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Abstract

We study intersections of Borel subalgebras of different types in quantum
affine algebra and develop a technique of projections of Drinfeld currents to these
intersections. We determine in this way the universal weight function, which is
used for the construction of off-shell Bethe vectors. As application, we derive
integral expressions for the weight function and for the factors of the universal
R-matrix of Uq(ŝl2).

1 Introduction

Quantum affine algebra admits two different descriptions: as a quintized Kac-Moody
algebra and the so called current realization due to Drinfeld. In particular, it has quite
different comultiplication structures and Borel subalgebras, related to these descrip-
tions.

It turns out, that in representation theory and its applications it is convenient to use
the current description of the algebra, while coalgebraic structure is usually canonical
and comes from Kac-Moody description. The relation between two comultiplication
structure was realized by many authors, see, e.g. [5]. In [6] this connection was used
for the investigation of properties of the universal R-matrix of quantum affine algebra.
In particular, in Uq(ŝl2) case a differential equation for its factors was derived.

In these investigation the two pairs of Borel subalgebras of quantum affine algebra
played the crutial role. One pair consists of opposite Borel subalgebras, generated
by positive and negative root vectors in a Kac-Moody description. Another pair is
related to current realization. The latter Borel subalgebras could be viewed as a q-
deformations of currents into Borel subalgebras of underlying finite-dimensional Lie
algebra. In the paper [3] projections of current Borel subalgeras to their intersections
with canonical Borel subalgebras were constructed. It was shown how they determine
a twist between two comultiplications. Next, it was proved in [7], that the weight
function, which is used for the construction of off-shell Bethe vectors and for description
of solutions of Knizhnik-Zamolodchikov equation [12], can be defined as an application
of the above projector of a product of Drinfeld currents to a highest weight vector of
finite-dimensional representation of quantum affine algebra.

In this survey note we determine projection operators to intersections of Borel sub-
algebras, and study their properties, including these projectors into a general scheme of
orthogonal decompositions of Hopf algebras. Such a scheme gives a simple proof of the
relation between two comultiplication, based on a study of orthogonal decompositions,
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related to Lusztig automorphisms. We present such a proof here. Next, we formulate
and prove the relation between weight function and projections of products of Drinfeld
currents. As an application, we present integral expressions for the weight function
and for the factors of the universal R-matrix of Uq(ŝl2). The expression for the weight
function is taken from [8], the formula for the universal R-matrix, presented here, was
not written before.

2 Quantum affine algebra Uq(ĝ)

2.1 Uq(ĝ) in Chevalley generators

Let g be a simple Lie algebra of rank r with Cartan matrix bi,j, i, j = 1, ..., r. Denote
by ai,j, i, j = 0, ..., r the Cartan matrix of the affine algebra ĝ and by (αi, αj) the sym-
metrized matrix ai,j, such that (αi, αj) = diai,j = djaj,i, and by δ the minimal positive

root δ =
∑r

i=0 niαi, ni ∈ Z≥0, n0 = 1. Let
[

n
k

]
q

= [n]q!
[k]q![n−k]q!

, [n]q! = [1]q[2]q · · · [n]q,

[n]q = qn−q−n

q−q−1 , qα = q
(α,α)

2 , qi = qαi
= qdi . We use the notation Π = {α1, ..., αr} for the

set of simple positive roots of g and Π0 = {α0, α1, ..., αr} for the set of simple positive
roots of affine Lie algebra ĝ.

Quantum affine Lie algebra Uq(ĝ) is generated by central elements γ±1, Chevalley
generators e±αi

, k±1
αi

, where i = 0, 1, ..., r and grading elements D±1, such that γ2 =
kδ =

∏r
i=0 k

ni
αi

, subject to the relations

De±αi
D−1 = q±δi,0e±αi

, kαi
e±αj

k−1
αi

= q
±aij

i e±αj
, (2.1)

[eαi
, e−αj

] = δij
kαi

− k−1
αi

qi − q−1
i

, (2.2)

nij∑

r=0

(−1)r
[nij

r

]
qi

e±αi
· · · e±αi

e±αj
e±αi

· · · e±αi
= 0 , (2.3)

where ni,j = 1 − ai,j.
One of the possible Hopf structures (which we will call a standard Hopf structure)

is given by the formulas:

∆(D) = D ⊗D, ∆(γ) = γ ⊗ γ, ∆(kαi
) = kαi

⊗ kαi
,

∆(eαi
) = eαi

⊗ 1 + kαi
⊗ eαi

, ∆(e−αi
) = 1 ⊗ e−αi

+ e−αi
⊗ k−1

αi
,

ε(D) = 1, ε(e±αi
) = 0 , ε(k±1

αi
) = 1 , ε(γ) = 0, a(γ) = γ−1,

a(eαi
) = −k−1

αi
eαi

, a(e−αi
) = −e−αi

kαi
, a(k±1

αi
) = k∓1

αi
, a(D) = D−1

(2.4)

where ∆, ε and a are comultiplication, counit and antipode maps respectively.
In the following we use sometimes the shortened notations U = Uq(ĝ) for quantum

affine algebra Uq(ĝ).

2.2 The current realization of Uq(ĝ)

The quantum affine algebra, Uq(ĝ) admits current realization [2]. In this description
Uq(ĝ) is generated by central element γ, grading element D, and by the elements eα[n],
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fα[n], where α ∈ Π, n ∈ Z; k±1
α , hα[n], where n ∈ Z \{0}, α ∈ Π. They are gathered

into generating functions

eα(z) =
∑

n∈Z

eα[n]z−n , fα(z) =
∑

n∈Z

fα[n]z−n , (2.5)

ψ±
α (z) =

∑

n>0

ψ±
α [n]z∓n = k±1

α exp

(
±(qα − q−1

α )
∑

n>0

hα[±n]z∓n

)
, (2.6)

such that Da(z)D−1 = a(qz) for any of these generating functions, and

(z − q(α,β)w)eα(z)eβ(w) = eβ(w)eα(z)(q(α,β)z − w) ,

(z − q−(α,β)w)fα(z)fβ(w) = fβ(w)fα(z)(q−(α,β)z − w) ,

ψ±
α (z)eβ(w)

(
ψ±

α (z)
)−1

=
(q(α,β)γ±1z − w)

(γ±1z − q(α,β)w)
eβ(w) ,

ψ±
α (z)fβ(w)

(
ψ±

α (z)
)−1

=
(q−(α,β)γ∓1z − w)

(γ∓1z − q−(α,β)w)
fβ(w) ,

ψ±
α (z)ψ±

β (w) = ψ±
β (w)ψ±

α (z) ,

(q(α,β)z − γ2w)

(z − q(α,β)γ2w)
ψ+

α (z)ψ−
β (w) =

(q(α,β)γ2z − w)

(γ2z − q(α,β)w)
ψ−

β (w)ψ+
α (z) ,

[eα(z), fβ(w)] =
δα,β

qi − q−1
i

(
δ(z/γ2w) ψ+

α (γ−1z) − δ(γ2z/w)ψ−
α (γ−1w)

)
,

(2.7)

where α, β ∈ Π, δ(z) =
∑

k∈Z
zk, and

nij∑

r=0

(−1)r
[nij

r

]
qi

Symz1,...,znij
e±αi

(z1) · · · e±αi
(zr)e±αj

(w)e±αi
(zr+1) · · · e±αi

(znij
) = 0

(2.8)
where αi, αj ∈ Π, αi 6= αj.

Let θ = δ − α0 =
∑r

i=1 nrαr denotes the longest root of Lie algebra g. Suppose
that the positive root vector eθ ∈ g is presented as a multiple commutator eθ =
λ[eαi1

, [eαi2
, · · · [eαin

, eαj
] · · · ]] for some λ ∈ C.

Then the assignment [2, 4]

kαi
7→ kαi

, eαi
7→ eαi

[0] , e−αi
7→ fαi

[0] , i = 1, ..., r,

kα0 → γ2k−1
θ = γ2

r∏

i=1

k−ni
αi

, D 7→ D,

eα0 7→ µS−
i1
S−

i2
· · ·S−

in
(fαj

[1]) , e−α0 7→ λS+
i1
S+

i2
· · ·S+

in
(eαj

[−1])

(2.9)

establishes the isomorphism of two realizations. Here S±
i : U → U are the following

operators of adjoint action:

S+
i (x) = eαi

[0]x− kαi
xk−1

αi
eαi

[0], S−
i (x) = xfαi

[0] − fαi
[0]kαi

xk−1
αi

,

and the constant µ is chosen in such a way, that the relation (2.2) for i = j = 0 will
remain valid in the image.
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Another Hopf structure ∆(D) in Uq(ĝ) is naturally related to the current realiza-
tion. In terms of currents it looks as follows (here γ1 and γ2 means γ ⊗ 1 and 1 ⊗ γ
respectively):

∆(D)(D) = D ⊗D, ∆(D)(γ) = γ ⊗ γ,

∆(D)eα(z) = eα(z) ⊗ 1 + ψ−
α (γ1z) ⊗ eα(γ2

1z) ,

∆(D)fα(z) = 1 ⊗ fα(z) + fα(γ2
2z) ⊗ ψ+

α (γ2z) ,

∆(D)ψ±
α (z) = ψ±

α (γ±1
2 z) ⊗ ψ±

α (γ∓1
1 z) ,

a(D) (eα(z)) = −
(
ψ−

α

(
γ−1z

))−1
eα(γ−2z) , a(D) (fα(z)) = −fα(γ−2z)

(
ψ+

α

(
γ−1z

))−1
,

a(D)
(
ψ±

α (z)
)

=
(
ψ±

α (z)
)−1

, ε(eα(z)) = ε(fα(z)) = 0 , ε(ψ±
α (z)) = 1 .

The comultiplications ∆ of Section 2.1 and ∆(D) are related by the twist, which can
be described explicitely. See Proposition 3.5.

2.3 Borel subalgebras of Uq(ĝ)

Denote by Uq(b+) the subalgebra of Uq(ĝ), generated by the elements eαi
and k±1

αi
,

i ∈ Π0 in Chevalley description of Uq(ĝ). Denote also by Uq(b−) the subalgebra of
Uq(ĝ), generated by the elements e−αi

and k±1
αi

, i ∈ Π0.
The algebras Uq(b±) are Hopf subalgebras of Uq(ĝ) with respect to standard comul-

tiplication ∆ and serve as q-deformations of the enveloping algebras of opposite Borel
subalgebras of Lie algebra ŝl3. We call them standard Borel subalgebras. They contain
subalgebras Uq(n±), which are generated by the elements e±αi

, i ∈ Π0.
The subalgebra Uq(n+) is a left coideal of Uq(b+) with respect to standard comul-

tiplication and the subalgebra Uq(n−) is a right coideal of Uq(b−) with respect to the
same comultiplication, that is

∆(Uq(n+) ⊂ Uq(b+) ⊗ Uq(n+) , ∆(Uq(n−)) ⊂ Uq(n−)) ⊗ Uq(b−) .

The algebras Uq(n±) serve as q-deformed enveloping algebras of standard nilpotent
subalgebras of Lie algebra ĝ.

Borel subalgebras of another type are related to current realization of Uq(ĝ).
Denote by UF the subalgebra of Uq(ĝ), generated by the elements k±1

α , fα[n], where
α ∈ Π, n ∈ Z; hα[n], α ∈ Π, n > 0 and by UE the subalgebra of Uq(ĝ), generated by
the elements k±1

α , eα[n], where α ∈ Π, n ∈ Z; hα[n], α ∈ Π, n < 0. They are Hopf
subalgebras of Uq(ĝ) with respect to comultiplication ∆(D). We call them current Borel
subalgebras. Current Borel subalgebra UF contains the subalgebra Uf , generated by
the elements fα[n], where α ∈ Π, n ∈ Z. Current Borel subalgebra UE contains the
subalgebra Ue, generated by the elements eα[n], where α ∈ Π, n ∈ Z.

The algebra Uf is a right coideal of UF with respect to ∆(D), the algebra Ue is a
left coideal of UE with respect to ∆(D):

∆(D)(Uf ) ⊂ Uf ⊗ UF , ∆(D)(Ue) ⊂ UE ⊗ Ue .

They serve as q-deformed enveloping algebras of algebra of currents into nilpotent
subalgebras n±.
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In the following we are interested in intersections of Borel subalgebras of different
type. Denote by U+

F , U−
f , U+

e and U−
E the following intersections of current Borel

algebras:

U−
f = UF ∩ Uq(b−) = UF ∩ Uq(n−) , U+

F = UF ∩ Uq(b+) , (2.10)

U+
e = UE ∩ Uq(b+) = UE ∩ Uq(n+) , U−

E = UE ∩ Uq(b−) . (2.11)

The notataions are given in such a way, that an upper sign says which Borel subal-
gebra Uq(b±) contains the given algebra, the lower letter says to which current Borel
subalgebra UF or UE, it is included. These letter are capital, if the subalgebra con-
tains imaginary root generators hi[n] and is small otherwise. These intersections have
coideal properties with respect to both comultiplications:

∆(D)(U+
F ) ⊂ U ⊗ U+

F , ∆(D)(U−
f ) ⊂ U−

f ⊗ U,

∆(D)(U−
E ) ⊂ U−

E ⊗ U, ∆(D)(U+
e ) ⊂ U ⊗ U+

e ,

∆(U+
F ) ⊂ U ⊗ U+

F , ∆(U−
f ) ⊂ U−

f ⊗ U,

∆(U−
E ) ⊂ U−

E ⊗ U, ∆(U+
e ) ⊂ U ⊗ U+

e .

3 Orthogonal decompositions and twists

3.1 Orthogonal decompositions of Hopf algebras

In these section we review the theory of orthogonal decompositions of Hopf algebras,
following [3, 6].

Let A be a bialgebra with unit 1 and counit ε. We say that its subalgebras A1 and
A2 determine an orthogonal decomposition of A, if

(i) Algebra A admits a decomposition A = A1A2, that is the multiplication map
µ : A1 ⊗A2 → A establishes an isomorphism of linear spaces;

(ii) A1 is left coideal, A2 is right coideal:

∆(A1) ⊂ A⊗A1 , ∆(A2) ⊂ A2 ⊗A . (3.1)

In this case operators

P1 : P1(a1a2) = a1ε(a2) , P2 : P2(a1a2) = ε(a1)a2 , a1 ∈ A1 , a2 ∈ A2

are well defined projection operators from A to Ai, such that for any a ∈ A with
∆(a) =

∑
i a

′
i ⊗ a′′i ∑

i

P1(a
′
i)P2(a

′′
i ) = a . (3.2)

For the proof of (3.2) denote by φ : A → A the linear map φ(a) =
∑

i P1(a
′
i)P2(a

′′
i )

We claim that φ is the map of left A1-modules and of right A2-modules, that is,
φ(a1a) = a1φ(a), φ(aa2) = φ(a)a2 for any a ∈ A, a1 ∈ A1, a2 ∈ A2. Indeed, in
Sweedler notations we can write

φ(a1a) = P1(a
′
1a

′)P2(a
′′
1a

′′).
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From (3.1) we know that a′′1 ∈ A1 , so P2(a
′′
1a

′′) = ε(a′′1)P2(a
′′) and

φ(a1a) = P1(a
′
1ε(a

′′
1)a

′)P2(a
′′) = P1(a1a

′)P2(a
′′) = a1P1(a

′)P2(a
′′) = a1φ(a) .

Analogously, φ(aa2) = φ(a)a2 for a2 ∈ A2. Since φ(1) = 1, we have φ(a) = a for any
a ∈ A, which proves the relation (3.2).

Let now B be a bialgebra dual to A with opposite comultiplication, that is there
exists nondegenerate Hopf pairing 〈 , 〉 : A⊗ B → C, satisfying the conditions

〈a, b1b2〉 = 〈∆(a), b1 ⊗ b2〉 , 〈a1a2, b〉 = 〈a2 ⊗ a1,∆(b)〉 .

Let R =
∑
aα ⊗ bα be the tensor of the pairing. Set Ri = (Pi ⊗ id)R. The addition

identity (3.2) yields the factorization

R = R1 ·R2 . (3.3)

Indeed, the tensor R is uniquely characterized by one of the properties

〈R, b⊗ 1〉 = b, for any b ∈ B, 〈R, 1 ⊗ a〉 = a for any a ∈ A .

Let us calculate 〈R1R2, 1 ⊗ a〉. We have

〈Ri, 1 ⊗ a〉 = 〈(Pi ⊗ id)R, 1 ⊗ a〉 = Pi〈R, 1 ⊗ a〉 = Pi(a) .

Then
〈R1R2, 1 ⊗ a〉 = 〈R1, 1 ⊗ a′〉〈R2, 1 ⊗ a′′〉 = P1(a

′)P2(a
′′) = a

due to (3.2). It proves (3.3).
Denote by Bop the bialgebra B with opposite comultiplication. Suppose that sub-

algebras B1 ⊂ B and B2 ⊂ B determine an orthogonal decomposition of the bialgebra
Bop, that is, the subalgebra B1 is a right coideal of B, ∆(B1) ⊂ B1 ⊗B, the subalgebra
B2 is a left coideal of B, ∆(B2) ⊂ B ⊗ B2 and the multiplication rule in B establishes
an isomorphism of vector spaces B and B1 ⊗ B2.

Let P̃1 : B → B1 and P̃2 : B → B2 be the corresponding projection operators,
P̃1(b1b2) = b1ε(b2), P̃2(b1b2) = b1ε(b2), and

R = R̃1 · R̃2 . (3.4)

where R̃i = (id ⊗ P̃i)R be the related decomposition of the tensor of the pairing.

Proposition 3.1 Decompositions (3.3) and (3.4) coincide,

Ri = (Pi ⊗ id)R = (id ⊗ P̃i)R, i = 1, 2 (3.5)

if and only if subalgebras Ai and Bj are mutually orthogonal, that is

〈ai, bj〉 = ε(ai)ε(bj), for any ai ∈ Ai, bj ∈ Bj, i 6= j . (3.6)
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We call further the decompositions A = A1A2, B = B1B2, satisfying the conditions
of proposition 3.1, as biorthogonal decompositions of A and B ≡ (A∗)op.

Proof. Compute 〈R1, b⊗ a〉 and 〈R̃1, b⊗ a〉 for any a ∈ A, b ∈ B. We have

〈R1, b1b2 ⊗ a1a2〉 = 〈a1ε(a2), b1b2〉 = ε(a2)〈a
′
1, b1〉〈a

′′
1, b2〉 =

= ε(a2)ε(b2)〈a
′
1ε(a

′′
1), b1〉 = ε(a2)ε(b2)〈a1, b1〉 ,

(3.7)

since a′′1 ∈ A1. Analogously,

〈R̃1, b1b2 ⊗ a1a2〉 = 〈a1a2, b1ε(b2)〉 = ε(b2)〈a1, b
′′
1〉〈a2, b

′
1〉 =

= ε(a2)ε(b2)〈a1, b
′′
1ε(b

′
1)〉 = ε(a2)ε(b2)〈a1, b1〉 ,

(3.8)

since b′1 ∈ B1. We see that R1 = R̃1. The same story takes place for other pair.
In other direction. Suppose that decompositions (3.3) and (3.4) coincide. The

substitution b1 = a2 = 1 into the first line of (3.7) gives

〈R1, b2 ⊗ a1〉 = 〈a′1, 1〉〈a
′′
1, b2〉 = ε(a′1)〈a

′′
1, b2〉 = 〈a1, b2〉 . (3.9)

On the other hand, the first line of equality (3.8) shows that the dependence of (3.9)
on b2 is precisely the factor ε(b2). Presenting b2 = ε(b2)1 + b̃2, where ε(b̃2) = 0 we
deduce that 〈a1, b2〉 = ε(a1)ε(b2). �

Suppose now that A = A1A2, B = B1B2 are biorthogonal decompositions of Hopf
algebras A and B ≡ (A∗)op. Let R = R1R2 be the corresponding factorization of the
tensor of the pairing, equal to the universal R-matrix of the double D(A).

Denote by DR1(A) the double D(A) with twisted comultiplication

∆R1(x) =
(
R21

1

)−1
∆(x)R21

1 = R21
2 ∆op(x)

(
R21

1

)−1
.

Proposition 3.2

(i) The tensors (R21
1 )−1 and R2 are two-cocycles in the double D(A):

R12
2 · (∆ ⊗ 1)R2 = R23

2 · (1 ⊗ ∆)R2 , (3.10)

(∆op ⊗ 1)R1 ·R
12
1 = (1 ⊗ ∆op)R1 ·R

23
1 . (3.11)

so that DR1(A) is a Hopf algebra;

(ii) Let Ã be the subalgebra of DR1(A), generated by A2 and B1, B̃ be the subalgebra
of DR1(A), generated by A1 and B2. They are Hopf subalgebras of DR1(A);

(iii) The restriction of the Hopf pairing 〈A,B〉 → C to subalgebras Ai,Bj extends

to a nondegenerate Hopf (with respect to ∆R1) pairing 〈Ã, B̃〉 → C;

(iv) We have biorthogonal decompositions Ã = A2B1, B̃ = B2A1.

We call biorthogonal decompositions Ã = A2B1, B̃ = B2A1 the mutation of
biorthogonal decompositions A = A1A2, B = B1B2.

Remark 3.3 Formal algebraical manipulations show that DR1(A) is a quasitriangular
Hopf algebra with universal R-matrix R = R2R

21
1 and is isomorphic as a Hopf algebra

to the double D(Ã). Nevertheless, if we do not take special care of topology and
convergence, products R21

1 R
23
2 and R32

1 R
12
2 can be not well defined as well as the Yang–

Baxter equation for R.
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We present the proof of (i). The rest is left to the reader. One can see that both
sides of (3.10) belong to A2 ⊗D(A) ⊗ B2. On the other hand, we have

(∆op ⊗ 1)R1 ·R
12
1 ·R12

2 · (∆ ⊗ 1)R2 = (1 ⊗ ∆op)R1 ·R
23
1 ·R23

2 · (1 ⊗ ∆)R2

due to the properties of universal R-matrix, so the coassociator

Φ = R12
2 · (∆ ⊗ 1)R2 ·

(
R23

2 · (1 ⊗ ∆)R2

)−1

can be presented also as

Φ =
(
(∆op ⊗ 1)R1 ·R

12
1

)−1
· (1 ⊗ ∆op)R1 ·R

23
1

and thus belongs to the intersection of A2 ⊗ D(A) ⊗ B2 and A1 ⊗ D(A) ⊗ B1, which
means that it has a form 1⊗ d⊗ 1 for some d ∈ D(A). Then the pentagon identity on
Φ says that there is no nontrivial coassociator of such a form. �

3.2 Orthogonal decompositions related to Lusztig automor-

phisms

G.Lusztig [10] defined automorphisms Ti ∈ End(U), i = 0, 1, ..., r which are called
Lusztig automorphisms. They satisfy braid group relations and are given as (we essen-
tually replace ν in [10] by q−1)

Ti(eαi
) = −e−αi

k−1
αi
, Ti(eαj

) =
∑

p+s=−ai,j

(−1)pqs
i e

(p)
αi
eαj

e(s)αi
if i 6= j,

Ti(e−αi
) = −kαi

eαi
, Ti(e−αj

) =
∑

p+s=−ai,j

(−1)pq−s
i e

(s)
−αi

, e−αj
e
(p)
−αi

if i 6= j

where e
(p)
±αi

= ep
±αi

/[p]qi
!.

The automorphisms Ti are compatible with comultiplication ∆ in the following
sense. For any automorphism T of the algebra U denote by ∆T : U → U ⊗ U the
comultiplication ∆T (x) = T ⊗ T (∆(T−1(x))). Then

∆Ti(x) = R21
αi

∆(x)
(
R21

αi

)−1
, (3.12)

where Rαi
= expqi

((q−1
i − qi)eαi

⊗ e−αi
), expq(x) =

∑
n≥0

xn

(n)q !
and (n)q = (qn−1)

(q−1)
.

In other words, the semidirect product of U and the braid group, given by the
relations TixT

−1
i = Ti(x) for any x ∈ U , can be equiped with a structure of a Hopf

algebra, if we put ∆(Ti) = R21
αi
Ti ⊗ Ti.

Any element w of the Weyl group W of Lie algebra ĝ uniquely determines an
automorphism Tw : U → U by the rule: Tw = Ti1Ti2 · · ·Tin if w = sαi1

sαi2
· · · sαin

is a
reduced decomposition of w into a product of simple reflections. Put

Aw
1 = Uq(b+) ∩ Tw(Uq(n−)), Aw

2 = Uq(b+) ∩ Tw(Uq(b+)), (3.13)

Bw
1 = Uq(b−) ∩ Tw(Uq(n+)), Bw

2 = Uq(b−) ∩ Tw(Uq(b−)). (3.14)
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Proposition 3.4 For any w ∈ W the algebras Aw
1 , Aw

2 , Bw
1 , Bw

2 form biorthogonal
decompositions Uq(b+) = Aw

1 A
w
2 and Uq(b−) = Bw

1 B
w
2 of dual Hopf algebras Uq(b±)

Proof. Coideal properties and orthogonality conditions follow inductively from
(3.12). The decomposition condition (i) of section 3.1 is the consequence of the theory
of Cartan-Weyl basis, see [1, 9]. �

Recall that the total ordering < of the system of positive roots ∆+ of Lie algebra ĝ

is called normal if for any positive roots α, β, α < β such that one of them is real and
α+ β is a root we have α < α+ β < β. Let δ be a minimal positive imaginary root of
∆+, α0 a positive affine root, α1, ..., αr be simple positive roots of g. Choose a normal
ordering, satisfying the following conditions:

(i) αk < δ for all k = 1, ..., r, and δ < α0,
(ii) all positive real roots, which are less then δ are enumerated successively by

integer numbers: γ1 < γ2 < .... < δ.
Such a normal ordering (more precisely, its part, preceeding δ), determines a se-

quence αi1 , αi2, ...αin , ... of positive simple roots and a sequence w0, w1, w2, ...., wn, ... of
the elements of W by the inductive rule:

w0 = 1, αi1 = γ1, and wn+1 = wn · sαin+1
, αin+1 = w−1

n (γn+1) .

For the sequence w1, w2, ... we have inclusions:

Aw1
1 ⊂ Aw2

1 ⊂ ... ⊂ Awn

1 ⊂ ..., Aw1
2 ⊃ Aw2

2 ⊃ ... ⊃ Awn

2 ⊃ ... ,

Bw1
1 ⊂ Bw2

1 ⊂ ... ⊂ Bwn

1 ⊂ ..., Bw1
2 ⊃ Bw2

2 ⊃ ... ⊃ Bwn

2 ⊃ ... .

Moreover, the algebra Awn

1 is generated by Cartan-Weyl generators eγk
= Twk−1

(eαik
)

with k ≤ n and the algebra Bwn

1 is generated by Cartan-Weyl generators e−γk
=

Twk−1
(e−αik

) with k ≤ n.
We have the equalities

U+
e = ∪nA

wn

1 , U+
F = ∩nA

wn

2 , U−
f = ∪nB

wn

1 , U−
E = ∩nB

wn

2 .

and biorthogonal decompositions

Uq(b+) = U+
e U

+
F and Uq(b−) = U−

f U
−
E . (3.15)

Denote by R ∈ Uq(b+) ⊗ Uq(b
−) the universal R matrix of the algebra U and by

R = R1R2 (3.16)

its factorization with respect to biorthogonal decompositions (3.15). We have

Proposition 3.5 Drinfeld comultiplication ∆(D) is the twist of canonical comultipli-
cation ∆ by means of the cocycle R21

1 : for any x ∈ U we have

∆(D)(x) = ∆R1(x) =
(
R21

1

)−1
∆(x)R21

1 . (3.17)

Note that here, unlike to proposition 3.4, we are precisely in the setting of remark 3.3.
Thus we treate further the product R = R2R

21
1 just as a tensor of the pairing and not

as a universal R-matrix.
The proof of proposition 3.5 follows from calculation of [9], where the limit in a

proper completion of the comultiplication ∆ twisted by power of affine shift in the Weyl
group of Uq(ŝl2) was calculated. It is sufficient for the calculation of the comultiplication
∆R1 of any Drinfeld current. �
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3.3 Decompositions of current Borel subalgebras

There are two pairs of biorthogonal decompositions of current Borel algebras, equiped
with comultiplication ∆(D). The first pair consists of decompositions UF = U+

F U
−
f , and

UE = U−
EU

+
e ; the second consists of decompositions UE = U+

e U
−
E and UF = U−

f U
+
F .

Denote the projection operators in Borel subalgebra UF , correesponding to the first
decomposition, by P̌± , and projection operators in the same subalgebra with respect
to second decomposition by P±, so that for any f+ ∈ U+

F and any f− ∈ U−
f

P̌+(f+f−) = f+ε(f−), P̌−(f+f−) = ε(f+)f−, (3.18)

P+(f−f+) = ε(f−)f+, P−(f−f+) = f−ε(f+) . (3.19)

The operator P+ will be also denoted as P with all indices suppressed.
Denote by R the tensor of the Hopf pairing UF ⊗ UE → C with respect to comul-

tiplication ∆(D) and let

R = R1R2, R1 = (P̌+ ⊗ id)R, R2 = (P̌− ⊗ id)R (3.20)

be the factorization of R related to biorthogonal decompositions UF = U+
F U

−
f , and

UE = U−
EU

+
e . Since this decompositions are obtained by a mutation of biorthogonal

decompositions (3.15), we have the equality

R1 = R2, R2 = R21
1 (3.21)

where Ri are the factors of the decomposition (3.16) of the universal R matrix for U
with respect to comultiplication ∆.

The equality (3.21) enables us to compute the universal R-matrix for quantum
affine algebra U by means of applications of projections P̌± to the tensor R. In section
5.2 we apply these ideas to derive an integral formula for the universal R-matrix for
Uq(ŝl2).

4 Universal weight function

4.1 The definition

Let V be a representation of Uq(ĝ) and v be a vector in V . We call v a highest weight
vector with respect to current Borel subalgebra UE, if

eα(z)v = 0 , α ∈ Π ,
ψ±

α (z)v = λα(z)v , α ∈ Π,
(4.1)

where λα(z) is a meromorphic function, decomposed in a series over z−1 for ψ+
i (z) and

into a series over z for ψ−
i (z). Representation V is called a representation with highest

weight vector v ∈ V with respect to UE, if it is generated by v over Uq(ĝ).
An ordered set I = i1, ..., i|I| together with a map ι : I → Π, is called ordered

Π-multiset.
Suppose that for any ordered Π-multiset I, |I| = n, it is chosen an element

W (ti1, ..., tin), which is a formal power series over variables ti2/ti1 , ti3/ti2, ..., tin/tin−1 ,
1/tin with coefficients in polynomials Uq(ĝ)[ti1 , t

−1
i1
, ..., tin , t

−1
in

] such that

10



(1) for any highest weight with respect to UE representation V with highest weight
v the function

wV (ti1 , ..., tin) = W (ti1 , ..., tin)v

converges in a region |ti1 | � · · · � |tin| to a meromorphic V -valued function;

(2) if I = ∅ then W = 1 and wV = v;

(3) let V = V1⊗V2 be a tensor product of highest weight representations with highest

vectors v1, v2 and highest weight series {λ
(1)
α (z)} and {λ

(2)
α (z)}, α ∈ Π. Then for

any ordered Π-multiset I we have

wV ({ta|a∈ I}) =
∑

I=I1
‘

I2

wV1({ta|a∈ I1}) ⊗ wV2({ta|a∈ I2})×

∏
a∈I1

λ
(2)
ι(a)(ta) ×

∏
a<b, a∈I1, b∈I2

q−(ι(a),ι(b))ta − tb

ta − q−(ι(a),ι(b))tb
.

(4.2)

A collection W (ti1,..., tin) is called a universal weight function. A collection w(ti1, ..., tin)
is called a weight function.

The weight function is closely related to off-shell Bethe vectors and is systematically
used in investigations of solutions of q-difference Knizhnick-Zamolodchikov equations
[7, 11, 12].

4.2 Projections and the weight function

Let I = {i1, ..., in} be an ordered Π-multiset. Put

W (ti1 , ..., tin) = P
(
fι(i1)(ti1) · · ·fι(in)(tin)

)
. (4.3)

Theorem 1 [7] The collection W (ti1 , ..., tin), defined in (4.3) is a universal weight
function

Theorem 1 follows from a bit more general statement, which is given and proved
below.

Denote by J the left ideal of U = Uq(ĝ) , generated by the elements eα[n], where
α ∈ Π, n ∈ Z,

J = U · 〈eα[n], α ∈ Π, n ∈ Z〉 .

Theorem 2 For any element f ∈ UF

∆
(
P (f)

)
= (P ⊗ P )

(
∆(D)(f)

)
mod U ⊗ J. (4.4)

The proof of theorem 2 includes two statements, which we formulate and prove sepa-
rately.

Proposition 4.1 For any element x ∈ U−
f we have

∆(D) x = 1 ⊗ x +
∑

i

ai ⊗ bi, such that ai ∈ U−
f and ε(ai) = 0 . (4.5)

11



The proof of Proposition 4.1 consists of two observations. First, note that the
statement (4.5) is multiplicative over x and sufficient to prove it for generators of the
algebra U−

f . Next, the algebra U−
f is generated by the elements fα[n], where α ∈ Π,

n ≤ 0. For this elements the property (4.5) follow directly from the precise form of
comultiplication ∆(D). �

Proposition 4.2 For any element x ∈ UF we have

(P ⊗ P )
(
∆(D)(f)

)
= (P ⊗ 1)

(
∆(D)(f)

)
(4.6)

For the proof of Proposition 4.2 we note, that any element f ∈ UF can be presented
as

f = f1 +
∑

i

xiyi, f1, yi ∈ U+
F , xi ∈ U−

f , ε(xi) = 0 . (4.7)

Proposition 4.1 implies that for any x ∈ U−
f , such that ε(x) = 0, we have ∆(D)(x) =∑

i ai ⊗ bi, where ai ∈ U−
f and ε(ai) = 0. So by definition of the operator P and

Proposition4.1 we have

(P ⊗ 1)
(
∆(D)(

∑

i

xiyi)
)

= 0, P (
∑

i

xiyi)
)

= 0 , (4.8)

such that in the notations of (4.7) we have

(P ⊗ 1)
(
∆(D)(f)

)
= (P ⊗ 1)

(
∆(D)(f1)

)
, P (f) = P (f1) , (4.9)

where f1 ∈ U+
F . The equality (4.9) also implies the equality

(P ⊗ P )
(
∆(D)(f)

)
= (P ⊗ P )

(
∆(D)(f1)

)
. (4.10)

On the other hand, we know, that the algebra U+
F is the left coideal of UF with respect

to comultiplication ∆(D), ∆(D)(U+
F ) ⊂ U ⊗ U+

F , which implies the equality

(P ⊗ P )
(
∆(D)(f1)

)
= (P ⊗ 1)

(
∆(D)(f1)

)
. (4.11)

Combining (4.9), (4.10) and (4.11) we get the proof of Propostion 4.2. �

Proof of theorem 2. Note first that due to (4.9) and (4.10) both sides of (4.4) do
not change if we replace f by f1 ∈ U+

F , according to the notations of (4.7). Taking in
mind proposition 4.2, we see that it is sufficient to prove an equality

∆(f) = (P ⊗ 1)
(
∆(D)(f)

)
mod U ⊗ J . (4.12)

for any f ∈ U+
F .

Remind the relation between coproducts ∆ and ∆(D). By Proposition 3.5 and the
equality (3.21) we have for any x ∈ U

∆(D)(x) = R−1
2 ∆(x)R2 (4.13)

By (4.13) and (3.20) we have R2 ∈ U−
f ⊗ UE, so

(P ⊗ 1)
(
∆(D)(f)

)
= (P ⊗ 1)

(
R−1

2 ∆(f)R2

)
= (P ⊗ 1) (∆(f)) mod U ⊗ J . (4.14)
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Here we drop the factor R2, since R2 = 1 mod U⊗J and drop the factor R−1
2 , since its

first tensor component belongs to U−
f and (ε⊗1)(R−1

2 ) = 1. Note also that due to (4.13)
∆(f) ∈ UF ⊗U , so the expression (P ⊗1) (∆(f)) is well defined. Moreover, since Uq(b)
is a Hopf subalgebra of U with respect to comultiplication ∆ and U+

F = Uq(b) ∩ UF ,
we have an inclusion

∆(f) ∈ U+
F ⊗ U for any f ∈ U+

F ,

which implies
(P ⊗ 1) (∆(f)) = ∆(f) for any f ∈ U+

F . (4.15)

The substitution of (4.15) into (4.14) gives (4.12) and the statement of Theorem 2. �

5 Calculations for Uq(ŝl2)

In this section we present two applications of projections to intersection of Borel sub-
algebras. The calculation of the universal weight function for Uq(ŝl2) is taken from in
[8], the integral presentation of the universal R-matrix for the same algebra is obtained
by the same calculations with projection operators P̌±.

For the sets of variables z̄ = {z1, ..., zk} and w̄ = {w1, ..., wk} we define the following
formal power series:

X(z̄) =
∏

1≤i<j≤n

1 − zi/zj

q − q−1zi/zj
, X ′(z̄) =

∏

1≤i<j≤n

1 − zj/zi

q − q−1zj/zi
,

Y (z̄; w̄) =
k∏

i=1

1

1 − wi/zi

i−1∏

j=1

q−1 − qwj/zi

1 − wj/zi

, Z(z̄; w̄) = Y (z̄; w̄)
k∏

i=1

wi

zi

The notation ω̂z for a set z̄ = {z1, ..., zk} means the set z with reversed order: ω̂z =
{zn, . . . , z1}.

5.1 The universal weight function

Theorem 3 [8] The universal weight function for Uq(ŝl2) can be written as a following
formal integral:

W (t1, . . . , ta) = P (fα(t1) · · · fα(tn)) =

= X ′(t̄)

∮
Z(t; ω̂u) fα(u1)

du1

u1
· · · fα(un)

dun

un
.

(5.1)

We have analogous expressions for the projections P̌± (fα(t1) · · ·fα(tn)), related to the
factorization (3.20) of the tensor R:

P̌+ (fα(t1) · · ·fα(tn)) = X(t̄)

∮
Z(t; u) fα(u1)

du1

u1
· · · fα(un)

dun

un
,

P̌− (fα(t1) · · ·fα(tn)) = X(t̄)

∮
Y (u; t) fα(u1)

du1

u1
· · ·fα(un)

dun

un
.

(5.2)
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Proof. Define a set of rational functions of the variable t, depending on parameters
t1, . . . , tb:

ϕtj (t; t1, . . . , tb) =
b∏

i=1, i6=j

t− ti
tj − ti

b∏

i=1

q−1tj − qti
q−1t− qti

. (5.3)

As functions of the variable t, they have simple poles at the points t = q2ti, i = 1, . . . , b,
tend to zero when t→ ∞ and have properties: ϕtj (ti; t1, . . . , tb) = δij. Set

fα(t; t1, . . . , tb) = fα(t) −
b∑

m=1

ϕtm(t; t1, . . . , tb)fα(tm) . (5.4)

Proposition 5.1 Projections P (fα(t1) · · ·fα(tn)) can be presented in the factorized
form

P (fα(t1) · · · fα(tn)) = P (fα(t1))P (fα(t2; t1)) · · ·P (fα(tn; t1, . . . , tn−1)) . (5.5)

The Proposition 5.1 implies the Theorem 3 due to the following calculation:

P (fα(t; t1, . . . , tb)) =

∮
du

u
fα(u)

(
1

1 − u/t
−

b∑

m=1

ϕtm(t; t1, . . . , tb)
1

1 − u/tm

)

=

∮
du

u
fα(u)

1

1 − u/t

b∏

i=1

1 − t/ti
1 − u/ti

q − q−1u/ti
q − q−1t/ti

.

�

Proof of the Proposition 5.1. We claim first that the projection P (fα(t1) · · ·fα(tn))
admits the following presentation:

P (fα(t1) · · · fα(tn)) = P (fα(t1) · · ·fα(tn−1))P (fα(tn)) +

n−1∑

j=1

Gj(t1, ..., tn−1)

tn − q2tj
, (5.6)

where Gj(t1, ..., tn−1) are some operator-valued functions.
Proof of the relations (5.6) is based on the inductive use of the following Lemma,

which shows, that during the move of the current P− (fα(tn)) to the left calculating
the projection P the only the simple poles at the points tn = q2tj, j = 1, . . . , n − 1
will appear, such that the corresponding operator valued coefficient Gj at (tn − q2tj)

−1

does not depend on tn.

Lemma 5.2 The following relation is valid:

fα(t1)P
− (fα(t2)) =

q−1t1 − qt2
qt1 − q−1t2

P− (fα(t2)) fα(t1)

+
qt1(q

−2 − q2)

qt1 − q−1t2
P
(
fα(q2t1)

)
fα(t1) .

(5.7)
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Proof. The relation (5.7) follows from the application of the integral transform
∮

du
u

1
1−t2/u

to the relation

fα(t1)fα(u) =
q−1t1 − qu

qt1 − q−1u
fα(u)fα(t1) + (q−2 − q2)δ(q2t1/u)fα(q2t1)fα(t1) .

�

Let us come back to the proof of the Proposition 5.1. The commutation relations
(2.7) imply that the product fα(t1) · · · fα(tn) has simple zeros at hyperplanes tn = ti,
i = 1, . . . , n−1. Substitution of these conditions to the equality (5.6) gives the systems
of n − 1 linear equations over the field of rational functions C(t1, ..., tn−1) for the
operators Gj(t1, . . . , tn−1):

n−1∑

j=1

Gj(t1, . . . , tn−1)

ti − q2tj
= G · P (fα(ti)) , i = 1, ..., n− 1 , (5.8)

where G = P (fα(t1) · · · fα(tn−1)). The matrix Bi,j = (ti − q2tj)
−1 of this system has

nonzero in C(t1, ..., tn−1) determinant,

det(B) = (−q2)
n(n−1)

2

∏
i6=j(ti − tj)

2

∏
i,j(ti − q2tj)

,

so the system has unique solution over C(t1, ..., tn−1). This implies that operators Gj

are linear combinations over C(t1, ..., tn−1) of operators G ·P+ (fα(tj)), j = 1, ..., n− 1,
so the projection of the product can be presented as

P (fα(t1) · · · fα(tn)) = G ·

(
P (fα(tn)) −

n−1∑

j=1

ϕ̃tj (tn; t1, . . . , tn−1)P (fα(tj))

)
,

where ϕ̃tj (tn; t1, . . . , tn−1) = Aj(tn; t1, . . . , tn−1)/
∏n−1

m=1(tn − q2tm) are rational functions
which nominators Aj(tn; t1, . . . , tn−1) are polynomials over tn of degree less then n− 1.
The system (5.8) is satisfied if rational functions ϕ̃tj (tn; t1, . . . , tn−1) enjoy the property

ϕ̃tj (ti; t1, . . . , tn−1) = δi,j , i, j = 1, ..., n− 1 .

This interpolation problem has unique solution given by the formula (5.3). �

5.2 The universal R-matrix

According to (3.16), the universal R-matrix R for the algebra Uq(ŝl2) with comultipli-
cation ∆ admits a factorization R = R1R2, where

R21
1 = (P̌− ⊗ id)R, R2 = (P̌+ ⊗ id)R , (5.9)

and R is the tensor of the Hopf pairing UF ⊗UE → C with respect to comultiplication
∆(D). It can be presented as

R = K · R̃, R̃ =
∑

n≥0

(q−1 − q)n

n!
R̃(n) ,
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where

R̃(n) =

∮
· · ·

∮ n∏

i=1

dzi

zi
fα(z1) · · ·fα(zn) ⊗ eα(z1) · · · eα(zn) ,

and in the notations kα = qhα, γ = qc/2, D = qd

K = q−
hα⊗hα

2 q
−c⊗d−d⊗c

2 exp

(
(q−1 − q)

∑

n>0

n

[2n]q
hα[n] ⊗ hα[−n]

)
q

−c⊗d−d⊗c
2 . (5.10)

Set

R
(n)
1 =

∮ n∏

i=1

dzi

zi

dui

ui

X(z̄) Y (ū; z̄) e(z1) · · · e(zn) ⊗ f(u1) · · · f(un) =

=

∮ n∏

i=1

dzi

zi

dui

ui
X(ω̂ū)Y (ω̂ū; ω̂z̄) e(z1) · · · e(zn) ⊗ f(u1) · · · f(un) ,

(5.11)

R
(n)
2 =

∮ n∏

i=1

dzi

zi

dui

ui
X(z̄) Z(z̄; ū) f(u1) · · ·f(un) ⊗ e(z1) · · · e(zn) =

=

∮ n∏

i=1

dzi

zi

dui

ui
X(ω̂ū)Z(ω̂ z̄; ω̂ū) f(u1) · · ·f(un) ⊗ e(z1) · · · e(zn) .

(5.12)

The substitution of (5.2) into (5.9) gives the following equalities:

R1 =
∑

n≥0

(q−1 − q)n

n!
R

(n)
1 , R2 = K ·

(
∑

n≥0

(q−1 − q)n

n!
R

(n)
2

)
(5.13)

where K is given by the expression (5.10). We have finally

Theorem 4 The universal R-matrix for Uq(ŝl2) can be written as a product of series
of formal integrals, R = R1R2, with the factors R1 and R2, defined by (5.13).

Acknowledgement

The work was supported by the grants INTAS-OPEN-03-51-3350, Heisenberg-Landau
program, RFBR grant 04-01-00642 and RFBR grant to support scientific schools NSh-
1999.2003.2. Part of the work was done during the visit of the authors to Max Plank
Institut für Mathematik. Authors wish to thank the Institute for the hospitality and
stimulating scientific atmosphere.

References

[1] J. Beck, Convex bases of PBW type for quantum affine algebras. Comm. Math.
Phys. 165:1 (1994), 193–199.

[2] V. Drinfeld. New realization of Yangians and quantum affine algebras. Sov.
Math. Dokl. 36 (1988) 212–216.

16



[3] B. Enriquez, V. Rubtsov. Quasi-Hopf algebras associated with sl2 and complex
curves. Israel J. Math 112 (1999) 61–108.

[4] V. Chari, A. Pressley. Quantum affine algebras and their representations. Rep-
resentations of groups, CMS Conf. Proc. 16 (1994), 59–78.

[5] Ding, J.; Khoroshkin, S.; Pakuliak, S. Integral presentations for the universal
R-matrix. Lett. Math. Phys. 53 (2000), no. 2, 121–141.

[6] J. Ding, S. Khoroshkin, S. Pakuliak. Factorization of the universal R-matrix for
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