\right)\right) \quad \text { by Remark } 4.5 \tag{2}\\
& =\tilde{c} \tilde{r}_{n} M^{*}([1], \ldots,[1]) \\
& =\tilde{c r}\left(M^{*}\right)(\underline{n}) .
\end{align*}
$$

Let $\left(f,\left(f, 1_{\mathcal{P}}^{\times|B|}\right)\right)$ be a double isomorphism from A to B in $\Omega(\mathcal{P})_{2}$. We consider the double isomorphism $\left(j(f),\left(j(f), 1_{\mathcal{P}}^{\times|B|}\right)\right)$ from $j(A)$ to $j(B)$ of $\Gamma(\mathcal{P})_{2}$, where j is the functor which adds a basepoint. By Remark 4.5 (1) we have:

$$
M_{*}(j(f))=M^{*}\left(j\left(f^{-1}\right), 1_{\mathcal{P}}^{\times|B|}\right) \quad \text { and } \quad M^{*}\left(j(f), 1_{\mathcal{P}}^{\times|B|}\right)=M_{*}\left(j\left(f^{-1}\right)\right)
$$

In the sequel, for simplicity, for $f: A \rightarrow B$ a bijection, we denote by f also the vertical morphism $\left(f, 1_{\mathcal{P}}^{\times|B|}\right)$. Since f is an isomorphism, by definition of i_{*} and $i_{!}$in Proposition 3.2 we have the following commutative diagram:

So $\operatorname{cr}\left(M_{*}\right)(f) \tilde{c r}\left(M^{*}\right)(f)$ is the restriction of $M_{*}(j(f)) M^{*}(j(f))$ on $\operatorname{cr}(M)(B)$, but

$$
\begin{aligned}
M_{*}(j(f)) M^{*}(j(f)) & =M_{*}(j(f)) M_{*}\left(j\left(f^{-1}\right)\right) \\
& =M_{*}\left(j(f) j\left(f^{-1}\right)\right) \\
& =I d
\end{aligned}
$$

whence $\operatorname{cr}\left(M_{*}\right)(f) \tilde{c r}\left(M^{*}\right)(f)=I d$.
Let
be a square in $\Omega(\mathcal{P})_{2}$. Applying to \mathcal{D} the functor $j: \Omega(\mathcal{P})_{2} \rightarrow \Gamma(\mathcal{P})_{2}$ we obtain a square in $\Gamma(\mathcal{P})_{2}$ such that $j(g)^{-1}(0)=0$. Since M is a \mathcal{M}-functor we have the following commutative diagram:

On the one hand we compute the composition $p \circ M^{*}\left(j\left(\psi, \omega^{\psi}\right)\right) \circ M_{*}(j(g)) \circ i$. Since g is surjective, by definition of i_{*} and $i_{\text {! }}$ in Theorem 3.1 we have the following commutative diagram:

So

$$
\begin{equation*}
p \circ M^{*}\left(j\left(\psi, \omega^{\psi}\right)\right) \circ M_{*}(j(g)) \circ i=\tilde{c r}\left(M^{*}\right)\left(\psi, \omega^{\psi}\right) \circ \operatorname{cr}\left(M_{*}\right)(g) . \tag{4.8.1}
\end{equation*}
$$

On the other hand we compute the composition $p \circ M_{*}(j(f)) \circ M^{*}\left(j\left(\phi, \omega^{\phi}\right)\right) \circ i$. By definition of i_{*} the restriction of $M^{*}\left(j\left(\phi, \omega^{\phi}\right)\right)$ to the factor $\operatorname{cr}(M)(C)$ is 0 to the factors $\operatorname{cr}(M)(L)$ such that $L \subset A$ and $\phi(L) \neq C$ and is the morphism

$$
\operatorname{cr}\left(M^{*}\right)\left(\phi, \omega^{\phi}\right)_{L}: \operatorname{cr}(M)(C) \rightarrow c r(M)(L)
$$

to the factors $\operatorname{cr}(M)(L)$ where $L \subset A$ and $\phi(L)=C$. So, we have the following commutative diagram:

where we have $k=\underset{\substack{L \subset A \\ \phi(L)=C \\ f(L)=B}}{\bigoplus} \operatorname{cr}\left(M_{*}\right)\left(f_{\mid L}\right)$. We deduce that:

$$
\begin{aligned}
p \circ M_{*}(j(f)) \circ M^{*}\left(j\left(\phi, \omega^{\phi}\right)\right) \circ i & =\sum_{\substack{L \subset A \\
\phi(L)=C \\
f(L)=B}} \operatorname{cr}\left(M_{*}\right)\left(f_{\mid L}\right) \circ \operatorname{cr}\left(M^{*}\right)\left(\phi, \omega^{\phi}\right)_{L} \\
& =\sum_{L \in \operatorname{Adm}(A)} \operatorname{cr}\left(M_{*}\right)\left(f_{\mid L}\right) \circ \operatorname{cr}\left(M^{*}\right)\left(\phi, \omega^{\phi}\right)_{L} .
\end{aligned}
$$

Combining this last equality and 4.8.1 we obtain:

$$
\operatorname{cr}\left(M^{*}\right)\left(\psi, \omega^{\psi}\right) \circ \operatorname{cr}\left(M_{*}\right)(g)=\sum_{L \in \operatorname{Adm}(A)} \operatorname{cr}\left(M_{*}\right)\left(f_{\mid L}\right) \circ \operatorname{cr}\left(M^{*}\right)\left(\phi, \omega^{\phi}\right)_{L} .
$$

(2) Let $M=\left(M_{*}, M^{*}\right) \in \operatorname{PMack}(\Omega(\mathcal{P}), A b)$, we prove that $\left(i_{!} M_{*}, i_{*} M^{*}\right)$ is a \mathcal{M} functor.

First, we check that $\left(i_{!}\left(M_{*}\right), i_{*}\left(M^{*}\right)\right)$ is a Janus functor. For $[n] \in \Gamma(\mathcal{P})_{2}$,

$$
i_{!}\left(M_{*}\right)([n])=\bigoplus_{\mu \subset \underline{n}} M_{*}(\mu)=\bigoplus_{\mu \subset \underline{n}} M^{*}(\mu)=i_{*}\left(M_{*}\right)([n]) .
$$

Let $i:[n] \rightarrow[n] \vee[m]$ be a standard inclusion and $r:[n] \vee[m] \rightarrow[n]$ be the associated standard retraction. On the one hand, we compute $i_{*}\left(M^{*}\right)\left(r, \omega^{r}\right)$.

since, the only subset $\nu \subset n+m$ such that $r(\nu)=\mu$ is $i(\mu)$.
On the other hand, we compute $i_{!}\left(M_{*}\right)(i)$.

$$
\begin{gathered}
M_{*}(\underline{|\mu|}) \hookrightarrow \bigoplus_{\mu \subset \underline{n}} M_{*}(\underline{|\mu|})=i_{!}\left(M_{*}\right)([n]) \\
M_{*}\left(i_{\mu \mu}\right) \downarrow \\
M_{*}(\underline{|i(\mu)|}) \longleftrightarrow \bigoplus_{\nu \subset \underline{n+m}} M_{*}(\underline{|\nu|})=i_{!}\left(M_{*}\right)([n] \vee[m])
\end{gathered}
$$

Since $i_{\mid \mu}: \mu \rightarrow i(\mu)$ and $r_{\mid i(\mu)}: i(\mu) \rightarrow \mu$ are isomorphisms inverse to each other and M is in $\operatorname{PMack}(\Omega(\mathcal{P}), A b)$ we have: $M^{*}\left(\left(r, \omega^{r}\right)_{i(\mu)}\right)=M_{*}\left(i_{\mid \mu}\right)$. So

$$
i_{*}\left(M^{*}\right)\left(r, \omega^{r}\right)=i_{!}\left(M_{*}\right)(i) .
$$

We prove, in a similar way, that: $i_{*}\left(M^{*}\right)(i)=i_{!}\left(M_{*}\right)\left(r, \omega^{r}\right)$.
Let
be a square in $\Gamma(\mathcal{P})_{2}$ such that $f^{-1}(0)=0$. On the one hand, we compute $i^{*}\left(M^{*}\right)\left(\psi, \omega^{\psi}\right) i_{!}\left(M_{*}\right)(f)$:

(since $f^{-1}(0)=0,0 \notin f(\mu)$) where u is the sum of the maps

$$
M^{*}\left(\left(\psi, \omega^{\psi}\right)_{K}\right): M_{*}(\underline{|f(\mu)|}) \rightarrow M_{*}(K)
$$

to the factors $M_{*}(K)$ such that $K \subset \underline{l}$ and $\psi(K)=f(\mu)$. For a fixed $K \subset \underline{l}$ such that $\psi(K)=f(\mu)$ we have the following square in $\Omega(\mathcal{P})_{2}$:

Since $\left(M_{*}, M^{*}\right)$ is a pseudo-Mackey functor we have:

$$
M^{*}\left(\left(\psi, \omega^{\psi}\right)_{K}\right) M_{*}\left(f_{\mid \mu}\right)=\sum_{K^{\prime} \in \operatorname{Adm}\left(\phi^{-1}(\mu) \cap f_{1}^{-1}(K)\right)} M_{*}\left(\tilde{f}_{1 \mid K^{\prime}}\right) M^{*}\left(\left(\tilde{\phi}, \omega^{\tilde{\phi}}\right)_{K^{\prime}}\right) .
$$

On the other hand, we compute $i_{!}\left(M_{*}\right)\left(f_{1}\right) i^{*}\left(M^{*}\right)\left(\phi, \omega^{\phi}\right)$. We have:

where v is the sum of the morphisms $M^{*}\left(\phi_{\mid L}\right): M_{*}(|\mu|) \rightarrow M(L)$ to the factors $M(L)$ such that $L \subset[k]$ and $\phi(L)=\mu$. For a fixed $\overline{K \subset \underline{l}}$ such that $\psi(K)=f(\mu)$,
the value of the composition $\bigoplus_{L \subset[k], \phi(L)=\mu} M_{*}\left(f_{1 \mid L}\right) v$ to $M(K)$ is equal to:

$$
\sum_{L \subset[k], \phi(L)=\mu, f_{1}(L)=K} M_{*}\left(f_{1 \mid L}\right) M^{*}\left(\left(\phi, \omega^{\phi}\right)_{L}\right)=\sum_{L \in \operatorname{Adm}\left(\phi^{-1}(\mu) \cap f_{1}^{-1}(K)\right)} M_{*}\left(f_{1 \mid L}\right) M^{*}\left(\left(\phi, \omega^{\phi}\right)_{L}\right) .
$$

We deduce that:

$$
i^{*}\left(M^{*}\right)\left(\psi, \omega^{\psi}\right) i_{!}\left(M_{*}(f)\right)=i_{!}\left(M_{*}\left(f_{1}\right)\right) i^{*}\left(M^{*}\right)\left(\phi, \omega^{\phi}\right) .
$$

As a corollary of Theorem 4.1 we obtain the following result:
Corollary 4.9. There is a natural equivalence of categories between the category of reduced polynomial functors of degree $\leq n$ from $\operatorname{Free}(\mathcal{P})$ to $A b$ and the category of pseudo-Mackey functors from $\Omega(\mathcal{P})$ to Ab which have zero values on $\underline{0}$ and on sets of cardinality $>n$.

Remark 4.10. Applying Theorem 4.1 for $\mathcal{P}=\mathcal{I}$ (the initial unitary set-operad, see Example 1.1 (2)), we recover the Dold-Kan type theorem of [23]: Func $(\Gamma, A b) \simeq$ $\operatorname{Func}(\Omega, A b)$. In fact, the vertical maps of $\Omega(\mathcal{P})_{2}$ are just the bijections, so by Remark 4.5 (1) the functor M^{*} is determined by M_{*}.

5. Polynomial maps and polynomial functors

The principal aim of this section is to prove, in Corollary 5.34, that polynomial functors of degree n from finitely generated free groups to abelian groups coincide with polynomial functors of degree n from finitely generated free monoids to abelian groups. In order to prove this crucial result for this paper, we introduce intermediate material interesting on its own. In fact, after recalling the definition of polynomial maps from monoids in the sense of Passi, we extend this definition to algebraic theories and, more generally to sets of morphisms of a suitable general category. This leads us to introduce a category $T_{n}(\overline{\mathbb{Z}}[\mathcal{C}])$ generalizing the categories $P_{n}(\mathcal{C})$ for \mathcal{C} an additive category considered in [22]. These categories have the important property that polynomial functors of degree n from \mathcal{C} to $A b$ are equivalent to additive functors from $T_{n}(\overline{\mathbb{Z}}[\mathcal{C}])$ to $A b$ (see Corollary 5.25).

The proof of Corollary 5.34 relies on three main ingredients: the isomorphism between polynomial maps from monoids and from their "groupification" in Proposition 5.4, the link between polynomial functors and polynomial maps leading to Corollary 5.25 and the canonical isomorphism $T_{n} \overline{\mathbb{Z}}[g r] \simeq T_{n} \overline{\mathbb{Z}}[\mathrm{mon}]$ obtained in Theorem 5.33 from the computation of these categories given in Corollary 5.31.
5.1. Passi polynomial maps. In this section, we begin by recalling the classical definition of polynomial maps from monoids to abelian groups due to Passi and we prove that polynomial maps on a monoid and on its groupification coincide (see Proposition 5.4). Then we extend the definition of Passi to maps from algebraic objects of any type, i.e. from models of any algebraic theory.
5.1.1. The classical case for monoids. Let M be a monoid with a unit element e and $I(M)$ be the augmentation ideal of the monoid algebra $\mathbb{Z}[M]$ (i.e. the kernel of the map $\epsilon: \mathbb{Z}[M] \rightarrow \mathbb{Z}$ such that $\left.\epsilon\left(\sum_{m \in M} \alpha_{m} m\right)=\sum_{m \in M} \alpha_{m}\right)$. We know that $I(M)$ is a free abelian group having as free basis the elements $m-1$ where $m \in M$ and $m \neq e$. For $k \geq 0$, we denote by $I^{k}(M)$ the k-th power of $I(M)$ with the convention $I^{0}(M)=\mathbb{Z}[M]$. Let A be an abelian group, for a map $f: M \rightarrow A$ let $\bar{f}: \mathbb{Z}[M] \rightarrow A$ denote the extension of f to a \mathbb{Z}-linear homomorphism.

Definition 5.1. [19] Let M be a monoid and A be an abelian group. A map $f: M \rightarrow A$ such that $f(e)=0$ is polynomial of degree lower or equal to n if \bar{f} vanishes on $I^{n+1}(M)$.

The abelian group $I(M) / I^{n+1}(M)$ is denoted by $P_{n}(M)$ and is called the Passi group of M of order n. The canonical quotient map $I(M) \rightarrow P_{n}(M)$ is denoted by ρ_{n}. The following Proposition explains the importance of the Passi group.

Proposition 5.2. [19] Let M be a monoid and $f_{n}: M \rightarrow P_{n}(M)$ given by $f_{n}(x)=$ $\rho_{n}(x-1)$, then f_{n} is the universal polynomial map of degree n from M to abelian groups.

Let $\operatorname{Map}_{n}(M, A)$ be the abelian group of polynomial maps $f: M \rightarrow A$ of degree $\leq n$. By the previous Proposition we have:

$$
\begin{equation*}
\operatorname{Map}_{n}(M, A) \simeq \operatorname{Hom}_{A b}\left(P_{n}(M), A\right) \tag{5.2.1}
\end{equation*}
$$

In the sequel, we need the following elementary result which is wellknown.
Proposition 5.3. For $G \in G r$ we have a natural isomorphism of abelian groups:

$$
\theta: P_{1}(G)=I(G) / I^{2}(G) \xrightarrow{\simeq} G^{a b}:=G /[G, G]
$$

such that for $g \in G, \theta(\overline{g-1})=\bar{g}$.
Let $G r$ be the category of all groups and Mon the category of all monoids. The forgetful functor $U: G r \rightarrow$ Mon admits a left adjoint denoted by \mathbf{g} and named groupification functor. The unit of this adjunction $\eta_{M}: M \rightarrow U(\mathbf{g}(M))$ for $M \in M o n$ induces a homomorphism:

$$
\eta_{M}^{*}: \operatorname{Map}_{n}(U \mathbf{g}(M), A) \rightarrow M a p_{n}(M, A) .
$$

In the sequel, we prove the following result:
Proposition 5.4. Let M be a monoid and A be an abelian group, the homomorphism:

$$
\eta_{M}^{*}: \operatorname{Map}_{n}(U \mathbf{g}(M), A) \rightarrow \operatorname{Map}_{n}(M, A)
$$

is an isomorphism.
By (5.2.1) it is sufficient to prove the following lemma:
Lemma 5.5. Let M be a monoid. Then the map

$$
P_{n}(\eta): P_{n}(M) \rightarrow P_{n}(U \mathbf{g}(M))
$$

is an isomorphism of abelian groups.
Proof. Recall that for a monoid (resp. group) N the natural injection $\alpha_{N}: N \rightarrow \mathbb{Z}[N]$ is the unit of the adjunction between monoids (resp. groups) and rings, sending N to $\mathbb{Z}[N]$ and a ring R to itself viewed as a multiplicative monoid (resp. to its group of units R^{\times}). Moreover, the augmentation map $\epsilon: \mathbb{Z}[N] \rightarrow \mathbb{Z}$ induces an augmentation map $\bar{\epsilon}$ on the quotient ring $\mathbb{Z}[N] / I^{n+1}(N)$ such that $\bar{\epsilon} q_{n}^{N}=\epsilon$, where $q_{n}^{N}: \mathbb{Z}[N] \rightarrow \mathbb{Z}[N] / I^{n+1}(N)$ is the canonical projection.

It follows that the map $\eta_{M}: M \rightarrow U(\mathbf{g}(M))$ successively induces unique homomorphism of augmented rings $\mathbb{Z}[M] \rightarrow \mathbb{Z}[U(\mathbf{g}(M))]$ and

$$
\overline{\eta_{M}}: \mathbb{Z}[M] / I^{n+1}(M) \rightarrow \mathbb{Z}[U(\mathbf{g}(M))] / I^{n+1}(U(\mathbf{g}(M)))=\mathbb{Z}[\mathbf{g}(M)] / I^{n+1}(\mathbf{g}(M))
$$

such that $\overline{\eta_{M}} q_{n}^{M} \alpha_{M}=q_{n}^{U(\mathbf{g}(M))} \alpha_{U(\mathbf{g}(M))} \eta_{M}$. So it suffices to construct an augmented ring homomorphism $\overline{\gamma_{M}}: \mathbb{Z}[\mathbf{g}(M)] / I^{n+1}(\mathbf{g}(M)) \rightarrow \mathbb{Z}[M] / I^{n+1}(M)$ inverse to $\overline{\eta_{M}}$, since by restriction to augmentation ideals we then obtain the desired isomorphism $P_{n}\left(\eta_{M}\right)$ and its inverse.

The key point is that the multiplicative submonoid $q_{n}^{M}(1+I(M))$ of $\mathbb{Z}[M] / I^{n+1}(M)$ actually is a subgroup of its group of units since for $x \in I(M), q_{n}\left(\sum_{k=0}^{n}(-1)^{k} x^{k}\right)$
is a multiplicative inverse of $q_{n}(1+x)$. Thus the monoid homomorphism $\beta_{n}: M \rightarrow$ $U\left(q_{n}^{M}(1+I(M))\right), \beta_{n}(m)=q_{n}(m)=q_{n}(1+(m-1))$, extends to a group homomorphism $\beta_{n}^{\prime}: \mathbf{g}(M) \rightarrow q_{n}^{M}(1+I(M))$ such that $\beta_{n}^{\prime} \eta_{M}=\beta_{n}$ since η_{M} is the unit of the adjunction between monoids and groups. In turn, β_{n}^{\prime} induces a unique ring homomorphism $\gamma_{M}: \mathbb{Z}[\mathbf{g}(M)] \rightarrow \mathbb{Z}[M] / I^{n+1}(M)$ such that $\gamma_{M} \alpha_{\mathbf{g}(M)}$ is the composite map $\mathbf{g}(M) \xrightarrow{\beta_{n}^{\prime}} q_{n}^{M}(1+I(M)) \hookrightarrow \mathbb{Z}[M] / I^{n+1}(M)$. Moreover, γ_{M} commutes with the augmentation maps, hence induces the desired augmented ring homomorphism $\overline{\gamma_{M}}: \mathbb{Z}[\mathbf{g}(M)] / I^{n+1}(\mathbf{g}(M)) \rightarrow \mathbb{Z}[M] / I^{n+1}(M)$ such that $\overline{\gamma_{M}} q_{n}^{\mathbf{g}(M)}=\gamma_{M}$. To check that $\overline{\eta_{M}}$ and $\overline{\gamma_{M}}$ indeed are mutually inverse ring isomorphisms, it suffices to precompose the composite maps $\overline{\gamma_{M}} \overline{\eta_{M}}$ and $\overline{\eta_{M}} \overline{\gamma_{M}}$ with the maps $M \xrightarrow{\alpha_{M}} \mathbb{Z}[M] \quad{ }^{q_{n}^{M}} \mathbb{Z}[M] / I^{n+1}(M)$ and

$$
M \xrightarrow{\eta_{M}} U(\mathbf{g}(M))=\mathbf{g}(M) \xrightarrow{\alpha_{\mathbf{g}(M)}} \mathbb{Z}[\mathbf{g}(M)] \xrightarrow{q_{n}^{\mathbf{g}(M)}} \mathbb{Z}[\mathbf{g}(M)] / I^{n+1}(\mathbf{g}(M))
$$

and to successively use their respective universal properties.

Remark 5.6. The isomorphism $\operatorname{Map}_{n}(U \mathbf{g}(M), A) \simeq \operatorname{Map}_{n}(M, A)$ is the generalization to the non-abelian setting of Lemma 8.1 in [2].
5.1.2. Generalization to algebraic theories. We introduce a generalized Passi functor $P_{n}^{\mathcal{P}}$ from algebras over any unitary set-operad \mathcal{P} to abelian groups, and give a conceptual interpretation which is new even in the classical case: it turns out that $P_{n}^{\mathcal{P}}$ is the polynomialization of degree $\leq n$ of the canonical reduced functor from \mathcal{P}-algebras to abelian groups. This is used in the next section to describe the category $T_{n} \overline{\mathbb{Z}}[\mathcal{P}$-alg] in terms of the Passi functor, at least for "good" operads \mathcal{P}.

For sets A_{1}, \ldots, A_{m} recall the canonical isomorphism

$$
\mathbb{Z}\left[A_{1}\right] \otimes \ldots \otimes \mathbb{Z}\left[A_{m}\right] \rightarrow \mathbb{Z}\left[A_{1} \times \ldots \times A_{m}\right], \quad a_{1} \otimes \ldots \otimes a_{m} \mapsto\left(a_{1}, \ldots, a_{m}\right)
$$

for $a_{k} \in A_{k}$.
Definition 5.7. Let \mathcal{P} be a unitary set-operad with composition operations $\gamma_{m ; i_{1}, \ldots, i_{m}}$ as before. Then an operad $\mathbb{Z}[\mathcal{P}]$ in $A b$ is defined by $\mathbb{Z}[\mathcal{P}](m)=\mathbb{Z}[\mathcal{P}(m)]$ and composition operations

$$
\begin{array}{r}
\bar{\gamma}_{m ; i_{1}, \ldots, i_{m}}: \mathbb{Z}[\mathcal{P}(m)] \otimes \mathbb{Z}\left[\mathcal{P}\left(i_{1}\right)\right] \otimes \ldots \otimes \mathbb{Z}\left[\mathcal{P}\left(i_{m}\right)\right] \stackrel{ }{\cong} \mathbb{Z}\left[\mathcal{P}(m) \times \mathcal{P}\left(i_{1}\right) \times \ldots \times \mathcal{P}\left(i_{m}\right)\right] \\
\underset{\mathbb{Z}\left[\gamma_{\left.m ; i_{1}, \ldots, i_{m}\right]}\right]}{ } \\
\mathbb{Z}\left[\mathcal{P}\left(i_{1}+\ldots+i_{m}\right)\right]
\end{array}
$$

Similarly, if A is a \mathcal{P}-algebra with operations $\mu_{m}: \mathcal{P}(m) \times_{\mathfrak{S}_{m}} A^{m} \rightarrow A$ then $\mathbb{Z}[A]$ is a $\mathbb{Z}[\mathcal{P}]$-algebra with operations

$$
\bar{\mu}_{m}: \mathbb{Z}[\mathcal{P}(m)] \otimes_{\mathfrak{S}_{m}} \mathbb{Z}[A]^{\otimes m} \xrightarrow{\cong} \mathbb{Z}\left[\mathcal{P}(m) \times_{\mathfrak{S}_{m}} A^{m}\right] \xrightarrow{\mathbb{Z}\left[\mu_{m}\right]} \mathbb{Z}[A]
$$

For $\theta \in \mathcal{P}(m)$ and $x_{k} \in \mathbb{Z}[A]$ we write $\bar{\theta}\left(x_{1} \otimes \ldots \otimes x_{m}\right):=\bar{\mu}_{m}\left(\theta \otimes x_{1} \otimes \ldots \otimes x_{m}\right)$. The constant map $0: A \rightarrow *$ into the trivial \mathcal{P}-algebra gives rise to a $\mathbb{Z}[\mathcal{P}]$-algebra map $\epsilon=\mathbb{Z}[0]: \mathbb{Z}[A] \rightarrow \mathbb{Z}[*]=\mathbb{Z}$; its kernel is an ideal denoted by $I(A)$ and has the canonical basis $a-1_{A}, a \in A \backslash\left\{1_{A}\right\}$. Let

$$
I_{\mathcal{P}}^{n}(A):=\sum_{m \geq n} \bar{\mu}_{m}\left(\mathbb{Z}[\mathcal{P}(m)] \otimes_{\mathfrak{S}_{m}} I(A)^{\otimes m}\right)=\sum_{m \geq n} \sum_{\theta \in \mathcal{P}(m)} \bar{\theta}\left(I(A)^{\otimes m}\right)
$$

$$
P_{n}^{\mathcal{P}}(A)=I(A) / I_{\mathcal{P}}^{n+1}(A) \quad \text { and } \quad q_{n}: I(A) \longrightarrow P_{n}^{\mathcal{P}}(A) .
$$

Finally, $P_{n}^{\mathcal{P}}$ is a functor from \mathcal{P}-algebras to $A b$ such that the map $p_{n}: A \rightarrow P_{n}^{\mathcal{P}}(A)$ is natural.

Note that we do not decorate $I(A)$ by an index \mathcal{P} since, in contrast with $I_{\mathcal{P}}^{n+1}(A)$, it does not depend on \mathcal{P}.

Example 5.8. For $\mathcal{P}=\mathcal{C}$ om and \mathcal{A} s, $P_{n}^{\mathcal{P}}$ coincides with the Passi functor recalled in section 5.1: we have $I_{\text {Com }}^{n}(A)=\sum_{m \geq n} \bar{\mu}_{m}\left(\mathbb{Z}[1] \otimes_{\mathfrak{S}_{m}} I(A)^{\otimes m}\right)=\sum_{m>n} I^{m}(A)=$ $I^{n}(A)$ since $I^{m}(A) \subset I^{n}(A)$ for $m \geq n$, and similarly $I_{\mathcal{A} s}^{n}(A)=\sum_{m \geq n} \bar{\mu}_{m}\left(\mathbb{Z}\left[\mathfrak{S}_{m}\right] \otimes_{\mathfrak{S}_{m}}\right.$ $\left.I(A)^{\otimes m}\right)=\sum_{m \geq n} I^{m}(A)=I^{n}(A)$.

In order to extend the above definitions to pointed algebraic categories we recall some basic notions of universal algebra from the categorical viewpoint, cf. [5].

Definition 5.9. An algebraic theory is a category \mathbb{T} with objects $\underline{m}, m \geq 0$, such that $\underline{m}=\underline{1}^{m}$, i.e. \underline{m} is the m-th cartesian power of $\underline{1}$. A \mathbb{T}-model is a functor $M: \mathbb{T} \rightarrow$ Set which preserves finite products. The models of \mathbb{T} form a category \mathbb{T}-Mod with morphisms being the natural transformations.

Moreover, we say that \mathbb{T} is pointed if the object $\underline{0}$ is a zero-object in \mathbb{T}.
For a set X let $\mathcal{F}_{\mathbb{T}}(X)$ denote the free \mathbb{T}-model generated by X, and $\mathcal{F}(\mathbb{T})$ be the category with objects the sets \underline{m} for $m \geq 0$, and with morphisms $\mathcal{F}(\mathbb{T})(\underline{k}, \underline{l})=$ $\mathbb{T}-\operatorname{Mod}\left(\mathcal{F}_{\mathbb{T}}(\underline{k}), \mathcal{F}_{\mathbb{T}}(\underline{l})\right)$.

Remark 5.10. It is often useful to think of the product decompositions $\underline{m}=\underline{1}^{m}$ as being specified, i.e. of the corresponding projection maps $p_{k}: \underline{m} \rightarrow \underline{1}, 1 \leq k \leq m$, being fixed.

Any model $M: \mathbb{T} \rightarrow$ Set takes the empty product $\underline{0}=\underline{1}^{0}$ to an empty product in Set, i.e. a one-point set. So if \mathbb{T} is pointed the functor M naturally takes values in the category of pointed sets Set $_{*}$: the basepoint of $M(\underline{m})$ is the element $M(0)(*)$ where $0: \underline{0} \rightarrow \underline{m}$ is the zero morphism and $*$ is the unique element of $M(\underline{0})$.

To any algebraic theory \mathbb{T} one can associate a set-operad $\mathcal{P}_{\mathbb{T}}$, as follows. Let $\mathcal{P}_{\mathbb{T}}(m)=$ $\operatorname{Hom}_{\mathbb{T}}(\underline{m}, \underline{1})$ with the right action of \mathfrak{S}_{m} induced by its natural left action on \underline{m}. To define the composition operation γ let $m \geq 1, i_{1}, \ldots, i_{m} \geq 0, \theta \in \operatorname{Hom}_{\mathbb{T}}(\underline{m}, \underline{1})$ and $\theta_{k} \in$ $\operatorname{Hom}_{\mathbb{T}}\left(\underline{i_{k}}, \underline{1}\right)$ for $1 \leq k \leq m$. Then first let $p r_{k}: \underline{i_{1}+\ldots+i_{m}} \rightarrow \underline{i}_{k}$ be the unique map such that $p_{l} \circ \underline{p r}{ }_{k}=p_{i_{1}+\ldots+i_{k-1}+l}$ for $1 \leq l \leq \bar{k}$. Next let $\theta_{1} \times \ldots \times \overline{\theta_{m}}: \underline{i_{1}+\ldots+i_{m}} \rightarrow \underline{m}$ be the unique map such that $p_{k}\left(\theta_{1} \times \ldots \times \theta_{m}\right)=\theta_{k} \underline{p r}{ }_{k}$ for $1 \leq k \leq m$. So we can define $\gamma\left(\theta ; \theta_{1}, \ldots, \theta_{m}\right)=\theta \circ\left(\theta_{1} \times \ldots \times \theta_{m}\right)$.

Moreover, we need the forgetful functor $V_{\mathbb{T}-M o d}^{\mathcal{P}_{\mathbb{T}}-A l g}: \mathbb{T}$-Mod $\rightarrow \mathcal{P}_{\mathbb{T}}$ - $A l g$ which is defined by $V_{\mathbb{T}-M o d}^{\mathcal{P}_{\mathrm{T}}-A l g}(M)=M(\underline{1})$ as a set, endowed with the $\mathcal{P}_{\mathbb{T}}$-algebra structure given by the maps

$$
\mu_{m}: \mathcal{P}_{\mathbb{T}}(m) \times_{\mathfrak{S}_{m}} M(\underline{1})^{m} \xrightarrow{\cong} \operatorname{Hom}_{\mathbb{T}}(\underline{m}, \underline{1}) \times_{\mathfrak{S}_{m}} M(\underline{m}) \longrightarrow M(\underline{1})
$$

given by the isomorphism $M(\underline{1})^{m} \cong M(\underline{m})$ coming from the fact that M preserves products, and by the evaluation map $(f, x) \mapsto M(f)(x)$ for $(f, x) \in \operatorname{Hom}_{\mathbb{T}}(\underline{m}, \underline{1}) \times M(\underline{m})$.

So we can finally define the functor

$$
P_{n}^{\mathbb{T}}:=P_{n}^{\mathcal{P}_{\mathbb{T}}} \circ V_{\mathbb{T}-M o d}^{\mathcal{P}_{\mathrm{T}}-A l g}: \mathbb{T}-\text { Mod } \rightarrow A b .
$$

In the sequel, \mathbb{T} always denotes a pointed algebraic theory; in this case the operad $\mathcal{P}_{\mathbb{T}}$ is unitary.

It is less obvious than in the example 5.8 to see that for the theories of groups $\mathbb{G} r$ and of abelian groups $\mathbb{A} b$ the functor $P_{n}^{\mathbb{G} r}$ also coincides with Passi's functor P_{n} in section 5.1.1. in fact, $\mathcal{P}_{\mathbb{G} r}(m)=\mathcal{F}_{\mathbb{G} r}(\underline{m})$ since a theory is always isomorphic with the opposite
category of the category of its finitely generated free models. For a solution of this problem see Proposition 5.17 below.

For some letter a let $a^{\square k}=a, \ldots, a$ denote its k-fold repetition.
Lemma 5.11. Let A be a \mathcal{P}-algebra. For $p \geq 0, q \geq 1$ let $a_{1}, \ldots, a_{p} \in A, x_{1}, \ldots, x_{q} \in$ $I(A)$ and $\theta \in \mathcal{P}(p+q)$. Then

$$
\bar{\theta}\left(a_{1} \otimes \ldots \otimes a_{p} \otimes x_{1} \otimes \ldots \otimes x_{q}\right) \equiv \overline{\gamma\left(\theta ; 0_{\mathcal{P}}^{\llcorner p}, 1_{\mathcal{P}}^{\llcorner q}\right)}\left(x_{1} \otimes \ldots \otimes x_{q}\right) \quad \bmod I_{\mathcal{P}}^{q+1}(A)
$$

Proof. By induction on p, the case $p=0$ being clear. For $p \geq 1$,

$$
\begin{aligned}
& \bar{\theta}\left(a_{1} \otimes \ldots \otimes a_{p} \otimes x_{1} \otimes \ldots \otimes x_{q}\right)=\bar{\theta}\left(a_{1} \otimes \ldots \otimes a_{p-1} \otimes\left(a_{p}-1_{A}\right) \otimes x_{1} \otimes \ldots \otimes x_{q}\right) \\
& +\bar{\theta}\left(a_{1} \otimes \ldots \otimes a_{p-1} \otimes 1_{A} \otimes x_{1} \otimes \ldots \otimes x_{q}\right) \\
& \equiv \overline{\gamma\left(\theta ; 0_{\mathcal{P}}^{\llcorner p-1}, 1_{\mathcal{P}}^{\Delta q+1}\right)}\left(\left(a_{p}-1_{A}\right) \otimes x_{1} \otimes \ldots \otimes x_{q}\right) \\
& +\overline{\gamma\left(\theta ; 1_{\mathcal{P}}^{\lfloor p-1}, 0_{\mathcal{P}}, 1_{\mathcal{P}}^{\amalg q}\right)}\left(a_{1} \otimes \ldots \otimes a_{p-1} \otimes x_{1} \otimes \ldots \otimes x_{q}\right) \\
& \bmod I^{q+2}(A) \\
& \equiv \overline{\gamma\left(\gamma\left(\theta ; 1_{\mathcal{P}}^{\llcorner p-1}, 0_{\mathcal{P}}, 1_{\mathcal{P}}^{\llcorner q}\right), 0_{\mathcal{P}}^{\llcorner p-1}, 1_{\mathcal{P}}^{\llcorner q}\right)}\left(x_{1} \otimes \ldots \otimes x_{q}\right) \\
& \bmod I^{q+1}(A) \\
& \equiv \overline{\gamma\left(\theta ; 0_{\mathcal{P}}^{\llcorner p}, 1_{\mathcal{P}}^{\llcorner q}\right)}\left(x_{1} \otimes \ldots \otimes x_{q}\right)
\end{aligned}
$$

by associativity of γ.
Corollary 5.12. Let A be a \mathcal{P}-algebra. For $n \geq 1$ the $\operatorname{subgroup} I_{\mathcal{P}}^{n}(A)$ is an ideal of $\mathbb{Z}[A]$. Moreover, for $\theta \in \mathcal{P}(p)$ and $a_{1}, \ldots, a_{p} \in A$ we have

$$
\theta\left(a_{1}, \ldots, a_{p}\right)-1_{A} \equiv\left(\theta_{1}\left(a_{1}\right)-1_{A}\right)+\ldots+\left(\theta_{p}\left(a_{p}\right)-1_{A}\right) \bmod I_{\mathcal{P}}^{2}(A)
$$

where $\theta_{k}=\gamma\left(\theta ; 0_{\mathcal{P}}^{\llcorner k-1}, 1_{\mathcal{P}}, 0_{\mathcal{P}}^{\llcorner p-k}\right)$.
Proof. For $m \geq n, a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q} \in A, x_{1}, \ldots, x_{m} \in I(A), \vartheta \in \mathcal{P}(m)$ and $\theta \in$ $\mathcal{P}(p+1+q)$, there is an obvious permutation σ such that

$$
\begin{aligned}
& \bar{\theta}\left(a_{1} \otimes \ldots \otimes a_{p} \otimes \vartheta\left(x_{1} \otimes \ldots \otimes x_{m}\right) \otimes b_{1} \otimes \ldots \otimes b_{q}\right) \\
& =\overline{(\theta \cdot \sigma)}\left(a_{1} \otimes \ldots \otimes a_{p} \otimes b_{1} \otimes \ldots \otimes b_{q} \otimes \vartheta\left(x_{1} \otimes \ldots \otimes x_{m}\right)\right) \\
& =\overline{\gamma\left(\theta \cdot \sigma ; 1_{\mathcal{P}}^{\llcorner p+q}, \vartheta\right)\left(a_{1} \otimes \ldots \otimes a_{p} \otimes b_{1} \otimes \ldots \otimes b_{q} \otimes x_{1} \otimes \ldots \otimes x_{m}\right)}
\end{aligned}
$$

So the first assertion is immediate from Lemma 5.11. The second assertion is proved by induction on p, the case $p=1$ being clear. For $p \geq 1$, we use Proposition 5.11 to see that modulo $I_{\mathcal{P}}^{2}(A)$,

$$
\begin{aligned}
\theta\left(a_{1}, \ldots, a_{p}\right)-1_{A} & =\bar{\theta}\left(a_{1} \otimes \ldots \otimes a_{p-1} \otimes\left(a_{p}-1_{A}\right)\right)+\theta\left(a_{1}, \ldots, a_{p-1}, 1_{A}\right)-1_{A} \\
& \equiv\left(\gamma\left(\theta ; 0_{\mathcal{P}}^{\llcorner p-1}, 1_{\mathcal{P}}\right)\left(a_{p}\right)-1_{A}\right)+\gamma\left(\theta ; 1_{\mathcal{P}}^{\llcorner p-1}, 0_{\mathcal{P}}\right)\left(a_{1}, \ldots, a_{p-1}\right)-1_{A} \\
& \equiv\left(\theta_{p}\left(a_{p}\right)-1_{A}\right)+\sum_{k=1}^{p-1}\left(\gamma\left(\gamma\left(\theta ; 1_{\mathcal{P}}^{\llcorner p-1}, 0_{\mathcal{P}}\right) ; 0_{\mathcal{P}}^{\llcorner k-1}, 1_{\mathcal{P}}, 0_{\mathcal{P}}^{\llcorner p-1-k}\right)\left(a_{k}\right)-1_{A}\right) \\
& \equiv\left(\theta_{p}\left(a_{p}\right)-1_{A}\right)+\sum_{k=1}^{p-1}\left(\theta_{k}\left(a_{k}\right)-1_{A}\right)
\end{aligned}
$$

Lemma 5.13. The functors $P_{1}^{\mathcal{P}}: \mathcal{P}-A l g \rightarrow A b$ and $P_{1}^{\mathbb{T}}: \mathbb{T}$-Mod $\rightarrow A b$ are linear.

Proof. Let A, B be \mathcal{P}-algebras. Then $A \vee B$ consists of the elements $\theta\left(a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}\right)$ with $p, q \geq 0, \theta \in \mathcal{P}(p+q), a_{1}, \ldots, a_{p} \in A, b_{1}, \ldots, b_{q} \in B$. Hence by Corollary 5.12 we have $I(A \vee B)=I(A)+I(B)+I^{2}(A \vee B)$. It follows that the section $s_{A, B}: P_{1}^{\mathcal{P}}(A) \oplus P_{1}^{\mathcal{P}}(B) \rightarrow P_{1}^{\mathcal{P}}(A \vee B)$, defined by $s_{A, B}=\left(P_{1}^{\mathcal{P}}\left(i_{1}\right), P_{1}^{\mathcal{P}}\left(i_{2}\right)\right)$ of $\hat{r}^{P_{1}^{\mathcal{P}}}$ is surjective, whence an isomorphism. Hence $\hat{r}^{P_{1}^{\mathcal{P}}}$ is an isomorphism, as desired. The same argument works for $P_{1}^{\mathbb{T}}$.

Lemma 5.14. There is a natural exact sequence

$$
\begin{equation*}
\mathbb{Z}[\mathcal{P}(n)] \otimes P_{1}^{\mathcal{P}}(A)^{\otimes n} \xrightarrow{\nu_{n}} P_{n}^{\mathcal{P}}(A) \xrightarrow{\bar{q}_{n-1}} P_{n-1}^{\mathcal{P}}(A) \longrightarrow 0 \tag{5.14.1}
\end{equation*}
$$

of funtors on $\mathcal{P}-A l g$ where $\nu_{n}\left(\theta \otimes \overline{a_{1}-1} \otimes \cdots \otimes \overline{a_{n}-1}\right)=q_{n}\left(\bar{\theta}\left(\left(a_{1}-1\right) \otimes \cdots \otimes\left(a_{n}-1\right)\right)\right)$ for $\theta \in \mathcal{P}(n)$ and $a_{1}, \ldots, a_{n} \in A$.
Proof. By definition of $P_{n}^{\mathcal{P}}$ we have an exact sequence

$$
\mathbb{Z}[\mathcal{P}(n)] \otimes I(A)^{\otimes n} \xrightarrow{\bar{\mu}_{n}} P_{n}^{\mathcal{P}}(A) \xrightarrow{\overline{q_{n-1}}} P_{n-1}^{\mathcal{P}}(A) \longrightarrow 0 .
$$

So it suffices to show that $\bar{\mu}_{n}$ factors through $i d \otimes q_{1}^{\otimes n}: \mathbb{Z}[\mathcal{P}(n)] \otimes I(A)^{\otimes n} \rightarrow \mathbb{Z}[\mathcal{P}(n)] \otimes$ $P_{1}^{\mathcal{P}}(A)^{\otimes n}$. But by right-exactness of the tensor product,

$$
\begin{aligned}
\operatorname{Ker}\left(i d \otimes q_{1}^{\otimes n}\right) & =\sum_{i=1}^{n} \sum_{j \geq 2} \bar{\mu}_{n}\left(\mathbb{Z}[\mathcal{P}(n)] \otimes I(A)^{\otimes i-1} \otimes \bar{\mu}_{j}\left(\mathbb{Z}[\mathcal{P}(n)] \otimes I(A)^{\otimes j}\right) \otimes I(A)^{\otimes n-i}\right) \\
& \subset \sum_{i=1}^{n} \sum_{j \geq 2} \bar{\mu}_{n-1+j}\left(\mathbb{Z}[\mathcal{P}(n-1+j)] \otimes I(A)^{\otimes n-1+j}\right)
\end{aligned}
$$

by associativity of $\bar{\mu}$, so $\bar{\mu}_{n} \operatorname{Ker}\left(i d \otimes q_{1}^{\otimes n}\right)=0$ since $n-1+j>n$ for $j \geq 2$.
Proposition 5.15. The functors $P_{n}^{\mathcal{P}}: \mathcal{P}-A l g \rightarrow A b$ and $P_{n}^{\mathbb{T}}: \mathbb{T}$ - $\operatorname{Mod} \rightarrow A b$ are polynomial of degree $\leq n$.

Proof. By induction on n : By the Lemmas 5.13 and Proposition 2.20 the functor $\mathbb{Z}[\mathcal{P}(n)] \otimes P_{1}^{\mathcal{P}}(-)^{\otimes n}: \mathcal{P}-A l g \rightarrow A b$ is polynomial of degree $\leq n$, hence so is $P_{n}^{\mathcal{P}}$ since $P_{n-1}^{\mathcal{P}}$ is polynomial of degree $\leq n-1$ by induction and the category of polynomial functors of degree $\leq n$ is thick. The same argument works for $P_{n}^{\mathbb{T}}$.

Now we are ready to give a conceptual interpretation of the functors $P_{n}^{\mathcal{P}}$ and $P_{n}^{\mathbb{T}}$. Recall that a category \mathcal{C} is concrete if there exists a faithful forgetful functor $V_{\mathcal{C}}: \mathcal{C} \rightarrow$ Set. Morally a concrete category is a category whose objects are sets endowed with some structure and the morphisms are set maps compatible with this structure in some suitable sense. If in addition \mathcal{C} is pointed (with the one-point set being its null-object) then $V_{\mathcal{C}}$ naturally takes values in $S e t_{*}$ (where $S^{2} t_{*}$ is the category of pointed sets). Thus any pointed concrete category \mathcal{C} admits a canonical reduced functor $\overline{\mathbb{Z}}[-] \circ V_{\mathcal{C}}: \mathcal{C} \rightarrow$ $A b$. Note that \mathbb{T}-Mod is a pointed concrete category where $V_{\mathbb{T}-M o d}(M)=M(\underline{1})$ with basepoint $1_{M(1)}=M\left(0_{0,1}\right)(*)$, see Remark 5.10 .
Theorem 5.16. There are canonical isomorphisms

$$
\Xi_{n}^{\mathcal{P}}: T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{\mathcal{P}-A l g}\right) \xrightarrow{\cong} P_{n}^{\mathcal{P}} \quad \text { and } \quad \Xi_{n}^{\mathbb{T}}: T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{\mathbb{T}-M o d}\right) \xrightarrow{\cong} P_{n}^{\mathbb{T}} \circ V_{\mathbb{T}-M o d}^{\mathcal{P}_{\mathrm{T}}-A l g}
$$

of functors on \mathcal{P}-Alg and on \mathbb{T}-Mod, resp., sending \bar{a} and \bar{x} to $q_{n}\left(a-1_{A}\right)$ and $q_{n}(x-$ $\left.1_{M(1)}\right)$ where $a \in A$ for $A \in \mathcal{P}$-Alg and $x \in M(\underline{1})$ for $M \in \mathbb{T}$-Mod, resp.
Proof. The natural isomorphisms $\Xi^{\mathcal{P}}: \overline{\mathbb{Z}}[A] \xrightarrow{\cong} I(A)$ and $\Xi^{\mathbb{T}}: \overline{\mathbb{Z}}[M(\underline{1})] \xrightarrow{\cong} I(M(\underline{1}))$ sending \bar{a} to $a-1_{A}$ and \bar{x} to $x-1_{M(1)}$ allow to replace the functors $\overline{\mathbb{Z}}[-] \circ V_{\mathcal{P}-A l g}$
and $\overline{\mathbb{Z}}[-] \circ V_{\mathbb{T}-M o d}$ with I and $I \circ V_{\mathbb{T}-M o d}^{\mathcal{P}^{\mathbb{T}}-\text {-lg }}$, resp. By Corollary 5.15 the functor $P_{n}^{\mathcal{P}}$ is polynomial of degree $\leq n$, hence $q_{n}: I \longrightarrow P_{n}^{\mathcal{P}}$ factors through $t_{n}^{I}: I \longrightarrow T_{n} I$, whence $\Xi_{n}^{\mathcal{P}}$ is well defined. To show that it has an inverse it suffices to show that the map $\left(t_{n}^{I}\right)_{A}$ annihilates $I_{\mathcal{P}}^{n+1}(A)=\sum_{m>n} \bar{\mu}_{m}\left(\mathbb{Z}[\mathcal{P}(m)] \otimes I(A)^{\otimes m}\right)$. For $m>n$ consider the multifunctor $M_{m}:(\mathcal{P} \text { - } A l g)^{m} \rightarrow A b$ defined by $\left(A_{1}, \ldots, A_{m}\right) \mapsto \mathbb{Z}[\mathcal{P}(m)] \otimes$ $I\left(A_{1}\right) \otimes \cdots \otimes I\left(A_{m}\right)$, which is multi-reduced. The morphism $q_{n} \bar{\mu}_{m}: M_{m} \Delta^{m} \rightarrow P_{n}^{\mathcal{P}}$ factors through $t_{n}: M_{m} \Delta^{m} \longrightarrow T_{n}\left(M_{m} \Delta^{m}\right)$ since $P_{n}^{\mathcal{P}}$ is polynomial of degree $\leq n$, but $T_{n}\left(M_{m} \Delta^{m}\right)=0$ by Lemma 2.19, as desired. For $\Xi_{n}^{\mathbb{T}}$ the same argument works.

We now are ready to compare the functors $P_{n}^{\mathbb{T}}$ for \mathbb{T} being the theory of groups $\mathbb{G} r$ or of abelian groups $\mathbb{A} b$ with the classical Passi functor of section 5.1.1.

Proposition 5.17. There are natural isomorphisms

$$
P_{n} \cong T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{G r}\right) \cong P_{n}^{\mathbb{G} r} \quad \text { and } \quad P_{n} \cong T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{A b}\right) \cong P_{n}^{\mathbb{A} b}
$$

of functors from $G r$ to $A b$ and from $A b$ to $A b$, respectively.
Proof. The right-hand isomorphisms (invoking $P_{n}^{\mathbb{G} r}$ and $P_{n}^{\mathbb{A} b}$) were already established in Theorem 5.16. Now the left-hand isomorphisms are obtained in exactly same way, based on the well known exact sequence $\left(G^{a b}\right)^{\otimes n} \rightarrow P_{n}(G) \rightarrow P_{n-1}(G) \rightarrow 0$ (proved exactly in the same way as sequence (5.14.1)) and the fact that $P_{1}(G) \cong G^{a b}$ for any group G (see Proposition 5.3), whence the functor P_{1} from $G r$ and from $A b$ to $A b$ is linear in each case.
5.2. Polynomial maps on the morphism sets of a category. Let \mathcal{A} be a small additive category. In [22] the author defines a preadditive category $P_{n} \mathcal{A}$ in the following way: the objects of $P_{n} \mathcal{A}$ are those of \mathcal{A} and $\operatorname{Hom}_{P_{n} \mathcal{A}}(A, B)=P_{n}\left(\operatorname{Hom}_{\mathcal{A}}(A, B)\right)$. The importance of this category lies on the following Proposition.

Proposition 5.18. [22] Let \mathcal{A} be a small additive category. Then:

$$
\operatorname{Pol}_{n}(\mathcal{A}, A b) \simeq \operatorname{Lin}\left(P_{n} \mathcal{A}, A b\right)
$$

In the next section, we extend this result from \mathcal{A} to any category \mathcal{C} having a null object and finite sums (and from $A b$ to any abelian category).

In order to define a suitable analogue of the category $P_{n} \mathcal{C}$ in this context we need to define polynomial maps on the set of morphisms of \mathcal{C}. We prove in Proposition 5.22 that for \mathcal{A} a small additive category this definition is equivalent with the definition of Passi polynomial maps.

Let \mathcal{C} be a category having a null object and finite sums, and let $n \geq 1$.
Definition 5.19. Let X, Y be objects in \mathcal{C}, A be an abelian group and $\varphi: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow$ A be a normalized function, i.e. $\varphi(0)=0$. We say that φ is polynomial of degree $\leq n$ if its \mathbb{Z}-linear extension $\hat{\varphi}: U_{X}^{\mathcal{C}}(Y) \rightarrow A$ factors through the quotient map $t_{n}: U_{X}^{\mathcal{C}}(Y) \longrightarrow T_{n} U_{X}^{\mathcal{C}}(Y)$.

It is clear from the definition that the map $t_{n}^{\prime}: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow T_{n} U_{X}^{\mathcal{C}}(Y), t_{n}^{\prime}(f)=$ $t_{n}(f)$, is the universal polynomial map of degree $\leq n$ on $\operatorname{Hom}_{\mathcal{C}}(X, Y)$.

Remark 5.20. The previous definition generalizes the definition of quadratic maps from morphism sets of \mathcal{C} to abelian groups given in [14] section 2.3.

Proposition 5.21. There exists a preadditive category $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ with the same objects as \mathcal{C} whose morphism sets are given by $\operatorname{Hom}_{T_{n} \overline{\mathbb{Z}}[\mathcal{C}]}(X, Y)=T_{n} U_{X}^{\mathcal{C}}(Y)$ and whose composition satisfies $t_{n} g \circ t_{n} f=t_{n}(g \circ f)$.

Proof. Consider the homomorphism $\gamma: U_{Y}^{\mathcal{C}}(Z) \otimes U_{X}^{\mathcal{C}}(Y) \rightarrow U_{X}^{\mathcal{C}}(Z)$ defined by $\gamma(g \otimes$ $f)=g \circ f$ for $g \in \operatorname{Hom}_{\mathcal{P}}(Y, Z), f \in \operatorname{Hom}_{\mathcal{P}}(X, Y)$. We must show that $t_{n} \circ \gamma$ factors through $t_{n} \otimes t_{n}: U_{Y}^{\mathcal{C}}(Z) \otimes U_{X}^{\mathcal{C}}(Y) \longrightarrow T_{n} U_{Y}^{\mathcal{C}}(Z) \otimes T_{n} U_{X}^{\mathcal{C}}(Y)$. First note that a map $f \in \operatorname{Hom}_{\mathcal{P}}(X, Y)$ induces a natural transformation $f^{*}: U_{Y}^{\mathcal{C}} \rightarrow U_{X}^{\mathcal{C}}$ and hence another natural transformation $T_{n}\left(f^{*}\right): T_{n} U_{Y}^{\mathcal{C}} \rightarrow T_{n} U_{X}^{\mathcal{C}}$. Now consider the following diagram

where $a\left(g \otimes t_{n} f\right)=T_{n} U_{X}^{\mathcal{C}}(g)\left(t_{n} f\right)=t_{n}(g f)$ and $b\left(t_{n} g \otimes f\right)=T_{n}\left(f^{*}\right)\left(t_{n} g\right)=t_{n}(g f)$. As the diagram commutes we have $\operatorname{Ker}\left(1 \otimes t_{n}\right) \subset \operatorname{Ker}\left(t_{n} \gamma\right) \supset \operatorname{Ker}\left(t_{n} \otimes 1\right)$; but $\operatorname{Ker}\left(t_{n} \otimes t_{n}\right)=$ $\operatorname{Ker}\left(1 \otimes t_{n}\right)+\operatorname{Ker}\left(t_{n} \otimes 1\right)$ by right-exactness of the tensor product, so $t_{n} \gamma$ indeed factors through $t_{n} \otimes t_{n}$, as desired.

We now exhibit a first case where the category $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ can be described in terms of the Passi functor P_{n}; we generalize this to \mathcal{P}-algebras in the next section.

Proposition 5.22. Suppose that \mathcal{C} is an additive category. Then for $X, Y \in \mathcal{C}$ there is an isomorphism $T_{n} U_{X}^{\mathcal{C}}(Y) \cong P_{n}\left(\operatorname{Hom}_{\mathcal{C}}(X, Y)\right)$ natural in Y.

Proof. The functor $U_{X}^{\mathcal{C}}$ factors as $\xrightarrow{\mathrm{Hom}_{\mathcal{C}}(X,-)} A b \xrightarrow{V_{A b}} S e t_{*} \xrightarrow{\overline{\mathbb{Z}}[-]} A b$. Thus

$$
\begin{aligned}
T_{n} U_{X}^{\mathcal{C}} & =T_{n}\left(\left(\overline{\mathbb{Z}}[-] \circ V_{A b}\right) \circ \operatorname{Hom}_{\mathcal{C}}(X,-)\right) \\
& \cong T_{n}\left(T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{A b}\right) \circ \operatorname{Hom}_{\mathcal{C}}(X,-)\right) \quad \text { by Lemma } 2.18 \\
& \cong T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{A b}\right) \circ \operatorname{Hom}_{\mathcal{C}}(X,-) \quad \text { by Proposition } 2.20 \\
& \cong P_{n} \circ \operatorname{Hom}_{\mathcal{C}}(X,-) \quad \text { by Proposition } 5.17
\end{aligned}
$$

5.3. Characterization of polynomial functors. Polynomial maps on the set of morphisms allow to characterize polynomial functors on pointed categories with finite sums, in terms of their effect on morphisms instead of their effect on objects which is used to define polynomiality of functors. Actually Theorem 5.23 generalizes the corresponding one for polynomial functors between abelian categories due to Eilenberg and MacLane [9]. As a consequence of this Theorem we obtain a description of polynomial functors on \mathcal{C} in terms of additive functors on $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ extending Proposition 5.18.

Theorem 5.23. Let \mathcal{A} be an abelian category and $F: \mathcal{C} \rightarrow \mathcal{A}$ be a reduced functor. Then the following are equivalent:
(1) F is polynomial of degree $\leq n$.
(2) For all $X, Y \in \mathcal{C}$ the map $F_{X Y}: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{A}}(F X, F Y), F_{X Y}(f)=$ $F(f)$, is polynomial of degree $\leq n$.
If $\mathcal{A}=A b$, (1) and (2) are equivalent with
(3) Any natural transformation $U_{X}^{\mathcal{C}} \rightarrow F$ factors through $t_{n}: U_{X}^{\mathcal{C}} \longrightarrow T_{n} U_{X}^{\mathcal{C}}$, so if \mathcal{C} is small the map $t_{n}^{*}: \operatorname{Hom}\left(T_{n} U_{X}^{\mathcal{C}}, F\right) \rightarrow \operatorname{Hom}\left(U_{X}^{\mathcal{C}}, F\right)$ is an isomorphism.
The proof of this theorem relies on the following lemma.

Lemma 5.24. Let $\mathcal{C} \xrightarrow{F} \mathcal{A} \xrightarrow{G} \mathcal{B}$ be functors where \mathcal{A} and \mathcal{B} are abelian categories and F is reduced. Then:
(1) If G is additive there is a natural isomorphism $G\left(F\left(X_{1}|\ldots| X_{m}\right)\right) \cong(G \circ$ $F)\left(X_{1}|\ldots| X_{m}\right)$ for $m \geq 2$ and $X_{1}, \ldots, X_{m} \in \mathcal{C}$.
(2) Let \mathcal{A}^{\prime} be a full subcategory of \mathcal{A} containing all objects $F\left(X_{1}|\ldots| X_{m}\right), m \geq 1$ and $X_{1}, \ldots, X_{m} \in \mathcal{C}$. If G is additive and faithful on \mathcal{A}^{\prime} then F is polynomial of degree $\leq n$ iff $G \circ F$ is.
Proof. Let $X, Y \in C$. As F is reduced the exact sequence

$$
0 \longrightarrow F(X \mid Y) \xrightarrow{\iota_{X, Y}^{F}} F(X \vee Y) \xrightarrow{\hat{r}^{F}} F(X) \oplus F(Y) \longrightarrow 0
$$

is split by the section $\left(F\left(i_{\hat{2}}^{2}\right), F\left(i_{\hat{1}}^{2}\right)\right): F(X) \oplus F(Y) \rightarrow F(X \vee Y)$. Whence the sequence

$$
0 \longrightarrow G(F(X \mid Y)) \xrightarrow{G\left(\iota{ }_{X}^{F}, Y^{Y}\right)}(G F)(X \vee Y) \xrightarrow{G\left(\hat{r}^{F}\right)} G(F(X) \oplus F(Y)) \longrightarrow 0
$$

is short exat since G is additive. But the composite map

$$
G F(X \vee Y) \xrightarrow[G\left(\hat{r}^{F}\right)]{\longrightarrow} G(F(X) \oplus F(Y)) \xrightarrow[\left(G\left(r_{2}^{2}\right), G\left(r_{1}^{2}\right)\right)^{t}]{\cong} G F(X) \oplus G F(Y)
$$

equals $\hat{r}^{G F}$, whence $G(F(X \mid Y)) \cong(G F)(X \mid Y)$.
So we can assume that (1) holds by induction for $m \geq 2$. Then for $X_{1}, \ldots, X_{m+1} \in \mathcal{C}$ we have natural isomorphisms

$$
\begin{aligned}
G\left(F\left(X_{1}|\ldots| X_{m+1}\right)\right) & \cong G\left(F\left(X_{1}|\ldots| X_{m-1} \mid-\right)\left(X_{m} \mid X_{m+1}\right)\right) \quad \text { by Definition } 2.2 \\
& \cong\left(G \circ F\left(X_{1}|\ldots| X_{m-1} \mid-\right)\right)\left(X_{m} \mid X_{m+1}\right) \quad \text { by }(1) \text { in the case } m=2 \\
& \cong(G \circ F)\left(X_{1}|\ldots| X_{m-1} \mid-\right)\left(X_{m} \mid X_{m+1}\right) \quad \text { by induction hypothesis } \\
& \cong(G \circ F)\left(X_{1}|\ldots| X_{m+1}\right)
\end{aligned}
$$

Now (2) follows from (1) and the fact that $\forall A \in \mathcal{A}^{\prime}, G(A)=0$ iff $G\left(1_{A}\right)=G\left(0_{A}\right)$ iff $1_{A}=0_{A}$ since G is faithful. But the last equality is equivalent to $A=0$.
Proof of Theorem 5.23. Both (1) and (2) hold iff they hold for the restriction of F to any small full subcategory \mathcal{C}^{\prime} closed under finite sums. So we can suppose that \mathcal{C} is small.

In a first step we suppose that $\mathcal{A}=A b$. We start by proving that here the statements (1) and (2) are both equivalent with (3). Clearly (1) implies (3) since T_{n} is the left adjoint of the forgetful functor by Proposition 2.17, so let us prove the converse. The Yoneda lemma provides an epimorphism of functors $\alpha: \bigoplus_{X \in \mathcal{C}} \bigoplus_{x \in F X} U_{X}^{\mathcal{C}}$
$\longrightarrow F$. But the restriction of α to any component $U_{X}^{\mathcal{C}}$ factors through $T_{n} U_{X}^{\mathcal{C}}$ by hypothesis, hence α factors through $G=\bigoplus_{X \in \mathcal{C}} \bigoplus_{x \in F X} T_{n} U_{X}^{\mathcal{C}}$. Noting that $c r_{n+1} G=$ $\bigoplus_{X \in \mathcal{C}} \bigoplus_{x \in F X} c r_{n+1} T_{n} U_{X}^{\mathcal{C}}=0$, we conclude that G is polynomial of degree $\leq n$, and hence so is its quotient F.

Now let us prove the equivalence of (2) and (3). Recall that the Yoneda isomorphism $\mathcal{Y}_{X}: F X \xrightarrow{\cong} \operatorname{Hom}\left(U_{X}^{\mathcal{C}}, F\right)$ is given by the composite map

$$
\mathcal{Y}_{X}(x)_{Y}: U_{X}^{\mathcal{C}}(Y) \xrightarrow{\widehat{F_{X Y}}} \operatorname{Hom}_{A b}(F X, F Y) \xrightarrow{e v_{X}} F Y
$$

for $x \in F X$ and $Y \in \mathcal{C}$, where $e v_{x}$ is the evaluation in x. Now the map $e v: \operatorname{Hom}_{A b}(F X, F Y)$ $\rightarrow \prod_{x \in F X} F Y$ such that $p r_{x} e v=e v_{x}$ is injective, whence assertion (2) is equivalent with saying that for all $X, Y \in \mathcal{C}$ and $x \in F X$ the map $\mathcal{Y}_{X}(x)_{Y}=e v_{x} \widehat{F_{X Y}}$ factors through $\left(t_{n}\right)_{Y}: U_{X}^{\mathcal{C}}(Y) \longrightarrow T_{n} U_{X}^{\mathcal{C}}(Y)$. But this means that for all $X \in \mathcal{C}$ and $x \in F X$ the
natural transformation $\mathcal{Y}_{X}(x)$ factors through t_{n}, or equivalently, that every natural transformation from $U_{X}^{\mathcal{C}}$ to F factors through t_{n}, as claimed.

Now suppose that \mathcal{A} is an arbitrary abelian category. In order to reduce \mathcal{A} to a small subcategory, we consider the set of objects:

$$
\mathcal{O}=\bigcup_{m \geq 1}\left\{F\left(X_{1}|\ldots| X_{m}\right) \mid X_{1}, \ldots, X_{m} \in C\right\}
$$

and the full subcategory \mathcal{A}^{\prime} of \mathcal{A} with objects in \mathcal{O}. Consider the additive functor $G: \mathcal{A} \rightarrow \prod_{A \in \mathcal{O}} A b$ such that $p r_{A} A \circ G=\operatorname{Hom}_{\mathcal{A}}(A,-)$. Then G is faithful on \mathcal{A}^{\prime} since a non-trivial map $\alpha: A \rightarrow B$ in \mathcal{A}^{\prime} is detected by the functor $\operatorname{Hom}_{\mathcal{A}}(A,-)$. Thus by Lemma 5.24 (2) F is polynomial of degree $\leq n$ iff $G \circ F$ is, which means that $F^{A}=\operatorname{Hom}_{\mathcal{A}}(A,-) \circ F: \mathcal{C} \rightarrow A b$ is polynomial of degree $\leq n$ for all $A \in \mathcal{O}$ since cross-effects of $G \circ F$ are formed factorwise.

On the other hand, let $X, Y \in C$. Then the map $F_{X, Y}$ is polynomial of degree $\leq n$ iff $\widehat{F_{X, Y}}\left(\operatorname{Ker}\left(t_{n}\right)\right)=0$ iff $G_{F X, F Y} \widehat{F_{X, Y}}\left(\operatorname{Ker}\left(t_{n}\right)\right)=0$ iff for all $A \in \mathcal{O}, \widehat{F_{X, Y}^{A}}\left(\operatorname{Ker}\left(t_{n}\right)\right)=0$ iff for all $A \in \mathcal{O}$, the map $F_{X, Y}^{A}$ is polynomial of degree $\leq n$. But by the case $\mathcal{A}=A b$, the functor F^{A} is polynomial of degree $\leq n$ iff the map $F_{X, Y}^{A}$ is polynomial of degree $\leq n$ for all $X, Y \in C$, whence (1) $\Leftrightarrow(2)$, as desired.

Note that there exists a functor

$$
\underline{t_{n}}: \mathcal{C} \rightarrow T_{n} \overline{\mathbb{Z}}[\mathcal{C}]
$$

such that $\underline{t_{n}}(X)=X$ and $\underline{t_{n}}(f)=t_{n} f$. Theorem 5.23 provides the following:
Corollary 5.25. For any abelian category \mathcal{A} the functor $\underline{t_{n}}$ induces an isomorphism of categories

$$
{\underline{t_{n}}}^{*}: \operatorname{Add}\left(T_{n} \overline{\mathbb{Z}}[\mathcal{C}], \mathcal{A}\right) \xrightarrow{\sim} \operatorname{Pol}_{n}(\mathcal{C}, \mathcal{A}) .
$$

Remark 5.26. Remark that strict polynomial functors of degree $\leq n$ are defined in the same spirit, namely to be additive functors on a category $\Gamma_{n} \mathcal{C}$, formed by replacing morphism sets in an additive category \mathcal{C} enriched in \mathbb{K}-modules by their images under the functor Γ_{n} (see [25]).
5.4. Description of $T_{n} \overline{\mathbb{Z}}[\mathcal{P}$-alg] in terms of the generalized Passi functor. We now show that for "good" operads \mathcal{P} and algebraic theories \mathbb{T}, the category $T_{n} \overline{\mathbb{Z}}[\mathcal{C}]$ for \mathcal{C} being the category of finitely generated free \mathcal{P}-algebras or \mathbb{T}-models can be described in terms of the functors $P_{n}^{\mathcal{P}}$ or $P_{n}^{\mathbb{T}}$, respectively. But this description is only available if cartesian products of \mathcal{P}-algebras can be decomposed in terms of \mathcal{P}-algebra operations, as follows.

Let $m \geq 1$ and A_{1}, \ldots, A_{m} be \mathcal{P}-algebras. For $1 \leq k \leq m$ let $i_{k}^{\times}: A_{k} \rightarrow A_{1} \times \ldots \times A_{m}$ be the canonical injection, i.e. $i_{1}^{\times}(a)=\left(a, 1_{A_{2}}, \ldots, 1_{A_{m}}\right)$ etc. Note that i_{k}^{\times}is a \mathcal{P}-algebra map since $\mathcal{P}(0)=\left\{0_{\mathcal{P}}\right\}$.

Lemma 5.27. Suppose that $\mathcal{P}(2)$ contains an element θ_{2} for which $0_{\mathcal{P}}$ is a unit, i.e. $\gamma_{2 ; 1,0}\left(\theta_{2} ; 1_{\mathcal{P}}, 0_{\mathcal{P}}\right)=1_{\mathcal{P}}=\gamma_{2 ; 0,1}\left(\theta_{2} ; 0_{\mathcal{P}}, 1_{\mathcal{P}}\right)$. Then there exists an operation $\theta_{m} \in \mathcal{P}(m)$ such that $\left(a_{1}, \ldots, a_{m}\right)=\theta_{m}\left(i_{1}^{\times} a_{1}, \ldots, i_{m}^{\times} a_{m}\right)$ for $\left(a_{1}, \ldots, a_{m}\right) \in A_{1} \times \ldots \times A_{m}$.

Proof. By induction on m; the case $m=1$ is clear by taking $\theta_{1}=1_{\mathcal{P}}$, and for $m=2$, we indeed have $\left(a_{1}, a_{2}\right)=\left(\theta_{2}\left(a_{1}, 1_{A_{1}}\right), \theta_{2}\left(1_{A_{2}}, a_{2}\right)\right)=\theta_{2}\left(\left(a_{1}, 1_{A_{2}}\right),\left(1_{A_{1}}, a_{2}\right)\right)=$ $\theta_{2}\left(i_{1}^{\times} a_{1}, i_{2}^{\times} a_{2}\right)$. Suppose that the assertion holds for $m-1, m \geq 3$. Writing $I_{1}^{\times}: A_{1} \times$
$\ldots \times A_{m-1} \rightarrow A_{1} \times \ldots \times A_{m}$ for the canonical injection we have

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{m}\right) & =\theta_{2}\left(I_{1}^{\times}\left(a_{1}, \ldots, a_{m-1}\right), i_{m}^{\times} a_{m}\right) \\
& =\theta_{2}\left(I_{1}^{\times} \theta_{m-1}\left(i_{1}^{\times} a_{1}, \ldots, i_{m-1}^{\times} a_{m-1}\right), i_{m}^{\times} a_{m}\right) \quad \text { by induction hypothesis } \\
& =\theta_{2}\left(\theta_{m-1} I_{1}\left(i_{1}^{\times} a_{1}, \ldots, i_{m-1}^{\times} a_{m-1}\right), i_{m}^{\times} a_{m}\right) \quad \text { since } I_{1}^{\times} \text {is a } \mathcal{P} \text {-algebra map } \\
& =\theta_{2}\left(\theta_{m-1}\left(i_{1}^{\times} a_{1}, \ldots, i_{m-1}^{\times} a_{m-1}\right), i_{m}^{\times} a_{m}\right) \\
& =\gamma_{2 ; m-1,1}\left(\theta_{2}, \theta_{m-1}, 1_{\mathcal{P}}\right)\left(i_{1}^{\times} a_{1}, \ldots, i_{m}^{\times} a_{m}\right) .
\end{aligned}
$$

Hence the assertion also holds for m with $\theta_{m}=\gamma_{2 ; m-1,1}\left(\theta_{2}, \theta_{m-1}, 1_{\mathcal{P}}\right)$.
In the sequel, it will be convenient to replace the category $\operatorname{Free}(\mathcal{P})$ by $\mathcal{F}(\mathcal{P})$, see Remark 1.2 . The coproducts in $\operatorname{Free}(\mathcal{P})$ and in \mathbb{T}-Mod are given by: $\underline{k} \amalg \underline{l}=\underline{k}+l$.

We also need the following elementary observation.
Proposition 5.28. For $m \geq 1$ the functor $\operatorname{Hom}_{\mathcal{P}-\operatorname{Alg}}\left(\mathcal{F}_{\mathcal{P}}(\underline{m}),-\right)$ naturally takes values in the category of \mathcal{P}-algebras such that for a \mathcal{P}-algebra A the natural bijection $e v: \operatorname{Hom}_{\mathcal{P}-A l g}\left(\mathcal{F}_{\mathcal{P}-\mathrm{Alg}}(\underline{m}), A\right) \rightarrow A^{m}$, ev $(f)=(f(1), \ldots, f(m))$, is an isomorphism of \mathcal{P}-algebras.

Proof. Let $k \geq 0, \theta \in \mathcal{P}(k)$ and $f_{1}, \ldots, f_{k} \in \operatorname{Hom}_{\mathcal{P}-A l g}\left(\mathcal{F}_{\mathcal{P}-A l g}(\underline{m}), A\right)$. As \underline{m} is a basis of $\mathcal{F}_{\mathcal{P}-\mathrm{Alg}}(\underline{m})$ we may define $\theta\left(f_{1}, \ldots, f_{k}\right)$ to be the unique map such that for $i \in \underline{m}$, $\theta\left(f_{1}, \ldots, f_{k}\right)(i)=\theta\left(f_{1}(i), \ldots, f_{k}(i)\right)$.

Theorem 5.29. Suppose that $\mathcal{P}(2)$ contains an element θ_{2} for which $0_{\mathcal{P}}$ is a unit, and the same for $\mathcal{P}_{\mathbb{T}}$. Then for $m \geq 1$ there are isomorphisms of functors

$$
T_{n} U_{\mathcal{\mathcal { F } _ { \mathcal { P } } (\underline { m })} \mathcal{\mathcal { P } - A l g}}^{\left.\cong P_{n}^{\mathcal{P}} \circ \operatorname{Hom}_{\mathcal{P}-A l g}\left(\mathcal{F}_{\mathcal{P}}(\underline{m}),-\right)\right) .}
$$

on \mathcal{P}-Alg and

$$
T_{n} U_{\mathcal{F}_{\mathbb{T}}(\underline{m})}^{\mathbb{T}-M o d} \cong P_{n}^{\mathbb{T}} \circ \operatorname{Hom}_{\mathbb{T}-M o d}\left(\mathcal{F}_{\mathbb{T}}(\underline{m}),-\right)
$$

on \mathbb{T}-Mod.
Proof. We have

$$
\begin{aligned}
T_{n} U_{\mathcal{P}_{\mathcal{P}-A l g}(\underline{m})}^{\mathcal{P}} & =T_{n}\left(\left(\overline{\mathbb{Z}}[-] \circ V_{\mathcal{P}-\mathrm{Alg}}\right) \circ \operatorname{Hom}_{\mathcal{P}-A l g}\left(\mathcal{F}_{\mathcal{P}}(\underline{m}),-\right)\right) \quad \text { by definition of } U \\
& =T_{n}\left(T_{n}\left(\overline{\mathbb{Z}}[-] \circ V_{\mathcal{P}-A l g}\right) \circ \operatorname{Hom}_{\mathcal{P}-\mathrm{Alg}}\left(\mathcal{F}_{\mathcal{P}}(\underline{m}),-\right)\right) \quad \text { by Lemma } 2.18 \\
& \left.=T_{n}\left(P_{n}^{\mathcal{P}} \circ \operatorname{Hom}_{\mathcal{P}-A l g}\left(\mathcal{F}_{\mathcal{P}} \underline{m}\right),-\right)\right) \quad \text { by Theorem 5.16. }
\end{aligned}
$$

So it suffices to show that the composite functor $P_{n}^{\mathcal{P}} \circ \operatorname{Hom}_{\mathcal{P}-\boldsymbol{A l g}}\left(\mathcal{F}_{\mathcal{P}}(\underline{m}),-\right)$ is polynomial of degree $\leq n$. By the same argument as in the proof of Proposition 5.15 it suffices to prove this in the case $n=1$. First observe that by combining Lemma 5.27 with Lemma 5.12 we have $P_{1}^{\mathcal{P}}\left(A^{m}\right)=\sum_{k=1}^{m} P_{1}^{\mathcal{P}}\left(i_{k}^{\times}\right) P_{1}^{\mathcal{P}}(A)$. Moreover, for $A_{1}, A_{2} \in \mathcal{P}-A l g$ the following diagram commutes for $l=1,2$:

Combining these observations with Proposition 5.28 and the fact that $P_{1}^{\mathcal{P}}$ is linear by Lemma 5.13, we obtain

$$
\begin{aligned}
P_{1}^{\mathcal{P}}\left((A \vee B)^{m}\right) & =\sum_{k=1}^{m} P_{1}^{\mathcal{P}}\left(i_{k}^{\times}\right) P_{1}^{\mathcal{P}}\left(A_{1} \vee A_{2}\right) \\
& =\sum_{k=1}^{m} P_{1}^{\mathcal{P}}\left(i_{k}^{\times}\right)\left(P_{1}^{\mathcal{P}}\left(i_{1}\right) P_{1}^{\mathcal{P}}\left(A_{1}\right)+P_{1}^{\mathcal{P}}\left(i_{2}\right) P_{1}^{\mathcal{P}}\left(A_{2}\right)\right) \quad \text { since } P_{1}^{\mathcal{P}} \text { is linear } \\
& =P_{1}^{\mathcal{P}}\left(\left(i_{1}\right)^{m}\right)\left(\sum_{k=1}^{m} P_{1}^{\mathcal{P}}\left(i_{k}^{\times}\right) P_{1}^{\mathcal{P}}\left(A_{1}\right)\right)+P_{1}^{\mathcal{P}}\left(\left(i_{2}\right)^{m}\right)\left(\sum_{k=1}^{m} P_{1}^{\mathcal{P}}\left(i_{k}^{\times}\right) P_{1}^{\mathcal{P}}\left(A_{2}\right)\right) \\
& =P_{1}^{\mathcal{P}}\left(\left(i_{1}\right)^{m}\right) P_{1}^{\mathcal{P}}\left(\left(A_{1}\right)^{m}\right)+P_{1}^{\mathcal{P}}\left(\left(i_{2}\right)^{m}\right) P_{1}^{\mathcal{P}}\left(\left(A_{1}\right)^{m}\right) .
\end{aligned}
$$

Thus the section $\left(P_{1}^{\mathcal{P}}\left(\left(i_{1}\right)^{m}\right), P_{1}^{\mathcal{P}}\left(\left(i_{2}\right)^{m}\right)\right): P_{1}^{\mathcal{P}}\left(\left(A_{1}\right)^{m}\right) \oplus P_{1}^{\mathcal{P}}\left(\left(A_{2}\right)^{m}\right) \rightarrow P_{1}^{\mathcal{P}}\left(\left(A_{1} \vee A_{2}\right)^{m}\right)$ of $\hat{r}^{P_{1}^{P}}$ is surjective, hence an isomorphism. Consequently the functor $A \mapsto P_{1}^{\mathcal{P}}\left(A^{m}\right)$ is linear, as desired. The same proof works in the case of \mathbb{T}-algebras.

In order to compute $T_{n} \overline{\mathbb{Z}}[\mathcal{F}(\mathcal{P})]$ and $T_{n} \overline{\mathbb{Z}}[\mathcal{F}(\mathbb{T})]$ we need the following definition.
Definition 5.30. The category $P_{n}^{\mathcal{P}} \mathcal{F}(\mathcal{P})$ is defined as follows: the objects are the sets $\underline{m}, m \geq 0$, the morphism sets are $\operatorname{Hom}_{P_{n}^{\mathcal{F}(\mathcal{P})}}(\underline{k}, \underline{l})=P_{n}^{\mathcal{P}}\left(\operatorname{Hom}_{\mathcal{F}(\mathcal{P})}\left(\mathcal{F}_{\mathcal{P}}(\underline{k}), \mathcal{F}_{\mathcal{P}}(\underline{l})\right)\right.$), and the composition satisfies $p_{n}(g) \circ p_{n}(f)=p_{n}(g \circ f)$. The latter identity means that there is a functor $\underline{p}_{n}^{\mathcal{P}}: \mathcal{F}(\mathcal{P}) \rightarrow P_{n}^{\mathcal{P}} \mathcal{F}(\mathcal{P})$ which is the identity on objects and sends a morphism f in $\mathcal{F}(\mathcal{P})$ to $p_{n}(f)$.

The category $P_{n}^{\mathbb{T}} \mathcal{F}(\mathbb{T})$ is defined in an analogous way.
Corollary 5.31. For \mathcal{P} as in Theorem 5.29 the category $T_{n} \overline{\mathbb{Z}}[\mathcal{F}(\mathcal{P})]$ is isomorphic to the category $P_{n}^{\mathcal{P}} \mathcal{F}(\mathcal{P})$.

Similarly, for \mathbb{T} as in Theorem 5.29 the category $T_{n} \overline{\mathbb{Z}}[\mathcal{F}(\mathbb{T})]$ is isomorphic to the category $P_{n}^{\mathbb{T}} \mathcal{F}(\mathbb{T})$.

Finally we wish to compare the categories $P_{n}^{\mathcal{A s}}$ mon and $P_{n}^{\mathbb{G} r} g r$. For this we still need the well known fact that the functor \mathbf{g} preserves finite products. To make this precise let M_{1}, \ldots, M_{m} be monoids. As \mathbf{g} is left adjoint to U the monoid morphism $\eta_{\underline{M}}:=\eta_{M_{1}} \times \ldots \times \eta_{M_{m}}: M_{1} \times \ldots \times M_{m} \rightarrow \mathbf{g}\left(M_{1}\right) \times \ldots \times \mathbf{g}\left(M_{m}\right)$ induces a unique group homomorphism $\widehat{\eta_{\underline{M}}}: \mathbf{g}\left(M_{1} \times \ldots \times M_{m}\right) \rightarrow \mathbf{g}\left(M_{1}\right) \times \ldots \times \mathbf{g}\left(M_{m}\right)$. Then:
Proposition 5.32. The map $\widehat{\eta_{\underline{M}}}$ is an isomorphism.
Theorem 5.33. The functor $\mathbf{g}:$ mon \rightarrow gr induces an isomorphism of preadditive categories $P_{n} \mathbf{g}: P_{n}^{\mathcal{A} s}$ mon $\rightarrow P_{n}^{\mathbb{G} r}$ gr such that $P_{n} \mathbf{g} \circ \underline{p}_{n}^{\mathcal{A} s}=\underline{p}_{n}^{\mathbb{G} r} \circ \mathbf{g}$.
Proof. First of all, we may replace both of the functors $P_{n}^{\mathcal{A} s}$ and $P_{n}^{\mathbb{G} r}$ in the definition of the categories $P_{n}^{\mathcal{A} s}$ mon and $P_{n}^{\mathbb{G} r} g r$ by Passi's functor P_{n}, according to Example 5.8 and Proposition 5.17; we denote the resulting categories by $P_{n} m o n$ and $P_{n} g r$. In the sequel we freely use the basic fact that by definition $P_{n}(G)=P_{n}(U(G))$ for any group G.

Now let $k, l \geq 1$ and consider the following diagram of plain arrows where the map $\widehat{\eta^{k}}$ renders the left-hand triangle commutative and is an isomorphism by Proposition 5.32.

The left-hand square commutes since for $f \in \operatorname{mon}(\underline{k}, \underline{l})$ and $i \in \underline{k}, p r_{i} \circ \eta^{k} \circ e v(f)=\eta f(i)$ while

$$
\begin{aligned}
p r_{i} \circ e v \circ \mathbf{g}_{k, l}(f) & =\mathbf{g}(f)(i) \\
& =\mathbf{g}(f) \eta(i) \\
& =\eta(f(i)) \quad \text { by naturality of } \eta .
\end{aligned}
$$

It follows that the map $\mathbf{g}_{k, l}$ is a morphism of monoids since $e v$ and η^{k} are. Applying the functor P_{n} we deduce that the dotted arrow $P_{n}\left(\mathrm{~g}_{k, l}\right)$ exists, is a homomorphism of abelian groups and renders the right-hand square commutative. We claim that $P_{n} \mathbf{g}: P_{n} m o n \rightarrow P_{n} g r$ defined by $P_{n} \mathbf{g}(\underline{m})=\underline{m}$ and $\left(P_{n} \mathbf{g}\right)_{\underline{k}, \underline{l}}=P_{n}\left(\mathbf{g}_{k, l}\right)$ is an isomorphism of additive categories. To show that $P_{n} \mathbf{g}$ is a functor let $\underline{k} \xrightarrow{f} \underline{l} \xrightarrow{g} \underline{m}$. Then

$$
\begin{aligned}
P_{n}\left(\mathbf{g}_{\underline{k}, \underline{m}}\right)\left(p_{n}(g) \circ p_{n}(f)\right) & =P_{n}\left(\mathbf{g}_{\underline{k}, \underline{m}}\right)\left(p_{n}(g f)\right) \quad \text { by definition of } P_{n} m o n \\
& =p_{n}\left(\mathbf{g}_{\underline{k}, \underline{m}}(g f)\right) \quad \text { by definition of } P_{n}\left(\mathbf{g}_{\underline{k}, \underline{m}}\right) \\
& =p_{n}\left(\mathbf{g}_{l, \underline{m}}(g) \circ \mathbf{g}_{k, l}(f)\right) \quad \text { since } \mathbf{g} \text { is a functor } \\
& =p_{n}\left(\mathbf{g}_{l, \underline{m}}(g)\right) \circ p_{n}\left(\mathbf{g}_{k, l}(f)\right) \quad \text { by definition of } P_{n} g r \\
& =P_{n}\left(\mathbf{g}_{l, \underline{m}}\right)\left(p_{n}(g)\right) \circ P_{n}\left(\mathbf{g}_{k, l}\right)\left(p_{n}(f)\right)
\end{aligned}
$$

It follows that $P_{n} \mathbf{g}$ is a functor since the composition in P_{n} mon and $P_{n} g r$ is bilinear and $P_{n}(\operatorname{mon}(\underline{k}, \underline{l}))$ is generated by the elements $p_{n}(f), f \in \operatorname{mon}(\underline{k}, \underline{l})$.

It remains to prove that $P_{n}\left(\mathbf{g}_{k, l}\right)$ is an isomorphism for all $k, l \geq 1$. To see this apply the functor P_{n} to the left-hand triangle and square of the above diagram: as $P_{n}(\eta)$ is an isomorphism by Lemma 5.5 so is $P_{n}\left(\eta^{k}\right)$ and hence $P_{n}\left(\mathbf{g}_{k, l}\right)$.

We now can state the main application of the results of this section:
Corollary 5.34. There is an isomorphism of categories $\operatorname{Pol}_{n}(g r, A b) \cong \operatorname{Pol}_{n}($ mon, $A b)$.
Proof. We have:

$$
\begin{aligned}
\operatorname{Pol}_{n}(g r, A b) \cong & \operatorname{Add}\left(T_{n} \overline{\mathbb{Z}}[g r], A b\right) \cong \operatorname{Add}\left(P_{n}^{\mathbb{G} r} g r, A b\right) \cong \operatorname{Add}\left(P_{n}^{\mathcal{A} s} m o n, A b\right) \\
& \cong \operatorname{Add}\left(T_{n} \overline{\mathbb{Z}}[m o n], A b\right) \cong \operatorname{Pol}_{n}(m o n, A b)
\end{aligned}
$$

where the first and fifth equivalences follow from Corollary 5.25, the second and fourth equivalences follow from Corollary 5.31 and the third equivalence is given by Theorem 5.33.

6. Application: polynomial functors from abelian groups and from GROUPS

In this section we apply Theorem 4.1 and results of section 5 to the cases $\mathcal{P}=\mathcal{C}$ om and $\mathcal{P}=\mathcal{A} s$. In the first case we recover the results of [2].
6.1. Polynomial functors from abelian groups. Applying Theorem 4.1 for $\mathcal{P}=$ Com we obtain a natural equivalence of categories

$$
\operatorname{Func}(\operatorname{Free}(\mathcal{C o m}), A b) \simeq \operatorname{PMack}(\Omega(\mathcal{C o m}), A b) .
$$

Since $\Omega(\mathcal{C o m})=\Omega$ by Example 1.13 and Free $(\mathcal{C o m})=$ common by 1.3 , we obtain:

$$
\begin{equation*}
\operatorname{Func}(\text { common }, A b) \simeq \operatorname{PMack}(\Omega, A b) \tag{6.0.1}
\end{equation*}
$$

which is the Theorem 0.2 of [2]. Furthermore, we have:
Theorem 6.1 ([2] section 8). Let $n \in \mathbb{N}$, there is an equivalence of categories

$$
\operatorname{Pol}_{n}(c o m m o n, A b) \simeq P o l_{n}(a b, A b)
$$

This theorem is generalized to the non-commutative setting in Corollary 5.34. In the sequel, we briefly recall the proof of Theorem 6.1 sketched in [2] in order to explain clearly why it can't be adapted to the non-commutative setting.

The proof sketched in [2] consists in constructing a functor:

$$
\tilde{\sim}: \operatorname{Pol}_{n}(\text { common, } A b) \rightarrow \operatorname{Pol}_{n}(a b, A b)
$$

which induces an equivalence of categories. A crucial tool in defining \sim is Lemma 8.1 in [2] asserting the equivalence between polynomial maps of degree $\leq n$ from a commutative monoid M to an abelian group A and polynomial maps of degree $\leq n$ from the commutative group $g r(M)$ to A where $g r$ is the group completion. (We generalize this result to the non-commutative setting in Proposition 5.4).

For $F \in \operatorname{Pol}_{n}($ common, $A b)$ the functor $\tilde{F}: a b \rightarrow A b$ is obtained in the following way:

- For $\underline{n} \in a b, \tilde{F}(\underline{n})=F(\underline{n})$;
- for the morphisms: the map $\psi: \operatorname{Hom}_{a b}(\underline{l}, \underline{m}) \rightarrow \operatorname{Hom}_{A b}(F(\underline{l}), F(\underline{m}))$ is the unique polynomial map of degree n corresponding, by Lemma 8.1 in 2 to the polynomial map of degree $n: \operatorname{Hom}_{\text {common }}(\underline{l}, \underline{m}) \rightarrow \operatorname{Hom}_{A b}(F(\underline{l}), F(\underline{m}))$ given by the polynomiality of the functor F;
- to prove that \tilde{F} is a functor we have to prove the commutativity of the following diagram:

$$
\begin{gathered}
\operatorname{Hom}_{a b}(\underline{l}, \underline{m}) \times \operatorname{Hom}_{a b}(\underline{m}, \underline{k}) \xrightarrow{\psi \times \psi} \operatorname{Hom}_{A b}(F(\underline{l}), F(\underline{m})) \times \operatorname{Hom}_{A b}(F(\underline{m}), F(\underline{k})) \\
\phi \downarrow \\
\operatorname{Hom}_{a b}(\underline{l}, \underline{k}) \xrightarrow{\downarrow} \xrightarrow[\downarrow]{ } \operatorname{Hom}_{A b}(F(\underline{l}), F(\underline{k}))
\end{gathered}
$$

In this diagram the composition map ϕ is bilinear since we are in the commutative case. By composition, $\psi \circ \phi$ is bipolynomial of degree n in each variable. This map corresponds to the unique bipolynomial map of degree n in each variable associated to the map sending $(f, g) \in \operatorname{Hom}_{\text {common }}(\underline{l}, \underline{m}) \times \operatorname{Hom}_{\text {common }}(\underline{m}, \underline{k})$ to $F(g \circ f)$, by Lemma 8.1 in [2]. The other composition is also bipolynomial of degree n in each variable and corresponds, by Lemma 8.1 in [2] to the unique bipolynomial map of degree n in each variable associated to the map sending (f, g) to $F(g) \circ F(f)$. Since F is a functor we deduce that \tilde{F} is a functor.
In the case of non-commutative monoids and non-commutative groups, the map corresponding to ϕ in the previous diagram is no more bilinear (in fact we have $f\left(g+g^{\prime}\right)=$ $f g+f g^{\prime}$ but in general $\left.\left(f+f^{\prime}\right) g \neq f g+f^{\prime} g\right)$. Consequently the composition $\psi \phi$, a priori, has no reason to be bipolynomial of degree n in each variable and we can't prove as above that a similar extension to $g r$ of a functor from mon indeed defines a functor from $g r$ to $A b$.

We deduce from 6.0.1) and Theorem 6.1:
Theorem 6.2 ([2] Theorem 6.1). Let $n \in \mathbb{N}$, there is an equivalence of categories

$$
\operatorname{Pol}_{n}(a b, A b) \simeq(\operatorname{PMack}(\Omega, A b))_{\leq n}
$$

where $(P M a c k(\Omega, A b))_{\leq n}$ is the full subcategory of $\operatorname{PMack}(\Omega, A b)$ having as objects the functors which vanish on the sets X such that $|X|>n$ and on $\underline{0}$.
6.2. Polynomial functors from groups. Applying Theorem 4.1 for $\mathcal{P}=\mathcal{A} s$ we obtain a natural equivalence of categories

$$
\operatorname{Func}(\operatorname{Free}(\mathcal{A} s), A b) \simeq \operatorname{PMack}(\Omega(\mathcal{A} s), A b) .
$$

Since $\operatorname{Free}(\mathcal{A} s)=$ mon by 1.3 , we obtain:

$$
\operatorname{Func}(\operatorname{mon}, A b) \simeq \operatorname{PMack}(\Omega(\mathcal{A s}), A b) .
$$

By Corollary 5.34 we obtain.
Theorem 6.3. Let $n \in \mathbb{N}$, there is an equivalence of categories

$$
\operatorname{Pol}_{n}(g r, A b) \simeq(\operatorname{PMack}(\Omega(\mathcal{A} s), A b))_{\leq n}
$$

where $(P \operatorname{Mack}(\Omega(\mathcal{A} s), A b))_{\leq n}$ is the full subcategory of $\operatorname{PMack}(\Omega(\mathcal{A} s), A b)$ having as objects the functors which vanish on $\underline{0}$ and on the sets \underline{m} such that $m>n$.

7. Presentation of polynomial functors

The aim of this section is to give a presentation of polynomial functors from Free (\mathcal{P}) to $A b$ in terms of minimal data.

First we give the generators of the category $\Omega(\mathcal{P})_{2}$.

7.1. Generators of $\Omega(\mathcal{P})_{2}$.

7.1.1. Horizontal maps. Since $\left(\Omega(\mathcal{P})_{2}\right)^{h}=\Omega$, the horizontal generators of $\Omega(\mathcal{P})_{2}$ are given in [2].

For all $i \in \mathbb{N}$ such that $1 \leq i<n$ we consider:

- $s_{i}^{n}: \underline{n} \rightarrow \underline{n-1}$ the unique surjection preserving the natural order and such that:

$$
s_{i}^{n}(i)=s_{i}^{n}(i+1)=i ;
$$

- $\tau_{i}^{n}: \underline{n} \rightarrow \underline{n}$ the transposition of \mathfrak{S}_{n} which exchanges i and $i+1$.

Lemma 7.1 (Lemme 9.5 in [2]). The category Ω is generated by $\left\{s_{i}^{n}, \tau_{i}^{n} \mid 1 \leq i<n\right\}$ submitted to the relations of the symmetric group \mathfrak{S}_{n} and to the following conditions:
(1) $s_{i}^{n-1} s_{j}^{n}=s_{j-1}^{n-1} s_{i}^{n} \quad$ for $i<j$
(2) $s_{i}^{n} \tau_{i}^{n}=s_{i}^{n}$
(3) $\tau_{k}^{n-1} s_{j}^{n}=\left\{\begin{array}{l}s_{j}^{n} \tau_{k}^{n} \text { for } k<j-1 \\ s_{j-1}^{n} \tau_{j}^{n} \tau_{j-1}^{n} \quad \text { for } k=j-1 \\ s_{j+1}^{n} \tau_{j}^{n} \tau_{j+1}^{n} \quad \text { for } k=j \\ s_{j}^{n} \tau_{k+1}^{n} \text { for } k>j .\end{array}\right.$
7.1.2. Vertical maps. We have $\left(\Omega(\mathcal{P})_{2}\right)^{v}=\Omega(\mathcal{P})$.

For all $k \in \mathbb{N}$ such that $1 \leq k<n$ and for all $i \in \mathbb{N}$ such that $1 \leq i \leq n-k$ we consider:

- $s_{i}^{n, n-k}: \underline{n} \rightarrow \underline{n-k}$ the unique surjection preserving the natural order and such that:

$$
s_{i}^{n, n-k}(i)=s_{i}^{n, n-k}(i+1)=\ldots=s_{i}^{n, n-k}(i+k)=i
$$

$\forall \omega \in \mathcal{P}(k+1)$ we obtain a morphism in $\Omega(\mathcal{P})$:

$$
\left(s_{i}^{n, n-k},\left(1_{\mathcal{P}}^{\times(i-1)}, \omega, 1_{\mathcal{P}}^{\times(n-k-i)}\right)\right): \underline{n} \rightarrow \underline{n-k} ;
$$

in the sequel, this morphism will be denoted by $\left(s_{i}^{n, n-k}, \omega\right)$ for simplicity;

- $\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n} \in \mathcal{P}(1)^{\times n}\right): \underline{n} \rightarrow \underline{n}$ where τ_{i}^{n} is the transposition of \mathfrak{S}_{n} which exchanges i and $i+1$;
- $\left(I d_{n},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right): \underline{n} \rightarrow \underline{n}$ where $\forall i \in\{1, \ldots, n\}, \alpha_{i} \in \mathcal{P}(1)$.

Lemma 7.2. The category $\Omega(\mathcal{P})$ is generated by the morphisms ($s_{i}^{n, n-k}, \omega \in \mathcal{P}(k+1)$, $\left(\tau_{k}^{n}, 1_{\mathcal{P}}^{\times n} \in \mathcal{P}(1)^{\times n}\right)$ and $\left(I_{n},\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathcal{P}(1)^{\times n}\right)$ submitted to the relations of the symmetric group \mathfrak{S}_{n} and to the following conditions:
(1) $\left(I d_{n},\left(\omega_{1}, \ldots, \omega_{n}\right)\right)\left(I d_{n},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=\left(I d_{n},\left(\gamma\left(\omega_{1}, \alpha_{1}\right), \ldots, \gamma\left(\omega_{n}, \alpha_{n}\right)\right)\right)$
(2) $\left(I d_{n},\left(\omega_{1}, \ldots, \omega_{n}\right)\right)\left(\tau_{k}^{n}, 1_{\mathcal{P}}^{\times n}\right)=\left(\tau_{k}^{n}, 1_{\mathcal{P}}^{\times n}\right)\left(I d_{n},\left(\omega_{1}, \ldots, \omega_{k-1}, \omega_{k+1}, \omega_{k}, \omega_{k+2}, \ldots, \omega_{n}\right)\right)$;
(3) $\left(I d_{n-k}, \omega_{1}, \ldots, \omega_{n-k}\right)\left(s_{i}^{n, n-k}, \omega\right)=\left(s_{i}^{n, n-k}, \gamma\left(\omega_{i}, \omega\right)\right)\left(I d_{n}, \omega_{1}, \ldots, \omega_{i-1}, 1_{\mathcal{P}}^{\times(k+1)}, \omega_{i+1}, \ldots, \omega_{n-k}\right)$
(4) $\left(s_{i}^{n, n-k}, \omega\right)\left(I d_{n}, \omega_{1}, \ldots, \omega_{n}\right)$

$$
=\left(I d_{n-k}, \omega_{1}, \ldots, \omega_{i-1}, 1_{\mathcal{P}}, \omega_{i+k+1}, \ldots, \omega_{n}\right)\left(s_{i}^{n, n-k}, \gamma\left(\omega ; \omega_{i}, \omega_{i+1}, \ldots, \omega_{i+k}\right)\right)
$$

(5) $\left(s_{i}^{n-k, n-k-p}, \omega \in \mathcal{P}(p+1)\right)\left(s_{j}^{n, n-k}, \alpha \in \mathcal{P}(k+1)\right)$

$$
= \begin{cases}\left(s_{i}^{n, n-k-p}, \gamma\left(\omega ; 1_{\mathcal{P}}^{\times(j-i)}, \alpha, 1_{\mathcal{P}}^{\times(p-j+i)}\right) \in \mathcal{P}(k+p+1)\right) & \text { for } i \leq j \leq i+p \\ \left(s_{j}^{n-p, n-k-p}, \alpha\right)\left(s_{i+n}^{n-p}, \omega\right) & \text { for } j<i \\ \left(s_{j-p}^{n-p, n-k-p}, \alpha\right)\left(s_{i}^{n, n-p}, \omega\right) & \text { for } j>i+p\end{cases}
$$

(6) $\left(\tau_{k}^{n-p}, 1_{\mathcal{P}}^{\times(n-p)} \in \mathcal{P}(1)^{\times n-p}\right)\left(s_{j}^{n, n-p}, \alpha \in \mathcal{P}(p+1)\right)$

$$
=\left\{\begin{array}{l}
\left(s_{j}^{n, n-p}, \alpha\right)\left(\tau_{k}^{n}, 1_{\mathcal{P}}^{\times n}\right) \text { for } k<j-1 \\
\left(s_{j-1}^{n, n-p}, \alpha\right)\left(\tau_{j+p-1}^{n}, 1_{\mathcal{P}}^{\times n}\right)\left(\tau_{j+p-2}^{n}, 1_{\mathcal{P}}^{\times n}\right) \ldots\left(\tau_{j}^{n}, 1_{\mathcal{P}}^{\times n}\right)\left(\tau_{j-1}^{n}, 1_{\mathcal{P}}^{\times n}\right) \text { for } k=j-1 \\
\left(s_{j+1-p}^{n, \alpha}, \alpha\right)\left(\tau_{j}^{n}, 1_{\mathcal{P}}^{\times n}\right)\left(\tau_{j+1}^{n}, 1_{\mathcal{P}}^{\times n}\right) \ldots\left(\tau_{j+p-1}^{n}, 1_{\mathcal{P}}^{\times n}\right)\left(\tau_{j+p}^{n}, 1_{\mathcal{P}}^{\times n}\right) \text { for } k=j \\
\left(s_{j}^{n, n-p}, \alpha\right)\left(\tau_{k+p}^{n}, 1_{\mathcal{P}}^{\times n}\right) \text { for } k>j .
\end{array}\right.
$$

(7) $\left(s_{j}^{n, n-p}, \alpha \in \mathcal{P}(p+1)\right)\left(\tau_{k}^{n}, 1_{\mathcal{P}}^{\times n} \in \mathcal{P}(1)^{\times n}\right)$

$$
=\left\{\begin{array}{l}
\left(s_{j}^{n, n-p}, \alpha \cdot \tau_{k-j+1}\right) \quad \text { for } j \leq k \leq j+p-1 \\
\left(\tau_{k-p}^{n}, 1_{\mathcal{P}}^{\times n}\right)\left(s_{j}^{n n-n}, \alpha\right) \quad \text { for } k>j+p \text { or } k<j-1 .
\end{array}\right.
$$

Remark: For $k=j+p$ and $k=j-1$ there are no relation.
7.1.3. The role of the generators. The following proposition allows us to reduce the number of conditions to be verified to prove that a Janus functor is a pseudo-Mackey functor.

Proposition 7.3., Let M be a Janus functor; M is a pseudo-Mackey functor iff conditions (1) and (2) in Definition 1.28 are satisfied for horizontal (resp. vertical) generators h (resp. $\left(v, \omega^{v}\right)$) of $\Omega(\mathcal{P})_{2}$.

The proof of this proposition relies on the following lemma which corresponds to Lemma 9.2 in [2].

Lemma 7.4. Let $M=\left(M_{*}, M^{*}\right): \Omega(\mathcal{P})_{2} \rightarrow$ Ab be a Janus functor. For two squares in $\Omega(\mathcal{P})_{2}$
if

$$
M^{*}\left(\phi_{1}, \omega^{\phi_{1}}\right) M_{*}\left(f_{2}\right)=\sum_{B^{\prime} \in \operatorname{Adm}(B)} M_{*}\left(g_{2_{B^{\prime}}}\right) M^{*}\left(\left(\phi_{2}, \omega^{\phi_{2}}\right)_{B^{\prime}}\right)
$$

and

$$
M^{*}\left(\phi_{2}, \omega^{\phi_{2}}\right) M_{*}\left(f_{1}\right)=\sum_{A^{\prime} \in \operatorname{Adm}(A)} M_{*}\left(g_{1 A^{\prime}}\right) M^{*}\left(\left(\phi_{3}, \omega^{\phi_{3}}\right)_{A^{\prime}}\right)
$$

then

$$
M^{*}\left(\phi_{1}, \omega^{\phi_{1}}\right) M_{*}\left(f_{2} \circ f_{1}\right)=\sum_{A^{\prime} \in \operatorname{Adm}(A)} M_{*}\left(\left(g_{2} \circ g_{1}\right)_{A^{\prime}}\right) M^{*}\left(\left(\phi_{3}, \omega^{\phi_{3}}\right)_{A^{\prime}}\right) .
$$

For two squares in $\Omega(\mathcal{P})_{2}$

if

$$
M^{*}\left(\phi_{1}, \omega^{\phi_{1}}\right) M_{*}(f)=\sum_{A^{\prime} \in \operatorname{Adm}(A)} M_{*}\left(g_{A^{\prime}}\right) M^{*}\left(\left(\psi_{1}, \omega^{\psi_{1}}\right)_{A^{\prime}}\right)
$$

and

$$
M^{*}\left(\phi_{2}, \omega^{\phi_{2}}\right) M_{*}(e)=\sum_{D^{\prime} \in \operatorname{Adm}(D)} M_{*}\left(f_{D^{\prime}}\right) M^{*}\left(\left(\psi_{2}, \omega^{\psi_{2}}\right)_{D^{\prime}}\right)
$$

then

$$
M^{*}\left(\left(\phi_{2}, \omega^{\phi_{2}}\right)\left(\phi_{1}, \omega^{\phi_{1}}\right)\right) M_{*}(e)=\sum_{A^{\prime} \in \operatorname{Adm}(A)} M_{*}\left(g_{A^{\prime}}\right) M^{*}\left(\left(\left(\psi_{2}, \omega^{\psi_{2}}\right)\left(\psi_{1}, \omega^{\psi_{1}}\right)\right)_{A^{\prime}}\right) .
$$

Proof. [2] We have:
$M^{*}\left(\phi_{1}, \omega^{\phi_{1}}\right) M_{*}\left(f_{2} \circ f_{1}\right)=\left(M^{*}\left(\phi_{1}, \omega^{\phi_{1}}\right) M_{*}\left(f_{2}\right)\right) M_{*}\left(f_{1}\right)=\sum_{B^{\prime} \in \operatorname{Adm}(B)} M_{*}\left(g_{2^{\prime}}\right) M^{*}\left(\left(\phi_{2}, \omega^{\phi_{2}}\right)_{B^{\prime}}\right) M_{*}\left(f_{1}\right)$.
Let
be the unique square of $\Omega(\mathcal{P})_{2}$ associated to $\left(f_{1},\left(\phi_{2}, \omega^{\phi_{2}}\right)_{B^{\prime}}\right)$ we have:

$$
\begin{aligned}
\sum_{B^{\prime} \in \operatorname{Adm}(B)} M_{*}\left(g_{2_{B^{\prime}}}\right) M^{*}\left(\left(\phi_{2}, \omega^{\phi_{2}}\right)_{B^{\prime}}\right) M_{*}\left(f_{1}\right) & =\sum_{B^{\prime} \in \operatorname{Adm}(B)} M_{*}\left(g_{2 B^{\prime}}\right) \sum_{A^{\prime \prime} \in \operatorname{Adm}\left(A^{\prime}\right)} M_{*}\left(g_{1^{\prime \prime}}\right) M^{*}\left(\phi_{3}, \omega^{\phi_{3}}\right)_{A^{\prime \prime}} \\
& =\sum_{B^{\prime} \in \operatorname{Adm}(B) A^{\prime \prime} \in \operatorname{Adm}\left(A^{\prime}\right)} M_{*}\left(g_{2_{B^{\prime}}} g_{1_{A^{\prime \prime}}}\right) M^{*}\left(\left(\phi_{3}, \omega^{\phi_{3}}\right)_{A^{\prime \prime}}\right) \\
& =\sum_{B^{\prime} \in \operatorname{Adm}(B) A^{\prime \prime} \in \operatorname{Adm}\left(A^{\prime}\right)} M_{*}\left(\left(g_{2} \circ g_{1}\right)_{A^{\prime \prime}}\right) M^{*}\left(\left(\phi_{3}, \omega^{\phi_{3}}\right)_{A^{\prime \prime}}\right) \\
& =\sum_{A^{\prime \prime} \in \operatorname{Adm}(A)} M_{*}\left(\left(g_{2} \circ g_{1}\right)_{A^{\prime \prime}}\right) M^{*}\left(\left(\phi_{3}, \omega^{\phi_{3}}\right)_{A^{\prime \prime}}\right)
\end{aligned}
$$

The proof of the second part of the lemma is similar.
Proof of Proposition 7.3. The proposition is a direct consequence of the previous lemma applied to a decomposition of horizontal and vertical maps into a product of the generators.
7.2. Presentation of polynomial functors. Let $\left(M_{*}, M^{*}\right)$ be a Janus functor $\Omega(\mathcal{P})_{2} \rightarrow$ $A b$. We put:

$$
\begin{gathered}
I_{n}^{\alpha_{1}, \ldots, \alpha_{n}}:=M^{*}\left(I d_{n},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right): M(\underline{n}) \rightarrow M(\underline{n}) \\
T_{k}^{n}:=M_{*}\left(\tau_{k}^{n}\right): M(\underline{n}) \rightarrow M(\underline{n}) \\
P_{i}^{n}:=M_{*}\left(s_{i}^{n}\right): M(\underline{n}) \rightarrow M(\underline{n-1}) \\
H_{i}^{(n, n-p) \omega}:=M^{*}\left(s_{i}^{n, n-p}, \omega\right): M(\underline{n-p}) \rightarrow M(\underline{n}) \quad \text { for } \omega \in \mathcal{P}(p+1) .
\end{gathered}
$$

Proposition 7.5. Let $M=\left(M_{*}, M^{*}\right)$ be a Janus functor $\Omega(\mathcal{P})_{2} \rightarrow A b, M$ is a pseudoMackey functor iff the following relations are satisfied:

$$
\begin{gather*}
T_{i}^{n}=\left(M^{*}\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right)\right)^{-1} \quad \text { for } 1 \leq i \leq n-1 \tag{7.5.1}\\
I_{n-1}^{\alpha_{1}, \ldots \alpha_{n-1}} P_{i}^{n}=P_{i}^{n} I_{n}^{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{i}, \ldots, \alpha_{n}} \quad \text { for } 1 \leq i \leq n ; \tag{7.5.2}
\end{gather*}
$$

$$
\begin{equation*}
H_{j}^{(n+k-1, n-1) \alpha} P_{i}^{n}=P_{i}^{n+k} H_{j+1}^{(n+k, n) \alpha} \tag{7.5.3}
\end{equation*}
$$

$$
\text { for } 1 \leq i<j<n, 1 \leq k<n \quad \text { and } \alpha \in \mathcal{P}(k+1)
$$

$$
\begin{equation*}
H_{j}^{(n+k-1, n-1) \alpha} P_{i}^{n}=P_{k+i}^{n+k} H_{j}^{(n+k, n) \alpha} \tag{7.5.4}
\end{equation*}
$$

$$
\text { for } 1 \leq j<i<n, 1 \leq k<n \quad \text { and } \alpha \in \mathcal{P}(k+1) ;
$$

$$
\begin{equation*}
H_{i}^{(n+k-1, n-1) \alpha} P_{i}^{n}=P_{i+k}^{n+k} P_{i+k-1}^{n+k+1} \ldots P_{i}^{n+2 k} M_{*}(\sigma) H_{i}^{(n+2 k, n+k) \alpha} H_{i+1}^{(n+k, n) \alpha} \tag{7.5.5}
\end{equation*}
$$

$$
+\sum_{\beta=1}^{k+1} \sum_{i \leq u_{1}<\ldots<u_{\beta} \leq i+k} P_{i+k}^{n+k} \ldots \hat{P_{u_{\beta}}} \ldots \hat{P_{u_{1}}} \ldots P_{i}^{n+2 k-\beta} \sum_{\epsilon_{1}, \ldots, \epsilon_{\beta} \in J} M_{*}\left(\sigma_{u_{1}+\epsilon_{1}(k+1), \ldots, u_{\beta}+\epsilon_{\beta}(k+1)}\right)
$$

$$
H_{i}^{\left(n+2 k-\beta, n+k-\epsilon_{1}-\ldots-\epsilon_{\beta}\right) \gamma\left(\alpha ; \omega_{1}, \ldots, \omega_{k+1}\right)} H_{i+1}^{\left(n+k-\epsilon_{1}-\ldots-\epsilon_{\beta}, n\right) \gamma\left(\alpha ; \omega_{1}^{\prime}, \ldots, \omega_{k+1}^{\prime}\right)}
$$

$$
\text { for } 1 \leq i<n, 1 \leq k \leq n \quad \text { and } \alpha \in \mathcal{P}(k+1)
$$

where $J=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{\beta}\right) \in\{0,1\}^{\beta} \mid \beta-k \leq \epsilon_{1}+\ldots+\epsilon_{\beta} \leq k\right\}$, for $l \in\{1, \ldots, k+1\}$:

$$
\omega_{l}= \begin{cases}0_{\mathcal{P}} & \text { for } l \in\left\{\overline{\left(1+\epsilon_{1}\right)}\left(u_{1}-i+1\right), \ldots, \overline{\left(1+\epsilon_{\beta}\right)}\left(u_{\beta}-i+1\right)\right\} \backslash\{0\} \\ 1_{\mathcal{P}} & \text { otherwise }\end{cases}
$$

where \bar{x} is the class modulo 2 of x and

$$
\omega_{l}^{\prime}= \begin{cases}0_{\mathcal{P}} & \text { for } l \in\left\{\epsilon_{1}\left(u_{1}-i+1\right), \ldots, \epsilon_{\beta}\left(u_{\beta}-i+1\right)\right\} \backslash\{0\} \\ 1_{\mathcal{P}} & \text { otherwise }\end{cases}
$$

σ is the permutation of $n+2 k$ letters such that $\operatorname{Supp}(\sigma)=\{i+1, \ldots, i+2 k\}$ and for $I=\{i, i+1, \ldots, i+2 k, i+2 k+1\}$ we have:

$$
\sigma_{\mid I}=\left(\begin{array}{ccccccccc}
i & i+1 & i+2 & \ldots & i+k & i+k+1 & i+k+2 & \ldots & i+2 k+1 \\
i & i+2 & i+4 & \ldots & i+2 k & i+1 & i+3 & \ldots & i+2 k+1
\end{array}\right) .
$$

and $\sigma_{u_{1}+\epsilon_{1}(k+1), \ldots, u_{\beta}+\epsilon_{\beta}(k+1)}$ is the permutation obtained from σ removing the columns $\binom{u_{1}+\epsilon_{1}(k+1)}{\ldots}\binom{u_{2}+\epsilon_{2}(k+1)}{\ldots} \ldots\binom{u_{\beta}+\epsilon_{\beta}(k+1)}{\ldots}$ and reindexing in order to have a permutation of $n+2 k-\beta$.
Remark 7.6. In the last family of equations we take the convention that

$$
H_{p}^{(m, m) \omega}=I_{m}^{1_{\mathcal{P}}^{\times p-1}, \omega, 1_{\mathcal{P}}^{\times m-p}} \text { for } 1 \leq p \leq m \text { and } \omega \in \mathcal{P}(1) .
$$

Remark 7.7. The last family of equations which decomposes $H_{i}^{(n+k-1, n-1) \alpha} P_{i}^{n}$ as a sum of $\left(3^{k+1}-2\right)$-terms is the generalization of the equation (M4) in Proposition 9.6 in [2], which decomposes $H_{i}^{n} P_{i}^{n}$ as a sum of 7 -terms. In fact, in [2], we have $k=1$. It is a consequence of the fact that $\mathcal{C o m}$ is an operad generated by \mathcal{C} om (2) which is a situation studied in the next section.

Proof of Proposition 7.5. According Proposition 7.3, it is sufficient to verify conditions (1) and (2) in Definition 1.28 on horizontal and vertical generators.

According Lemma 1.20, double isomorphisms in $\Omega(\mathcal{P})_{2}$ are pairs $\left(f,\left(f, 1_{\mathcal{P}}^{\times n}\right)\right)$ where f is an isomorphism of \underline{n}. Condition (1) in Definition 1.28 applied to the double isomorphism $\left(\tau_{i}^{n},\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right)\right)$ becomes

$$
\begin{equation*}
T_{i}^{n}=\left(M^{*}\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right)\right)^{-1} . \tag{7.7.1}
\end{equation*}
$$

Condition (1) in Definition 1.28 applied to the double isomorphism $\left(I d_{\underline{n}},\left(I d_{\underline{n}}, 1_{\mathcal{P}}^{\times n}\right)\right.$) gives the condition:

$$
I_{n}^{1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}}=I d_{M(\underline{n})}
$$

which is a consequence of (7.7.1) since:

$$
I_{n}^{1_{\mathcal{P}}, \ldots, 1_{\mathcal{P}}}=M^{*}\left(I d_{n}, 1_{\mathcal{P}}^{\times n}\right)=M^{*}\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right) M^{*}\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right)=M_{*}\left(\tau_{i}^{n}\right)^{-1} M_{*}\left(\tau_{i}^{n}\right)^{-1}=\left(M_{*}\left(I d_{n}\right)\right)^{-1}=I d_{M(\underline{n})} .
$$

For condition (2) in Definition 1.28, we consider the pairs (h, v) of horizontal and vertical generators of $\Omega(\mathcal{P})_{2}$ having the same target and the corresponding unique square in $\Omega(\mathcal{P})_{2}$.

- Let $\left(f, \omega^{f}\right): \underline{n+p} \rightarrow \underline{n}$ (for $p \in \mathbb{N}$) be a vertical generator of $\Omega(\mathcal{P})_{2}$. The pair $\left.(h, v)=\left(\tau_{i}^{n}, \overline{\left(f, \omega^{f}\right.}\right)\right)$ corresponds to the unique square in $\Omega(\mathcal{P})_{2}$:

where g is a bijection. This square is equivalent, up to double isomorphisms, to the square:

We have $\operatorname{Adm}(\mathcal{D})=\{\underline{n+p}\}$. So, in this case condition (2) in Definition 1.28 becomes:

$$
\begin{equation*}
M^{*}\left(\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right) \circ\left(f, \omega^{f}\right)\right)=M^{*}\left(\left(\tilde{f}, \omega^{\tilde{f}}\right) \circ\left(g^{-1}, 1_{\mathcal{P}}^{\times(n+p)}\right)\right) . \tag{7.7.2}
\end{equation*}
$$

By Lemma 1.21 the square associated to the pair $\left(I d,\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right) \circ\left(f, \omega^{f}\right)\right)$ is unique up to double isomorphism so we have the following equality of vertical maps in $\Omega(\mathcal{P})_{2}$:

$$
\left(\tilde{f}, \omega^{\tilde{f}}\right) \circ\left(g^{-1}, 1_{\mathcal{P}}^{\times(n+p)}\right)=\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right) \circ\left(f, \omega^{f}\right) .
$$

We deduce that relation (7.7.2) is a consequence of the functoriality of M^{*}.

- The pair $(h, v)=\left(s_{i}^{n},\left(\operatorname{Id}_{n-1},\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right)\right)$ corresponds to the unique square in $(\Omega(\mathcal{P}))_{2}$:

We have $\operatorname{Adm}(\mathcal{D})=\{\underline{n}\}$. So, in this case condition (2) in Definition 1.28 becomes:

$$
I_{n-1}^{\alpha_{1}, \ldots \alpha_{n-1}} P_{i}^{n}=P_{i}^{n} I_{n}^{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{i}, \ldots, \alpha_{n}}
$$

- The pair $(h, v)=\left(s_{i}^{n},\left(\tau_{j}^{n-1}, 1_{\mathcal{P}}{ }^{n}\right)\right)$ corresponds to the unique square in $(\Omega(\mathcal{P}))_{2}$:
where g is a bijection. This square is equivalent, up to double isomorphisms, to the square:

Using a similar argument that for the pair $\left(\tau_{n}^{i},\left(f, \omega^{f}\right)\right)$ we deduce that the relation obtained from this diagram is a consequence of the functoriality of M_{*}.

- For $i<j$, the pair $(h, v)=\left(s_{i}^{n},\left(s_{j}^{n+k-1, n-1}, \alpha\right)\right)$ corresponds to the unique square in $(\Omega(\mathcal{P}))_{2}$:

$$
\begin{aligned}
& \mathcal{D}=
\end{aligned}
$$

We have $\operatorname{Adm}(\mathcal{D})=\{\underline{n+k}\}$. So, in this case condition (2) in Definition 1.28 becomes:

$$
H_{j}^{(n+k-1, n-1) \alpha} P_{i}^{n}=P_{i}^{n+k} H_{j+1}^{(n+k, n) \alpha}
$$

- For $i>j$, the pair $(h, v)=\left(s_{i}^{n},\left(s_{j}^{n+k-1, n-1}, \alpha\right)\right)$ corresponds to the unique square in $(\Omega(\mathcal{P}))_{2}$:

We have $\operatorname{Adm}(\mathcal{D})=\{\underline{n+k}\}$. So, in this case condition (2) in Definition 1.28 becomes:

$$
H_{j}^{(n+k-1, n-1) \alpha} P_{i}^{n}=P_{k+i}^{n+k} H_{j}^{(n+k, n) \alpha}
$$

- For $i=j$, the pair $(h, v)=\left(s_{i}^{n},\left(s_{i}^{n+k-1, n-1}, \alpha\right)\right)$ corresponds to the unique square in $(\Omega(\mathcal{P}))_{2}$:
where

$$
p_{1}=\left(s_{i+1}^{n+k, n}, \alpha\right)\left(s_{i}^{n+2 k, n+k}, \alpha\right)
$$

and

$$
p_{2}=s_{i+k}^{n+k, n+k-1} s_{i+k-1}^{n+k-1, n+k-2} \ldots s_{i+1}^{n+2 k-1, n+2 k-2} s_{i}^{n+2 k, n+2 k-1} \sigma
$$

where σ is the permutation of $n+2 k$ letters such that $\operatorname{Supp}(\sigma)=\{i+1, \ldots, i+2 k\}$ and for $I=\{i, i+1, \ldots, i+2 k, i+2 k+1\}$ we have:
$\sigma_{\mid I}=\left(\begin{array}{ccccccccc}i & i+1 & i+2 & \ldots & i+k & i+k+1 & i+k+2 & \ldots & i+2 k+1 \\ i & i+2 & i+4 & \ldots & i+2 k & i+1 & i+3 & \ldots & i+2 k+1\end{array}\right)$.
In the square \mathcal{D} we have:

$$
\begin{gathered}
\underline{n+2 k} \simeq\{(1,1), \ldots,(i-1, i-1),(i, i),(i, i+1), \ldots,(i, i+k),(i+1, i),(i+1, i+1), \ldots,(i+1, i+k), \\
(i+2, i+k+1),(i+3, i+k+2), \ldots,(n, n+k-1)\}
\end{gathered}
$$

so we have $\operatorname{Card}(\operatorname{Adm}(\mathcal{D}))=\sum_{l=0}^{k+1}\binom{k+1}{l} 2^{k+1-l}-2=3^{k+1}-2$.
There are $2(k+1) \mathcal{D}$-admissible subsets of $n+2 k$ having $n+2 k-1$ elements which are:

$$
A^{\{i+p\}}=\underline{n+2 k}-\{i+p\} \quad \text { for } p \in\{0, \ldots, 2 k+1\} .
$$

For $p \in\{0, \ldots, k\}$, we have:

$$
p_{1 \mid A^{\{i+p\}}}=\left(s_{i+1}^{n+k, n}, \alpha\right)\left(s_{i}^{n+2 k-1, n+k}, \gamma\left(\alpha ; 1_{\mathcal{P}}^{\times p}, 0_{\mathcal{P}}, 1_{\mathcal{P}}^{\times k-p}\right)\right)
$$

with the convention that $\left(s_{i}^{m, m}, \omega\right)=\left(I d_{m},\left(1_{\mathcal{P}}^{\times i-1}, \omega, 1_{\mathcal{P}}^{\times m-i}\right)\right)$ for $1 \leq i<m$ and $\omega \in \mathcal{P}(1)$ and
$p_{2 \mid A A^{\{i+p\}}}=s_{i+k}^{n+k, n+k-1} \ldots s_{i+p+1}^{n+2 k-(p+1), n+2 k-(p+2)} s_{i+p-1}^{n+2 k-p, n+2 k-(p+1)} \ldots s_{i}^{n+2 k, n+2 k-1} \sigma_{p}$
where σ_{p} is the permutation of $n+2 k-1$ letters obtained from σ removing the columns $\binom{i+p}{\cdots}$ in $\sigma_{\mid I}$ and reindexing.

For $p \in\{k+1, \ldots, 2 k+1\}$, we have:

$$
p_{1 \mid A^{\{i+p\}}}=\left(s_{i+1}^{n+k-1, n}, \gamma\left(\alpha ; 1_{\mathcal{P}}^{\times p-(k+1)}, 0_{\mathcal{P}}, 1_{\mathcal{P}}^{\times 2 k+1-p}\right)\right)\left(s_{i}^{n+2 k-1, n+k-1}, \alpha\right)
$$

with the convention that $\left(s_{i+1}^{m, m}, \omega\right)=\left(I d_{\underline{m}},\left(1_{\mathcal{P}}^{\times i}, \omega, 1_{\mathcal{P}}^{\times m-i-1}\right)\right)$ for $1 \leq i<m$ and $\omega \in \mathcal{P}(1)$ and
$p_{2 \mid A^{\{i+p\}_{1}}}=s_{i+k}^{n+k, n+k-1} \ldots s_{i+p+1}^{n+2 k-(p+1), n+2 k-(p+2)} s_{i+p-1}^{n+2 k-p, n+2 k-(p+1)} \ldots s_{i}^{n+2 k, n+2 k-1} \sigma_{p}$
where σ_{p} is the permutation of $n+2 k-1$ letters obtained from σ removing the $\operatorname{column}\binom{i+p}{\cdots}$ in $\sigma_{\mid I}$ and reindexing.

More generally, for $\beta \in\{1, \ldots, k+1\},\left\{u_{1}, \ldots, u_{\beta}\right\} \subset\{i, \ldots, i+k\}$ such that $i \leq u_{1}<\ldots<u_{\beta} \leq i+k$ and $\iota \in J=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{\beta}\right) \in\{0,1\}^{\times \beta} \mid \beta-k \leq\right.$ $\left.\epsilon_{1}+\ldots+\epsilon_{\beta} \leq k\right\}$ we consider the set:

$$
U^{\iota}=\left\{\left(i+\epsilon_{1}, u_{1}\right),\left(i+\epsilon_{2}, u_{2}\right), \ldots,\left(i+\epsilon_{\beta}, u_{\beta}\right)\right\} .
$$

Therefore, for $\beta \leq k$ (resp. $\beta=k+1)$ there are $\binom{k+1}{\beta} 2^{\beta}\left(\right.$ resp. $\left.2^{k+1}-2\right)$ \mathcal{D}-admissible subsets of $n+2 k$ having $n+2 k-\beta$ elements which are

$$
A^{U^{\iota}}=\underline{n+2 k}-U^{\iota} .
$$

We have:

$$
p_{1 \mid A^{U^{u}}}=\left(s_{i+1}^{n+k-\Sigma_{i=1}^{\beta} \epsilon_{i}, n}, \gamma\left(\alpha ; \omega_{1}^{\prime}, \ldots, \omega_{k+1}^{\prime}\right)\right)\left(s_{i}^{n+2 k-\beta, n+k-\Sigma_{i=1}^{\beta} \epsilon_{i}}, \gamma\left(\alpha ; \omega_{1}, \ldots, \omega_{k+1}\right)\right)
$$

with the convention that $\left(s_{j}^{m, m}, \omega\right)=\left(I d_{\underline{m}},\left(1_{\mathcal{P}}^{\times j-1}, \omega, 1_{\mathcal{P}}^{\times m-j}\right)\right)$ for $1 \leq j \leq m$ and $\omega \in \mathcal{P}(1)$ and

$$
p_{2 \mid A^{U \iota}}=s_{i+k}^{n+k, n+k-1} \ldots \hat{s_{u_{\beta}}} \ldots \hat{s_{u_{1}}} \ldots s_{i}^{n+2 k, n+2 k-1} \sigma_{u_{1}+\epsilon_{1}(k+1), \ldots, u_{\beta}+\epsilon_{\beta}(k+1)}
$$

where, for $l \in\{1, \ldots, k+1\}$,
$\omega_{l}= \begin{cases}0_{\mathcal{P}} & \text { for } l \in\left\{\overline{\left(1+\epsilon_{1}\right)}\left(u_{1}-i+1\right), \ldots, \overline{\left(1+\epsilon_{\beta}\right)}\left(u_{\beta}-i+1\right)\right\} \backslash\{0\} \\ 1_{\mathcal{P}} & \text { otherwise }\end{cases}$
where \bar{x} is the class modulo 2 of x and

$$
\omega_{l}^{\prime}= \begin{cases}0_{\mathcal{P}} & \text { for } l \in\left\{\epsilon_{1}\left(u_{1}-i+1\right), \ldots, \epsilon_{\beta}\left(u_{\beta}-i+1\right)\right\} \backslash\{0\} \\ 1_{\mathcal{P}} & \text { otherwise }\end{cases}
$$

and $\sigma_{u_{1}+\epsilon_{1}(k+1), \ldots, u_{\beta}+\epsilon_{\beta}(k+1)}$ is the permutation of $n+2 k-\beta$ letters obtained from σ removing the columns $\binom{u_{1}+\epsilon_{1}(k+1)}{\ldots}\binom{u_{2}+\epsilon_{2}(k+1)}{\ldots} \ldots\binom{u_{\beta}+\epsilon_{\beta}(k+1)}{\ldots}$ and reindexing in order to have a permutation of $n+2 k-\beta$. So, in this case condition (2) in Definition 1.28 becomes:

$$
\begin{equation*}
H_{i}^{(n+k-1, n-1) \alpha} P_{i}^{n}=P_{i+k}^{n+k} P_{i+k-1}^{n+k+1} \ldots P_{i}^{n+2 k} M_{*}(\sigma) H_{i}^{(n+2 k, n+k) \alpha} H_{i+1}^{(n+k, n) \alpha} \tag{7.7.3}
\end{equation*}
$$

$$
\begin{aligned}
&+\sum_{\beta=1}^{k+1} \sum_{i \leq u_{1}<\ldots<u_{\beta} \leq i+k} P_{i+k}^{n+k} \ldots \hat{P_{u_{\beta}}} \ldots \hat{P_{u_{1}}} \ldots P_{i}^{n+2 k-\beta} \sum_{\epsilon_{1}, \ldots, \epsilon_{\beta} \in J} M_{*}\left(\sigma_{u_{1}+\epsilon_{1}(k+1), \ldots, u_{\beta}+\epsilon_{\beta}(k+1)}\right) \\
& H_{i}^{\left(n+2 k-\beta, n+k-\epsilon_{1}-\ldots-\epsilon_{\beta}\right) \gamma\left(\alpha ; \omega_{1}, \ldots, \omega_{k+1}\right)} H_{i+1}^{\left(n+k-\epsilon_{1}-\ldots-\epsilon_{\beta}, n\right) \gamma\left(\alpha ; \omega_{1}^{\prime}, \ldots, \omega_{k+1}^{\prime}\right)}
\end{aligned}
$$

7.3. Examples. In this section we present several applications of Proposition 7.5. We give the presentation of polynomial functors from $\mathcal{P}-a l g$ for an operad \mathcal{P} generated by binary operations and the presentation of linear and quadratic functors.
7.3.1. Presentation of polynomial functors from $\mathcal{P}-a l g$ for an operad \mathcal{P} generated by binary operations. We suppose, in this section, that \mathcal{P} is generated by binary operations. For example, \mathcal{C} om and \mathcal{A} s are such operads. In this case, we have to consider less generators for $\Omega(\mathcal{P})$. For all $i \in \mathbb{N}$ such that $1 \leq i \leq n-1$ we consider:

- $\left(I d_{n}, \alpha_{1}, \ldots, \alpha_{n}\right): \underline{n} \rightarrow \underline{n}$ where $\forall i \in\{1, \ldots, n\}, \alpha_{i} \in \mathcal{P}(1)$.
- $s_{i}^{n, n-1}: \underline{n} \rightarrow \underline{n-1}$ the unique surjection preserving the natural order and such that:

$$
s_{i}^{n, n-1}(i)=s_{i}^{n, n-1}(i+1)=i
$$

$\forall \omega \in \mathcal{P}(2)$ we obtain a morphism in $\Omega(\mathcal{P})$:

$$
\left(s_{i}^{n, n-1}, \omega\right): \underline{n} \rightarrow \underline{n-1} ;
$$

- $\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n} \in \mathcal{P}(1)^{\times n}\right): \underline{n} \rightarrow \underline{n}$ where τ_{i}^{n} is the transposition of \mathfrak{S}_{n} which exchanges i and $i+1$.
By an easy computation we obtain the following simplification of Proposition 7.5 .

Proposition 7.8. Let \mathcal{P} be an operad generated by binary operations and $M=\left(M_{*}, M^{*}\right)$ be a Janus functor $\Omega(\mathcal{P})_{2} \rightarrow A b, M$ is a pseudo-Mackey functor iff the following relations are satisfied:

$$
\begin{gather*}
T_{i}^{n}=\left(M^{*}\left(\tau_{i}^{n}, 1_{\mathcal{P}}^{\times n}\right)\right)^{-1} \quad \text { for } 1 \leq i \leq n ; \tag{7.8.1}\\
I_{n-1}^{\alpha_{1}, \ldots \alpha_{n-1}} P_{i}^{n}=P_{i}^{n} I_{n}^{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{i}, \ldots, \alpha_{n}} \quad \text { for } 1 \leq i \leq n ; \tag{7.8.2}\\
H_{j}^{(n, n-1) \alpha} P_{i}^{n}=P_{i}^{n+1} H_{j+1}^{(n+1, n) \alpha} \quad \text { for } 1 \leq i<j<n \quad \text { and } \alpha \in \mathcal{P}(2) ; \tag{7.8.3}\\
H_{j}^{(n, n-1) \alpha} P_{i}^{n}=P_{1+i}^{n+1} H_{j}^{(n+1, n) \alpha} \quad \text { for } 1 \leq j<i<n \quad \text { and } \alpha \in \mathcal{P}(2) ; \tag{7.8.4}\\
H_{i}^{(n, n-1) \alpha} P_{i}^{n}=P_{i+1}^{n+1} P_{i}^{n+2} T_{i+1}^{n+2} H_{i}^{(n+2, n+1) \alpha} H_{i+1}^{(n+1, n) \alpha}+P_{i+1}^{n+1} T_{i}^{n+1} H_{i+1}^{(n+1, n) \alpha} \\
+P_{i+1}^{n+1} H_{i}^{(n+1, n) \alpha}+P_{i}^{n+1} H_{i+1}^{(n+1, n) \alpha}+P_{i}^{n+1} T_{i+1}^{n+1} H_{i}^{(n+1, n) \alpha} \\
+I_{n}^{1 \times(i-1)}, \gamma\left(\alpha ; 1_{\mathcal{P}, 0}, 0_{\mathcal{P}}\right), \gamma\left(\alpha ; 0_{\mathcal{P}, 1 \mathcal{P}), 1_{\mathcal{P}}^{\times(n-i-1)}}+T_{i}^{n} I_{n}^{1 \times(i-1)}, \gamma\left(\alpha ; 0_{\mathcal{P}}, 1_{\mathcal{P}}\right), \gamma\left(\alpha ; 1_{\left.\mathcal{P}, 0_{\mathcal{P}}\right), 1_{\mathcal{P}}^{\times(n-i-1)}}\right.\right. \\
\text { for } 1 \leq i<n \quad \text { and } \alpha \in \mathcal{P}(2) .
\end{gather*}
$$

Remark 7.9. In this case, the last family of equations decomposes $H_{i}^{(n, n-1) \alpha} P_{i}^{n}$ as a sum of 7 terms. For $\mathcal{P}=\mathcal{C}$ om, since $\mathcal{C o m}(1)=\mathcal{C o m}(2)=\underline{1}$ we recover the relation given in [2]. For $\mathcal{P}=\mathcal{A} s$, since $\mathcal{A s}(1)=\underline{1}$ the last family of equations becomes:

$$
\begin{gather*}
H_{i}^{(n, n-1) \alpha} P_{i}^{n}=P_{i+1}^{n+1} P_{i}^{n+2} T_{i+1}^{n+2} H_{i}^{(n+2, n+1) \alpha} H_{i+1}^{(n+1, n) \alpha}+P_{i+1}^{n+1} T_{i}^{n+1} H_{i+1}^{(n+1, n) \alpha} \tag{7.9.1}\\
+P_{i+1}^{n+1} H_{i}^{(n+1, n) \alpha}+P_{i}^{n+1} H_{i+1}^{(n+1, n) \alpha}+P_{i}^{n+1} T_{i+1}^{n+1} H_{i}^{(n+1, n) \alpha}+I d_{M(\underline{n})}+T_{i}^{n} \\
\text { for } 1 \leq i<n \quad \text { and } \alpha \in \mathcal{A} s(2)=\mathfrak{S}_{2} .
\end{gather*}
$$

7.3.2. Presentation of linear functors.

Proposition 7.10. There is an equivalence of categories between $\operatorname{Lin}(\operatorname{Free}(\mathcal{P}), A b)$ and the category of diagrams:

where

- M_{e} is an abelian group;
- $\forall \omega \in \mathcal{P}(1) ; I_{e}^{\omega}:=I_{e}(\omega,-): M_{e} \rightarrow M_{e}$ is a group morphism;
satisfying the following relations $\forall \omega \in \mathcal{P}(1), \forall \omega^{\prime} \in \mathcal{P}(1)$
(1) $I_{e}^{1_{\mathcal{P}}}=I d_{M_{e}}$;
(2) $I_{e}^{\omega^{\prime}} I_{e}^{\omega}=I_{e}^{\gamma\left(\omega ; \omega^{\prime}\right)}$.

Proof. According Corollary 4.9, $\operatorname{Lin}(\operatorname{Free}(\mathcal{P}), A b)$ is naturally equivalent to the category of pseudo-Mackey functors from $\Omega(\mathcal{P})$ to $A b$ which have zero values on $\underline{0}$ and on sets of cardinality >1. So, it is sufficient to consider horizontal generator: $I d: \underline{1} \rightarrow \underline{1}$ and vertical generators $(I d, \omega \in \mathcal{P}(1)): \underline{1} \rightarrow \underline{1}$ in $\Omega(\mathcal{P})_{2}$. Let $M=\left(M_{*}, M^{*}\right): \Omega(\mathcal{P})_{2} \rightarrow A b$ be a Janus functor which has zero values on $\underline{0}$ and on sets of cardinality >1. In the statement we replace $M(\underline{1})$ by M_{e} and I_{1}^{ω} by I_{e}^{ω} for $\omega \in \mathcal{P}(1) . M$ is a Janus functor iff we have the following relations:

$$
M^{*}\left(I d, \omega^{\prime}\right) M^{*}(I d, \omega)=M^{*}\left((I d, \omega)\left(I d, \omega^{\prime}\right)\right) \quad \text { i.e. } \quad I_{e}^{\omega^{\prime}} I_{e}^{\omega}=I^{\gamma\left(\omega^{\prime}, \omega\right)} ;
$$

M is a pseudo-Mackey functor iff

$$
M^{*}\left(I d, 1_{\mathcal{P}}\right)=I d \quad \text { i.e. } \quad I_{e}^{1_{\mathcal{P}}}=I d_{M_{e}} .
$$

(the other conditions obtained in Proposition 7.5 are empty).
Remark 7.11. Using the description of linear functors recalled in [14] we have: $\operatorname{Lin}(\operatorname{Free}(\mathcal{P}), A b) \simeq$ $T_{1} U_{\mathcal{F}_{\mathcal{P}}(1)}\left(\mathcal{F}_{\mathcal{P}}(1)\right)-\bmod \simeq \mathbb{Z}[\mathcal{P}(1)]$ - \bmod where $U_{\mathcal{F}_{\mathcal{P}}(1)}$ is the reduced projective functor associated to $\mathcal{F}_{\mathcal{P}}(1)$. We verify easily that this description coincide with that given in the last proposition.
7.3.3. Presentation of quadratic functors.

Proposition 7.12. There is an equivalence of categories between $\operatorname{Quad}(\operatorname{Free}(\mathcal{P}), A b)$ and the category of diagrams:

where

- M_{e} and $M_{e e}$ are abelian groups;
- $\forall \omega \in \mathcal{P}(1) ; I_{e}^{\omega}:=I_{e}(\omega,-): M_{e} \rightarrow M_{e}$ is a group morphism;
- $\forall \omega \in \mathcal{P}(1), \omega^{\prime} \in \mathcal{P}(1) ; I_{e e}^{\omega, \omega^{\prime}}:=I_{e e}\left(\omega, \omega^{\prime},-\right): M_{e e} \rightarrow M_{e e}$ is a group morphism;
- $\forall \omega \in \mathcal{P}(2) ; H^{\omega}:=H(\omega,-): M_{e} \rightarrow M_{e e}$ is a group morphism;
- P and T are group morphisms;
satisfying the following relations $\forall\left(\omega, \omega^{\prime}, \omega_{1}, \omega_{1}^{\prime}\right) \in \mathcal{P}(1)^{\times 4}, \forall \alpha \in \mathcal{P}(2), \forall \alpha^{\prime} \in \mathcal{P}(2)$
(1) $T . T=I d_{M_{e e}}$;
(2) $P T=P$;
(3) $I_{e}^{\omega^{\prime}} I_{e}^{\omega}=I_{e}^{\gamma\left(\omega ; \omega^{\prime}\right)}$;
(4) $I_{e e}^{\omega, \omega^{\prime}} I_{e e}^{\omega_{1}, \omega_{1}^{\prime}}=I_{e e}^{\gamma\left(\omega_{1}, \omega\right), \gamma\left(\omega_{1}^{\prime}, \omega^{\prime}\right)}$;
(5) $I_{e e}^{\omega, \omega^{\prime}} T=T I_{e e}^{\omega^{\prime}, \omega}$;
(6) $H^{\alpha} I_{e}^{\omega}=H^{\gamma(\omega, \alpha)}$
(7) $I_{e e}^{\omega, \omega^{\prime}} H^{\alpha}=H^{\gamma\left(\alpha ; \omega, \omega^{\prime}\right)}$;
(8) $T H^{\alpha}=H^{\alpha . \tau}$ where τ is the transposition of \mathfrak{S}_{2} exchanging 1 and 2 ;
(9) $T=\left(M^{*}\left(\tau,\left(1_{\mathcal{P}}, 1_{\mathcal{P}}\right)\right)\right)^{-1}$
(10) $I_{e}^{\omega} P=P I_{e e}^{\omega, \omega}$
(11) $H^{\alpha} P=I_{e e}^{\gamma\left(\alpha ; 1_{\mathcal{P}}, 0_{\mathcal{P}}\right), \gamma\left(\alpha ; 0_{\mathcal{P}}, 1_{\mathcal{P}}\right)}+T I_{e e}^{\gamma\left(\alpha ; 0_{\mathcal{P}}, 1_{\mathcal{P}}\right), \gamma\left(\alpha ; 1_{\mathcal{P}}, 0_{\mathcal{P}}\right)}$.

Proof. According Corollary 4.9, $\operatorname{Quad}(\operatorname{Free}(\mathcal{P}), A b)$ is naturally equivalent to the category of pseudo-Mackey functors from $\Omega(\mathcal{P})$ to $A b$ which have zero values on $\underline{0}$ and on sets of cardinality >2. So, it is sufficient to consider horizontal generators:

$$
\begin{aligned}
& s_{1}^{2}: \underline{2} \rightarrow \underline{1} \\
& \tau_{1}^{2}: \underline{2} \rightarrow \underline{2}
\end{aligned}
$$

and vertical generators

$$
\begin{gathered}
(I d, \omega \in \mathcal{P}(1)): \underline{1} \rightarrow \underline{1} \\
\left(I d,\left(\omega, \omega^{\prime}\right) \in \mathcal{P}(1)^{\times 2}\right): \underline{2} \rightarrow \underline{2} \\
\left(s_{1}^{2,1}, \omega \in \mathcal{P}(2)\right): \underline{2} \rightarrow \underline{1} \\
\left(\tau_{1}^{2},\left(1_{\mathcal{P}}, 1_{\mathcal{P}}\right)\right): \underline{2} \rightarrow \underline{2}
\end{gathered}
$$

in $\Omega(\mathcal{P})_{2}$. Let $M=\left(M_{*}, M^{*}\right): \Omega(\mathcal{P})_{2} \rightarrow A b$ be a Janus functor which has zero values on $\underline{0}$ and on sets of cardinality >2. In the statement we replace $M(\underline{1})$ by $M_{e}, M(\underline{2})$ by $M_{e e}, I_{1}^{\omega}$ by I_{e}^{ω} for $\omega \in \mathcal{P}(1), I_{2}^{\omega, \omega^{\prime}}$ by $I_{e e}^{\omega, \omega^{\prime}}$ for $\omega \in \mathcal{P}(1)$ and $\omega^{\prime} \in \mathcal{P}(1), H_{1}^{(2,1) \omega}$ by H^{ω} for $\omega \in \mathcal{P}(2), P_{1}^{2}$ by P and T_{1}^{2} by T.

The conditions given in Lemma 7.1 imply that M_{*} is a covariant functor iff conditions (11) and (2) in the statement are satisfied.

The conditions given in Lemma 7.2 imply that M^{*} is a contravariant functor iff conditions (3), (4), (5), (6), (7) and (8) in the statement are satisfied.

The conditions given in Proposition 7.5 imply that M is a pseudo-Mackey functor iff conditions (9), (10) and (11) are satisfied.

In the particular case $\mathcal{P}(1)=\left\{1_{\mathcal{P}}\right\}$ we obtain the following simplification of the previous proposition:
Corollary 7.13. For \mathcal{P} an unitary set operad such that $\mathcal{P}(1)=\left\{1_{\mathcal{P}}\right\}$, there is an equivalence of categories between $\operatorname{Quad}(\operatorname{Free}(\mathcal{P}), A b)$ and the category of diagrams:

where

- M_{e} and $M_{e e}$ are abelian groups;
- $\forall \omega \in \mathcal{P}(2) ; H^{\omega}:=H(\omega,-): M_{e} \rightarrow M_{e e}$ is a group morphism;
- P is a group morphism;
satisfying the following relations $\forall \alpha \in \mathcal{P}(2), \forall \alpha^{\prime} \in \mathcal{P}(2)$
(1) $P H^{\alpha} P=2 P$;
(2) $H^{\alpha} P H^{\alpha^{\prime}}=H^{\alpha^{\prime}}+H^{\alpha^{\prime} \cdot \tau}$ where τ is the transposition of \mathfrak{S}_{2} exchanging 1 and 2 .

Proof. If $\mathcal{P}(1)=\left\{1_{\mathcal{P}}\right\}$ the conditions (3), (4), (5), (6), (7) and (10) of the previous proposition are trivial.

Condition (11) becomes $T=H^{\alpha} P-I d_{M_{e e}}$. So, we deduce that T is determined by the other data.

Condition (2) becomes $P H^{\alpha} P=2 P$; condition (8) becomes $H^{\alpha} P H^{\alpha^{\prime}}=H^{\alpha^{\prime}}+H^{\alpha^{\prime} \cdot \tau}$ where τ is the transposition of \mathfrak{S}_{2} exchanging 1 and 2 and condition (1) is a consequence of condition (2).

For $\mathcal{P}=\mathcal{C}$ om, since $\mathcal{C o m}(2)=\underline{1}$ we recover the equivalence between $\operatorname{Quad}(a b, A b)$ and quadratic \mathbb{Z}-module obtained by Baues in [1]. Recall that a quadratic \mathbb{Z}-module is a diagram of abelian groups

$$
M_{e} \xrightarrow{H} M_{e e} \xrightarrow{P} M_{e}
$$

satisfying $P H P=2 P$ and $H P H=2 H$.
For $\mathcal{P}=\mathcal{A} s$, since $\mathcal{A} s(2)=\mathfrak{S}_{2}=\{1, \tau\}$, we have two group morphisms from M_{e} to $M_{e e}: H^{1}$ and H^{τ}. Relation (1) in the corollary becomes:
(1-1) $P H^{1} P=2 P$
(1-2) $P H^{\tau} P=2 P$
and relation (2) becomes:

$$
\begin{align*}
H^{1} P H^{1} & =H^{1}+H^{\tau} \tag{2-1}\\
H^{\tau} P H^{1} & =H^{1}+H^{\tau} \\
H^{1} P H^{\tau} & =H^{1}+H^{\tau}
\end{align*}
$$

(2-4) $\quad H^{\tau} P H^{\tau}=H^{1}+H^{\tau}$.
We deduce from relation (2-1) that H^{τ} is determined by the other data. Then conditions (1-2), (2-2), (2-3) and (2-4) are consequences of relation (1-1)

So, we recover the equivalence between $\operatorname{Quad}(\mathrm{gr}, \mathrm{Ab})$ and abelian square groups obtained by Baues and Pirashvili in [3]. Recall that an abelian square group is a diagram of abelian groups

$$
M_{e} \xrightarrow{H} M_{e e} \xrightarrow{P} M_{e}
$$

satisfying $P H P=2 P$.

References

1. Hans-Joachim Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), no. 1-3, 49-107. MR MR1255923 (94j:55022)
2. Hans-Joachim Baues, Winfried Dreckmann, Vincent Franjou, and Teimuraz Pirashvili, Foncteurs polynomiaux et foncteurs de Mackey non linéaires, Bull. Soc. Math. France 129 (2001), no. 2, 237-257. MR MR1871297 (2002j:18004)
3. Hans-Joachim Baues and Teimuraz Pirashvili, Quadratic endofunctors of the category of groups, Adv. Math. 141 (1999), no. 1, 167-206. MR MR1667150 (2000b:20073)
4. Stanislaw Betley, Stable K-theory of finite fields, K-Theory 17 (1999), no. 2, 103-111. MR 1696427 (2000d:18006)
5. Francis Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994, Categories and structures. MR MR1313497 (96g:18001b)
6. Francis Borceux and Dominique Bourn, Mal'cev, protomodular, homological and semi-abelian categories, Mathematics and its Applications, vol. 566, Kluwer Academic Publishers, Dordrecht, 2004. MR MR2044291 (2005e:18001)
7. Aurélien Djament and Christine Vespa, Sur l'homologie des groupes orthogonaux et symplectiques à coefficients tordus, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 3, 395-459. MR 2667021 (2011h:20095)
8. Charles Ehresmann, Catégories structurées, Ann. Sci. École Norm. Sup. (3) 80 (1963), 349-426. MR MR0197529 (33 \#5694)
9. Samuel Eilenberg and Saunders Mac Lane, On the groups H(П, n). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49-139. MR MR0065162 (16,391a)
10. Zbigniew Fiedorowicz and Jean-Louis Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), no. 1, 57-87. MR 998125 (91j:18018)
11. Vincent Franjou, Eric M. Friedlander, Teimuraz Pirashvili, and Lionel Schwartz, Rational representations, the Steenrod algebra and functor homology, Panoramas et Synthèses [Panoramas and Syntheses], vol. 16, Société Mathématique de France, Paris, 2003. MR 2117525 (2007m:55001)
12. Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and Andrei Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), no. 2, 663-728. MR 1726705 (2001b:14076)
13. Marco Grandis and Robert Pare, Limits in double categories, Cahiers Topologie Géom. Différentielle Catég. 40 (1999), no. 3, 162-220. MR 1716779 (2000i:18007)
14. M. Hartl and C. Vespa, Quadratic functors on pointed categories, Adv. Math. 226 (2011), 39274010.
15. B. Johnson and R. McCarthy, Deriving calculus with cotriples, Trans. Amer. Math. Soc. 356 (2004), no. 2, 757-803 (electronic). MR MR2022719 (2005m:18016)
16. Igor Kříž and J. P. May, Operads, algebras, modules and motives, Astérisque (1995), no. 233, iv +145 pp. MR 1361938 (96j:18006)
17. Harald Lindner, A remark on Mackey-functors, Manuscripta Math. 18 (1976), no. 3, 273-278. MR MR0401864 (53 \#5691)
18. J. P. May and R. Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978), no. 3, 205-224. MR MR508885 (80g:55015)
19. Inder Bir S. Passi, Group rings and their augmentation ideals, Lecture Notes in Mathematics, vol. 715, Springer, Berlin, 1979. MR 537126 ($80 \mathrm{k}: 20009$)
20. T. Pirashvili and B. Richter, Hochschild and cyclic homology via functor homology, K-Theory 25 (2002), no. 1, 39-49. MR MR1899698 (2003c:16011)
21. T. I. Pirashvili, A spectral sequence of an epimorphism. I, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 70 (1982), 69-91. MR 701219 (85f:18009)
22. Teimuraz Pirashvili, Polynomial approximation of Ext and Tor groups in functor categories, Comm. Algebra 21 (1993), no. 5, 1705-1719. MR MR1213983 (94d:18020)
23. \qquad _, Dold-Kan type theorem for Γ-groups, Math. Ann. 318 (2000), no. 2, 277-298. MR MR1795563 (2001i:20112)
24. \qquad , On the PROP corresponding to bialgebras, Cah. Topol. Géom. Différ. Catég. 43 (2002), no. 3, 221-239. MR MR1928233 (2003i:18012)
25. \qquad , Introduction to functor homology, Rational representations, the Steenrod algebra and functor homology, Panor. Synthèses, vol. 16, Soc. Math. France, Paris, 2003, pp. 1-26. MR 2117526
26. N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London, 1973, London Mathematical Society Monographs, No. 3. MR MR0340375 (49 \#5130)
27. I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen., Ph.D. thesis, Diss. Berlin. 76 S , 1901.
28. Jolanta Słomińska, Dold-Kan type theorems and Morita equivalences of functor categories, J. Algebra 274 (2004), no. 1, 118-137. MR 2040866 (2005c:18002)
29. Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. MR MR1442260 (98a:05001)
30. Christine Vespa, Generic representations of orthogonal groups: the functor category $\mathcal{F}_{\text {quad }}$, J. Pure Appl. Algebra 212 (2008), no. 6, 1472-1499. MR MR2391661 (2008m:18001)

Université Lille Nord de France, F-59044 Lille, France UVHC, LAMAV and FR CNRS 2956, F-59313 Valenciennes, France

E-mail address: manfred.hartl@univ-valenciennes.fr
Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, UK

E-mail address: tp59@leicester.ac.uk
Université de Strasbourg, Institut de Recherche Mathématique Avancée, Strasbourg, France.

E-mail address: vespa@math.unistra.fr

[^0]: Date: September 10, 2012.
 The third author is partially supported by project ANR blanc BLAN08-2_338236, HGRT and ANR blanc HOGT. The authors gratefully acknowledge the hospitality of the Max Planck Institut für Mathematik in Bonn where this project started and where this paper was written.

