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~M
REMARKS. (1) If this approach is taken as adefinition of .\(Y) tben one must

show independence of the Heegaard splitting.
(2) Casson uses this approach to produce an effective algorithm for computing

.\(M), when M is described in tenns of surgery on links in 8 3 (another way of
presenting homology 3-spheres).

Since tbe Floer homology groups are a refinement of the Casson invariant,
it is now reasonable to ask if there is a way of computing H F(Y) using the
Heegaard splitting and the Riemann surface X. I shall outline an approach to
this problem, which has yet to be fuHy worked out.

Since M is a Kähler manifold (with singularities) it is in particular symplectic.
In fact, as shown in [1), the symplectic structure is canonical and independent
of the metric on X. Moreover L± are Lagrangian submanifolds, Le. submani
folds of middle dimension on which the symplectic 2-form W of M is identically
zero. Now Floer (6, 7) has studied, in general, the problem of intersections of
Lagrangian submanifolds of compact symplectie manifolds and, for this purpose,
has developed a homology theory. From an analytical point of view this is very
similar to the theory leading to the HF groups described in §4. When applied
to the particular case of L± in M above it is highly plausible that it should
coincide with the theory of §4, as I sball iodieate later. So first let me outline
Floer 's "symplectic Morse theoryll.

We start from any compact symplectic manifold M and two (connected) La
grangian submauifolds L+ and L -. Consider the space Q of paths in M starting
on L - and ending on L+. Assmne for simplicity that L+ n L - is not empty
(otherwise the theory will be trivial) and choose a base point, mo E L + n L -.
Define a function f(p) on Q as the area (integral of the symplectic 2-fonn w) of
a strip obtained by defonning the path P to the constant path mo.

Since L+ and L - are Lagrangian, and w is dosed, this area is unchanged
under continuous variations of the strip (with P fixed). However topologically
inequivalent strips wm differ in area by a "periodll of w. If for simplicity we

The critical points of f are easily seen to be the constant paths corresponding to
the points of intersection of L+ and L -. The Hessian is again of Dirac type and
oue can define a relative Morse index 8S in §4. This turns out to be well-defined
modulo 2N, where c)(M) = N(w), c)(M) being tbe first ebern dass of M (note
that symplectic manifolds have Chern classes) and [wl is the dass of w in J(J(M).

The trajectories of grad f correspond to holamorphie strips (with boundaries
in L±) in the sense of Gromov (10). If M is actually complex Kähler then these
are just holomorphic strips in the usual sense.

In this way, following Witten as in §4, Floer defines homology groups graded
by ~N as i~trinsic invariantB of (M, L +, L -).

U now we take (M, L+ 1 L-) 10 be the moduli spaces arising from a Heegaard
spli~ting of a homology 3-sphere Y it is then reasonable to conjecture that the
groups defined in the symplectic context (with care taken of the singularities of
M) coincide with the groups H F(Y) of §4.

Note that in both cases the representations 11"1 (Y) - SV (2) give the generators
of the chain group (provided these representations are nondegenerate). One haa
then to compare the relative Morse indices and the boundary operator 0.

GeometricalIy, a path on M, Le. aI-parameter family of flat connections on
the Riemann surface X, cau be viewed aB a connection on the cylinder X X R.
Moreover the boundary conditions (corresponding to L+ and L-) imply that,
asymptotically as t -t ±oo, the connection extends (as a flat connection) over
Y±, thus giving essentially a connection on Y. In thia way the symplectic theory
for paths in M should be related to a limiting case of the Floer theory for the
space ~ of connections on Y. Note that the limit is one in which Y is stretched
out along its "neck11 , 80 that the two ends get further and furtber apart.

0- !I :::Y\
6. DonaIdson Invariante. Donaldson (5] has introduced certain invariants

for amooth 4-manifolds wruch appear to be extremely powerful in distinguishing
different differentiable structures. These invariants are defined in the following
context. Let Z be an oriented simply connected differentiable 4-manifold and let
bt and bi" be the number oe + and - terms in a diagonalizatioD of the quadratic
(intersection) form on H'J(Z), We assume bt odd and > 1. Note that, for a
complex algebraic surface, we have the theorem of Hodge:

bt = 1 +2pg,

where Pg is the geometric genus (number of independent holomorphic 2-forms).
Thus bt is odd and > 1 when Pg :F O.



Binary Quadratic Forms and the Fourier Coefficients of

Elliptic and Jacobi Modular Forms

by

Nils-Peter Skonlppa

§1. Statement of results and discussion 2

§2. The lifting maps from Jacobi forms to modular forms 10

§3. A variation of the Eichler-Shimura isomorphism 17

§4. The map from Jacobi forms into the space of period polynomials .. 19

§5. The proof of the main result 24

Appendix

A. Zetafunctions associated to binary quadratic forms modulo r 0 (m) 26

B. Computation of some integrals. . . . . . . . . . . . . . . . . . . . . . . . . .. 29

References 32



2

§1. Statement of results and discussion

In [SI] we described a simple arithmeticallaw to generate the Fourier coefficients of all

modular forms of weight 2 on r 0 (m) and all J acobi forms of weight 2 and index m.

The aim of the present article is to generalize these results to arbitrary weight k. The

final result will turn out to be a smooth and direct generalization, including the case of

weight 2 as a special case. In contrast to this the niethod of proof used in trus article is

different and does not apply to the case of weight 2. A short overview of this method

will be given at the end of this introductory section.

To describe the main results we have to introduce some notation which will be kept

throughout trus artic1e. For numbers a, b, c the symbol [a, b, c] denotes the quadratic

polynornial

[a, b, c](X) = aX2 + b..J.: + c.

The group GL2 (R) acts on these quadratic polynomials by

[a, b,c] 0 (~~) (X) = a(aX + ß)2 + b(aX + ß)(-yX + Ei) + c(-yX + Ei?

Fix a positive integer m. For any pair of integers ~,r set

Qm(~, r) = {[ma, b, c]la, b, c E Z, b2
- 4mac = ~,b == r mod 2m} .

This set is obviously invariant under the action of

ro(m) = (~zDn SL2 (Z).

For A E SL2(Z) we let Q~(ß, r) := Qm (~, r) 0 A, i.e. the set of all Q such that Q0 A- 1

lies in Qm(ß, r). H ßo is a fundamental discriminant which is a square modulo 4m then

Xm,.ßo : {[ma, b, c]la, b, c E Z} ~ {O, ±1}

denotes the generalized genus character introduced in ([G-I(-Z], Proposition 1), i.e.

x~o ([ma, b, cl) = { ~~o )
if ßo divides b2 - 4mac such that (b2 - 4mac)/ßo

is a square modulo 4m and gcd(a, b, c, ~o) = 1

otherwise.

Here n is any integer relative prime to ßo and represented by one of the quadratic forms

m1aX2 + bXY + m2cy2 with m = m1m2, mh m2 > Q. If A is a matrix in SL2(Z)
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and Q a quadratic polynomial such that Xm,ßo is defined for Q 0 A-1 then we set

Note that the function Xm,ßo is obviously ro(m)-invariant, i.e. X~,ßo = Xm,ßo for all

A E ro(m).

Finally, we introduce generalizations to the case of arbitrary level m of those zeta

functions which appear in the theory of binary quadratic forms modulo SL2 (Z). To

explain these let ß, rand 6.0 be as above and such that ßo divides 6. and ~o is a square

modulo 4m. Let eE PI (Q). We associate to these data a Dirichlet series by setting

Here the first SUffi is over a complete set of representatives Q of Qm ( ß, r) modulo f 0 ( 1n).

For each such Q we use fo(m)Q and SL2(Z) Q for the stabilizer of Q in fo(m) and

SL2 (Z) , respectively, and - if Q = [a, b, cl and x, y E Z - we set Q(x, y) = ax 2 +bxy+cy 2.

The innner sum is over a complete set of representatives (:) for Z2 modulo the usual

action of r o(m)Q on column vectors which satify the stated conditions, Le. which satisfy

Q(x, y) > 0 and generate the same orbit as eunder the usual action of fo(m) on Pl(Q).

Ey standard arguments from the theory of quadratic forms it is easily seen that the first

sum is fini te and that the inner sums are convergent for m(8) > 1.

\Ve are now able to describe the arithmetical rule to generate the Fourier coefficients

of modular fonns. This depends on 4 parameters (6.0 , ro, A, P) where 6.0 , ro is a pair

of integers such that 6.0 _ r6 mod 4m and 6.0 is a fundamental discriminant, where

A E SL2(Z) , and where P = P(a, b, c) is a hamogeneous polynomial in three variables

with complex coefficients - say of degree k - 1 -. Ta each such quadrupel (ßo, TO, A, P)

we shall associate a sequence Cm,ßo,ro,A,P (6., r) which is indexed by pairs of integers

~, T with 6. - r fiod 4m, 6.0 6. > O.

Narnely, let PI = PI (b, c) denote a polynomial in b, c such that

PI(b, c + 1) - PI(b, c) = P(O, b, c).

Note that such a polynomial exists: indeed, it can be obtained by replacing each power

cn - 1 in P(O, b, c) by B"n(c), where B n ( c) is the n-th Bernoulli polynomial, i.e. that

polynomial which is uniquely determined by the properties Bn(c + 1) - Bn(c) = ncn- l
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and J01Bn(c)dc =°for n ~ 1, Bo(c) = 1. Moreover, any two such polynomials differ

by a polynomial in b. We make the specific choice

(
B*+l(C)) 1b apP1(b, c) := P 0, b, + (b - t) -a (0, t, O)dt,
* + 1 0 a

where the first term on the right denotes the polynomial just described. Similarily, we

let

(
B*+l(a) ) 1b

8PP2 (a, b) := P ,b, 0 + (b - t) -a (0, t, O)dt,
* + 1 0 c

where the first term on the right is the polynomial obtained by replacing each power

an - 1 in P(a, b, 0) by Bn~a). Let N ":= ml~o I. Using Pt, P2 , N we define a function P(Q)

by setting for any Q = [a, b, cl with integral coefficients

sigu(a)P(a, b, c) if ac < °
Nk-Ip (~ ~) if a = 0,0 < c< N

1 N'N

P(Q) := -Nk-lP2 (;, ~) if c = 0,0 < a < N

N
k
-

1
(PI (~,o) -P2 (0, ~)) if a = c = 0,

° otherwise

(sign( a) = a/lal for any non-zero real a). Finally, we set

Cm,~o,roIA,p(~, r) := L X~,~o(Q)P(Q)
QE Q~ (.6 o.6,ro r)

(1)

if k = 1, and, if k ~ 2, we define Cm ,.6 o,ro,A,P (~, 1~) to be the right hand side of (1) plus

a correction term which is given by

where

,P(l, 0, 0) [(m,~o~,ror,AO,~o(k) +( -1 )ksign(~o)(m,~o.6,ror,-AO,~o(k)]

-,P(O,O, 1) [(m,~o~,ror,Aool.6o(k) +( -l)ksign(~o)(m,.6o~,ror,-Aoo,~o(k)],
(2)

(-1)k(k-1)!2 k_l

, := (2k)(2k - 1)1 (~o6) ~.

«((s) =Riemann zeta-function).

Note that the sum in (1) is finite. In fact, if P(Q) i- °- say Q = [a, b, cl - then

a, b, c satisfies a = 0,°:::; c < N or c = 0,°:::; a < N or ac < 0. But obviously there

are only fini tly many integral (a, b, c) sat isfying one of these equations and the equation

b2 - 4ac = 6o~. Also note that there is a contribution to the sum (1) from terms
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with a = 0 or c = 0 only if .60 .6 is a perfect square. H the latter is the case then

the contribution coming from P(O, b, B:tic
)) and P( B·*+t a

) , b, 0) may he viewed as a

natural value assigned to the (divergent) sums

-~I: X~,ao(Q)sign(c)P(O,b,c), ~ I: X~,ao(Q)sign(a)P(a, b, 0),

taken over all Q = [a,b,c] E Q~(.6.o.6.,ror) such that a = 0 and c = 0, respectively.

Indeed, replaee e.g. in the first of these sums each power cn- 1 by cn-1Icl- s , note that

the resulting expression ean he analytically eontinued to the complex plane (sinee it can

be written as a linear eombination of Hurwitz zeta-functions), and eompute its value at

s = o. The latter is easily done using the formula

~ '" sign(c)c
n

-
1

ats=O
2 L..-, Icl~

eE;1I+Z
eJ'O

n

(valid for any positive integer n and any real x with 0 ::; x < 1, exeept for n = 1, a = 0

where the left hand side of this identity is obviously 0). The equation (1) eould therefore

be wri t ten symholically as

Cm ,.6.o,ro,A,P (.6., r) := '" X~,.Öoo(Q)sign(Q)P(Q) + { certai.n },
L..-, correctIon

QE Q~ (.Öoo.6.,ror)

where, for any Q = [a, b, cl, we use

1
sign(Q) := 2 (sign(a) - sign(c»,

(with sign of the real number 0:= 0), and P(Q) = P(a,b,c). The 'certain correction'

is given by (2) and a contribution due to the integrals in the definition of P1 and P2 •

Finally, this shows - as the reader can also verify more directly - that in the definition

·of j5 we could choose for N any positive integer such that the value X~,.Öoo(Q) and the

eonclition 'Q E Q~ (.6.0 .6., roT)' for any Q of the fonn [0, b, c] or [a, b, 0] depend only on

c resp. a modulo N: another choice would of course affect the definition of P hut not

the value of the sum (1).

The numbers Cm,Ao,ro,A,P (.6, r) represent the arithmetical rule to generate the

Fourier coefficients af any elliptic modulm- form. To state this precisely let ~n~~SP(m),

for positive integers k, m denote that certain space of elliptic cusp fonns f of weight 2k

on ro(m) which was introduced in [S-Z]. By definition it is the space of modular forms
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spanned by all cusp forms f of weight 2k on ro(m) such that the standard L-series

L(/, s) = L:l~1 a(e)e-~ of /(r) = L: a(e)e21rilr is of the form

L(/,s) = (II Qp(s))L(g,s)
pl~

for some m'lm, some new-fonn 9 on ro(m'), and with polynomials Qp(s) in p-s satis

fying

for all pt II :', Thus, 9n~~Sp(m) contains all new-forms of level m and a certain choice

from each old-class. We then have

Theorem 1. Let k, m be positive integers. For any A E SL2 (Z), for any homogeneous

polynomial P( a, b, c) of degree k - 1, satisfying

and for any two pairs .6. i, ri (i = 0,1) such tbat .6.i == rr mod 4m, .6.0 .6.1 > 0 and the

.6.i are fundamental discriminants, define a function of one variable r E C, SS(r) > 0 by

setting

f (7) .-~ {'"'" a k - 2 (.6.1) C (.6. f!2 r !..)} e2rrilr.6. o ,To,.6. t ,rt ,A,P .- D D a m,Ao,ro,A,P 1 a2' 1 a .
l=1 all

Then these functions are elements of9n~~SP(m), apart from the case.6.o = k = 1, where

this is true only up to an additive multiple of the series Ei(dr) - 1 with d TIlnning

through the divisors of m and with E; denoting that non-holomorphic modular form

on SL2(Z) of weight 2 which is given by E;(r) = 1 - 1r;(r) - 24 L:l~1 (L:dll d) e2rrilr.

Vice versa, any cusp form in 9n~~SP(m) can be written as a linear combillation of these

functions f .6. o,ro ,At ,rt,A,P·

Actually we shall prove more and Theorem 1 will be abtained as a Corollary of this

more general result. Ta explain this let Sk",m and S~m denote the spaces of holomorphic

and skew-holomorphic Jacobi cusp forms of weight k and index m, respectively (we shall

review the definition of these spaces in §2). The main theorem of this paper will be
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Theorem 2. Let k, m be positive integers. Then for any A E SLz(Z) , any homoge

neous polynomiaJ P (a, b, c) of degree k - 1, satisfying

and for any pair oE integers ~o l ro such that ~o r6 mod 4m and ~o is a fundamental

discriminant the function

cP~o ,ro,A,P(T, z) :=
.6.,rEZ

.6.!9r 2 mod<tm
.6.0.6.>0

(T = U+ iv, z E C, v > 0) defines an element of Sk+l,m, wbere € = sign(~o). Moreover,

any Jacobi form in Sk+l,m and St+l,m is obtained as a linear combination of these

functions <P~o,ro,A,p.

We remark that in the case m = 1 and .6..0 < °the correction terms (2) of the

Fourier coefficients of the series <P~o,ro,A,p can be interpreted as a contribution coming

from Jacobi-Eisenstein series. In fact, for m = 1 the series (m,~o~,rro,e,~o(s) coincide

with the well-known zeta-functions appearing in the theory of binary quadratic forms,

In particular one has the well-known formula

where L~(s), for any ~ = ~lfz, ~1 fundamental, fEZ, f > 0, denotes the standard

Dirichlet series

(cf. {Z1]' Proposition 3). Using the functional equation of the L ~ 0 ( s) the correction

term (2) can then be written in a more pleasant form as

L~o(l - k)L~(1 - k)
((1 _ 2k) . (P(l, 0,0) - P(O, 0,1».

From this, we recognize first of all that it is an effectively computable rational number.

Moreover, Lß (1 - k) is j ust the ~- th Fourier coefficient of the Jacob-Eisenstein series

of weight k + 1 and index m = 1 (cf. [E-Z], Theorem 2.1). A similar reasoning should

be possible for arbitrary m. However, we shall not pursue this question any further in

this article.
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We end this seetion by some remarks eoneeming the method to derive the stated

theorems, their eonneetion to published results and the organization of this article.

Theorem 2 was proved for the case of weight k + 1 = 2 in (SI]. The basic idea for the

proof of the general case remains in essenee the same and relies on the diagrams

and the eorresponding diagrams with '-' replaced by '+'. Here the S~o,ro are certain

lifting maps to S2k(rO(m)) (= spaee of cusp forms of weight 2k on ro(m)) which were

studied in (S-Z]. They are indexed by pairs of integers ~o, ro with ~o =T5 mod 4m,

~o < 0 and fundamental. The symbol H;ar. (ro(m), C(Xhk-2) denotes the first 'cus

pidal' cohomology group of ro(m) acting in the natural way on the spaee C[Xhk-2 of

eomplex polynomials of degree ~ 2k - 2. The outer automorphism (~~) I--t (~"Y -t)
of ro(m) induees an involution on this cohomology group and the '-'-sign denotes the

'-( -1)k'-eigenspaee of this involution. Finally p- is that isomorphism which is indueed

by the Eichler-Shimura isomorphism. Let

denote the kernel funetion of p- 0 SAo,ro (with respeet to the natural Petersson scalar

product on Sk+ 1,m ) . If"\ is a linear fune tional on the first factor of the above tensor

produet then (,,\ ~ 1)(1-l~o,ro) is an element of Sk+1 ,m' By results of [S-Z] the inter

seetion of all kerneis of the SAo,ro is void, and since p- is injeetive (aetually, it is an

isomorphism) the interseetion of all the kemels of the p- 0 SAo,ro is void too. From the

latter it is easily deduced that the (,,\ ® 1)(1i~ 0, ro) span the w hole spaee Sk+ 1,m' The

miracle is that the Fourier coefficients of the 11.: (and the eorresponmng 1-li ) can
~O,rO ~o,ro

be explieitely eomputed and are given by a finite and effeetive formula; suitable choices

of the functionals A produce exaetly the the fonns <PAo,ro,A,P introduced in Theorem

2, and mapping these forms to 52 k (r0 ( m)) via the maps S A I I rl produces the forms

fAo,ro,Al,rIIA,P appearing in Theorem 1.

In order to compute the Fourier development of 11.: r one will first of all try to
~o, 0

replace the above first cohomology group and the Eichler-Shimura isomorphism by a

more handy spaee and map. In the case of level m = 1, i.e. the SL2 (Z) -case, these

more handy items are found by replacing the first cohomology by the space of period

polynomials, a certain subspace of the space C[Xhk-2, which was explicitly deterrnined

in [I(-Z]. Now this procedure ean be generalized to arbitrary m and it turns out that
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the above cohomlogy group attached to a given k, m has to be replaced by a certain

subspace of C[X]~t~~/ml). This generalization seems to be well-known in a more or

less precise formulation but the author could not find any reference in the literature

(although it was communicated to the author that there should be an article on this

by Henri Cohen which disappeared in same proceedings volume). Also, thi.s subspace

and the correspondingly modified Eichler-Shimura isomorphism will be studied in a

forthcorning paper by J.Antoniadis [A]. We shall .give a precise statement (including

proofs) of the very basic items of this theory (as far as we need them in this article) in

§3. Now, replacing the above first cohomology by the space of period polynomials, we

may view the kernel functions 1i~ raselements of C[X]~;~~/ml) e> S;+1 m' We shall
0, 0 ,

compute these kernel functions in §4.

For the computation of 1t~olro we start with a kernel function for S.D..o,ro' The

choice of this kernel function i8 the main difference to the quoted article [S1]. Here we

shall use a holomorphic kernel funetion as it was defined and studied in [G-I(-Z] whereas

in [SI] we used a non-holomorphic theta function as kernel. In principle it should be

possible to use such theta kerneis in the general case tao, and to compute directly the

period polynomials associated to these kerneIs, considered, with fixed first argument, as

(non-holomorphic) modular forms. This was the procedure in [SI] and it yielded period

polynomials, the coefficients of which have been holamorphie or skew-holomorphic Ja

cobi forms and which are essentially identical with the <P.D..o,ro,A,P appearing in Theorem

2. However, for weight k + 1 2:: 3 these coefficients are no langer holamorphie or skew

holamorphie, and thus one would have to append a holomorphic or skew-holomorphic

projection. This all tagether would give a proof from scratch of the above theorems but

the computation of the 1{~Olro seems to beeome somewhat lengthy in such a setting.

On the other hand the disadvantage of using the holomorphic kernel function is that it

works only for the ease of weight k + 1 ~ 3. This is due to eertain problems of eonver

genee which could probably be circumvented (using the so called Hecke trick), but the

treatment of this would spoil the whole presentation. Thus, in this paper we shall only

deal with the case of weight 2:: 3; for the case of weight 2 the reader is referred to [SI].

The computation of the Fourier development of the 1i~ r in §4 is very closely
.u.0 , 0

related to similar eomputations in [I(-Z]. In fact, the Fourier coefficients of the holamor-

phie kernel function of Söo,ro, considered as a Jacobi form, are certain modular forms
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whieh, in the ease of level m = 1, are simply linear combinations of the functions

~ (Q 0 A)(t)-k
AESL 2 (1) Q \SL 2 (1)

where Q( t) is a quadratie polynomial with positive diseriminant. These functions were

introduced in [Z2] in eonnection with the Doi-Nagantuna lifting. Hs periods have been

calculated in [I(-Z], Theorem 5. This Theorem, in essence, is a special ease (m = ßo = 1)

of the Proposition 4 below. The ealculations in [K-Z] which led to Theorem 5 loe.cit.

can essentially be earried over to our situation, and we shall precisely da so. This

computation is based on three key lemmas wruch are stated and proved in the Appendix

A and B..

~Tith respect to the '+'-case there are some remarks indispensable. The proof is

completely identieal with the proof of the '-'-case. Nevertheless, at the first glance

there are two 0 bstructions: First of all the maps SbJ. a ,ra (ßo > 0) on st+ I, m are not yet

deßned in the literature. 8econdly, the faet that the interseetion of their kerneis is void

seems to depend on a trace formula, and the corresponding computations (which will

be given in [82]) have not yet been published. Both problems can be solved by literally

copying the corresponding facts and proofs in the '-'-case. The first problem will be

solved in precisely this manner in §2, for the second one the reader is referred to the

quoted paper. Thus, since this paper is not yet available, a suspicious reader might wish

a modified formulation of the Theorems 1 and 2 with respect to the '+'-casej the correct

and honest formulation can be found in §5 where we shall summarize and append some

formal considerations to complete the proof of the two c1aimed theorems.

§2. The lifting nlaps from Jacobi forms to nl0dular forms

As in the foregoing section let Sk m and stm denote the spaces of holomorphic and, ,

skew-holomorpruc Jacobi cusp forms, respectively. Thus, Sk m' for positive integers,
k, m and E = ±1, is by definition the space of smooth and periodic functions r/J(r, z)

with T E SJ, the set of complex numbers with positive imaginary part, and z E C, which

satisfy the following two properties:
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(i) The Fourier expansion of </>(T, z) i8 of the form

</>(T, z) =
.o.,"EZ,t.o.>O
.o.!iI,.2 mod4m

C4>(t~., r)ed,r(T, z),

where the eoeffieients C4>(D., r) depend on r only modulo 4m. Here

(ii) One has

(
1

) {

T k if € = -1- z .•2

</> -,- e-21f1m
""T =4J(T,z)·

T T r k -11 Tl if € = +1

Let :J(Z) = SL2 (Z) C( Z2, where the semi direct product has to be taken with

respect to the natural ( right-) action of SLz(Z) on ZZ, the eolumn vectors with integral

entries. The group :J(Z) acts on jj x C by

'V' • ( ) _ (Q'T + ß z + )..T+ J1.)
.1 T, Z - c , ,,T + 0 ,T + 8

and for any given pair of integers k, m on functions </>( T, z) by

and simiIariIy by a slash operator 'I k, m " whieh is defined by the same formula as 'I t, m '

but with (cr + 8)1-k l(CT + 45)1 replaced by (eT + 8)-k.

It is easily verified that any element of 4J E Bk m satisfies <PIk m i - 4J for all, ,

i E :J(Z), and that for any two functions </>, 'tj; E Bk m the function,

is invariant under (T, z) 1--+ i . (T, z) for all i E :feZ). The Petersson scalar product of

cf;,,,p 1S defined by

(<;bI7/;):= r 14J(T,z)'tj;(T,z)le-41rm~~(T)kdV.
J.1(I)\f>xC
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Here dV is the 3(Z)-invanant voltune element on jj X Z, i.e.

dV(r, z)
__ dudvd

3

xdy ( )
T = U + iv, z = x + iy ,

v

and the integral has to be taken over any (measurable) fundamental domain of jj x C

modulo 3(Z). As fundamental domain oue can take e.g.

1 1
{ ( T , Ar + fL) 1Ir I 2:: 1, -"2 ~ ~(r) ~ '2' 0 ~ A, fL E IR, ,\ + Jl ~ l}.

The above integral is absolutely convergent siuce, for any eusp form </>, the function

is exponentially decreasing as ~(r) tends to infinity, as it is i1nmediate from the Fourier

development of </>. Thus, (</> 17/J) defines a non-degenerate scalar produet on Bk, m .

Fix a pair of positive integers k, m. Let .60 , ro E Z,.6o = T5 mod 4m,.60 funda

mental; let e = sign(.6o). For any </> E Sk,m we set

( ) () ~ ('"""' k-2 (.60
) ( e

2 I!)) 21riltS~o,ro</> t := LJ LJ a ~ C,p .60 a2' ro~ e
l=l aJl

and

(tESJ),

n~Olro(t; r, z) := L
.0.," ez ,.0.0.0. >0
.o.5 .. 2 mod4nJ

(3)

(r,t E Jj,z E C). For e = ±l and an integer k let Sk(ro(m» denote the subspace of

cusp forms I of weight k on ro(m) satisfying I (;~~) = (-l)t e( .J(m)r)k)/(T), i.e. the

space of eusp forms f of weight k on r o(m) such that L*(/, s) := (21r)-.9 m ! r( s)L(/, s) =

L*(/, k - s).

Proposition 1. Assume k 2:: 3. The series (3) is norma1ly convergent on jj x jj x C.

For Exed t it defines an element of Sk m' and for nxed T, z it defines an element of
I

S~k_2(rO(m)), where € = sign(.6o). For any t/> E Sk m one bas
I

Ferc <m = <2,:/'" 0 (rr ;)-IA:= i) is a constant depending only on k, m

and f.
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Remark. Note that the Proposition implies in particular that S.t:J.o,ro maps Sk,m into

S2k_2(rO(m». This was proved for the '-'-case in [S-Z] and for the '+'-case and k = 2 in

[SI]. The kernel function n.t:J.o,ro was introduced in [G-I<-Z], and the ahove Proposition

was proved loc.cit. ('Theorem' in II.3) for the '-'-case .

The proof of the above Proposion for the '-'-case extends almost without change to

the "+"-case. The only new ingredient which has to be inserted is the skew-llo1omorpbic

Poincare series.

Proposition 2. Let k 2:: 3. Let 6.0 , TO E Z, ~o r5 fiod 4m, ~o =j:. O. Set

P.t:J.o,ro := 2::: e.t:J.o,ro Ik,m i,
YE.1(Z)oo \.1(1)

where € = sign(~o), where :T(Z)oo = (( ~ ~) ,0, Z) , and where tbe sum is over a

complete set oE representatives for :T(Z) modulo :T(Z)oo. Then tbis sum is well-defined

(i.e. does not depend on tbe cboice of the representives i) and normally convergent on

55 x C, and it defines an element of Bk m' For any <P E Bk m one has, ,

(A..IP )-d C~(6.o,ro)
lfJ .t:J.o,ro - k,m I~olk-i '

wbere

"EI:
,.e,.o mod4m

+ 2::: g.t:J.o,ro(~,r)(e.t:J.,r-f(-I)ke.t:J.,-r),
~,"EI:,~o~>O,

~1I,.2 mod4rn

(4).

_ 00 n (z/2)k+211-~
Here Jk_!(Z) - L:n=O(-I) n!r(k+n-!) is the Bessel function oforder k -~, we use

A=i, and

H,(ßo, rO;~, r) = ,-!
.\,a,6mod"'f
a6Elmod"'f
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Remark. For the "-"-case the above Proposition was proved in [G-I(-Z] (Proposition

in 11.2).

Proof. We show that the arguments given in [G-I(-Z] for the '-'-case remain valid

in the '+'-case by shortly reviewing the computation given loc.cit. and thereby in

cluding the case of positive discriminants. The arguments for normally convergence,

well-definednes and correct invariance under .:1(Z) are literally the same as loc.cit ..

Thus, in view of the asserted Fourier development, which we shall deduce below, it is

in fact an element of SZ m',

j 4>( T, Z )e,6,°,ro (7, z)e -41rm~ v k dV,
:1(1)00 \i) xC

where as always 7 = 'U + iv, z = x + iy. Inserting the Fourier development of 4> and

choosing [0,1] x R>o x [0,1] x R as a fundamental domain for jj xe modulo :J(Z)(X) one

thus finds

The scalar product (4)IPöo ,ro) equals by the usual argument of 'unfolding the inte

gral'

Int egrating with respect to u and x yields 0, unless (6., r) = (6.01 r0)' Thus t he scalar

product in question equals

as claimed.

To compute the Fourier development we choose as representatives T the elements

(1, A, 0) . (A')',6, O)(U, 0), where A runs through Z, where U E {±unit matrix}, where

(I' 8) runs through all coprime pairs of integers wi th 1 ;::: 1 or (" 8) = (0, 1), and where

for each such pair A')',6 denotes an element of SL2 (Z) with second row equal to ,,0.

We then obtain
(X)

P,6,o,ro(7, z) = 50 (7, z) + 2: (5')'(7, z) - f( _l)k5')'(7, -z)) ,
-y=l

where
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Here A = A,,6, and for any complex nlunber w we use {w} = w- k if 6.0 < 0, and

{w} = w1- k Iwl-1 if 6.0 > O. Now So is just the first sum of the right hand side of (4).

To compute S, for , ~ 1 we rewrite it, using Ar = ~~t~ = ~ + ,(,-;'~6)' as

" (0: a) 2rrim,\2,2,S,(r, z) = L., {,r + 8}eAa,ra -,,.\- e "'f

'\,6E:lI: , ,
(6,"'f)=1

This in turn can be rewritten as

S,(r,z) =
'\,a,6mod"'f
a61iiU mod"'f

2 .(rO+2m,\)2- L\a ) (C ')rrl "Im"'f a -k U A
e ~ F r+-z-I, , ,

/ /
(5)

_ (-1 z + t ) 2rrim ( _(:$:)2)
F,(r,z)- ~ {r+s}eßoro 2( )' ( ) e .

L.,z " r+8 ,r+8
a,tE

But F,(r,z) is periodic; thus we have

F,=
L\,rE:lI:

L\=:= .. 2 mod2m

( )
. (_",2)-1 Z 27'l'"Im-

cß,r = r dr ( dz{r}eßo,ra -2-'- e 1" eß,r(r,z)-l.
}c;:r(r)=Cd>O) }c;:r(Z)=C2 , r ,r

Note that the Fourier coefficients cß,r are apriori functions of the imaginary parts of

the arguments of F" so that one would have to fix such arguments and to choose Cl, C2

equal to their imaginary parts. However, as the following computation will show, the

above double integral does not depend on Cl (> 0), C2 , so that we allow ourself the

above notational shortcut. Now the inner integral equals

r e21ri (*" - m: 2 -rz) dz = (~) 1e21fi (4':~1" +~T- ;:?1~ ) .
}c;:r(Z)=C2 2un

Here, for any complex numbers w, T, we use w r := eiSr (-1r < f) := Arg(w) < +1i).

Inserting the last fOfffiula in the double integral we find
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for negative ß o, and

2rri(-~) +00 .
e ~ 1 1 'Ir 1 (~+~( .»)

C~,r= . (U- iC1)-,- k e'Im ~ u-
et1C

l du
J2mt -00

for positive ßo. Here a = 1 if .6.0 and ß have the same sign, and E = -1 otherwise.

Note that the second integral is the complex conjugate of the first but with ß replaced

by -ß. Thus it suffiees to evahiate the first one. It vanishes if .6.0 and ß have opposite

signs since we then ean shift the path of integration to ioo. If .6.0 and ß have the same

sign substitute T = iJI ,1~ Iw. Then the first integral beeomes

where p = rr~. But the integral here equals 27ri Jk _ i (p ). 1nserting this in the fonnula

for c~,r, and then inserting the resulting Fourier expansion of Fi into the formula (5) for

5" we finally find that the ß, r-th Fourier coefficient of 5, equals -( -l)k€g~olro(ß,r).

Prom this we find the asserted Fourier expansion of P~o,ro' This concludes the proof of

the Proposition.

Proof of Proposition 1. The convergence properties and the modular behaviour of

n~o,ro(tj T, z) as function of t are proved as in [G-1<-Z] (for the behaviour uncler t f-t ~~

apply (loc.cit., 1. Proposition 1 (P2))). For the remaining assertions it is obviously

enough to prove the identi ty

00 ( () I Ik 3 )k-2 ßo ßo -~ 2rrilt f

" "a - d P~ ~ ~ (T, z) e = Ck mn~o ro (t j T, z).L...J L...J a k m 0 -;2" ,ro A ,I

l=l all '

(6)

But this can be checked as in [1(-Z] by just eomparing the Fourier coefficients (in the

Fourier development with respect to T, Z, t) on both sieles. The Fourier development of

the left hand side is immediately obtained by inserting the developments of the P~olro

computed in Proposition 2. The Fourier development of the right hand siele is obtained

by inserting the Fourier developments of the

" Xm,~o(Q)
L...J Q(t)k-1

QE Q m (~o~ , ro r)

These lattel' Fourier developments have been cornputed in [1(-Z] (11.1 P roposition 1) for

positive and negative ß o (however, there is a tiny rnistake in the formula given loe. cit.:

the term € N ( m, ß, p, D o) on p.51 7, second line from the bot tom, has to rne mutiplied
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by the factor (-sign Do)k). Finally, in that paper the Fourier coefficients of both sides

of (6) have been compared in the case of negative ~o and this comparison can literally

be copied for the case of positive .6.0 - This completes the proof of Proposition 1.

§3. A variation of the Eichler-Shimura isomorphism

Let! be a cusp form of weight k on ro(m), and A E SL2 (Z). We define a complex

polynomial in the indeterminate X by set ting

Here the integral has to be taken along the line t = iry (0 ~ 1]), and for any function f,
defined on the upper half plane, any A = (~~) E SL2(R), and any integer k we use

Since f is a cusp form !lkA(t) is exponentially decreasing for t ~ 0, ioo and any A, and

hence the above integral is absolutely convergent. Note also that Pk,A(!) depends only

on the left eoset of A in ro(m)\SL 2(Z). Let'g:= (~l ~), thus, 9 (~~) 9 = (_0', -:).
For € E {±1} we set

l.e.

pk,ACf) = Loo

(UlkA)(t)(X - t)k-2 + (-1)k/2fUlkgAg)(t)(X + t)k-2) dt (7).

Identifying ro(m)\SL2(1) with P1(Z/mZ) via ro(m) (; ~) ~ (, mod m : 8 mod 1'n)

we may Vlew

Pk(!) := {pk,Ae!)} AEro(m)\SL2(Z)

as an element of C[X]~~~Z/mZ), where C[X]k-2 is the spaee of complex polynomials in

X of degree less or equal to k - 2. The correspondenees ! ~ pt(!) thus define maps

respectively.
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Proposition 3. For each integer k the maps pt and Pk are injective.

Proof. Let a E {±1}, f E Sk(ra(m» and A E SL2 (Z). For t = iry one has t = -t and

gAgt = -At, and thus

(flkA(t)(X - t)k-2 + a flk9A9(t)(X + t)k-2) dt

= f(At)(et + d)-k(.X: - t)k-2dt - af(-At)(ct + d)-k(X - t)k-2d1.

Therefore, decomposing

f = f+ + if-,
1 -- 1 --

f+(t) = 2(f(t) + f( -t»), f-(t) = 2i (f(t) - f( -t»),

we have

(flk A(t)(X - t)k-2 - flkgAg(t)(X +t)k-2) dt

= 2~ (f+lkA(t)(X - t)k-2dt) + 2i~ (f-lkA(t)(X - t)k-2dt) ,

and the same for a = +1 hut with ~ replaced by i~.

Thus, to show that pt and pI; are injective it obviously suffices to show that for

any f E Sk(ra(m) the equations

Loo

~ (JlkA(t)(X - tl-2 dt) = 0 (A E SL2 (Z) )

imply f = O. But the latter statement is easily reduced via the Manin trick to the

fact that the usual period mapping of the Eichler-Shimura isomorphism is injective.

Namely, let B E ra(m) and t a E jj. Write B = ±Tn1 STn2S ... Tn r S with nj E Z

and T, S denoting the generators (~~), (~-~) of SL2 (Z) respectively, and set Bj :=

±Tn
l STn

'1. S ... Tnj S, Ba := 1. Then

1
8to

(lBlto 1B2to iBrto

)fR (f(t)(X - t)k-2dt) = + +... + ~ (f(t)(X - t)k-2dt) ,
to to B1to Br_1to

and
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Note that one has Tnj +1 Sio = - t10 + n i+ 1. Thus, setting i o = i 1J and let ting 1J tend to

0, it follows

where the first integral has to be taken along the semicircle in 55 joining 0 and BO.

Hence (8) implies

l BO

~ (J(t)(X - tl-2 dt) = O.

That this equation is true for any B E r O(1n) means that f is in the kernel of the

Eichler-Shimura isomorphisID, i.e. f = 0 ([Sh], Theorem 8.4 ), and this was to be

shown.

§4. The map from Jacobi forms into the space of period polynonlials

We shall assume throughout this section that k ~ 2 since various expressions occuring

in the following would not converge for smaller k. For k = 1 and .6.0 = 1 the composed

map (9) is not even apriori well defined since in this case certain Jacobi cusp forms

map to Eisenstein series and the integral (7) defining the period map will not in general

converge for non cusp fonns. However, as was shown in [SI], the integral (7) does in fact

converge absolutely for those modular forms of weight 2 occuring as images of Jacobi

cusp forms under al1 the lifting maps SL:J.o,ro' Hence we could speak of a composed map

even in that quoted special case. The result of this section is as follows.

The aim of this section is to compute the kernel function of the composed maps

ESSE C[x]lF 1 (I/ml)
P2k 0 .6.o,ro: k+l,m ----40 2k-2 (f = sign(~o) ). (9)
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Proposition 4. Let k, m be positive integers, k 2:: 2. For A E SL2(Z) and integers

6.0 , TO, 6., r such that ilo =r~ mod 4m, 6. - r 2 mod 4m, 6.oLl > 0 and Llo is funda

mental, denne

cg r (il, rj X) :=
0, 0

Q€ Q~(~o~,ror)
Q:C(5 ,b,c], sc< 0

X~,~o (Q)sign(a )Q(X)k-l

" A (Q)N
k
-

1
B. (a +b/X) X2k-2D Xm,~o k k N

Q=[a,~,O)E Q~ (~o~,ror)

0:5 a <N

+, [(m,~o~,ror,Ao,~o(k)+ (-l)kE(m,~o~,ror,-Ao,~o(k)] X 2k- 2

-, [(m,~o~,ror,Aoo,~o(k)+ (-l)kE(m,~o~,ror,-Aoo,~o(k)] .

Here E = sign(ilo), and N is any positive integer such that for any Q = (a, b, 0] or

Q = (0, b, c] the value of X~,~o(Q) and the condition 'Q E Q~ (LloLl, rar)' depelld ollly

on a, c modulo N. Moreover Bk(X) is the k-th Bernou1li polynomial, and

Set

(T,t E 5J,z E C), where bk,m = ~(~fi)k-l (0 -1) = i). Then tbis defines the kernel

function for the composed map P~k A 0 s~o ro' More precisely,.c~ r is an element of
" 0, 0

Sk+l,m' and for any rP E Sf:+l,m one has

Remark. 1. In the statement of the proposition we are tacitly identifying polynomials

and polynomial functions, i.e. for fixed T, z we view .c~o ,ro (T, Zj X) as a function in

the complex variable X rather than as a polynomial in the indeterminate X. 2. Note

that the statement of the proposition implies that the coefficients cgo,ro (Ll, r; ..Y) do
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not depend on the special choice of N. However, this follows also from the weH-known

equations

(n E Z, n > 0).

Proof. Using the kernel function for S.6. o,ro given in Proposition 1 (hut with k replaced

hy k + 1) we can write the polynomial P2k,AS.6.o,ro4> as

l
ioo1 2k 2 .r.: k4>(T, Z )Ck+1 m n.6. o,ro 12kA(-ti T, z )(X - t) '- e-41rm

v V '+1 dVdt.
o SL2(1) J\())xC) ,

It is easily ehecked that we ean interchange the order of integration, and from this we

recognize that the Jacobi form

is the kernel function of the map P2k,A 0 S.6.o,ro (To conclude this one also needs that

-t = t for tEin.). Inserting here the Fourier expansion (3) of 0.6. 0 ,ro and interehanging

summat ion (over .6., r) and integration we find for C (.6., r j - X), t he 6., r- th eoefficient

of the kernel function for P2k,A 0 S.6.o,ro, the formula

[ioo ( (X _ t)2k-2

C(ß, r; X) = -Ck+l,m Ißaßl
k
-! Ja ~ Xm,Ao(Q) (Q 0 A)(t)k

k (X + t)2k )
+(-1) € L Xm,Ao(Q\Q 0 gAg)(t)k dt.

QEQ

Here Q = Qm(~o6., rar). As a first simplification of trus formula we note that the set

Q is invariant under Q t-+ -Q 0 g, i.e. under [a, b, cl t-+ [-a, b, -cl. Hence we can replace

Q by -Q 0 9 in the second sumo It is easily verified that

Xm,.6.o( -Q 0 g) = sign(6.o)Xm,.6.o(Q) - (Q 0 ggAg)(t) = -(Q 0 A)(-t).

Thus the second sum equals (-l)k€ times the first hut with t replaced hy -t, i.e. with

t replaced by t (since t E iR). Hence, after substituting t t-+ t in the integral of the

second surn we can write

Note that, though we have studied the infini te sum occuring here only for t E Jj, it is

nonnally convergent in the lower half plane ~(t) < 0 as weH, and along the imaginary
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axis the function defined by it can even be continuously continued to t = O. Thus, the

above integral makes sense.

To compute this integral we decompose it as

(10)

where 1 and !( denote that contributions to the last integral from all Q = [a, b, cl such

that ac =f 0 and ac = 0, respectively.

To simplify 1 we proceed as in ([Ko-Za); pp.223). From the following computation it

will be clear that we can in general not interchange summation and integration. Instead

we write

j ;oO 2: ... = F~ 2: (ji~ ji..\ l i<X> j-*)
-I<X> >. >0 -I<X> - -i.\ - i/..\ - -i<x> .

Here interchanging integral and SUfi is allowed since the series is uniformly convergent

on the compact pathes joining i)" and ij A. and -ij A. and -iA., respectively. In the third

and fourth integral we substitute t 1--+ ~1, and Q 1--+ Q 0 8-1
, where 8 = (~ ~1 ). Then

we obtain

(11)

A ji..\ (X - t)2k-2
h = - F~ 2: Xm,Ll.(Q) -i.\ Q(W dt,

>'>0 Qa[a,b,c]EQoA
GC';l!:O

j i.\ (Xt + 1)2k-2
13 = li~ 2: X~~~o (Q) -i.\ Q(t)k dt.

>'>0 Q-[o,b,c]EQoAS
ClCjlllO

The inner integrals in 11 are absolutely convergent and can easily be evaluated (cf.

Lemma A2. of the Appendix). One has

q=[o,b,c]EQo.A.
ClC<O

x~ ~ (Q)sign(a)Q(X)k-1,
, 0

(12)

with a constant Ckj~o~, depending only on k and ~oß, as given in the appendix. To

simplify 12 we apply Proposition Al. The contribution to 12 from those Q = [a, b, cl with

positive c can immediately read off from this lemma. To treat the contribution from
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those Q with negative c we have to substitute Q ~ -Q 0 g, Le. [a, b, c) ~ [-a, b, -cL
to put it into a fonn such that the Proposition Al can be applied. We obtain

-21TiX2k - 2

12 = (2k -1)((2k) [(m,L\oL\,ror,Ao,L\o(k) + (-l)k€(m,L\oL\,ror,-AO,L\o(k)] . (13)

Sirnilarily we find

21TiX2k-2
13 = (2k _ 1)((2k) [(m,L\oL\ ,ror,Aoo,L\o (k) +(_l)k f(m,L\oL\,ro r,-Aoo,L\o (k)] . (14)

To compute 1( we choose a positive integer N as in the statement of the Proposition

(e.g. N = ml~ol). Using it we can write

1<=N-k{ 2: x~.ao(Q)I~Ck(bt;C)(X-t)2k-2dt
Q=[O,b,e]EQoA -100

O<e<N

+ 2: X~.ao(Q) l~ Ck (a -t;:/t )C2k(X - t)2k-2dt
Qc[a,b,O)EQoA -100

O<a<N

'""' A (Q) jiOO (c (bt) C (b/t + c) -2k+ L.t Xm,L\o . k N + k N t
Q=[O,b,O]EQoA -100

__1_) (X _ t)2k-2dt }
(bt)k '

where we use

These integrals have been evaluated in the appendix (cf. Lemma A3), and inserting the

values computed in the appendix we find

'""' A (Q) N
k

-
1
B . (a +b/X) X2k - 2 }L.t Xm,L\o k k N .J ,

Q=[a,b,OIEQoA
O=:;a<N

(15)

Inserting the formulas (12),(13), (14), (15) into (11) and (10), picking up the constants
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and

we find that C(ß, r; X) equals C~ r (ß, rj X). This proves the proposition.
0, 0

§5. The proof of the lllain result

In this last seetion we colleet the facts of the previous diseussions to complete the proof

of Theorem 1 and 2. We assurne throughout that k 2:: 2. For the case of weight k+ 1 = 2

the reader is referred to [51].

For E E {±1} let S;er. denote the subspace of SZ+l,m spanned by the Jacobi forms

.c~o,ro(T, z; X) (A E SL2(Z) , sign(ßo) = E) appearing in Proposition 4, and let S;pher.

be the space of funetions spanned by all the <P~o,ro,A,p(T, z) with ßo, TO, A, P as in

Theorem 2, sign(ßo) = E. Finally, let ](f be the interseetion of all kerneis ker(S~o,ro)

with sign(ßo) = E. We shall show in a moment

(16)

(17)

Here (.).L means the orthogonal complement with respect to the Petersson scalar prod

uet. For E = -1 it was shown in [5-Z], Theorem 3, that K f = O. Thus the equa

tions (16),(17) clearly imply Theorem 2 for E = -1. Moreover, it was shown loe.eit.

that the sum of al1 the images of the S~l ,rl with negative ßl is just the subspace

spanned by all modular forms f in 9n~~SP(m) whose L-series L(/, s) satisfies L*(/, s) :=
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(2Jr/m)- lJ r(s)L(j, s) = -L*(j, 2k-s). Thus, the '_'_part ofTheorem 1 is aconsequence

of Theorem 2 by noticing that

For the '+'-case we can so far only deduce that S~her. = (K+)...L.., and that the subspace

spanned by all j 6 0,ro,6 1 ,rt,A,p(T) (~1 > 0) is just the sum of all the images of the

S6 1 ,rl with positive 6.1 , However, it will be shown in [82] that this image is precisely

that part of 9n~~SP(m) spanned by all j such that L*(j,s) := (2Jr/m)- lJ r(s)L(j,s) =
+L*(j, 2k - s), and that ](+ = O. Thus, the equations (16),(17) imply the '+'-parts of

Theorem 1 and 2 as weil.

The equation (16) follows from the logical equivalences

valid for any ~o with 6.0 = fand any 1> E Sk+1,m' Here the first '~' follows froln

Proposition 4, and the second one from Proposition 3.

To prove (17) note first of all that for any X the polynolnial

Po(a, b, c) = (aX 2 + bX + c)k-l

. (82 a 8)satIsfies ~ - aa Be Po = 0, and that

The latter is easily checked using the characteristic properties of the Bernoulli polyno

mials which were recalled in §1 when we defined the associated polynomials PI and P2 •

Thus, S;er. C S;pher.. To prove the converse inclusion note that, for any fixed ~a, Ta, A,

the map P 1---+ rP6 o,ro,A,P is linear. Hence, it suffices to prove the following Lemma.

Lelnlna. Let P (a, b, c) be a homogeneaus p olynomial of degree k in tbe three VBJ'iables

a, b, c. Tben tbe following two statements are equivalent: (i) One has (~ - a~~e) P =
O. (ii) The polynomial P can be written as a linear combination of polynolnials of tbe

form (aX 2 + bX + c)k (X E C).

Proof. That (ii) implies (i) is vermed by direct computation. 80 assume (i). V\Te prove

(ii) by induction on the degree k of P. If k = 0 then (ii) is trivially true. So assume

k > 0 and that (ii) is true for all polynolluals with degree strictly smaller than k. Now,

since P satisfies (i), the polynomial -AP does so too, and by induction hypothesis it cau
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thus be written as a linear combination of suitable (aX 2 + bX + c) k-l. Integrating with

respect to b now shows that P is a linear combination ~f polynomials (aX 2 +bX + c) k

up to the addition of a polynomial Po which is independent of b. Clearly Po satisfies

(i), and hence &~~cPo = O. But this means that Po = aak + ,ck for suitable constants

Q, ,. From this it is dear that Po satisfies (ii) (use e.g.

ak = 2
l
k L (a(e~V)2 + b(e~V) +cf -ck

vmod2k

)

(18)

and therefore P does so too. This concludes the proof of the lemma and the proof of

Theorem 1 and 2 as weil.

Appendix A: Zetafunctions associated to binary

quadratic fornls modulo ro(m)

In this part of the appendix is we prove the following Proposition Al which was used

in the computations of §4.

Let Q = [a, b, c] be a polynomial of degree ~ 2, and let ~ E P1(Q)(= Q U {oo}). To

the pair Q, ~ we associate a Dirichlet series (Q,e( s) by setting

r (s)=~R(Q,~jn)
~Q,e L.J n.! ,

n=l

where, for any positive integer n, we use

{(x) 21 ax
2 + bxy + cy

2 = n }
R(Q, ~j n) = ~ro(m)Q \ y E Z 1\ ~ =~ mod ro(m) .

Recall that .! =~ mod r 0 (m) means that .! and ~ lie in the same orbit of the naturaly y

action of ro(m) on Pl(Q), and that ro(m)Q denotes the stabilizer of Q in ro(m).

Clearly, this zeta function depends only on the ro(m)-equivalence classes of Q and ~.

These zeta-functions are connected to the zeta function defined in §l by the formula

( ( ) '"' Xm,~o(Q) ((s),
m,~o~,ror,e,~o S = L.J [SL (1) . r (m) ] Q,e

QEQm(~,r)/ro(m) 2 Q. 0 Q

where Q runs through a complete set of representatives for Qm(6., r) modulo ro(m).
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Lemlna. Let Q be a polynomial of degree ~ 2 with integral coefflcients, and let C

denote the ro(m)-equivalence c1ass ofQ. Let eE P1(Q), e=~, gcd(x,y) = 1. Then
y

(Q,e(8) = ((28)
Q'ECjro(nJ)(

Q'(zr,p»o

Here ((8) is the Riemann zeta function, and the sum is over a complete set of rep

resentatives for C modulo ro(m)e (=stabilizer of e in ro(m)). (Recall tbat we use

Q(x, y) = ax2 + bxy + cyz for any Q = [a, b, c].)

Proof. Denote by Rpr'(Q, ej n) the number of all coprime pairs of integers X, y modulo

ro(m)Q such that Q(x , y) = n , and ~ is ro(m)-equivalent to e. Clearly

R(Q,ejn) = I:Rpr·(Q,ei ;).
d2 1n

Now the maps M I--t Me and M 1----7 Q 0 M induce bij ections

r \{(X)Ezzl gcd(x,y)=1 }~r \r/r ~c/r
Q y /\ ~ =efiod r Q e e,

y

respectively, where we used r = ro(m). But via these isomorphisms we find

Inserting this into the above equation for R(Q, ej n), and rewriting the resulting equa

tions in terms of Dirichlet series we obtain the asserted identity.

The following Proposition was proved in the case m = 1, D not a square, in [I<-Z],

Lemma on p.226.

Proposition Al. Let C be the r o(m )-equivalence c1ass of a quadratic polynomial

Qo(t) = atZ +bt + c. Assume tbat Qo(t) bas real coefBcients and tbat D := b2 - 4ac > 0.

Let A E SL2 (R). Tben, for any integer k ;::: 2 and any integer v ;::: 0, tbe limit

j i>' tll dt
lim '" --
.\-0 W . Q(t)k
.\>0 Q=>[a,b,e]ECoA -I>'

ajl!:O,e>O

equals
-1 27ri (Qo,AO( k)

[SL 2 (Z) Q : ro(m)Q] (2k _ 1) ((2k)

when v = 0, and it equals 0 otherwise.
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Remark. Note that the Proposition together with (18) yields the formula

tim A jO' (X - t)2k-2dt
>.-0 L Xm,L\o(Q) -i'\ Q(t)k
>'>0 QeQ~(~o~,ror)

Q=["',b,e}
",:;o!:O,e> 0

Proof. To compute the limit we choose a positive integer N such that Co A is invariant

under Q ~ Q 0 (iv ~), i.e. under [a, b, c] ~ [a +bN +cN2, b+ 2Nc, c]. Then we arrange

the terms of the sum so that we first SUffi over those Q = [a, b, c] with 0 ~ b < 2cN and

for each such Q over all [a+bNn+cNn2,2Ncx,c] (x = 2;N +n, n E Z, (2cNx)2 t D).

Moreover, we write

D
[a + bNn + cNn2, 2Ncx, c](t) = c(l + N xt)2 - _t2.

4c

Finally we substitute t ~ At. Thus, we have to compute

1

Now the inner sum tends to

j +OO ji t ll dtdx

-00 -i (1 + Nxt)2k

(19)

for A -4 0, and it does so uniformly in b and c. Thus we see that the expression (19)

equals 0 for positive v. So let v = O. Then we may interchange in (19) the limit and

the first SUfi, and insert the value of the last integral, which is (2k2':;)N' Now, for N we

can choose N = [SL 2 (Z) Q : ro(m)Q], and then the condition '0 ~ b < 2cN' means that

we surn over a set of representatives for C oA/(A- 1ro(m)A)o. Hence, after making the

substitution Q H> Q 0 A we find for (19) the expression

27ri '"'" k(2k _ l)N Lt (Q 0 A)(O)- .
Q eCI rO(TlI)A 0

QOA(O»O

Applying to this the above Lemma we recognize the asserted formula.
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Appendix B: Computation of some integrals

In this part of the appendix we calculate some integrals which have been used when we

computed the period polynomials of the kernel functions of the Jacobi forms - ellliptic

modular forms correspondences. The following two lemmas cau in principle be read

off from corresponding calculations in [I<o-Za]. However, because of slightly different

normalisations aud the need of slightly more general formulations we include them here

with independent proofs. For the following lemma compare [I<o-ZaJ, pp. 224,225.

Lemma A2. Let Q(t) = atZ + bt + c be a quadratic polynomial with real coefflcients,

and assume that ac t=- 0 and D = b2 - 4ac > O. Then for any complex number X and

any positive integer k the integral

j +iOO (..Y _ t)Zk-2
k dt

-ioo Q(t)

is absolutely convergent; it equals 0 when ac is positive, and for negative ac it equals

Ck,Dsign(a )Q(X)k-l,

where
21t"i(-1)k-l (2kk:12)

Ck D = 1
I Dk-"j

Praof. Using ac t 0 and D > 0 it is easily seen that (XQU;;-2 has no singularities on

the imaginary axis and that it is an CJ(t-2 ) for t -7 ioo. Thus the integral in question

is absolutely convergent.

Ta compute this integral note that for any sufficiently smail A E C and far all

t E iR>o we have IAIIX - tl 2 < IQ(t)l. Thus we ean write

00 j+iOO (X _ t)2k-2 j+iOO 00 (X _ t)2k-Z
{;, >,k-l -ico Q(t)k dt = -ico {;, >,k-l Q(t)k dt

_j+ ioo dt _. . t
- -ioo Q(t) - A(..Y - t)2 - 27rZslgn(QA)DA,

where QA(t) = Q(t) - A(X - t)2, and where D>.. denotes the diseriminant of Q>..(t).

Recall that sign(R) = ! (sign(a) - sign(c)) for any R = [a, b, cJ. The interchanging

of stunmation and integration is easily justified by doing the above computation with

X - t and Q(t) replaced by its absolute values, noticing that the resultant integrals are

finite and applying Lebesgue's theorem. For the last equality we used that for any real
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quadratic polynomial R(t) with positive discriminant, the integral of R(t)-l dt along the

imaginary axis equals 21ri times the SUffi of the residues of the integrand in the right half

plane, which in turn equals sign(R)· (discriminant of R)t. Now, by a simple calculation

and by continuity

D>. = D + 4AQ(X), sign(Q>.) = sign(Q),

respectively. Thus

~ ,\k-l [:~oo (X Q(~~:k-2dt = 27risign(Q) (D +4'\Q(X))!

= 2 .. (Q) l:oo ( ! ) (4..\Q(X))k-l
1rZSlgn k k 1- 1 D -.,

k=l

Equating coefficients of these power series in ..\ finally proves the asserted formula of the

lemma.

To state the following lemma we recall that for any positive integer k and any

complex tEe \ Z from the upper half plane we use

27ri(-1)k-1 dk - l e21rit

Ck (t) = ------:---(k - 1)! dt k - l e21rit - 1.

Lelllllla A3. Let a, b, c be real numbers such that b =f 0 and 0 < a, C < 1. Then for

any complex number X and any integer k ~ 2 tlle following integrals are absolutely

convergent and tlle following equalities bold:

j
+iOO C

-ioo Ck (bt + c)(X - t)2k-2dt = ~b2 Bk(bX + c),

j
+iOO C

Ck (a + b/t)t-2k (X - t)2k-2dt = -~Bk(a + b/X)X2k- 2,
-ioo k

j +iOO (c (bt) + Ck (~) __1_) (X _ t)2k-2dt = Ck ,b
2 (B .(bX) _ B (.!!-)X 2k- 2 )

-ioo k t2k (bt)k k k k X .

Here Bk(X) denotes the k-th Bernoulli polynomial and

21ri( -1)k-l (2kk~12)

Ck ,b
2 = Ibl2k - 1

(as in Lemma A2).

Proof. Immediately from the definition (20) it is cleal' that Ck (t) is holomorphic in

C \ Z, that it is exponentially decreasing for ~(t) fixed and ~(t) --t ±oo, and that it has
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a pole at t = 0 with polar part t- k • These statements immediately imply the absolute

convergence of the integrals in the lemma.

To prove the listed identities note that the second one füllows from the first by

substituting t 1-+ t, X 1-+ '*. Moreover, the third one follows by adding the first two,

setting a = C = A and letting .A tend to O. We leave the details to the reader. Finally,

to prove the first equation, note that it suffices to prove it for b = 1: multiplying

both sides of the first equation by (_l)k, if necessary, and using Ck (-t) = (-l)kCk (t)

and B k (l - X) = (_l)k Bk(X) we may assume first of all that b > 0; then substitute

t ~ i, X ~ f· Thus, writing

we recognize that we have to prove

[ Ck (t)(Y - t)2k-2dt = 21ri( _1)k-1 (2k - 2) Bk(Y). (21)
J~(t)=c k - 1 k

To do this call the left hand side of trus equation f(Y). Shifting the path of

integration to the left crossing 0 but not -1 gives

f(Y + 1) - f(Y) = -21ri ReSt=oCk (t)(Y - t)2k-2,

l.e.

f(Y + 1) - f(Y) = 21ri( _1)k-1 (2k - 2) y k- 1 •
k-1

Since j(Y) is clearly a polynomiai the last equation determines it up to a constant.

On the other hand side the polynomial on the right hand side of (21) is a solution to

the last equation. Thus, to conclude the proof it suffices to check für instance that

fo1
f(y)dy = o. But indeed,

11 1 t2k - 1 (t 1)2k-l
f(y)dy = C k (i) k dt

o ~(t)=c 2 - 1

(1 1 ) t2k-l i 2k - 1

- - Ck (t) 2k dt = 21fi ReSt=OCk (i) 2k = 0
~(t)=c lR(t)=c-l - 1 - 1

This proves the Lemma.



32

References

(Al Antoniadis,J.A.: Modulfonnen auf ro(m) mit rationalen Perioden. in prepa

ration

[E-Z] Eichler, M.,Zagier,D.: The Theory of Jacobi Forms.Birkhäuser,Boston 1985

[G-I(-Z] Cro'!M,B. ,Kohnen, W., Zagier,D.: Heegner points and derivatives of L-series,II.

Math. Ann. 278,497-562(1987)

[K-Z] K ohnen, W., Zagier,D.: Modular fonns with rational periods.In:Modular forms.

Rankin,R.A.(ed.),197-249.Chichester:Ellis Horwood 1984

[SI] Skoruppa,N.-P.: Explicit Fonnulas for the Fourier Coefficients of Jacobi and

Elliptic Modular Forms. MPI-preprint 88-60, 1988, submitted for publication

[S2] Skoruppa,N.-P.: Skew-holomorphic Jacobi forms. in preparation

[S-Z] Skoruppa, N. -P., Zagier, D.: Jacobi forms and a certain space of modular

forms. Invent.math.94,113-146 (1988)

[Sh] Shimura, Coro: Introduction to the Arithmetic Theory of Automorphic Func

tions. Iwanami Shoten, Publishers and Princeton University Press, 1971

[ZI] Zagier,D.: Modular forms whose Fourier coefficients involve zeta-functions of

quadratic fields. in Modular Forms of One Variable VI, Springer Lecture Notes

627, Springer, Berlin-Heidelberg-New-York (1977)

[Z2] Zagier,D.: Modular forms associated to real quadratic fields. Invent.math.30,

1-46 (1975)

Nils-Peter Skoruppa

Max-Planck-Insti tu t

für Mathematik

Gottfried-Claren-Straße 26

D-5300 Bonn 3

und

Mathematisches Institut

der Universität Bonn

Wegeierstraße 10

D-5300 Bonn 1


