
SINGULAR CAUCHY INTEGRALS
AND CONFORMAL WELDING ON

JORDAN CURVES

Subhashis .Nag

The Institute of Mathematical Sciences

C.LT. Campus

Madras-600 113

India

MPI / 94-58

Max-Planck-Institut fUr Mathematik

Gottfried-Claren-Straße 26

53225 Bann

Gerrnany





SINGULAR CAUCHY INTEGRALS AND CONFORMAL WELDING ON

JORDAN CURVES

hy

Subhashis Nag

The Instil.1t1.e 0/ JHalhe'Tnahcal ScienccB

C. f. T. Crunpus) 1\'1adras-600 118, India

and

NJa;,;-Planch:-InBt,d.'Ilt fli~.,. J\1athc'matik)

Got./jl'ied-C/aren-St.rasseJ 26

53225-Bonn, Gcrmany

1. Introduction: Given any oriented .Jordan curve , in the cOlllplex plane, there are

associated to it the following three fllndanlental objects:

(1) Rienlann lllapping F : 6. -t int(,);

(2) Rielnann Inapping G' : 6.* -t ex/,(1');

(3) Confonnal welding hOIl1eOrnorphisln w : S] -t Si comparing the boundary hOIllcoIllor

phisIns of Fand G, i.c., w =F-1
0 G on SI.

~<r~.

lVotations: ~ denotes the open unit elisc: ~* its extcrior in the H,ielnann sphere JF! 1, anel SI is

thc lInit circle, Sl = fJ~ = fJD*. inl(,) = 1) alld cxt(1') = D* are thc two cOll1plelncntary

Jordan regions deternlined by l' on thc Rielllann sphere. V'/e a.sSUIl1e 00 E D*.

By Caratheodory's theoreIl1 one knows that F allel G extend continuously to SI pro

vieling two natural paranletrizations of the curvc , - anel thc welding homeonlOrphisI11

COlnpares theI11. (In this discussion we are ignoring the innocuolls Möbills transformation

all1bigllity in the choice of the funcLions F, G and w. That is easily taken care of by fixing

nOl'nlalizations. )

Theoretically speaking, knowledgc of F or G deternlines, of course, the bOllnding curvc

l' itself, so that, assuIlling for cxaI11plc F alone to be known, thc c0I11plenlentary I11apping

G and thc welding w should bc detcflllinabie. Ruf, there are no jonn1l/ae known to effeä



these passages.

Further, for quasicircles I it is well-known that the wcleling w is 0. quasisYIl1lllctric

hOl11eOt110rphisI11 of thc circlc, and that is 0. c0l11plete invariant for thc curve - in fact I can

be recovered froll1 w by a well-known "p-trick". See, for instance, [A]. Therefore, at least

in the context of thc universal Teichmüller space, T(ß.), c0l11prising (ivlöbius equivalence

classes of) quasicirclcs, (anel possibly for 1110re general classes of curves), flny one of the

three pieces of infonnation above shoulel, in principle, be sufficicnt to dctenninc thc othcr

two. [lt is, of course, quitc trivial to get a fornntla for the thirel fron1 knowleelge of any two

of the functions above.]

It l11ay be worth pointing out hCl'e tho.t thc qucstion of passing [1'0111 inforIl1ation of a

quasisyml11etric welding h0l11eOlnOrphisl11 I to the associateel Rietno.nn Jllappings F 01' Ci,

anel vice versa, is quite funelan1cntal in Tcichnliiller theory. Given a rcfercnce Ric111ann

surface ){, unifonnizecl by a Fuchsia.n group r operating on Ll, any other (q.c. rclated)

c0l11plex stl'ucture Oll it is encodcel by S0l11C new uniformizing Fuchsian group A. Namely,

~:\' = ß./A is o.nother point of thc TeichJ11üllcr spacc T(X) (which is a cOlnplcx submanifold

of T(ß.)), anel, 1\ turns out to be a quasisYlnnletric conj ugatc of thc original groupi i.c.,

1\ = wrw- I , fot' some quasisymlnetric hOTIHXnnorphisrn w of SI. If one now understands

which quasicircle '/ produces this w as its welcling h0I11eOl110rphisIll, and rinds the RieIllann

Inappings F (anel/01' GI) to the interior and exterior of " then one can in1 mediately cIetcl'

111ine the c0l11plex ana.lytic variation of the t110duli fr0l11 X = Ll/r' to X = 6/1\. lnclecd,

the Klcinian group given by !( = Gor 0 Gf-l will operate on the region interior to ,and

produce the new surface ~\' as the quotient. See, for instance, [A], [NI]. Thus, passing frolll

knowledge of w to the Rielnann Il1ap G entails basic understanding of the cOIllplex anaJytic

Bel's elllbeddings of the Teichtniiller spo.ces.

In this paper we consider one po.ralneter fanlilies of Jordan curves, 11, wi th correspondi ng

Ft , Gt and Wt. Let us aSSlllne that all the infonl1ation for the initial (l'cfel'ence) curvc ')'0 is

known. vVe show that certain singular integrals on rO with Cauchy kerllcl can be usecI to
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eletennine al/ thc successive (first anel llighcl' order) variations of both Pt and G t starting

fron1 knowledge of Wt alone. lt appears rather surprising and intercsting that Cauchy

singular integrals and thc Plemelj-Sokhotski "elouble-Iayer" fonl1ulae play such a crucial

rolc in soh,ing this probletll.

In an earlie1' paper [N2} we had deriveel 0. fornutla for thc derivative of thc cOl1fo1'

1110.1 welding corrcspondcnce fron1 the space of quasicil'cles to thc space of quasisYll1lnetric

hOIl1eOl1101'phisIns. Dur present calculations naturally allow us to l'epl'OVC that rcsult anel

go deeper.

Acknowledgenwnts: vVe thank R.R. SiJnha for helpful discussions, and for pointing out how

thc singular Cauchy kernel fOlllulac bc10Vl h;u'e a. cohOlnological interpretation (see Section

2). The fvlax-Planck-Institut für rvlathematik, Bonn, is thankeel for its enjoyable hospita.lity

in the SUl1lIner of 1994 whcn this work was cotllplctcd.

2.Singular Cauchy integrals on Jordan curves: Let I be a rectifiable Jordan curvc

in the plane, anel supposc that f is any continuous complex valucd function defincd on ,_

As in the Introduction, let D anel J)* denote the cotllpleInentary siInply-connectcel regions

separated by , on the Rietl1ann sphel'c.

Question: Can wc decOlnposc f adelitively into two parts, J = J+ - J- , such tha.t f+ is thc

boundary valucs of a holomorphic function, say H+, on D, and J- is similarly thc trace of

a holOInorphic function f1- on D*. (ff- is required to be analytic at 00 also, of course.)

The dassical Plernelj-Sokhotski double-layer fonl1ulac provide an a,ffirl11ative answcl' to this

query wheneve1' f is Hölder continuous. 'vVe will explain this bclow.

Re7nark: It is rather evident that a decon1position as above, if exists, nllist be uniq'lle - up

to the choice of an additive constant. That is deal" by assutning two stich deC0l11positions

for f to cxist anel cOlnparing the corrcsponeling F-I+ and 11- functions. Thus, nOl"ll1alizing

/l- (00) = 0, absolutely fixes things.

Consider the holomorphic function on thc union of D and f)* given by:
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H(z) = (2hr)-1 j f(()d(
I (- Z

(2.1 )

Theorenl 2.1: Denote fhe restrietions of H to D and D* by 11+ and 11- J respeetiuely.

Then H+ lLnd H- hoth haue non-tangential h071ndaTy values on f) say f+ and f-. At any

point a on the curue , one has:

(CPV) J( ~)d(

f+(a) = (1/2)/(a) + (2irr)-lj -~-
'" (-a

j (CPV) J(()d(
J-(a) = -(1/2)1(a) + (2irr)-1 ' -

"I (- a

ThereJore, as desired:

(2.2+ )

(2.2- )

(2.3)

lVot.ation: Thc C P\I supcrscript for the integrals in thc fOl'IllUlae (2.2) indicates that these

are singular integrals on " and the Cauchy principal val ue is being taken. That is done as

folIows: take a little disc of radius r centereel at a, anel conlpute thc integral indicated on

thc portion of ! that is outside this little disco Then proccccl to thc linlit as r tcnds to O.

A proof of thc above result can be seen in [Cl. Scc also [Du], [0] for rclated lllateriaJ.

Ta unclerstanc! the abave theorem a few Inore rcrnarks 1l1ay be in order. Fix any ]J

biggcr than 1, anc! identify the usual LP space of an interval with LP(,), - the LP space of

functions living on ,; (sinlply use the arc-length paralllctl'ization for 1'). Then it turns out

that whenevcr f is an clelnent of thc LP(I') satisfying:

lzkJ(z)dz=o, Jo!' ,,11 kEN (2.4)

then j- and f1- are iclentically zero, [and H+ is actua.lly Cl, nlenlbcr of the Hardy space

f1P( D)]. ,",Vhen ! is the llnit circle 51 itself, then of course this corresponds to the require-

ll1eIlt that a11 the negative Fourier coefficients of f should vanish. In fact, in that case

f+, for arbitrary f, is nothing other than the sunl of the Fourier expansion of f over the
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non-negative indices, and f- is the (negative of) the Fourier sunl over thc negative indices.

(For the unit \ircle, the singular Cauchy integral appearing above is basically the standard

Hilbert transfonTI operator.)

Thus it is deal' that Theorem 2.1 gives an elegant gencralization of this positive/negative

Fourier-parts decOlllposition of functions on thc circle to the situation of an arbitrary rec

tifiable .Jordan curve. This point of "iew is useful for our work in this article.

Cech cohonw/ogy inte'rpretation: That a deeOlllposition as above 111USt exist for fairly arbi

trary functions on any Jordan curve ean be seen by interpreting things in Cech eOh0l11010gy

of the Ricillann sphel'e 1F t with eoeffieients in the sheaJ of genns of holol110rphie fUllctions,

(i.e., the structurc sheaf 0). This is a l'crnark to 111C by Silnha.

In fact, one knows that H1(IF 1, 0) = O. Let us wOl'k with any eoveri Ilg of ItD I by two

open sets VI anel V2 , whieh are open neighbourhooels (respeetively) of thc closurcs of D

anel D*. Thus thei r intersection is some "thin " neighbourhood of the curve f'

Suppose that f has a cOlnplex allalytic extension to SOlne arbitrarily thin such annular

neighboul'hood of /. Then J detennines, by definition, an elenlcllt of H 1
( {VI, [J2}, 0). But

at the first COh0111ology level, the 111ap incIuced by refinelnents of eovering is always injcetive.

Hence, sinee the first COhOl1l010gy with eoeffieients in the structure sheaf vanishes, the above

COhOIll010gy elelllent 111ust bc a eoboundary. That is exactly the ScUlle as saying that every

h%morphie funetion in any a'l'bil.'ra'1'ay thin annula'r neighbourhood of any Jordan CUTve /

ean be W1'1:Uen as the differcnce f = l/+ - f1-) with f/+ holom,ol'phie on "hc closurc of D

and H- holo'Tno1'phie on the closul'c of D*.

Now, any real-analytic (col11plex valued) fllnetion on a real-a.nalytic Cllrve will natu ra.lly

allow holOlnorphic extension to such an anlllda.r neighbollrhoocI. In our situation we only

want f to be the differenee of traees of holol1101'phie functions l/+ and l/-, so that an

approxilnation al'gUl11ent by real-analytie objects shews that, undcr rather mild conditions,

"any" function f on a regular curvc / allows a plus/111inus parts deC0l11positioIl of the

required type. (Thc optilnal eonditions for th is rnatter are not relevant to llS at prescnt.)
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The upshot is that we have here a nice thcoretical justification for thc existcncc of thc

desired decomposition for functions on curvcs.

Dur ailn is to apply this plusjnlinus-parts decOlnposition lnethod to the problenl of

relating confonnal welding with the Rienlann 111apping functions.

3. One-paran1eter faluilies of Jordan curves: Let tf denote a onc-paranleter fanlily

of .Jordan curves depending real analytica.Ily on the para.lneter t Cl E (-c, /S)). The initial

(base) curve tO, corresponding to I = 0, 1na.1' bc assumed to be even real-anal.1'tic. vVe herein

take the attitude tha.t all the infornla.tion for tO is known, and thence try to detcnnine

recursive formulae for calculating the infonna.tion for each tl to arbitrary order in t.

JVo/.ations: Let Dt and D7 be the Jordan regions on ]Ft separated by tt, anel Ft allel Gt

dcnote the Riernann rna.ps of ß and ß * to these regions (respecti vely). We assumc that

the Riernann nlaps are nonnlized so that the welding horncornol'phisln for rt:

, -. -1 G'Wt = '/ 0 Tt

becornes a self-homeornol'phisll1 of S' I fixing three points - say 1, -1, i.

Let thc i-expansion for Wt starting fron1 Wo be thc following:

2 3
Wt = Wo + tv} + l V2 + t V3 + ...

where the Vj are sOlne cOInplex functions on 8 1•

Let us set up the t-expansions for the Riernann Inappings:

(:3.1)

(:3.2)

(:3.4)

Gur n/,ain resulf. will e:rhibit the l-expansions Jor Pt und Gt ass'lt7ning that, JOT Wt 1.0 be yiven;

na;melYJ wc shall show how to t,o det.c1"1ninc t,he flj and thc Vj fTont fhe Vj. The fornHda for

the first va.riation tenn (i.e., j = 1) has been obta.incd earlier by Kirillov[K].

The fundanlental equation is that on /.hc unil ci'"cle 8', one lias:

(3.5)
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\Norkillg to first order in t, (neglecting tcrll1S o(t)), one obtaills fro111 this (denoting d/ dz

by priI11e):

(3.6)

valid 011 SI. Transfer this relationship over to the reference Jordan curve /0 by preCOlnpos

ing both sides with the inverse of Go:

(3.7)

valid on /0. But thc f-irst tenn on the right hand siele of (3.7) is hololl10rphic on the exterior

of /0, and thc second tenn is hololl10rphic in thc interior of /0. 'vVe are therefore in the

situation of Theoreln 2.1 quoted above, and we sec that we have proved:

Proposition 3.1: Givcn lhc firsl v(Z'riahon lenn VI 0/ Ihe lalnily oJ weldingsJ sd up lhe

lunc/.ion: cPl = (F~ 0 Fo-1) (VI 0 Go-\ ) on lhe inihal cU'J've /0. A pplying the ptus/mÜHI.S

parls dcco'fnpositl:on 01 Thcorcrn 2. J 10 cPl p'l'oduces lhe firsl variahon terms Jor the lliernanl1

Inappings via [he explicit fO'1"mulae:

v} = -(cPI- 0 Go)

(3.8+ )

(3.8- )

lt is now possible to carry through the a.bove a.nalysis Lo any order in t, and get a cOl'l'e

sponding functiotl "cP/' on the CUI'VC 1'0 whose plus/ll1inus parts decornpositioll dctennincs

Ilj and Vj. ln fact, next: if we neglcct tenns that are 0([2), then thc welding equation (:3 ..5)

gellel'ates the following relation on 8 t :

Again we preC0I11pOSe a.l1 tenns by GoI, and set up the function 1>2 on thc .Jordan curve /0:
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This function is knowH on the initia.l curve since VI anel V2 are supplieel to us, anel we have

alreacly cletenninecl the hololll0rphic functioll J--ll on the unit elisc by the first order fornHlla

(3.8+) above. [Of course, each Pk throughout ß. is detenllined by thc Cauchy fOrIllula

fronl its bOllnclary values on 8 1
• A sil11ilar rClnark is valid for thc Vk'] Hence, applying the

TheorCI11 2.1 elecoillposition to cP2 on the ini tial Cllrve ')'0 gives us:

Il2 = -( cP2+ 0 Fo)

V2 = - ( cP2 - 0 Go)

(3.1 0+)

(3.10- )

An elenlentary induction argulllcnt now proves that thel'e arc forllntlae as above for all the

llk anel Vk:

Theorenl 3.2: Expanding out the we/ding equation (S.5) 1lIJ t.o tenns 0/ order fk J ([nd

pasing over lo ')'0 via GOI, one oblains on ')'0 a relaUon of the !o'rm:

(3.11)

with an e:rplicit unl:versal forrnula for the junet.ion cPk as a polyno'lTtial in lhe (Vj 0 Go-1),.

j = ], ... , k. A pplyü1g Theore'm 2.1 to this ePk we dclennine as desired:

flk = -(cPk+ 0 Fü)

Vk = -(t/>k - 0 Go)

(3.k+ )

(3.k- )

!'lote thaf. the only tc'rm In cPk involving the k th val'l:alion terlTt (Vk) 0/ lhe tue/dings is

(F~o FO-
1 )(Vk 0 GO-I).

Ren1ark: Of course, the coefficients of the polynoll1ia.l cPk involves the!Ll to !Lk-I, anel their

derivatives on the llnit circle. But these are asslll11ed to have been eletennined by kno\vlcelge

of the preceding cPj fr0l11 j = 1, ... , (k - ]). 'vVe thus havc a recursive procedure for solving

the basic problenl posed.

Rcmark: Thct could be a. comp/ex pa.ranwler, allel al1 our relations would still be va.lid.

'vVe woulcl then be in the situation of thc ..\ - Lenl1na of [MSS], anel the farnily of Jordan

regions Dt would be autoll1atica.lIy a holonl0rphically varying fanlily of quasieliscs.
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4. Variation of power serles coefficients of Ft and Gt : In the paper [N2] we had

pointed out a rClnarkably silnple identity bctween the Fourier serics coefficients fol' VI anel

thc power serics coefficients of thc Rienlann Illa,pping functions. The results of Section :3

allow HS not only to reprove that rclationship but go deeper.

In [N2] we supposed that SOI11e vector field v( eie) le on thc circlc Si defines, up to first

order, the Bow of the one-paraIl1etcr fan1ily Wt of conforma,l we1dings. Expand the vector

field in Fourier series on SI:

. ( ie) d _ y' iMv e - - .....ake
dO

(4.1 )

Note that (lk = a-k, since thc vcctOI' field is real on SI. Furthel', because wc have to

ivlöbius-nOrI11alize the entil'e set-up, we may aSStlIne that all the weldings fix threc points

on SI. That Incans that V rnust vanish at these three points. (See [N2], anel our earlier

papers referenced thel'cin).

For thc associated fan1ily of domains, lct thc RieInann Inappings for sInalJ values of j,

be:

(4.2)

valid in the unit disc, and,

(4.:3)

valid in the exterior of thc unit disco The cocfficients eh and ek appeanng above are,

of course, thc l-derivati ves (at l = 0) of thc power scries coefficicllts of the Pt anel Glf ,

respectively. [Notice that since we are deforIning the idenUI.y welding hOlne01110rphis111 by

thc vector field v, the initial curve is 51 itself; consequently, Fa anel Go are thc identity

Inaps on ß and ß*, respectively.]

Utilising c'1'ihcally the pel'turbaliol1 fo'1'rnula jo'1' the solulions oj l.he Belt1Yuni equalion,

wc had shown in Theorern 1 of [N2} that:

Ck-l = icL._k = Ülk, k = 2, :3, ...

9
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Hut (4 ·4) is easily seen to be a consequcnce 0/ /ornudae (3.8±) 0/ Section 3 above.

In fact, the term VI of fOl'llllda (3.2) is obtaincel fronl thc vector fielel by the relation:

V. (eiB ) = 'ieiBv( eiB ). \Ve now apply the plus/111inus-parts decolllposition to this VI, - anel

that is trivial to do since wc are working on SI a.nd we have thc Fourier series given to us.

\Ve in11nediately get PI anel v. fr0l11 fOl'lnulae (3.8±), ancl c0l11pal'ing with thc expa.nsions

(4.2), (4.3) we dcrivc:

Ck-l = ia-k = dk+I , k = 2, :3, ... (4.5)

as desired.

The above relationship shows, 1110reover, tha,t the variations of the power scries coeffi

cients for the Rietnann 111appings to thc interior anel exterior of rt are essentially (n10dulo

a shirt of inelcx) C0'112]J/CX confugales of each othc'l'.
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