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S.K. Donaldson The Mathematical Institute, Oxford

?Kéhler Geometry, Hamiltonian dynamics and Geometric Invariant Theory”

1. The problem

Let (V,wp) be a compact Kahler manifold: we seek a metric wp+i00¢ in the same
cohomology class whose scalar curvature R is constant.

Remarks

(i} In complex dimension 1 we have existence and (essential) uniqueness by the
uniformization theorem. |

(i1) In higher dimensions there are well-known obstructions (e.g. CP? blown up at
a point admits no solution) | 4

(iii) If ¢; (V') = A[wo] then const. scal. curvature < Kihler Einstein. This is the
case which has been studied most with an enormous body of work due to Calabi,
Yau, Tian and many others.

2. The conjecture

Suppose we have a line bundle L — V with ¢;1(L) = [wg]. For k& >> 0 we get an
embedding by | L* | of V in CP"; thus a point [v] in the relevant Hilbert Scheme
S parametrising sub-varieties of CP™. The group PGL(n +1),C) acts on S.

Conjecture {” Generalised Yau conjecture”)

A constant scalar curvature metric exists if and only if [v] is a ”stable point” for
the PGL(n + 1,C) action on S, and in that case the solution i) unique up to the
action of holomorphic antomorphisms. [This generalises a conjecture made by Yau
in the Kéhler Einstein case.]

3. Formal set-up

The main point of the talk is to describe a way of throwing this problem into a
standard form in which one has:

i) A Kihler manifold Z and a group K acting on Z by Kahler isometries;

ii) A moment map p : Z — Lie(K)* for the K-action,

iii) A complexification K° of K and a holomorphic action of K° on Z.

The general principle in this situation is that one expects to be able to make an
identification




pH0)/K =2°K° [+

where Z° C Z is an open subset of ”stable points”. In finite dimensions this
principle is due to Kempf-Ness-Kirwan ... There are familiar infinite-dimensional
examples arising in Yang-Mills Theory, where K is a gauge group and Z a space
of connections.

For the case at hand, consider a compact symplectic manifold (M, w) and assume
for simplicity that H*(M) = 0. Let J be the space of compatible almost-complex
structures on M. The group G of symplectomorphisms of (M, w) acts on J, pre-
serving a natural K&hler metric on J. The moment map is given by the "Hermitian =
scalar curvature”, which reduces to the ordinary scalar curvature in the Kéhler
(i.e. integrable) case. The complexified group G does not really exist, as a group,
but one can still make sense of its ”orbits” in J. The conclusion of this discussion
is that the conjecture in (2) above would follow if one could: '

a) prove a version of the familiar identification [+] in this context, such that:
b) The notion of ”stability” for the action on J matches up with the finite-
dimensional, algebro-geometric one, via Hilbert schemes.

4, Geometry of space of Kihler ‘metrics

The quotient space G°/G is interpreted as the space of Kihler metrics, and a sub-
stitute for the 1-parameter subgroups in G¢ is provided by the geodesics in G¢/G
in the sense defined by S. Semmes. One natural question is: can any two points in’
G%/G be joined by a geodesic? This corresponds to a Dirichlet problem for a de-
generate Monge-Ampere equation on V x [0,1] x St. An affirmative answer to this
geodesic question would imply the uniqueness of constant scalar curvature metrics
(invoking a general convexity principle). One can also formulate an analogue of
the ”Hilbert criterion” for stability, using these geodesics in G¢/G.



The cla551ﬁcat10n of holonomies of torsion free
connections

Lorenz Schwachhéfer

Let M be a smooth connected manifold and let V be a torsion free connection on 7M.
Such a connection provides a way of parallel translating tangent vectors along piecewise
smooth paths; indeed, if 7 is such a path from p to ¢ then the parallel translation along
7 induces a linear isomorphism P, : T,M — T,M. For any point p € M we define the
holonomy group of V at p by

Hp = {P, | 7 a p-based loop in M} C Aut(T,M).

It is well-known that the identity component of H,, is a closed Lie subgroup of Aut(Z,M) and
that moreover, #, C Aut(T,M) and H, C Aut(T, M) are isomorphic subgroups where the
isomorphism is induced by conjugation with some P, where -y is any path from p to ¢. Thus,
if we fix a linear isomorphism ¢ : V' — T, M where V' is a vector space of the appropriate
dimension, then the subgroup H := #(H,) C Aut(V) is well-defined up to conjugation,
independent of the choice of ¢ or p. H is called the holonomyof V.

Next, if 7 : (M, V) — (M, V) is the universal cover of M, then H} = (#/)o and thus,
after passing to the universal cover if necessary, we may assume that H is connected and
hence a closed Lie subgroup. In this talk, we shall only be concerned with this case.

The holonomy problem which was posed by Cartan and Lichnerowicz, is then the follow-
ing question: :

Which irreducible connected closed Lie subgroups H C Aut(V) can occur as the holonomy
group of a torsion free affine connection?

The-notion of the holonomy group was introduced in the 1926 by Elie Cartan who used
it to classify all Riemannian locally symmetric spaces. In fact, each symmetric space can
be represented as M = G/H, and the isotropy group H coincides with the holonomy group
‘H. Thus, as a sub-problem to the holonomy problem, we get the classification of symmetric
spaces. This task has been achieved by Cartan in 1926 for Riemannian symmetric spaces,
and by Berger in 1957 for general symmetric spaces.

The next step was the Ambrose-Singer Holonomy Theorem which describes the Lie alge-
bra hol, of #, in terms of the curvature endomorphisms:

bol, = ({(PyR)(zq,Yq) | Tq:Yq € TyM, 7 2 path from q to p.}) C End(V).

This motivated Berger in 1955 to pose the following criterion. If § C End(V) is an

irreducible Lie subalgebra then we define the space of formal curvatures
K(h) :={R: A*V = b | R(z,y)z + R(y, 2)z + R(z,z)y = 0}
and 7
| b:={R(z,y) |z,y € V;Re K(h)}.

Thus, by the Ambrose-Singer Theorem, §) can occur as the Lie algebra of a holonomy group
only if h = §. A Lie subgroup whose algebra satisfies this criterion is called a Berger group.
This splits the holonomy problem into two parts. :

1




&2

Problem A Classify all irreducible Berger groups.

Problem B yFo'r the irreducible Berger groups, decide if they can occur as holonomies.

Berger himself gave a complete solution to problem A in the case of metric representa-
tions, i.e. for those subgroups H C O(V, <, >) where <, > is a non-degenerate symmetric
bilinear form on V. These correspond to the holonomies of (pseudo-)Riemannian connec-
tions. He also gave a partial classification of the remaining Berger groups. For all these
entries, problem B was solved affirmatively in the following decades (until 1986). This is due
to the efforts of many mathematicians, e.g. Calabi, Alekseevski, Bryant etc.

In the early 1990s, Bryant found several new Berger groups and was also able to solve
problem B for these new holonomies. Other examples of Berger groups were found in joint
work with Q.-S. Chi and S. Merkulov, and problem B was solved for these problems as well.

Finally, in joint work with S. Merkulov, we classified all possible Berger groups, and found
yet some other new entries. This classification was obtained by direct methods; however, it
was pointed out by W. Ziller that the list of possible holonomies is related to the classically
known list of symmetric spaces. More precisely, the classification result of complex Berger
groups may be stated as follows.

Classification Theorem Let He C Aut(Vg) be a semi-simple irreducible complex Lie
subgroup, and let K C H¢ be the maximal compact subgroup.

1. If there is an irreducible real symmetnc space of the form G/K, then Hg is a Berger
group.

2. If there is a irreducible hermitian symmetric space of the form G/(U(1)- K), then both
Hc and C* - HC are Berger groups.

.3. If there is a irreducible quaternionic symmetric space of the form G/(Sp(1) - K ) then
' Hg is a Berger group.

4. The items 1. — 3. yield a complete list of Berger groups, except for the following: .

(a) GS C Aut(C"),
(b) Spin(7,C) C Aut(C?),
(c) C*Sp(2,C) C Aut(C).

Since real Berger subgroups remain Berger subgroups after complexification, it is not
hard to obtain a complete list of real Berger subgroups from this list as well. Thus, this
completely answers problem A.

There are several holonomy groups in this classification that had been previously un-
known. These are precisely those which correspond to the quaternionic symmetric spaces.
Thus, for these entries, we still need to solve problem B. This is done by the following method
which had been established in joint work with Q.-S. Chi and S. Merkulov.

Let V be a finite dimensional vector space, § C End(V) a Lie sub-algebra, and let
H C Aut(V) be the corresponding connected Lie group.



Let W :=h @ V. Denote elements of h and V by A4, B, ... and 2,y,.. ., respectively, and
elements of W by w,w’,.... We may regard W as the semi-direct product of Lie algebras,
i.e. we define a Lie algebra structure on W by the equation

[A+z,B+y]=[A;B]+A-y—B-xz.

It is well-known that this induces a natural Poisson structure on the dual space W* (the
so-called Kirillov bracket) which we denote by {, }x. Now, we wish to perturb this Poisson
structure as follows. Regarding elements A + z, B+ y € W as linear functions on W*, we
define

{A+2z,B+y}p) = {A+z,B+y}x(p) + 2(p)(z,y). (1)

Here, @ := ¢ o pr, where pr : W* — h* is the natural projection, and where ¢ : §* — A*V*
is a smooth map satisfying

1; ¢ is H-equivariant,
2. for every p € b*, the dual map (d¢,)* : A2V — b is contained in K(}).

It is easy to check that these conditions on ¢ are equivalent to saying that the bracket in (1)
is indeed Poisson, ‘ ’ ’

Let 7 : S — U be a symplectic realization of an open subset U C W*, ie. Sisa
symplectic mainfold, 7 is a submersion which is compatible with the Poisson structures on
S and P. For each w € W, we define the vector fields :

€ = #(r*(w)) € X(S),

where w € W =2 T*W* is regarded as a 1-form on W*. Then the map w > &, is pointwise
injective, i.e. Z = {£, | w € W} C TS is a distribution on S whose rank equals the
dimension of W. For the bracket relations, we compute

€a,68] = &ap ‘
€4, &) [FV )
&, &1(5) = Cavpy(zy) Where p=u(s).

i

This implies, of course, that the distribution & on S is integrable. Moreover, the first
equation in (2) implies that the flow along the vector fields £, induces a local H-action on S.
Let F C S be a maximal integral leaf of {. Clearly, F' is H-invariant, and after shrinking F,
we may assume that M := F/H is a mainfold. Then F can be extended to a principal H-
bundle over M, and the vector fields {£;,z € V'} define a connection on M whose holonomy
is contained in H. In fact, for the exapmles we consider, we can always achieve that the
holonomy is all of H.

We then get the following remarkable result.

Theorem Let h and V' be as before, and suppose there is a guadratic polynomial map
¢ : b* — A%V satisfying the conditions from above and such that its (linear) differential

d¢ : b* — K(b)

3




is a linear isomorphism. Then every torsion free connection whose holonomy algebra is

. contained in § comes from the above construction.

In particular, it turns out that this theorem applies to all the newly found holonomies.
This has some remarkable consequences. For example, it means that the moduli space of
connections with one of these holonomies is finite dimensional. Moreover, in many cases,
there exist local symmetries, i.e. vector fields on M whose flow preserves the connections.



Multiple polylogarithms at roots of unity and
motivic Lie algebras

~AB. Goncharov
June 26, 1997

1. Multiple polylogarithms. We define them via power series expansion:

' k1 .k y -

. PR S iy
LGl,---,nm(ml7-"a Il;m) = E : Eiipn2 phm (1)

0<ky <ho<oonlhpy 1 T2 ehTR

~ Here w := ny + ... + 1y, is called the weight and m the depth. The power series
(1) generalize both Euler’s classical polylogarithms Li,{z) (m=1), and nmltiple
C-numbers {r1 = ... =z, = 1) :

C(May ey ) = Z }gﬁ?l— T > 1 2

. >3 k:’rnm
O<hy <kg<..<hm ¥ 2

The multiple zeta numbers were invented and studied by L. Euler [E], then forgotten,
resurrected by V. Drinfeld [Dr] (in the form of ” Drinfeld integrals”) and by D. Zagier
[Z1], studied in [Z2], [G1-4], and appeared recently in computations in quantum field
theory {B], [K1].

The multiple polylogarithms were investigated in [G1-4]. I think the main reason
to study them is the following: multiple polylogarithms are periods of mixed Tate
motives (see s. 11 of [G2]). In this talk we study them at N-th roots of unity:
z = ... =zl = 1. Notice that Li;(z) = — log(1 — 1), so if {x is a primitive N-th
root of 1, then Liy{{y) is a logarithm. of a cyclotomic unit.

We suggest that the "higher cyclotomy theory” should study the motivie multiple
polylogerithms at roeots of unity.

2. Multiple (-values and the motivie Lie algebra of SpecZ. Let Z,
be the Qhvector space generated by the numbers {(n1,...,m) of weight w. Then
Ze 1= 3. Zy, is obviously an algebra. Indeed,

Cm) €)= 3 e = COmm) +Clm +-) + )

ki d2>0 1

(split the sum over k; < ky, ky = ko and k; > k).
Let Le(Z) be the free graded Lie algebra generated by elements esy,43 of degree
~2n—1 (n > 1) and UL,(Z)* be the dual to its universal enveloping algebra.

Conjecture 0.1 e} The weight provides o groding on the algebra Z,.
8) One has an isomorphism of graded algebras

Ze = Q?]Q@UL.Z)*, (degn®=2)

The part 3) means that relations between (’s of different weight, like {(5) =
A< ¢{T) where A € Q are impossible.




This conjecture implies that for di := dimZ;, then one should have dy = d_» +
dip3. Computer calculations of D.Zagier lead fo this formula for & < 12. Just
recently much more extensive calculations, also confirming it, were made by D.
Broadhurst. Having the theory of mixed Tate motives over Z one can prove that
dimZ), is not bigger then expected. ‘

 Example. The conjecture predicts that

Zs =< 7°,((3)((5), ((3)°*, "2 new number” >

where for "a new number” one can take ¢(3,5).

This example suggets to look only on multiple (’s modulo the products of them,
i.e. to study the vector space Zs¢/(Z>0)2. The conjecture means that one should
have an isomarphism of graded spaces '

Zwo/(Z50)? = LEZ)m<a®> ' 3)

The explicit structure of the isomorphism (3) is very mysterious. e3,_, should
correspond to {(2n ~ 1), 3 - [es,eq]* + [e5, e7]* t0 €(3,9), but already to find what
should correspond to [e3, es]* we have to go to the depth 4(!).

Remark. Let wil) (P*\{0,1,c0}) be the l-adic completion of the fundamental
group. One has canonical homomorphism

e Gal(@/Q) — Outr®(P\{0,1,00}) o)

It was studied by P.Deligne, Y.Thara and others (see the beautiful talk [t} delivered
by Y.Ihara in ICM-80, Kyoto and references there). Conjecture (0.1) is closely
related to some conjectures/questions of P.Deligne [D] about the image of the map
(4) and V. Drinfeld {Dr] about the structure of the pronilpotent version of the
Grothendieck-Teichmuller group.

3. Multiple Dirichlet L-values and the cyclotomic quotient of the
motivic Lie algebra of SpecZ[(y][%]. In this section we are concerned with a
*cyclotomic” generalization of the conjecture (0.1). Let {y be a primitive N-th
root. of unity and Z(IN),, the Q-vector space generated by the numbers

1 .
Ly, (G5 - CR) 1= WLZM,,,,,W(Q'%I:W,

Then Z(N)e: =Y, Z(N )w is a bifiltered by the weight and by the depth.

Conjecture 0.2 There erists a graded Lie algebra Co(N) over Q such that one has
an isomorphism of filtered (by the weight on the left and by the degree on the right)
graded spaces

Z(N)so/Z(N)3o = Co(N)*

The dual to the space H (ln) {C.{IN})) of the degree 1 generators of the Lie algebra
Co(N) must be isomorphic to Kan-1(Z[(N[F]) ® Q (Here Hyy, is the degree n
part of H).

Examples. Assume that ¥V = p is a prime. Let p = 1. Then by the Borel
theorem the only nontrivial modulo torsion K-groups are Ku,.i(Z) which have
rank 1 and correspond to {(2n + 1).

p = 2: generators should correspond to (2mi)~*log2,{(3),{(5), ...

If p > 2 one has

Ko @GIE) 8@= 252, forp>2



and generators should correspond to I_’Ji,,,(Cg), I<ax< %‘ The Q-space they
- span is just the space spaned by (27i)~" times the special values of Dirichlet L-
functions of conducter p at s = n.

Remark. The conjecture {0.1) predicts that Co(1) = L4(Z) is free. The main
result of [G3] implies that this can not be true for prime p > 3 because

HY) (C(p)e, Q) = HY (X, (p), Qs ® LG ©Q

where X;(p) is the modular curve and + means the coinvariants of the complex
conjugation. )

We will define the Lie coalgebra C(N), in the section 6 below. The conjectures
suggest that one should be able to determine explicitely the coproduct in C(V).
using the "natural” generators corresponding to multiple polylogarithms at N-th
roots of unity. Below we will do this for the associate graded quotient of this Lie
algebra with respect to the depth filtration. (For the Lie coalgebra itself see [G4]).

4. Properties of multiple polylogarithms. Set

1
dt
/ df 0...0 dt ::/ j—l———/\,../\ —
0 t—x; t=xp 0Lt €. St <L ity — tn —Tn

I (a1 :..:m:a )._/‘“’“‘“ i od'to odto o il dto dt
Ny gesosTp L v oov Uy« Un 431 ) o — o ;t— a1 n ..T t/ e f— G £ [ t/
ny times nn  blIIES

The following theorem is the key to properties of multiple polylogarithms:

Theorem 0.3 Lin,, . n, (T1,.&m) = In,, (i1 2132 0 s i By T)

Tm

If z; = 1 we get the Kontsevich formula.
The double shuffle relations. Set

Li(@1, oo Tonlt1s oo tm) i= Y Ly, i (1, oo B ) E Tty

ni>1

Iay c oo G Gt 1 [E15 ooy Bn) 1= Z Lnpronn (@1 1 s 2 Gy ¢ Qg BT
n;>1

lay: @t Gt ftny s Bn) 7= 1{01 7 oee 2 G 2 Gra [B1, 81 F B2y eon b1+ s 2)

For any 1 < k < n let X}, be the subset of permutations of n letters 1,...,n
consisting of all shuffles of {1,...,k} and {k + 1,...,n}. It is very easy to see that

Lifwy, ooy Tplta, ooy ta) - LilThtay oo Tnlbhias s ta] = (5)

Z L’lf[a:o.(l), wes Tr(m) ‘tﬂ(l), .‘.,ta(n)} + lower depth terms
Uezk,n
For example Liy (z)Li1(y) = Lir (2, y) + Liy 1 (y,2) + Lizx(zy).

Thedrem 0.4

May + g s Yty oo ] - Iagsr 0ot 0n U, oo tn] = (6)
Z I*[aa'(l)a oy Bgp) 1&0(1)7 “'7td,(n)]
Uezkyn




A

Here is the simplest case: I1(z)l () = L 1z, y) + L1 (y, ). Tndeed,

Yoar [t odt /1 dt  dt /1 e dt
f  ——— cand = - [s} -+ lo)
i) t—xz o i‘—y 0»t—$ t—y 0 t‘_y t—x
For multiple (’s these are precisely the relations of Zagier.
Distribution. relations.

Proposition 0.5 For [z,[ <1 one has

Li(@h, @by ltr, s tm) = Y L1, o Ymlltn, oo ) (7)

ok
yi=w!

5. The dihedral Lie coalgebra and muiltiple polylogarithms. Let G
be a commutative group written multiplicatively. We will define a bigraded Lie
coalgebra D2(G) = @p>1DHG). Let us first define a graded abelian group Dg(G).
The group D7(G) will be its quotient.

Let C,y1 be the principal homogeneous space for the cyclic group
Zin+ VZ. Let Z{Chiq] is the abelian group of Z-valued functions on Chyq,
Z[Crnyi1]® the subspace of the functions with the sum zero and Z[Cpi1]o is the quo-
tient along the constant functions. Let Pol®(Z[Cri1]o) be the algebra of polynomial
funetions on Z[Cpii]o- It is graded by the degree. Let D, be the dihedral group
of symmetries of the (n + 1)-gon and Xn41 : Dpyr — {31} the character trivial on
the cyclic subgroup and sending the involution to (—1)"*1. Set

DYG) = (G[Cn+1]0 ®z Pol*(Z[Cryilo) ®z Xn—l—l) b
. 41

The elements of the group D?{G) can be presented by the (eztended) nonhomo-
geneous dihedral words in G:

{90,915 s Gulto 1 oo 1 tn} such that go ... "gn = 1,
{90,915 <os nlto ¢ et} = {0y g1, s Gl F 0 1 o s B+ 0},
and (the dihedral symmetry)
{907 wesy G, gnlt{) : tl Tt tn} = {gls -~~,Qn;901t1 FIRETI t'n, . tO}

{go, -..,gn‘to Taee s tn} = (_1)17,—{-1{97“ ..~.1gg‘tn . e N to}

One can picture the elements of D?(G) as n + 1 pairs (go,t(;), wey {Gn, tn) located
cyclically on an oriented circle:

82

e

g3

& ) g,

We can parametrize the generators in a dual way, using the (eztended ) homoge-
neous dikedral words in G-

{90915t gmlto,ontn}, totdtn=0
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such that (homogeneuty in g;’s):
{g-90:. 19 gnlto,tn} = {90 ... gnlto, s tn} forany ge@

and the dihedral symmetry holds.
The duality between the homogeneous and nonhomogeneous dihedral words is
given by

{g0: 912 -2 Gnltoy ceor bt > {95791, 07 202, er Gy “Golto 1t 4+ 11 2 e tto+ o 15},
{90,915 -, gnlto 1 - 1t} == {g0 1 Gog1 : - : Go-Gnlts — fo, 82 — b1, to — En}

Definition 0.6 1. The double shuffle relations subspace of DHG) is generated by
the elements

Z {gu(l) P ga(n) : gn—!-l"ta(l): oy ta’(n))tn+l})
€Lk

Z {zo,md(l),...,mt,(n) [to To(1) 2 om ta(n)}
€L, n :

The distribution relations subspace of D?(G) is generated by the elements

{ab, 2h, o zhlto  toy T ttomt = D U0y Yrs e Ynll to t 1Lty )

.l
Y=

(If G is finite we assume that 1 divides |G| ).
2. DX(G) is the quotient of DE(GF) by the double shuffle and distribution sub-
spaces. ' ‘

Now we make the crucial step. Let us define a cobracket
§:D2@) — ) DU ADUE)
kAl=n
setting
3{Gos s Gnlto i - 1 tn} 1=

n—-1 n

Z Z{gj+i+1, woos Gibms Yig i * oo Bjpnrd } A By Gty voos Gially 1 oes tiga}

=1 j=0
where indices are modulo n + 1 and Zijgj41.-.9j4+4 = L, Uiz Qi+i+1.-Gj4+n = 1. Bach
term of the formula corresponds to the following procedure: we choose an arc on
the circle on the figure beiween the two neighboring distinguished points, and in
addition choose a distinguished point different from the ends of the arc. Then we
cut the circle in the choosen arc and in the choosen point, make two naturally
oriented circles.out of it, and then make the dihedral word on each of the circles
out of the initial word in a natural way.




|

There is & similar formula for the homogeneous dihedral words, just exchange
g’s and t's on the circle. For example restrictiong to #; = 0 one has

g g:0r = {go:a}r{sm:g}+{g:nir{se -'9q}+{92 tgo} A {go: o}

Theorem 0.7 § provides the structure of bigraded Lie coalgebras on both D&
and D). (i.e. 82 =0).

6. D,(un) and motivic multiple polylogarithms. A mixed Hodge structure
is called a Hodge Tate structure if all the Hodge numbers 477 with p # ¢ vanish. The
category of mixed @-Hodge Tate structures is canonically equivalent to the category
of finite dimensional comodules over a certain graded pro-Lie coalgebra LT over Q.
One can attach to the iterated integral related to Lin,, . n,. (%1, .., Tm) by theorem
(0.3) an element Liy, . n. (%1,-,%m) € LET, the motivic multiple polylogarithm.
See 5.9 and s.11 of [G2] where £LET and an w-framed mixed Hodge Tate structure
ffz’mw{nm {z1, .., Zm ) related to the iterated integral are defined.

Definition 0.8 C(IV),, is the Q-subspace of LY generated by the motivic multiple
polylogarithms at N-th roots of unity of weight w.

Theorem 0.9 C(N)s := @y>1C(N)w is a Lie subcoalgebra in LF.

The category of mixed Tate motives over the scheme Sy = SpecZ[(n)[ %] is
canonically equivalent to the category of finite dimensional comodules over a graded
Lie coalgebra L{Sy)e called the motivic Lie coalgebra of that scheme. C(IV), is
a subcoalgebra Lie in the motivic Lie algebra of the scheme S, but if does not
coinside with it in general (G3]).

Let us define elements {Z1, ..., Zm}ny,....nm OY

{21y s Tons Ty 01 1 e 1 1 O} =2 Z {21, s Bmtng e 0t Tt
n; >0

Let gy be the group of N-th roots of unity.
Theorem 0.10 Assume that 2 = 1. Then the map
{531, --wmm}ni,.u,mu ey i’inl,...,nm (xls vy mm)

provides a ‘morphism of the graded (by the weight) Lie coalgebras
Di(pn) = grPPhC(N), |

It is easy to show that
Dp(pn) @ Q= Kop-1(SN)®Q i (n,N) # (1,1)

The degree w part of the cohomology of the Lie coalgebra D5™ (uy) is related in a
very mysterios way to cohomology of the local system with fiber $“~™(V/,,) on the
modular variety I'i(V; m)\SLy(R)/SO.,. Here V;, is the standard SL,,-module.
The simplest case N = p,m=2,w = 2 is treated in [G3].
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HILBERT SCHEMES AND REDUCTIVE GROUPS
VI1cTOR GINZBURG

This is a survey of a joint work currently in progress with Roman Bezrukavnikov.

We will have some fascinating unexpected relations between Combinatorics, Al-
gebraic Geometry and Lie theory. These relations are similar to the classically
known relations between the combinatorics of symmetric functions, the geometry
of conjugacy classes of n X n -matrices, and the representation theory of the general
linear group GL,(C). Our goal is to “double” the setup by replacing polynomials
in n variables invariant under the action of the symmetric group S,, by polynomials
in two n-tuples of variables invariant under the simultaneous S,-action. As will be
demonstrated below, this corresponds in geometry to replacing the set of conjugacy
classes of matrices by the punctual Hilbert scheme Hilb™(C?).

Representation theoretic part of the story remains quite mysterious at the mo-
ment, but it is expected to be related to the theory of double-affine Hecke algebras
[Ch] and to representation theory of some double-loop groups. It is therefore not
accidental that our approach leads to a proof of a positivity conjecture concerning
Macdonald’s polynomials, since the latter were shown by Cherednik to be most
adequately understood in terms of double-affine Hecke algebras. :

This work has been strongly motivated by combinatorial ideas of Garsia and
 Haiman [GH], [H] and also by the Nakajima lectures [Na]. We are also grateful to
M. Kapranov for very useful discussions.

1. HILBERT SCHEMES

Let X be a connected complex algebraic variety. We write Ox for the sheaf
of regular functions on X. For n = 1,2,3,..., let Hilb®(X) denote the punctual
Hilbert scheme of all ideals I € Ox such that Ox/I is a C-algebra of dimension
n. We will be mostly concerned below with the case X = C*, so that Hilb™(C¥)
becomes the variety of all codimension n ideals in the polynomial algebra in %
variables. An excellent survey on punctual Hilbert schems may be found in [Na).

BASIC PROPERTIES

1.1. There is a tautological algebraic vector bundle Taut — Hilb™(X); its fiber
over a point I € Hilb®(X) is the vector space Ox /I (here I C Ox is an ideal).
Thus Taut is a rank n vector bundle whose fibers are Ox-modules.

1.2. For I € Hilb?(X), the support of the Ox-module Ox/I is a finite subscheme
of X. Set-theoretically, this is a finite unordered collection of points of X. Each
point occurs with a certain multiplicity so that we may think of supp(Ox/I) as a
zero-dimensional cycle in X of length (= sum of the multiplicities) . The assign-
ment I > supp(Ox/I) gives a well-defined map « : Hilb®(X) — X" /S,. The map

Typeset by AMS-TEX
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7 is an isomorphism over the open dense subset of X™ /Sr formed by n-tuples of
pairwise distinct points of X.

If X is smooth then X™ /S, is a normal variety. Hence all fibers of m are connected
and the pull-back of functions gives an isomorphism:

*: O(X"/S,) — OHIb*(X)) (1.1.1)

1.3. For a general smooth algebraic variety X, the Hilbert scheme Hilb™(X) may
be both singular and reducible. This never happens however in the special case
of 2-dimensional varieties. One has the following fundamental result, see [ES], [F],
[Naj.

Theorem 1.3.1. Let X be a smooth complex surface. Then

(1) Hilb™ X is a smooth irreducible variety of dimension 2n.
(i) The map 7 : Hilb" X — X"/S, is semz—small in the sense of Goresky-
MacPherson.

2. HILBERT SCHEME OF A 2-PLANE

" We assume throughout this section that X = C2, and write (z,) for the coor-
dinates on C2.

2.1. The group T = C* x C* acts on X = C? by (t1,82) : (z,9) > (t1- 3, t2 - ¥).
This induces a natural T-action on Hilb™X. The fixed points of the T-action on
Hilb™ X form a finite set which is in (1 ~ 1) -correspondence with the set of Young
diagrams with n boxes. The correspondence is constructed as follows. Given a
Young diagram

%

(0,1)
A= | (1,0)

we enumerate the boxes in some order, and write (a;, b;) for the coordmates of the
i-th box. This wa,y we obtain 7 monomials:

@y bl

gyt gigba | pagbn o Clz, ]
Define a pomt in Hilb”(X) to be the 1dea1 I C Clz,y] spanned over C by all mono-

mials in x and y with the exception of the above written ones. It is straightforward

to see that I is indeed an ideal, and that the I,’s are exactly the fixed points of
the T-action.
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2.2. We have X" ~ (C?)" ~ (C")%2. Whrite the coordinates on C? in the form
x=(z1,...,Zn), ¥ = (Y1, .-+ ,Yn), s0 that C[X"*] = (C[x, y], the polynomial algebra
in 2n variables. The symmetric group S, acts on C** by permutatlons of the
(1,...,2,) and (y1,...,yn) simultaneously, and we have

O(X™/8,) = Clx, y]°» =|Symmetric pol;ynomiaISVunder‘ diagonal action

Combining this with isomorphism (1.1.1) one obtains

OHib"X) = O(X™/8,) = C[x,y]*" (2.2.1)
2.3. Let C[x, y]5'8" denote the subspace of skew-symmetric polynomials under the
diagonal S, -action. Given polynomials 91, ... ,%, in two variables we construct a

skew-symmetric polynomial

¢1A- . -/\¢n (xy) Z (~1)3-¢1(xs(1), ys(l))'¢2($s(2)a ys(z))"' . -"‘)bn(xs(n)a ys(n))'
) SES,

| (2.3.1)

 This way we obtain an isomorphism of vector spaces

A Cle, 3] = Cjx, yJ° (2.3.2)

Recall the tautological rank n vector bundle Taut on Hilb”X and introduce the
line bundle

L= /\n Taut
Proposition 2.3.3. There is a natural isomorphism

T(Hil" X, £) ~ Clx, y]'&

We only indicate here how to construct a map from the RHS above to the LHS.
By (3.2.2) it suffices to associate a global section of L to any element 1 A ... A
¥n € C[x, y]¥8", see (8.2.1). To this end note that each v; € Clz,y] projects, for
any ideal I C Clz,y], to an element in Clz,yl/I, hence defines a regular section
Ji € T(Hilb" X, Taut). We then associate to i A ... A, the section

BiA... Ay € T(HI"X, \" Tous). |

Observe that the space I'(Hilb™ X, £) has a natural O(Hilb™ X )-module structure,
while the space C[x,y]"®® has a natural C[x, y]®»-module structure. The isomor-
phism of Proposition 2.3.3 is compatible with these structures. Observe further
that if n > 1 then the C[x, y]%»-module C[x,y]¥8" is not free and has generically
rank one. The meaning of the proposition above is that the line bundle L is a
natural “resolution” of the module C[x, y]8" by a locally-free sheaf. Specifically,
we have the smooth resolution 7 : Hilb"X —+ X™/S,,, see 1.2, and proposition 2.3.3
means that the sheaf on X® /S, corresponding to the O(X™/S,,)-module C[x, y}*&?
is canonically isomorphic to 7,£. Moreover, one can show that R*r,L = 0 for all
kE>0.
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" 2.4. To each Young ‘diagram X with n boxes we associate a skew-symmetric poly-
nomial Ay € C[x,y|*8" by generalizing to 2n variables the construction of the
Vandermonde determinant in n variables. Specifically the diagram A gives rise, as

explained in 2.1, a collection of non-negative integers ay,b1,az2,b2,... ,an, by. Put
a1, b1 ai,.b @ ,,b
A TE 0k T el T M
0z, ba a3z, by Gz, b2
An(x,y) =det| T1 Y1 T2 U2 n Yn
T S 7o

Note that in the notation of (2.3.1) we have

Ax(x,y) = z%yP Ax®2y®2 AL ALyt (24.1)
The algebraic role of the polynomials Ay is explained by the following

Lemma 2.4.2. The set {Ay, X is a diagram with n bozes} is a minimal set of
generators of the C[x, y]° -module Cjx, y]¥&".

We may also view Ay as a regular section of the line bundle £, see Proposition
2.3.3. Then we have

Lemma 2.4.3. If \,u are two Young diagrams, then Ax(I,), the value of the
section Ay € T(Hilb" X, L) at the point I, € Hilb*X, see 2.1, is non-zero iff A =y,
symbolically: Ax(I,) = 6, (Kronecker delta).

= 3. DuavLity

We keep the assumption that X = C? and write X for the dual vector space.
The symmetric algebra SX may be identified in a natural way with the algebra - .
D(X) of the constant coefficient differential operators on X. Thus we have

CX]~S8X ~ D(X)

Therefore, we may view a point in Hilb" (X) as a codimension n ideal I C D(X).
Let #ol(X) be the (infinite dimensional) vector space of holomorphic functions
on X. Given an ideal I C D(X) we consider the system of differential equations

{up =0, u €I} (3.1)

One can show that if I has codimension n in D(X) then the space of homolorphic
solutions ¢ € Hol(X) of (3.1) is an n-dimensional vector space Sol;. The space
Sol; is clearly stable under translations. Let Gri¥®™! be the fixed point set of the

group of translations acting on the Grassmannian Gr, (#Hol(X)) of all n-dimensional
subspaces in Hol(X). One proves

Proposition 3.2. The assignment I — Sol; establishes an isomorphism of Hilb™(X*)
with Grir®™®!,  The tautological rank n vector bundle on Gr,(Hol(X)) goes under
the isomorphism to the dual of the tautological vector bundle Taut on Hilb"(X).

The key point of our approach is a construction of a canonical holomorphic
(non-algebraic) section:
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A € Tha(Hilb™(X) x Hilb™(X), LK L) (3.3)

defined uniquely up to constant factor. To define A, one first proves the following
holomorphic analogue of algebraic results (2.3.2) and 2.3.3

N\ Hol(X) < Hol(X™)e® = [yq (Hilb" X, £) (3.4)

(note that the first map here is not surjective, as opposed to (2.3.2)). Hence, for
any I € Hilb"(X), the one-dimensional space A" Soly C A" Hol(X) gives via the
composition (3.4) a line in T'ne(Hilb"X, £): As I varies, these lines form a line
bundle on Hilb™(X) which is isomorphic, due to Proposition 3.2, to (£)*, the dual
of the canonical line bundle £ on Hilb?(X) (here £ is not the dual of £ but just
A" Taut for Hilb™(X)). In this way, the canonical identity element of L& (L)
gives rise to an element of I'(Hilb"(X), £ ® I'(Hilb" X, L)), that is to (3.3).

Write X7, for the Zariski open subset of X™ formed by pairwise distinct n-
tuples of point’s’ of X. We may view X[.,/S, as a Zariski open subset of Hilb”X,
The restriction to Xg5,/Sy of the tautologma.l bundle on Hilb? X, hence of the line
bundle £, has a canonical trivialisation. The meaning of the canonical section A
in (3.3) is explained by the following:

Proposition 3.5. (i) In the trivialization of LR L over X’;"eg/S’n X XJp/Sn the
section A is given by the formula

A('v v) = Z( 1)% - els®w) Vi € X;g, vE Xigp
sES,

(i) For any Young diagram X with n bozes we have (see 2.1)

A(lr,#) = 8a(9)
From the explicit formula in (i) we deduce
Corollary 3.6. The section A is symmetric w.r.t. substitution X < X.

There seems to be an analogue of the above construction with X = C? being
replaced by the square of an elliptic curve. In that case the construction is closely
related to the Mukai transform.

4. THE n!-CONJECTURE AND MACDONALD POLYNOMIALS

Let X = C? and D(X™) be the ring of constant coeffcient differential operators
on X™. For any polynomial P € C[X™] the D(X™)-module D(X™) - P generated
by P has finite dimension over C.

In 1993, A.M. Garsia and M. Haiman proposed the followmg, see [GH].

nl-conjecture.
For any Young diagram A wzth n bozes

dimg D(X™] - Ay =mn!

In view of Proposition 3.5(ii) the nl-conjecture follows from the following more
general result




" Theorem 4.1. For any I € Hilb (X) the restriction of the section A(I, ) to X,
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reg
satisfies

dime D(X™) - A(1,#) =nl!
Idea of Proof. For generic I, ie. for I € Xreg/ Sn, one calculates the dimension
of D(X™) - A(Z, ) directly, using the explicit formula of Proposition 3.5(i). Now,
let Diag := Hilb™(X) \ X, Teq/Sn be the special divisor. We must prove that the
dimension of the vector space D(X™) - A(I,e) does not drop when I becomes
a point of Diag. In local coordinates, this amounts to showing that a certain
determinant does not vanish at the divisor Diag. Consider now a Zariski open
subset Diag'® C Diag, the inverse image of the susbet of X™/S,, where exactly two
among the elements of the n-tuple forming a point of X"/8S, coincide. We verify
by hand that the determinant in question does not vanish at the points of Diag;eg,
hence does not vanish on X7 /S, UDiagre. But Hilb™(X) \ (X2 Xreg /Sn U Diagreg),
the complement of this set, has codimension > 2 in Hilb?(X). Therefore the
determinant, being a holomorphic function on the smooth variety, cannot vanish at
a point of this complement as well. - [

Garsia and Haiman came up with the n!-conjecture in an attempt to prove
another conjecture concerning Macdonald’s polynomials. In more detail, for any
two complex parameters q,t € C*, and a Young diagram X with n boxes, Macdonald
has introduced in [M] a so-called Macdonald’s symmetric polynomial Hy(x,q,t) €
C[x]% . The vector space of symmetric functions has a C-basis formed by the “big
elementary symmetric functions” S,(x), see [M]. In particular, for any A, one has
an expansion

Hy(x,0,8) = ) Kxu(e,t) - Sux) (4.2)
2<A

where K, turn out to be polynomials in ¢ and t. In the special case { = 1
Macdonald’s pelynomials become the classical Hall polynomials, see [M] and the
polynomials K ,(g,1) become the Kostka polynomials. The latter are known to
have all coeffcients in Zxo. Motivated by this, Macdonald proposed

Positivity con,;ecture [M]. All coeffcients of the polynomzals K n(g,t) are in
Lxo-

Integrality of the coefficients has been proved in a combinatorial way. Positivity
turned out to be much more hard. In the case t = 1, the coefficients of the Kostka
polynomial K ,(g,1) = >, K ,{n) - ¢"® have a geometric interpretation as the
multiplicity:

Ky uln) = [H"(BA) Xl (4.3)

where x,, is the irreducible representation of the group S, correspondmg to the
Young diagram u, Bj is the variety of complete flags in C* that are fixed by a nilpo-
tent endomorphism with the Jordan form given by the diagram \. Finally H™(:)
stands for the n-th cohomology group, considered as an S,,-module via the Springer
construction, see e.g. [CG]. Formula (4.3) immediately implies that K u(n) € Zsq.
It is likely that there is a similar geometric interpretation of the coefficients of the
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polynomials K ,(g,1) in terms of the cohomology of the fixed point variety of two
commuting unipotent transformations of a certain infinite dimensional partial flag
manifold (compare with Proposition 3.2).
Due to the absence of a geometric interpretation, Garsia and Haiman suggested
an alternative algebraic approach to the Positivity conjecture. They observed that
the vector space D(X™) - Ax has a natural bi-grading

DX™) - A= P HY (4.4)
1,520
induced by the blgra.dmg on C[x, y] by the total homogeneous bidegree in x and y.

Furthermore, each subspace Hy J is stable under the diagonal S, -actlon on Clx,y].
Garsia and Haiman introduced the generating functions:

MY x4, (4.5)
£,320

~ and observed that the Positivity conjecture would follow provided one knows that
the polynomial (4.5) equals K} (g, t) Indeed, Haiman proved

Theorem [H]. If the n!-conjecture holds, then for any Young diagrams )\ and p,
the polynomial (4.5) is equal to K ,(q,t).

Thus, Theorem 4.1 combined with the theorem above proves the Pos:1t1v1ty con-
jecture.

5. HILBERT QUOTIENTS.

5.1. Let I' be a finite group, let Y be a smooth complex algebraic variety with an
algebraic I'-action. The orbi-space Y/I' has the natural structure of an algebraic
variety, Wthh. is not smooth in general. We define a “resolution” (not necessarily
smooth) Y/I‘ — Y/T, called the Hilbert quotient, as follows. Let N be the cardi-
nality of the general [-orbit in Y, and let ¥° C ¥ be the union of all I-orbits of
cardinality N. Any such I-orbit is an unordered N-tuple of distinct points of Y,
hence may be viewed as a point in HilbY Y. This way one gets an 1mbeddmg

Y?/T — HilbY Y. We define Y/ T to be the closure of the image of this imbedding.

5.2 Example. Let Y = C? and let I' C SLy(C) be a finite subgroup. Then the
space C?/T’ has an isolated singularity at the origin, called a Kleinian singular-
ity. For the proof of the following unpubhshed result of Ginzburg-Kapranov and
Nakamura, see [Nal.
Proposition. The Hilbert quotient @ ~3 C2/T is the minimal resolution of C?/T".

This result has a close relation to the McKay correspondence, cf. [Naj.
5.3. Let X be an algebraic variety and n =2, 3, ... . We now apply the construc-
tion of 5.1to ' = X}, acting naturallyon Y = X™ by permu@ji\o\ns. We have N = n!
so that X»/S, C Hilb™(X"™). There exists a morphism v: X#/S,, — Hilb™(X) such
that the projection X*/S,, — X™/S, factors as a composition

X775, % Hilb* X — X"/5,.

Here is one of our main results,
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Theorem 5.3.1. For any smooth complezx surface X the morphism v: }(/”}gn —
Hilb” X is an isomorphism.

Idea of proof. Since the claim is local with respect to X, completing at a point
of X one reduces the theorem to the special case X = C?. In this case we explicitly
construct an inverse to the map v as follows. First, we may replace X by X and
identify D(X™) with C[X"]. Then by Theorem 4.1 the assignment I — D(X™) -
A(1,e) associates to each point I € Hilb™(X) an n!-dimensional cyclic C[X™]-
module. The annihilation of the element A(Z, ) is an n!-codimensional ideal in
C[X™], hence a point in Hilb™(X™). It is easy to see that the map Hilb™(X) —
Hilb™ (X™) is inverse to v. O

5.4. Write K5»(X") for the S,-equivariant topological K-group of X" and
K (Hilb™ X) for the ordinary (non-equivariant) K-group of the Hilbert scheme. Us-
ing Theorem 5.3.1 we can prove the following

Theorem 5.4.1, For any smooth complex surface X there is a natural group ho-
momorphism
K5 (X™) — K(Hilb" X)
such that the induced map
Q®z K5+ (X™) — Q @z K(Hilb" X)
is an isomorphism.

Remarks. (i) Although the K-groups above have natural ring structures the map
in the theorem is not a ring homomorphism.

(ii) It would be interesting to compare the S,-equivariant derived category of co-
herent sheaves on X™ with the derived category of coherent sheaves on Hilb™ X.
(iif) I. Grojnowski has defined (see [Na] for details) on €, K (Hilb™ X) the struc- -
ture of a commutative and cocommutative Hopf algebra. Independently of this, -
G. Segal has constructed in [S] the structure of a commutative and cocommu-
tative Hopf algebra on @ 5, K5 (X™). We verified (following a suggestion of
E. Vasserot) that the morphism of Theorem 5.4.1 is compatible with these Hopf
algebra structures.

6. CONNECTION WITH REDUCTIVE GROUPS.

We indicate now how Theorem 4.1 has a natural interpretation and a generali-
sation in the framework of complex reductive groups.

6.1. Let G be a connected complex reductive group with Lie algebra g, let b be
a Cartan subalgebra in g, and W the Weyl group of (g,h). The group G acts
on g via the adjoint action, and we let C[g]®, resp. C[h]", denote the algebra of
G-invariant polynomials on g, resp. W-invariant polynomials on . By the classical
result of Chevalley, the restriction map Clg] — C[h] induces an isomorphism

Clgl® = Cp}".

Inverting this isomorphism yields an imbedding CHW ~ Clg]¢ — C[g], hence gives
raise to a morphism of the corresponding affine varieties

g = Specn Clg]® — Specm C[H]" = p/W.. (6.1) -



HILBERT SCHEMES AND REDUCTIVE GROUPS 9

Now let g™ C g be the union of all G-orbits in g of maximal dimension. Kostant [K]
proved that the restriction of (6.1) to g™ induces a bijection

°5/G 5 bW, | (6.1.1)

6.2. We would like to have a “doubled” version of (6.1.1). To that end we consider

the space g @ g with the diagonal G-action, and also the space ) @ § with diagonal

W-action. Notice that unlike what one had in 6.1 the G-saturation of the subset

h®h C gPg is not dense in g&g. This suggests introducing the following commuting

variety :
Z={(z,y)€9dg|[z.y]=0}

Clearly Z is a closed G-stable subvariety of g@ g containing @5, hence G- (h @ h).

Theorem 6.2.1 [R]. Z equals the closure of G- (h ®Y). In particular, Z is an
irreducible variety and dim Z = dim g + dim§.

The following analogue of the Chevalley Restriction Theorem has been recently
proved by T. Joseph {Jo].

Theorem 6.2.2. The restriction C[Z] — C[h @ b] induces an isomorphism
cz Sepen”.
As in 6.1 the above theorem gives a natural morphism
Z — (heh)/W. (6.2.3)

Example. Let G = GL,. Then the map (6.1) is essentially given by assigning
to an m X m-matrix z its characteristic polynomial z + det(Id — z - z); the map
(6.2.3) is essentially given by assigning to a pair (x,y) of commuting matrices the
polynomial in two variables z,w +> det(Id — z- z — w - y).

6.3. Let Z™8 C Z be the union of all G-orbits in Z of maximal dimension. The
map (6.2.3) is constant along G-orbits but the induced map Z*¢/G — (h @ §)/W
is not a bijection.

To understand the situation consider the case G = GL, first. Then §h = C*
and W = Z,,. We identify h & § with C*>* = X", () @ b)/W with X"/S,,, where
X =(2, asin 2.2.

Note further that given a pair (z,y) of commuting matrices we can make C* into
a C[X]-module by letting a polynomial P € C[X] act as the operator P(x,y). Call
a vector v € C* eyclic if C[X] -v = C". Let Z° C Z be the subset of pairs (z,y)
that have a cyclic vector. The annihilation of such a vector is a codimension n ideal
in C[X]. Moreover, this ideal does not depend on the choice of the cyclic vector
and does not change if (z,y) is replaced by a conjugate pair. Thus, associating to
the G-orbit of (z,y) € Z° the annihilator of a cyclic vector gives a bijection

Z°/G = Hilb" X (6.3.1)

such that the map Z°/G — (h ® §)/W arising from (6.2.3) becomes identified via
(6.3.1) with the standard projection Hilb” X — X ™[5, It is easy to check that
Z% ¢ 7€, Thus we see that only the subset Z°, but not Z*°8, has a nice quotient
by the G-action.
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" 6.4. There is no analogue of the notion of a cyclic vector, hence of the set Z°, for
a general reductive group G. We therefore have to proceed in a different way. To
that end, given (z,y) € Z, write a(z, y) for the simultaneous centralizer of both z
and y in g. If (z,y) € Z™8 then dima(z,y) = dimh and the collection of vector
~ spaces a(z, y) forms a G-equivariant vector bundle ¢ on Z™8. We put L = A= (a%),
a line bundle on Z™€. The graded space

A=PA  A=T(z°,18%)° (6.4.1)

k>0 .

has an obvious graded algebra structure, and for the reductive group G' we define
Hilbg :=ProjA (= projective spectrum of A).

This definition is motivated by the following result, which can be deduced from the
construction of the Hilbert scheme of X = C? by means of Geometnc Invariant
Theory, explained in [Na).

Theorem 6.4.2. Let G = GL,,, and p: Z0 — Hilb™ X the map constructed in 6.3.
Then:
(i) There is a natural isomorphism L ~ p*L.
(#i) There is a natural isomorphism Hilbg ~ Hilb"(X) compatible with ().
In the case of a general reductive group one has the following analogues of iso-

morphisms 2.2.1 and 2.3.3 respectively.

Lemma 6.4.3. There are canonical isomorphisms
(i) Ao =0(z"%)° = Cly & h]"
(i) Ay =T(2"%, L)% = Clp @ pl*en.
Note that by definition the line bundle L descends to a line bundle £ on Hilbg

such that I'(Hilbg, £) = 4;. Note also that part (i) of the lemma gives a natural
projection m: Hilbg — (@ h)/W induced by the algebra imbedding Ag < A.

6.5. Con31der now the Hilbert quotient (h® b) /W. One constructs a map
v: (b @ b)/W — Hilbg making the following triangle commute

() b)/W s Hile
N NG
(heop)/Ww

In the special case G = GL,, the map v is nothing but the map v: ﬁq/gn — Hilb" X
introduced in §.3. ;
The following is a “doubled” version of (6.1.1).

Main ConJecture For any reductive group G the variety Hilbg is smooth and
the map v: (h @ b) /W - Hilbg is an isomorphism.

If G = GLj,, then by Theorem 6.4.2 the Main Conjecture reduces to Theorem
5.3.1 for X = C2. For G = GL,, we can a,lso prove the following.



LOCAL STRUCTURE OF MODULI SPACES
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This is a report on a joint work with Vladimir Hinich.

1. Let X be a smooth algebraic variety over a field k of characteristic 0. Assume
that X has no infinitesimal automorphisms, i.e. H°(X;7x) = 0 (Tx being the sheaf
of vector fields). Let M = Spec(Opq) be the formal moduli space of deformations
of X; Opq is a complete local k-algebra.

We have the Kodaira-Spencer isomorphism
TM;XZHI(X;Tx) (KS)

Here Trs,x = (mo,,/m3,,)* is the tangent space of M at X. We want to consider
the ‘

Problem. Describe the whole algebra Opq in terms of X.

Let
Tx=RI(X;Tx): 0 —=T°— Tt — ...

be a complex computing the sheaf cohomology of 7Tx. The last sheaf is a sheaf
of Lie algebras, hence 7® may be chosen to be a differential graded Lie algebra; it
is a correctly defined object of the appropriate derived category of Homotopy Lie
Algebras, [HS1].

Theorem 1. One has a canonical isomorphz’sm of k-algebras

Om = [Hy*(TR)I* M

The homology of a (dg) Lie algebra is a (dg) coalgebra. The dual space is an
algebra. The isomorphism (1) is a generalization of the Kodaira-Spencer isomor-
-phism.

This theorem is a just an example of a quite general faet; the similar results
(with the same proof) hold true for other deformation problems. For example, we
may wish to describe deformations of group representations, etc. Cf. [S2], [HS1].

I know two proofs of Theorem 1. The first one works in the case when M
is smooth, and uses the higher Kodaira-Spencer maps, cf. [HS1]. The second one
works in general situation. It uses certain very natural sheaf property of Lie-Deligne
functor, and is decribed below.

2. Deligne groupoids. Let g = @;>p g* be a nilpotent dg Lie algebra. Recall
that groupoid is a category with all morphisms being isomorphisms. The Deligne
- groupoid G(g*) is defined as follows. Its objects are Maurer-Cartan elements

MC(g®) = {y € ¢*|dy + %[y, y] =0}
1
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" Let G (go) be the Lie group corresponding to the nilpotent Lie a,lgebra, g®. The

algebra g® acts on MC(g*) by the rule
zoy=dz+[z,y], zecg’yeMC(g"),
hence the group G(g%) acts on MC(g®). By definition,

Homg(gc) (v, y') = {g € g(go)‘y’ = gy}

Morphisms are composed in the obvious way. Of course, this is a generalization of
the Lie functor from Lie algebras to Lie groups.

3. Let us return to our deformation situation. The variety X defines a functor
Defx : Artr — Groupoids

where Artp is the category of artinian k-algebras with residue field k. Namely,
Defx(A) is the groupoid whose objects are flat deformations of X over A, and
morphisms are isomorpshisms identical on X.

On the other hand, if g® is a dg Lie algebra over k, it defines a functor
Gge : Artx — Groupoids,

by .
Gy (A) =G(ma®g°)

Where my4 is the maximal ideal of A.

Example Assume that X = Spec(R) is affine. Then one sees immediately
from the definitions (Grothendieck) that one has an isomorphism of functors

DGfX = ggo (2)

where g* = Tx = H%(X;Tx) = Dery(R) considered as a dg Lie algebra concen-
trated in dimension 0.

Sometimes when (2) holds, the people say that the dg Lie algebra g° governs the
deformations of X. '

Theorem 2. Let X be arbitrary, and (2) kolds for some g*. If H%(g*) = 0 then

Opm = (Hy™(g"))*

Proof. For an arbitrary A € Artx, we have
Hom ars, (Om, A) = mo(Defx(A)) = mo(G(ma ® g*)) =
= Homay((Hy*(g))*, 4) A

4. Now, we know the Lie algebra g* for affine varieties, and we want to know it
for arbitrary ones, i.e. we want to glue them.



What is a vertex algebra?.
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The answer to the question in the title is that a vertex algebra is really a sort of
commutative ring. I will try to explain this in the rest of the talk, and show how to use
this to generalize the idea of a vertex algebra to higher dimensions. The picture to keep in
mind is that a commutative ring should be thought of as somehow related to quantum field
theories in 0 dimensions, and vertex algebras are related in the same way to 1 dimensional
quantum field theories, and we want to find out what corresponds to higher dimensional
field theories. This talk is an exposition of the paper g-alg/9706008, which contains (some
of) the missing details. There is also probably some overlap with unpublished notes of
Soibelman, which he has promised will soon appear on the g-alg preprint server.

The relation of vertex algebras to commutative rings is obscured by the rather bad
notation generally used for vertex algebras. Recall that for any element v of a vertex
algebra V we have a vertex operator denoted by V' (v, z) taking V to the Laurent power
series in V. I am going to change notation and write V (v, z)u as v*u. Let us see what
several standard formulas look like in this new notation:

Old notation New notation
Viu, z)v uv k
V(V(a,z)b,y)c=V(a,z+y)V(b,y)e  (a®b)Yc=a"¥(b¥c)
Via,z)V(b,y)e = V(b,y)V(a,z)c a®be = b¥a"c
V(a,z)b =" (V(b,—z)a)  a®b=(* a)°
V(,2)b=b 1%b=bh

The formulas on the right hand side are all easy to recognize: they are just standard
formulas for a commutative ring acted on by a group G, where a,b, ¢ are in the ring V,
x, Yy, z are elements of the group G, and the action of z € G on a € V is denoted by a®.
This suggests that we should try to set things up so that vertex algebras are exactly the
commutative rings objects over some sort of mysterious group-like thing G.

For simplicity we will work over a field of characteristic 0. This is not an important
assumption; it just saves us from some minor technicalities about divided powers of deriva-
- tions. '

We will first look at the special case of vertex algebras such that all the vertex operators
V(a, z) are holomorphic. We show that such vertex algebras are the same as commutative
algebras with a derivation D. The correspondence is given as follows. First suppose that
V is a commutative algebra with derivation D. We define the vertex operator V{a, z) by

Via,z)b = ZZ>D(D"a)b:L*” /il. Conversely if V is a vertex algebra we define the product

by ab = V(a,0)b and the derivation by Da = coefficient of ! in V(a,z)b. (We cannot

*  Supported byka, Royal Society professorship.




really check that this turns commutative algebras into holomorphic vertex algebras and
vice versa because we have not yet said exactly what the axioms for a vertex algebra are.)
In the new notation for vertex algebras above we would put o® =3, z*Da/il, a®b =
> x*Dtab/il. Here we think of z as being an “element” of the one dimensional formal
group G,. This formal group has as its formal group ring H the algebra of polynomials
k[D] and its coordinate ring is the ring of formal power series k[[z]]. (In characteristic
0 it does not matter whether we use Lie algebras or formal groups which are essentially
equivalent, but in other characteristics formal groups are better than Lie algebras.) The
(tensor) category of modules with a derivation is the same as the category of modules over
the formal group ring H, so holomorphic vertex algebras are the same as the commuta‘clve
ring objects in this category.

What is the difference between a commutative algebra over G and a (non holomorphic)
vertex algebra? The only difference is that expressions like a*b¥c are no longer holomorphic
in z,y but can have singularities; more precisely a®b¥c lies in V{[z, ][z, v}, (x —v) 1]
In other words we can provisionally define a vertex algebra to be a module V such that
we are given functions a®b¥c? - - - for each a,b,¢c,... € V which behave just like the corre-
sponding functions for commutative rings over G, except that they are allowed to have
certain sorts of singularities. Notice that we can no longer reconstruct a cornmutative ring
structure on V by defining ab = a®b at x = 1, because a”b may have a singularity at ' = 1.

The definition above is too vague to be useful, so we try to make it more précise. What
we really want to do is to define some sort of category, whose multilinear maps are some-
how allowed to have the sort of singularities above, and whose commutative ring objects
are just vertex algebras. We first ask in what sort of categories we can define commutative
ring obJects The obvious answer is tensor categories, such as the category of modules
over G, (or over any cocommutative Hopf algebra) but this turns out to be too restric-
tive. (We will implicitly assume that all categories are additive and have some sort of

symmetric structure.) A tensor category requires that multilinear maps should be rep-
resentable, but this is sometimes not the case for the categories we are interested i in, and
in any case this assumption is unnecessary. It is sufficient to assume that for each collec-
- tion of objects A, ..., A,, B of the category we are given the space of multilinear maps
Multi(A4, . .., An, B) and that these satisfy a large number of fa,lrly obvious properties
which 1 cannot be bothered to write down.

Unfortunately multilinear categories are not really the right objects either. The problem
is the following. An expression like a®b¥c should live in a space like V{[z,y][z~ %, v, (z ~
y)~1]. However the expression a®(b¥c) does not naturally live in this space, but in the
larger space V{yl\ly~Y[[z]][z="], and (a® b)¥c lives in a different larger space. This
makes it hard to compare these expressions in a clean way. The easiest way to solve this
problem is to define it out of existence by using “relaxed multilinear categories”. The
key idea is that instead of just once space of multilinear maps Multi(Ay,..., A,, B) we
are given many different spaces Multiy (A4, ..., Ay, B) of multilinear maps, parameterized
by trees p with a root (corresponding to B) and n leaves, corresponding to Aj,...,Ap.
We should also have some extra structures, consisting of maps between different spaces
of multilinear maps corresponding to collapsing maps between trees, and a composition
of multilinear maps taking multilinear maps of types p1, ..., p,,p to a multilinear map of



type p(p1,...,Pn). (Here p(p1,...,pn) is the tree obtained by attaching p1,...,pn to the
leaves of p.) For details see my paper or Soibelman’s notes, or better still work them out
- for yourself.

The main pomt is that in a relaxed multilinear category it is still possible to define
commutative associative algebras. Joyal has pointed out that the definition of associative
algebras in a relaxed multilinear category is strikingly similar to the definition of an A
algebra; for example, the cells of the complexes used to define A, algebras are parame-
terized by rooted trees with n 1eaves and the boundary maps correspond to the collapsing
maps between trees.

One way of constructing relaxed multilinear categories is as the representations of “ver-
tex groups”. A vertex group can be thought of informally as a group together with certain
sorts of allowed singularities of functions on the group. More precisely a vertex group is
‘given by a cocommutative Hopf algebra H, which we thing of as its group ring, together
with an algebra of “singular functions” K over the “coordinate ring” H* of H. The axioms
for a vertex group say that K behaves as if it were the ring of meromorphic functions over
the “group” G; for example, the ring of meromorphic functions is acted on by left and
right translations, so K should have good left and right actions of H. A typical example
of a vertex group is to take H = k[D], H* = k{[z]}] (so that H is the formal group ring of

G.), and to take K to be the quotient field k[[« l=~"] of H*, which we can think of as the
field of rational functions on the formal group Go. :

We can construct a relaxed multilinear category from a vertex group roughly as follows.
The underlying category is the same as that of the Hopf algebra of the vertex group.
However the spaces of multilinear maps are different. Rather than define these in general,
which is a bit complicated, we will just look at one example. We take (¢ to be the vertex
group above (whose commutative rings are vertex algebras), and take 3 G-modules A, B,
and C. Then the space of bilinear maps from A, B to C is defined to be the ordinary
space of bilinear maps from A x B to Cl[z,4]][(zx — y)™] which are invariant under an
action of G3. (The easiest way to work out what the action of G® should be is to see
what it has to be for the invariant bilinear maps from A x B to C[[z,y]] taking a x b to
>, F(D'a, DIb)x*y? [i!5! to be the same as invariant maps f from 4 x B to C.)

We summarize what we have done so far:

1 We have introduced “vertex groups”’.

2 The modules over a vertex group form a “relaxed multilinear category”.

3 The commutative ring objects over the simplest nontrivial vertex group are exactly
vertex algebras.

Now that we have set up this machinery, it is easy to find higher dimensional analogues of
vertex algebras: all we have to do is look at commutative algebras over higher dimensional
vertex groups G; we will call these vertex G algebras. As an example we will construct
vertex algebras related to free quantum field theories in higher dimensions. (Can one
construct vertex algebras corresponding to nontrivial quantum field theories in higher
dimensions? At the moment this is just a daydream as it is too vague to be called a
conjecture.)

We first need to construct a suitable vertex group . We take its underlying Hopf
algebra H to be the polynomial algebra R[Dy, ..., Dy,] where D; = 0/0z;, which we think




%

of as the universal enveloping algebra of the Lie algebra of translations of spacetime (with
1o = t). The dual H* is then R[[zy, ..., z,]], which we think of as the algebra of functions
on spacetime. We define K to be H*[(z2 —x2% —- - 22)~!], which we think of as the algebra
of functions on spacetime which. are allowed to have singularities (poles) on the light cone.

Now we define the vertex G algebra V. The underlying space of V is the universal
commutative H-algebra generated by an element ¢, so V = Rl¢, Do, D1¢,..., D3¢, .. ]
is a ring of polynomials in an infinite number of variables. We think of V' as the ring
of classical fields generated by ¢, and it is a (holomorphic) vertex G algebra as it is a
commutative ring acted on by H. We will turn it into a a nontrivial vertex G algebra
by “deforming” this trivial vertex G algebra structure. (In general, for vertex G-algebras,
quantization means deforming the structure on some commutative ring to turn it into a
vertex G algebra.) :

To do this we recall the following method of constructing commutative rings: if V is a
space acted on by commuting operators v,, and if V is generated by an element 1 € V by
the action of these operators, then ¥V has a unique commutative ring structure such that 1
is the identity and the actions of all the operators are given by multiplication by elements
of V. (Proof: easy exercise.) A similar theorem holds for vertex algebras (as was proved
by Frenkel, Kac, Rado, and Wang). We will make V into a vertex G algebra by finding
a vertex operator ¢(z) = ¢(zo-..,T,) acting on V such that ¢(z)¢(y) = ¢(y)¢(x) and
applying the construction above. -

" To construct ¢(x), we first put

$7(z) = 3 Digai/il.

%

- The vertex algebra structure on V defined by this vertex operator is just the commutative

ring structure on V', so we need to deform ¢*. We define ¢~ (z) to be the unique G-
invariant derivation from V' to V{z][(#3 — 22 ---)~!] taking ¢ to some even function A(z)
(called the propagator). This is uniquely defined by the universal property of V. Finally
we put : ’

$(z) = ¢ (z) + ¢ (2)-

It is easy to check that ¢(z) and ¢(y) commute, as ¢*(z) and ¢+ (y) commute, ¢~ (z)
and ¢~ (y) commute, and [¢~(z), ¢T(y)] = —[¢T(z), ¢~ (v)] = Az — y). Therefore we can
make V into a commutative vertex G-algebra.

Notice that in quantum field theory, ¢(x) means the value of some operator valued
distribution ¢ at some point z of a manifold. On the other hand, for vertex G algebras,
#(z) should be thought of as the action of a “group” element = on an element ¢ of a vertex
G algebra. Several other concepts in quantum field theory can also be translated into
vertex algebra theory; for example, the correlation functions are Tr(¢(z)d(y)e(z) ---),
where Tr is some G invariant linear function on V. Some concepts are not so easy to

" extend; for example, vertex G algebras do not seem to be able to cope with arbitrary

curved spacetimes other than Lie groups, and it can be difficult to reconstruct a Hilbert
space (this includes as a very special case the problem of deciding which representations
of the Virasoro algebra are unitary).
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1. Motivation: The Mumford-Tate conjecture.

Alexandre Grothendieck’s concept of motives was intended as a formal framework
combining the many different aspects of algebraic varieties in a single theory. Thus to
an algebraic variety X over a number field K C C are associated, among others, the
rational mixed Hodge structure H := H"(X(C),Q) and the f-adic cohomology group
H"(X%,Q) = H ®p Q¢ as a a continuous Galois representation. Let G C Aut(H) be
the Hodge group associated to this mixed Hodge structure, and I'y C Aut{H)(Q;) the
image of Gal(K/K). The Mumford-Tate conjecture asserts that I'; is commensurable-to
Goo(Zyg), that is, their intersection is open in each of these two groups. The importance and
the beauty of this statement lies in the fact that it relates two groups which are constructed .
in completely different ways and thus reflect very different properties of X, i.e. analytic
resp. arithmetic ones.

While there has been some progress on this conjecture when X is an abelian variety,
the general case remains completely open. In the analogous case of motives over function
fields, however, it is now possible to prove such a conjecture in reasonable generality. The
aim of this talk is to explain the necessary theory of Hodge structures and Hodge groups
associated to motives over function fields.

My motivation to deal with the function field case is twofold. On the oune hand 1
believe that definitions, theorems, and methods of proof in this area are interesting in
themselves and often quite beautiful. On the other hand I hope that the study of function
field analogues can provide us eventually with new ideas that re-fertilize the arithmetic
over number fields. '

2. Drinfeld modules.

In the following we fix a finite field F, with ¢ elements, and set A := F,[t]. This ring
will play the role that Z plays in the number field case. Instead of Q we work with the
rational function field F' := F,(t), and the completion R is replaced by F, := F,(t™1).
In all this theory, these rings may be replaced by finite extensions. As an analogue of C
we take the completion of the algebraic closure of Fy(6~')), denoted C,. Here 4 is a new
variable which in this section will be identified with ¢, but not afterwards. The field C,
is the basis for non-archimedean analysis in equal characteristic. Note that it has infinite
degree over Fi,.




Now consider an A-lattice A C C, of rank r > 1, that is, a discrete A-submodule
which is isomorphic to A". Let us fix such an isomorphism. One can form the quotient
“Cq/A” in the following sense. One defines formally

X\
=X (1 - —) ,
BALX) II Y

O#AEA

proves that this converges tq an F,-linear power series, i.e., one of the form
ea(X) =X +e1X?+ e X? +esX? +...,
shows that it converges on all of C, and, ﬁné,lly, that the following sequence is exact:
0—A—C; >C; —0.

Multiplication by ¢ then induces a commutative diagram

0 > A~ Cq, o Cq A 0
0 . . A Cq €A Cq . O

and one proves that @ is a polynomial
B(X)=0X +3X9+...+8.X7

" with &, # 0. In this way the quotient “C,/A” has been .endowed with an algebraic
structure over C,. This object makes up an algebraic Drinfeld module of rank r.

Let us now assume that this Drinfeld module is defined over a finitely generated

subfield F,(0) C K C C,, that is, that all coefficients ®; € K. For any prime polynomial
p(t) € A und any n > 0 we then have ' ‘

Kern(p(®)" : K — K) = Kern(p(®)" : C; = Cy) X p ™ "A/A =2 (A/p"A)" .
Here K denotes the algebraic closure of K in Cg4, and the Galois action corresponds to a

homomorphism
Gal(K/K) — GL.(A/p"A) .

In the limit these homomorphisms fit together to a homomorphism
Gal(K/K) — GL,(4,)

and we are interested in its image T'y,.



We know a priori that all endomorphisms of ® are defined over a finite extension of K
and therefore commute with an open subgroup of I',. Viewing these endomorphisms as-
subring of the matrix ring

Endg(®) 2 {r € Cy | zA C A} = Enda(A) & M.« (4),
we can look at their centralizer

Goo := Centay, , (Endgz(¢)) .

In the generic case Endz(p) = A we have,-_of course, Goo = GL, p; in general G, is a
form of GL, for r'|r.

‘Satz: T'y, and Goo(Ap) are commensurable. (see [6])

This result is a precise analogue of the usual Mumford-Tate conjecture, with one
important difference: Here the group G is defined only ad hoc and does not result from
a general theory of Hodge structures. 1 will now show how to fill this gap.

One central requirement for such a theory is the invariance under tensor products.
More precisely: Hodge structures should possess tensor products, and the desired functor -
associating Hodge structures to (certain) motives should be compatible with tensor prod-
ucts. Tensor products of Drinfeld modules are special cases of Anderson’s uniformizable
t-motives, so it would be best to have a theory applicable to all of these.

3. Anderson’s t-motives.

Anderson made the fundamental and rather subtle observation that the two distinct
roles of the variable ¢, once in the ring of coefficients A = F,[t], once as element of the base
field C,, ought to be separated. We have already replaced ¢ by 6 in its second meaning.
Now take d > 1 and let t € Mgxq(Cy) be a quadratic matrix whose only eigenvalue is 6,
i.e. with ~

) t-0"=0 foralln > 0.

Then we obtain a natural action of A on the vector space Cg, and we consider an A-lattice
AC Cg, discrete and free of finite type over A. In general we cannot write down a series
ea as in the preceding section; instead we postulate its existence. For any vector X € (CZ 4
let “X denote taking the ¢*® power in each coefficient. We suppose given a power series

e(X)=X+el-°X+'ez-"2X+»...

and a polynomial
B(X)=B X +&1-X+...+8,-T X




with e;, ®; € M x4(Cy) such that we have a commutative diagram with exact rows

0 A C: ——C? 0
tt lt l@
0 A Ci >t 0

Essentially this makes up a uniformizable t-motive in the sense of Anderson [1]. (Here I
neglect a certain technical assumption. Strictly speaking, the object thus constructed is
called a uniformizable t-module, and the term ¢-motive is reserved for a certain equivalent
dual description.) For instance, every Drinfeld module corresponds to a uniformizable
t-motive. '

Now we reencode the information in the lattice A C (Cg in a way that is suited for
tensor products. Condition (}) implies a natural map on the right hand side in the sequence

0—q— A®4C,[lt— 6] —Cf —0.

By Anderson this map is surjective. Thus the main information is contained in the kernel g,
which by construction is a Cq [t — 8]-lattice, ie., a finitely generated C,[[¢ — 8]-submodule
containing a basis of the vector space A ® 4 C,((t — 9).

The second ingredient of the desired Hodge structures is the weight filtration. There
is no particular technical difficulty involved in working with mixed objects instead of pure
ones. Besides, one reason for this greater generality is the fact that pure t-motives may
degenerate into mixed t-motives. If m,n are positive integers, the ¢-motive is called pure
of weight p = —7 if and only if after suitable reparametrization we can write

X)) =...t B "X

with det(®, ) # 0. For example a Drinfeld module of rank r is pure of weight —. (My
convention differs from Anderson’s by a minus sign.) An arbitrary i-motive is called mixed
if and only if it possesses an increasing weight filtration W,, indexed by rational numbers,
such that each graded piece of weight y is a pure t-motive of weight u. If the t-motive is
mixed and uniformizable, then each pure constituent is uniformizable, hence the lattice A
inherits the weight filtration, again denoted by W,. '

Now we have collected all the necessary ingredients for the desired Hodge structures.
In order to have an F-linear theory we put H := A ®4 F, then the uniformizable t-motive
up to isogeny determines the data H = (H, W,, q). The tensor product of two such triples
H; = (H;, W,,4;) is defined as (H, W,, q) with H := H; ®p H,, the weight filtration

WP’(HI OF Hz) = Z Wﬁlﬂl ®F WM:;HZ »
1t =p

and g := ¢ ®c, [t—o] Y2- This definition is compatiblé with the tensor product of t-motives
as defined by Anderson.



4. Mixed F,(t)-Hodge structures.

Observe that the inclusion A = F[t] — C,[[t — 8] extends naturally to an inclusion

F C Fy = Cyfft — 4]

Definition: A mized F-pre-Hodge structure H = (H,W,,q) consists of o finite di-
mensional F-vector space H, an increasing filtration by F-subspaces W, H, indezed by
© € Q and called weight filiration, and a Cy[[t — 8]]-lattice q C H @5 C,((t — 8)).

Homomorphisms of such objects are homomorphismus of the underlying F-vector spaces
that are compatible with the filtrations and lattices. This category is F-linear but not
abelian, so we want to restrict attention to a suitable subcategory. Note also that when
H comes from a uniformizable #-motive, we have not yet used the discreteness of A.
This property is related to the following numerical condition. For every Fo.-subspace
H], C Ho = H ®F Fy consider the lattices q' := q N (H., ®r, Cq((t —9)) and
p = H. ®r, C4llt — 0], and put |

deg, (H.,) = dim, (p_’%’?) — dimg, (pl’(’; q,) :

This number measures the size of ¢’. On the other hand set

degy (HL) == Z p-dimp,, Gr}¥ (HL,) .
peQ

- Definition: A mized F'-pre-Hodge structure H = (H,W,,q) is called a mized F-Hodge
structure if and only if for every H. we have ; ~

deg,(H') < degw (H') ,

with equality whenever H' = W, H for some p € Q. The full subcategory of all mized
F-Hodge structures is denoted e, .

A closer look at the pure case shows that this condition is rather similar to the usual
semistability condition of vector bundles.

Satz: Hate,, is a neutral tannakion category over F.

The proof is modeled on similar statements for vector bundles or filtered modules. The
hardest part is to show that the semistability condition is invariant under tensor product.
The term “neutral” refers to the tautological fiber functor H — H. We also have:

Satz: The above construction defines a tensor functor from the category of uniformiz-
able mized t-motives over C, up to isogeny to the category %&F This functor is exact,
F-linear, fully faithful, and its essential image is closed under taking subquotients.

The last two statements amount to an analogue of the Hodge conjecture.




5. The Hodge group.

~ For any object H of %&F let (H) denote the smallest abelian full subcategory of
%& that contains H and is closed under tensor product, dualization, and subquotients.
By general tannakian theory there is a well-defined algebraic subgroup Gg C Autp(H)
such that (H) is equivalent to the category of finite dimensional representations of G H
over F'. This group is called the Hodge group of H. In the case of a Drinfeld module our
original expectations are confirmed:

Satz: If H is associated to the Drinfeld module of Section 2, we have Gg = G

More generally, suppose that the coefficients of the t-motive @ in Section 3 are con-
tained in a finitely generated extension K C C,; of F. As in Section 2 we obtain a Galois
representation

Gal(K/K) —» T C Auta, (A®4 A,) 2 GL,(4,) -

Satz: I'y, is commensurable to a Zariski dense subgroup of Gw(Ap).

This is proved by combining the above analogue of the Hodge conjecture with a
theorem of A. Tamagawa amounting to a strong form of the Tate conjecture for {-motives.
I also expect to determine I'y, up to commensurablhty, but the precise sta.tement will be
somewhat technical.
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1. Star-products :

Let A be the algebra over R of functions on C°°-manifold X. Star-producton X is a
structure of an associative algebra over R[[A]] on A[[A]] ;= A®rR[[R]] such that for any
f,g € A C A[[A]] the “new ” product, denoted by f x g, is given by the formula

fxg=Ffg+hBi(f®g)+h’Ba(f®g)+... € Al[A]

~where B; : A® A—A, ¢ > 1 are bidifferential operators on X. Associativity of the
star-product

(fxg)xh=fx(gxh) Vf,g,h e A[[R]]
is a non-trivial quadratic constraint on (B;)ien-
There is an action of infinite-dimensional group G C Autgsj—moa(Al[R]]):

G = {maps f+ f+hDi(f) +B°Dy(f) +...| D; are differential operators on X}

on the set of star-products.

It is easy to see that by G-action one can kill symmetric part of bidifferential operator
B;. Thus, we can assume that B, is antisymmetric, B1(f ® ¢) = —B1(g ® f). It follows
from the associativity that By is a bi-derivation, i.e. a bivector field, and also it satisfies
the Jacobi identity. The conclusion is that B; gives a Poisson structure on X.-

Any symplectic manifold (a natural object in classical mechanics) carries non-degener-
ate Poisson structure and could correspond via term B; to a non-commutative algebra
(observables in quantum mechanics). It was one of motivations 20 years ago for Bayen,
Flato, Fronsdal, Lichnerowitz and Sternheimer to start the study of star-products. A star-
product modulo the gauge equivalence (G-action) is called a deformation quantization of
manifold X. In 80-ies De Wilde, Lecompte and (later) Fedosov constructed a canonical
gauge equivalence class of star-products on all symplectic manifolds. We think nevertheless
that the whole line of ideas was based on slightly unnatural assumptions. First of all, the
Euler-Lagrange equation in classical mechanics gives a closed 2-form, not a Poisson bracket.
In degenerate cases one can not relate 2-forms and bivector fields. Also, there is no intrinsic
reason in quantum mechanics to have an associative algebra of observables.

In the next section we will describe all deformation quantizations in geometrical terms.
The proof of our main result is based on ideas from string theory. It seems that associa-
tive algebras are most closely related with open string theories, not with the quantum
mechanics.

2. Classification of star-products

Theorem. For any manifold X one can canonically identify the set of gauge equivalence
classes of star-products on X with the following set:

{a(B)] a(h) = arh+ash® + ... € T(N*Tx)[[A]], [a(h), a(B)] = 0}/G




of X:

" where [, ]: T(A*Tx)QT(A*Tx ) —T (A3Tx) is the Schouten-Nijenhuis bracket on polyvec-

tor fields, and G is the group of formal paths starting at idx in the diffeomorphism group

G = Maps ((Spec(R[[H]], 0)—(Dif f(X), idx)) -

We remind that bivector field o € T(A?Tx) gives a Poisson structure on X iff [o, o] =
0.

As an immediate corrolary of our theorem we conclude that any Poisson structure
a; € T(A*Tx) is canonically quantazible. The deformation quantization corresponds to
the path a(h) 1= aqh.

3. Explicit formula for X = RV

Let o = Y a"(z)8; A 8; be a Poisson structure on RN, 8; = 9/0z*, i =1,...,N.
First few terms for the star-product corresponding to « are following:

2%} 4,0,k

‘ . K2 .
frg=rfo+n)_ o 0ifoig+= Y o oM 0:0nf 009+

2 ' '
+ S o oM (9,04f hg — ;000 01F) + O)
444Kl ‘

In the full formula terms are naturally labeled by certain oriented graphs. It is con-
venient to encode graphs of degree n € Zyq (giving terms proportional to A™) by two
maps - ,
a1, a3 : {1,...,n}—{1,...,n+ 2}

T

such that for any k € {1,...,n} three numbers k, a;(k), as(k) are pairwise distinct.
Graph T' associated with (a1, a2) has n + 2 enumerated vertices. First n vertices
correspond to bivector field «, the (n + 1)-st vertex corresponds to function f, and the
(n + 2)-nd vertex corresponds to function g. Edges of I are oriented. The complete list of
edges is :
' Ak—a1(k), k—ax(k)|k=1,...,n} .

The expression in our formula corresponding to T is

T ' V ‘

P . ik Jhe
H H a?"l H 3712 O
k=1

Liaa(h)=k ] la:aa(la)=k

H By, H O, 1 f A1 H 37:5 - H %5, |

litay{l1)=n+1 / ‘lziaz(lz)zn-%-l L a1 (l)=n+2 Ia:aa{ly)=n+2

g

o



In short, functions Br(f,g;«) are all possible GL(N,R)-invariant expressions con-
structed form partial derivatives of functions f, g and of coefficients of bivector field o by -
contractions of upper and lower indices, without making an assumption that [, ] = 0.

The general formula for the star-product is

f*922% 3 er - Br(f,g;0)

n>0  praphs T
of degree n

where ¢r € R are constants defined in the next section. The associativity of star-product
follows form certian non-homogeneous quadratic relations between numbers cp.

4. Integral formula for cr

Let H = {z € C| Imz > 0} be the standard upper half- plane H:=HUR C C be its
closure in C. We define a map

¢+ H x H \ diagonal —R /27Z

by the formula . ‘
¢(z,w) = Arg(z — w) — Arg(Z — w) .

The meaning of this formula is that #(z, w) is equal to the angle between lines (z,w) and
(z,+100) in the Lobachevsky geometry.
The value of ¢p is given by the following integral:

(8732)"' / /\ d¢5 Zks zal(k)) A dgb(zk, zaz(k)))

(zls 1zn)€7'[n k=1
z;#2z; for i#j

cr =

where we define 2,1, Zn42 as points 0,1 € H respectively.

The integral from above is absolutely convergent. Probably, all numbers cp are ratio-
nal, although we cannot prove or disprove this statement at present.

The proof of quadratic relations between numbers cr is essentially an application of the
Stockes formula. In order to clarify the combinatorics of the proof, and also to construct
star-products on general Poisson manifolds, we have to introduce general notions and
constructions from the deformation theory.

5. Deformation theory and quasi-isomorphisms

Let g* be a differential Z-graded Lie algebra (DGLA) over field k of characteristic
0. The deformation functor Defg+ associates with any ﬁmte—dlmenswnal Artin algebra A
over k the following set:

1
{a € gl ®@malda+ =, al=0¢ g2®mA}/G(A)

51




' where ma C A is the maximal ideal of A and group G4 is the nilpotent group associated

with the nilpotent Lie algebra g ® ma. The action of Gay on the set of solutions of the
Maurer-Cartan equation is in infinitesimal form

a*——dq/-{—[fy,a], ’yEgO@mA .

One of most familiar examples is the deformation theory of complex structures on a
complex manifold M In this case k¥ = C, and the DGLA controlling the deformation
theory is

g* — @gk, gk - P(M, Tl,O ® /\k: ((TO,I)d’ual)
&>0

with the differential equal to the usual J-operator and with Lie bracket coming from the
usual Lie bracket on vector fields and from the cup-product on differential forms. The set
« Defex(A) is the set of equivalence classes of flat morphisms of complex analytic spaces
M —+Spec(A), endowed with an identification of the special fiber M Spec(c) Spec(A) with
M.

Let g7, g3 are two DGLAs. We are going to introduce a structure (a quasi—fisomorphism
between g} and g3) which identifies deformation functors Defg» and Defgx.

Definition. An L,-morphism T from g7 to g5 is an homomorphism of differential graded
cocommutative coassociative coalgebras .

T : @D Sym”* (g1 (1)) — €D Sym*(e3[1]) -

k>1 E>1

In the formula from above symmetric powers are constructed in the tensor category
of Z-graded vector spaces (i.e. using the Koszul rule of signs). The graded space g*[1] is
obtained from g* by the shift of degrees by 1:

(g[1)" = g™+ .

The differential in the “chain complex” Cy(g") = Py, SymF(g*[1]) of any DGLA g* is
defined by usual formula using the differential and the Lie bracket in g*. Geometrically,
one can think about coalgbera C.(g*) as of an object encoding an infinite-dimensional
formal Z-graded supermanifold. The reason is that the dual space to C.(g*) is the algebra
of formal power series. The differential on C.(g*) can be viewed as an odd vector field
() on a supermanifold such that [Q, Q] = 0. An L,-morphim gives a Q-equivariant map
between formal supermanifolds.

One can reformulate the definition of the deformation functor in geometrical terms
(i.e. for odd vector field @}). Any Lo-morphim induces a natural transformation between
~ deformation functors. -

Definition. An L.,-morphism T from g7 to g3 is called a quasi-isomorphism iff its com-
ponent TV which maps g[1] to g3[1] is a quasi-isomorphim of complexes.

Below we state a well-known result in slightly new form:



Theorem. Any quasi-isomorphism induces an isomorphism between deformation func-
tors. .

6. Formality

Let X be a manifold, A be the algebra of functions on X. We define two DGLAs over R
associated with X. The first algebra D*(X) is related with the deformation quantization.
For each n > —1 we define D"(X) by the formula

{®: A®HD) A P(fo®f1i®...® fn,) is a polydifferential operator in f.} .

The differential and the bracket in D*(X) are given by standard formulas for the differential

and the bracket in the Hochschild complex. We define a bilinear operation (@, ®5)—®; 0
&5 on D*(X) for @, € D™(X) and $5 € D" (X)

(@1 0@2)(f0®~-®fn+m) =Y £01(f1®...@L(fk ® .. ® fotn) ® ... ® frgm) -
k=0

The Lie bracket in D*(X) is defined as ,
| [@1, (I’g] = @1 o @2 - (_1)771/11@2 o @1 .

and the differential as
d® = [m X @]

where mx € DY(X) is the product in A: mx(fo ® f1) = fof1.

The second DGLA is denoted by T*(X). It is simply the cohomology of D*(X) with
respect to the differential in D*(X). The differential in T*(X) is defined to be zero. By a
version of Hochschild-Kostant-Rosenberg theorem graded components of T* (X)) are spaces

of polyvector fields:
THX) =T(X,A\""Tx), n> -1

and the bracket in T*(X) is the usual Schouten-Nijenhuis bracket.
Theorem. For any manifold X two DGLAs D*(X) and T*(X) are quasi-isomorphic.

Solutions of the Maurer-Cartan equation in D*(X') parametrized by Spec(RI[[A]]) are
exactly star-products on X. Solutions in 7*(X) are Poisson structures. Thus, we get a
" canonical quantization for arbitrary Poisson structure.
Usually, a differential graded algebra quasi-isomorphic to its cohomology algebra, is
called formal. For example, the de Rham complex on any Kéhler manifold is formal. Our
result means that DGLA D*(X) is formal.

7. Few words about the proof

Firts of all, using a generalization of the construction with graphs as in sections 3,4 we
construct an explicit quasi-isomorphism from 7*(R”) to D*(RY) for any N. The check of
relevant identities uses the Stockes formula on certain compactifications of configurations
spaces of H, and the following lemma:




- Lemma. Let M be a complex algebraic variety of dimension d > 1, anf f1,..., foq be

non-zero rational functions on M. Then the integral

fM A dass(so)

(C) g1

is absolutely convergent and equal to zero. .

This lemma is used in the study of certain degenerations when several points on H
move close to each other. The main step in the proof of the lemma is the following identity:

2d ‘ 2d
/\ dArg(fr) = /\ dLog|fxl
k=1

k=1

The next step is to introduce a Gelfand-Fuks cocyle of the Lie algebra of formal
vector fields with coefficients in a module responsible for I ..-morphisms form T*(RY) to
D*(RY). Fortunately, it can be done in essentially the same manner as for an individual
Loo-morphism. Vanishing of some integral over a configuration space of H guarantees that
this cocycle is a relative cocycle with respect to the Lie algebra gl(N,R) C Vect(R™). The

* rest is a generalization of standard constructions of characteristic classes associated with

Gelfand-Fuks cohomology.

8. Applications

There many of them. For example, any quadratic Poisson bracket on a finite-dimension-

al vector space admits a canonical quantization to a graded algebra with quadratic rela—
tions. It glves the positive answer to one of questions posed by Drinfeld.

Here is another application (which needs in fact an additional work with graphs and
integrals):-

Theorem. Let g be a Lie algebra in a tensor category C which is a “finite-dimensional”
object of C, i.e. the dual object g exists and (gluet)yduel — g Then the center of
the universal enveloping algebra Z(Ug) = (Ug)¥ is isomorphic as an algebra in C to the
algebra (®p>05ym*(g))8 of ad*-invariant polynomials on g#®!.

‘In the classical case of the category of vector spaces this fact was proven by Duflo using
at certain essential step the classification theory of Lie algebras. In fact, the isomorphism
in our theorem is the one predicted by Kirillov and Duflo, and involves a kind of Todd
class for elements of finite-dimensional Lie algebras. The analogous statement for Lie
superlalgebras was unknown. Now we can say finally that the orbit method has a solid
background.

A parallel new theorem in algebra1c geometry is

Theorem. Let M be smooth algebraic variety over a field of characteristic zero. Then
the graded algebra Extyy, pr(Odiag, Odiag) is isomorphic to @H* (M, N*Tx).

Another application is to the Mirror Symmetry, but we will not try to explain it here.



Height (-functions
Yuri Tschinkel

University of Illinois at Chicago, U.S.A.

Let X be a non-singular quasi-projective algebraic variety over a number field F and
L=(L,{|| - ll.}) a metrized line bundle on X. It defines a height function

from the set of F-rational points to the reai numbers and a counting function
N(X,L,B) :={z € X(F) | He(z) < B}.

We are interested in the asymptotic behavior of N(X, £, B) for B — co. The program of
studying such asymptotics was initiated by Yu. I. Manin who proposed conjectures about
their relationship with geometric invariants of the variety X.

In praxis, such asymptotics can be established by means of a Tauberian theorem provided
one knows the analytic properties of the height (-function defined by the following series

C(X,L,8):= Y H(z)™

zeX(F)

This series converges to a holomorphic function for appropriate X and £ and Re(s) > 0 and
our goal is to describe the location and multiplicity of its first pole as well as the leading
coefficient at this pole, at least for the following class of varieties.

Let G be a semi-simple simply connected split algebraic group over # and P C G a
parabolic subgroup. Let 5 : P — T be a homomorphism from P to an algebraic torus T’
and X some equivariant compactification of T. This defines an action of P on T x G. We
denote by ¥; := X x¥ G the quotient and by Y% =T x” G. The variety ¥, has a structure
of a toric bundle over the flag variety P\G. The following theorem is joint work with M.
Strauch.

Theorem [4] Let L be a line bundle on Y, such that its class is contained in the interior
of the cone of effective divisors Aeg(Yy) C Pic(Yy)r. There exists a metrization £ of L such
that the height zeta function has the following representation

L) . 90
(s — a(L)PD " (5 — a(L))HH-1

with a(L) > 0, c(£) # 0, b(L) € N and some function g(s) which is kolomo:rpkze Jor
Re(s) >1~4 (forsome5>0)

C(Y°,L,8) =

The rest of the talk was a report on my joint work with V. Batyrev [2], where we defined
the constants a,b and ¢ in a more general framework. It turns out that for general ample

»




metrized line bundles £ the constant ¢(L) is given as an infinite (converging!) sum over
positive real numbers labeled by rational points contained in a base of a certain fibration,
where each summand is a product of 3 numbers: an invariant of the cone of effective divisors,
a cohomological invariant and a Tamagawa number of the corresponding fiber.
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A characterization of irreducible symmetric spaces and Euclidean buildings
of higher rank by their asymptotic geometry

Bernhard Leeb (Univ. Bonn)

The results presented here address the general

Question: 7o what extent are the asymptotic properties of a Hadamard space reflected in
its geometry?

Hadamard manifolds are simply-connected complete Riemannian manifolds of nonpos-
itive sectional curvature. Prominent examples are Riemannian (globally) symmetric spaces
of noncompact type, e.g. SL(3, R)/SO(3), but many more examples occur as universal cov-
ers of closed nonpositively curved manifolds, for instance, of Haken 3-manifolds. Not the
notion of sectional curvature itself, however the notion of an upper curvature bound can
be expressed purely by inequalities involving the distances between finitely many points
but no derivatives of the Riemannian metric, and hence generalizes from the narrow world
of Riemannian manifolds to a wide class of metric spaces. The natural generalization of
Hadamard manifolds are Hadamard spaces, i.e. complete geodesic metric spaces which are
- nonpositively curved in the (global) sense of distance comparison. Hadamard spaces com-
prise besides Hadamard manifolds a large class of interesting singular spaces, among them
Euclidean buildings (the non-Archimedean cousins of symmetric spaces), many piecewise
Euclidean or Riemannian complexes which occur, for instance, in geometric group theory,
certain branched covers of Hadamard manifolds etc. Hadamard spaces received much at-
tention in the last decade, notably with view to geometric group theory, a main impetus
coming from Gromov’s work on hyperbolic groups and asymptotic invariants of infinite
groups.

We recall that a fundamental feature of a Hadamard space is the convexity of its
distance function with the drastic consequences such as unigueness of geodesics and in
particular contractibility. This illustates that at least basic geometric objects such as
geodesics are rather well-behaved, which gets the foot in the door for a more advanced
geometric understanding. The importance of the geometry of nonpositive curvature lies
in the coincidence that one has a rich supply of interesting examples reaching into many
different branches of mathematics (like geometric group theory, representation theory,
arithmetic) and, at the same time, these spaces share simple basic geometric properties
which makes them understandable to a certain extent and in a uniform way.

Let us now describe the asymptotic information which we consider. The ¢deal boundary
050X of a Hadamard space X is defined as the set of equivalence classes of asymptotic
geodesic rays. (Two rays are called asymptotic if they remain at bounded distance.) The
topology on X extends to a natural come topology on the geometric completion X =
X U8s X which is compact if and only if X is locally compact. The ideal boundary points
£ € 85X can be thought of as the ways to go straight to infinity. It is fair to say that the
topological type of H,X is not a very strong invariant, for example it is a (n ~ 1)-sphere
for any n-dimensional Hadamard manifold.

For us, another structure on 9, X will be particularly important, namely the Tits
(angle) metric introduced in full generality by Gromov in [BGS]. For two points £3,&2 €




O X at infinity their Tits angle /7y,(&1,&2) measures the maximal visual angle £, (&1, &)
under which they can be seen from a point z inside X, or equivalently, it measures the
asymptotic linear rate at which unit speed geodesic rays p; asymptotic to the ideal points
&; diverge from each other. If X has a strictly negative upper curvature bound the Tits
boundary Orits X = (0o X, L7its) is a discrete metric space and only of modest interest. On
the other hand, if X contains flats, that is convex subsets isometric to Eulidean space, then
their ideal boundaries are unit spheres in 8ry4,X. As a guiding principle, the non-triviality
of the Tits metric is related to the presence of extremal curvature zero in X which is the
source for the kind of rigidity phenomena we consider here. The Tits metric together with
the cone topology on 8,,X are the asymptotic data relevant for us.

Our main result is the following characterization of symmetric spaces and Euclidean
buildings of higher rank as Hadamard spaces with spherical building boundary. All sym-
* metric spaces in this note are assumed to have non-compact type. A Hadamard space is
geodesically complete if every segment can be extended to a complete geodesic. ’

Main Theorem. Let X be a locally compact and geodesically complete Hadamard space
and assume that Or;.X is a thick irreducible spherical building of dimension r -1 > 1.
Then X is an itrreducible Riemannian symmetric space or o Euclidean building of rank r.

. In the smooth case, i.e. for Hadamard manifolds, this follows from work of Ballmann
and Eberlein, or else from arguments of Gromov [BGS], Burns and Spatzier. There is
a dichotomy into two cases, according to whether geodesics in X branch or not. In the
absence of branching the ideal boundaries are very symmetric because the “reflection” at
any point £ € X yields an involution ¢, of 0, X which is a topological spherical building
automorphism. One then can adapt arguments from Gromov in the proof of his rigidity
» theorem [BGS]. Our main contribution lies in the case of geodesic branching. There the
ideal boundary admits in general no non-trivial symmetries at all and another approach is
needed. ‘

If, besides the Tits geometry, we take into account also the cone topology on 9, X it
turns out that the spaces in consideration are completely determined by their asymptotic
data up to a scale factor. A boundary isomorphism is a map of ideal boundaries which
simultaneously is a cone topology homeomorphism and a Tits isometry, and a homothety
is a map between metric spaces which multiplies all distances by the same factor.

Addendum. Let X, and X, be spaces as in the Main Theorem. Then any boundary
is0morphism Bee X1 — 05 Xo is induced by a homothety X7 — Xo.

This result follows from Tits classification of automorphisms of spherical buildings in
the cases when X has many symmetries, e.g. when it is a Riemannian symmetric space
or a Euclidean building associated to a simple algebraic group over a local field with non-
Archimedean valuation, and in particular if rank(X) > 3. However his results don’t cover
the cases when X is a rank-2 Fuclidean building with small isometry group. Our methods

_provide a uniform proof in all cases and in particular a direct argument in the cases with
high symmetry. '

A major motivation for this work was Mostow’s Strong Rigidity Theorem for locally



symmetric spacés, namely the special case for compact quotients of irreducible symmetric
spaces of higher rank:

Theorem (Mostow). Let M and M’ be locally symmetric spaces whose universal covers
are irreducible symmetric spaces of rank > 2. Then any isomorphism w1 (M) — m1(M") of
fundamental groups is induced by a homothety M — M'.

It is natural to ask whether this rigidity of locally symmetric spaces persists in the
wider class of closed manifolds of nonpositive sectional curvature. This is “true” and
the content of Gromov’s Rigidity Theorem [BGS]. As an application of our results we
present an extension of Mostow’s theorem and Prasad’s analogue for compact quotients of
Euclidean buildings to the larger class of singular nonpositively curved (orbi)spaces:

Application. Let X be a locally compact and geodesically complete Hadamard space.
Suppose furthermore that Xpodet 15 @ symmelric space or a thick Fuclidean building oll
of whose irreducible factors have rank > 2. If the same finitely presented group T acts
cocompactly and properly discontinuously on X and Xpoder then, after suitably rescaling the
metrics on the irreducible factors of Xp,odet, there is a I'-equivariant isometry X — Xpodet-

This means that among (possibly singular) geodesically complete compact spaces of
nonpositive curvature (this time in the local sense) quotients of irreducible higher rank
symmetric spaces or Eulidean buildings are determined by their homotopy type up to a
scale factor.

Example: On a locally symmetric space with irreducible higher-rank universal cover there
exists no piecewise Euclidean singular metric of nonpositive curvature.
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Grothendieck-Teichmiiller group and covers of genus 0 moduli
David Harbater, University of Pennsylvania

Every covering space of the sphere with three points deleted can be realized as a
morphism of complex curves X — P! — {0,1,c0}, and in fact as a cover of curves over
Q. Thus such covers are acted upon by Gq = Gal(Q/Q). Explicitly, a Galois cover
X — P! —{0,1, co} has topological branch cycle description (a, b, c), for some generators -
a, b, c whose product is 1, and which are given up to uniform conjugacy. If o € Gq, then
the induced cover X — P! — {0,1, 00} has topological branch cycle description (a’, ¥, ¢'),
for some generators a’,b’, ¢’ that are respectively conjugate to aX(?), px(9) x(9)  where y
is the cyclotomic character. Unfortunately, we do not know the elements o', ¥, ¢ up to
uniform conjugacy, and so do not know the action of Gq on covers.

Since an element of Gg can move base points, there is only a natural outer action of
Gl on covers, and hence on 71 (P! —{0,1,00}) = F,. In a well-known paper in 1980, Belyi
showed that every Q-curve is a cover of P! branched only at {0,1,c0}. This implies that
the homomorphism Gq — Out(Fy) is an inclusion. Later, in his Esquisse, Grothendieck
suggested that Gq be determined explicitly as a subgroup of Out(F,). Moreover, he
suggested that rather than generalizing P* — {0,1,00} to P! — {n points}, we regard

—{0,1, co} as the moduli space Mp 4 of genus 0 curves with four ordered ma,rked points
— and that we determine G as a subgroup of Out(I‘O ) for all n (where 1‘0 n = T1 (Mo n))-

In his 1980 paper, Belyi had also observed that the above triple (a’, ¥, ¢ i ) can be chosen
in a unique, compatible way so that o’ = aX(") and b is conjugate to bX(") by a (unique)
element f, of the commutator subgroup Fj. Thus to each ¢ € Gq there is assigned a pair
(As» f2) € Z* x F} that gives the outer action of o on Fy. (Here A, x(a) ) So the outer
action of Gq lifts to a true action on B ={zy,z|zyz=1),by .+ z*,y > iy f.

Later, motivated by considerations of Hopf algebras, Drinfeld considered three rela-
tions on pairs (A, f) as above, and said that these were satisified by pairs coming from GQ

He also introduced the Grothend1eck—Te1chmuller group GT of all pairs (A, f) € Z* % E
which give an automorphism of E, by the action as above on z,y, and which satisfy the
~ three conditions (I), (II), (III) (Here, conditions (I) and (II) are conditions in £ = I‘o 4

and (II1) is a condition in I‘o 5. If we Just use (I) and (II) then we get a larger group, GTQ )

Moreover he proposed an action of GT on the groups I‘g »; and suggested that GT is (ina
suitable sense) the automorphism group of the “Teichmiiller tower” of genus 0 fundamental
groups I‘O n (or perhaps, fundamental group(nds) These assertions, except for the one on

the tower, were later verified by Ihara. Thus GT is a group-theoretic approximation of
Gq from above, and the hope is that group theory and geometry can then shed light on

Gq. In fact, Thara asked if in fact the inclusion Gq C GT is an isomorphism.
The above discussion contains four main questions:

Question 1: How does Gq act on covers?

Question 2: What is the image of Gq in Outm;?

Question 3: Is GT the automorphism group of the genus 0 Teichmiiller tower? of the full
Teichmiiller tower?

Question 4: Is GT = Gq?




Recent work of Leila Schneps and the speaker approach these problems by “sharpening
the focus” to the good elements of Outl'y,, viz. to those that act like elements of Gq.
Specifically, the action of any element w € Gq has the following two properties:

(i) There is a X € Z* such that for each generator z € Ty, , the image of = is conjugate
to 2. ' ,
(ii) The action is unaffected by permuting the deleted points, i.e. it commutes with the
naftural outer action of Sy,. : ,
, We denote the Subgroup of OutI’g » satisfying these properties by Out*Iy n- Thus Gq —
' Ou{;#I‘O n- Concerning Question 2, are they 1somorph1c7 Since we also have that Gg =

‘GT, we can also ask (in light of Questlon 4): Is GT ~ Out,#I‘g,n? In fact, we have

:Theorem.v For w > 5, there is a natural isomorphism Out#f‘o,n ~ @, and for n =4
there is a natural isomorphism Out#fg,;; ~ GTYy.

“This gives a natural geometric interpretation of GT (and 5?0) , without the mysterious
cocycle relations (I) - (IIT). Also, it answers Question 2 for GT, rather than for Gq,
and answers a version of Question 3, viz. asserting that GT is the group of “ mce outer
automorphlsms of the genus 0 Teichmiiller tower.

The strategy is to show that Belyi’s lift of the outer Gg-action to a true action extends
to a lift of the (tautological) outer Out#I‘o 4-action to a true action. But there is also an

extension of the lift from Gq to GT,. After showing that condition (I) corresponds to
commutation with (12) € §3 and that (II) corresponds to commutation with (123) €
S3, it follows that Out* I‘O 4 G’To The parallel fact for I‘o 5 has a similar (but more
mvolved) proof, relymg on Nakamura’s analog of Belyi’s lift for I‘o 5, and proving that
(IIT) corresponds to commutation with (12345) € S5. The case for general n is proven by
reducing to the case n = 5.
As an application of the above, it is poss1ble to obtain information about the field of

moduli of a G-Galois cover of P! — {0, 1,00}. Namely, the Gg-orbit of a cover is contained
- in the @T—orbit,y which in turn is contained in the @o-orbit. The sizes of the latter orbits
bound that of the former, and so bound the degree (and Galois group) of the field of moduli
i (and sometimes even produce an overﬁeld of the field of moduli). Of course, it would not
" seem possﬁ)le to compute the GT- or GTo-orblts directly from the definition, but the
" above theorem makes this possible. Namely, the action of GTD on the orbit of the cover
factors through OutG (where we may need to enlarge G, temporarily, to get a well-defined
map to Out@), and the image is contained in a subgroup Out¥(G) C Out(G) that can be
computed explicitly. In fact, by working with groups between F4 and @, one can obtain
the exact image of GT, and hence the GT¢-orbit. A similar, but more involved approach
can be used for GT. If, for example, the GT-orbit of a cover has just one element, then
the cover has field of moduli Q (and so is equal to Q, under mild conditions on G). And
in general, the closer that GT is to Gq, the better the information that will be obtained
about the Gg-orbit and the field of moduli of a cover.

This returns the discussion to Question 4, which, given the above, is equlvalent to

asking if the image in Question 2 ig Out#I‘o,n This can be approached via Question 3, in



the case of the tower of all My ,’s. Here, higher genus curves can be built up from lower
genus ones by pasting, for example with respect to Thurston’s “pants decompositions.”
Algebraically, this can be viewed as forming a reducible curve of higher arithmetic genus,
and then using formal patching to deform to a smooth curve of that genus, In fact, the
above groups Out#l‘o n can be generalized to subgroups Out#]."g n C OutI‘gn of “nice”
outer automorphisms, such that the groups map to each other in a tower corresponding
to the ways that a higher genus curve can be built of lower genus ones. (The definition
includes the analogs of (i) and (ii) above, along with a third condition to guarantee that
the action is “local” on the topological surface.) One expects these groups to stabilize for
g,n sufficiently large, and the limiting group is a natural candidate for Gq.

To carry over the ideas from the genus 0 case, one needs a lift of the outer Gg-
action on fg,n to a true action. At the moment, this is unknown in general. But recently,
Nakamura has constructed such a lift for the case n = 1, using formal patching to increase
the genus. It turns out that the lifts of Gq satisfy not only (I) - (III), but also two
other relations. Thus Gq is contained in the group I’ C GT given by all five relations,
and if the two new relations are not implied by the old three, then Gq is strictly smaller
than GT (though it is perhaps equal to I'). One hopes that the case of f‘g,n forn > 1

~will not produce infinitely many such additional relations, as n — oo; and Grothendieck

had said that the all the relations ought to be contained in information coming from
(g,m) = (0,4),(0, 5),(1, 1),(1,2). At least, it is now known that I' does have an outer.
action on all the M, ;’s (Nakamura, Lochak, Schneps); and it appears that T’ embeds
“into Out® I‘g n- (This has been so far verified on a “large” subgroup of T, by Lochak and
Schneps.) So perhaps Out#Fg n 18 isomorphic to Gq for large g, n, even if GT is not —
corresponding to the hope that Gq can be recovered by its actions on the fundamental
groups of all the moduli spaces of curves.

Finally, the above theorem in genus 0 suggests a possible geometric approach to the
Shafarevich Conjecture. Namely, this conjecture states that the absolute Galois group
of K ig a free profinite group, where K is any global field and K< is its maximal
cyclotomic extension. In the geometric case, where K is the function field of a curve over
a finite field, this has been proven independently by the speaker and Florian Pop, using
patching to construct covers with desired properties. (The point is that after adjoining
all the roots of unity, the base curve is over the algebraic closure of the finite field, and
so patching and specialization can be applied.) But in the arithmetic case, where K
is a number field, the techniques of geometry do not directly apply, and the problem
remains open. But under the inclusion Gq < GT o~ Out#l"o 5, the absolute Galois
group of Q¥ = Q® injects into the subgroup (Out*I'g5)! € Out'#I‘o 5 for which A = 1.
The question of whether (Out#I‘o 5)! is free is geometric and group-theoretic, rather than
arithmetic. And if it is free, and if Q2P is an open subgroup of (Out*Ty 5)1, then Q2P
would also be free. Thus, following the general philosophy of this talk, it may be possible
to reduce this arithmetic problem to a geometric one, where many other techniques can
be brought to bear.




Infinite torsion groups and algebraic surfaces.

L. Katzarkov

1 Imtroduction

The question of characterizing the universal covefing of a smooth projective variety X is a difficult
question. Central to the subject is a question asked by Shafarevich if the universal covering of a
smooth projective variety X, X is holomorphically convex. A complex manifold M is holomorphi-
cally convex if for every infinite discrete subset S of M there exists a holomorphic function on M
that is unbounded on S. T.Napier has studied the question when (unramified, infinite) coverings of
a complex surface are holomorphically convex and has shown [7] that one of the basic obstructions
to the holomorphic convexity is the existence of connected noncompact analytic sets all of whose
irreducible components are compact. We will call such an analytic set an infinite chain.

We give an explanantion of the infinite chain condition. Let X be an algebraic surface and
D is an effective divisor in X that is a connected reducible curve having only rational curves as
irreducible components. We can produce a counterexample o the Shafarevich conjecture if we can
arrange that im{my(¥) — m(X))] is infinite. Deligne [3] has shown that it is impossible to achieve
this on the level of homology since we have

im[H{(D,Q) — Hy(X,Q)] = im[H:(D',Q) - Hi(X,Q)] = im[UH, (P!, Q) — Hy(X,Q)] =0.

(Here we denote by I’ the desingularization of D.)
* Using the results of Lassel and Ramachandran [4] and of Simpson ( see e.g. [9] ) one can prove
the following:

Theorem 1.1 Let p: m(X) — GL(N,C) be a linear representation of the fundomental group of
an algebraic surface X and let Y = UD; is a divisor in X. If the restriction of p on w1(D;) is

trivial then the restriction of p on mi(Y) is a finite group.
This theorem implies ( see e.g. [5]):

Theorem 1.2 Let m1(X) € GL{N,C) be the fundamental group of an algebraic surface X. Then

the Shafarevich conjecture is correct for X.




Simpson’s technique of mixed twistor structures (MTS) [8] allows us to prove much stronger
results which a subject of a recent work by Katzarkov, Pantev and Ramachandran [6]. It is
plausible that (MTS) will give a prove for X and algebrai ¢ surface with residually finite torsion
free fundamental group. It will be interesting to see some examples of group outside this class. The
questions about the existence of smooth projective varieties with nonresidually fundamental group
was first ask ed by Serre. The first example like that belongs to Toledo. Similar examples were

given by Catanese, Kollir and Nori. These groups are extensions of lattices by abelian groups.

2 The construction

Recent"ly some examples of interesting fundamental groups were suggested by F.Bogomolov and L.
Katzarkov [1] These examples are potential examples of nonresidually finite fundamental groups
with infinite torsion. It was shown in [1] that these examples are related to some group theoretic
conjectures whose positive answer will give a counterexample to the Shafarevich conjecture. We
first describe the construction locally. We begin with some well known results on degeneration

of eurves. Let Xp be a smooth complex surface fibered over a disc D. We assume that f ibers

- over a punctured disc D* = D — 0 are smooth curves of genus g and the projection ¢ : Xp — D

is a complex Morse function. In particular the fiber Xg over 0 € D has only quadratic singular
points and it has no multiple components. Denote by P the set of singular points of X and by
T : m1(X:) = mi(Xy) the monodromy transformation acting on fundamental group 7y (X:) of a

" generic fiber X;. This monodromy action can be described in terms of Dehn twists. Obviously it

induces an action on H'(X;,Z). The following proposition describes completely the topology of
Xp and the projection t : Xp — D. We define a natural topologic al contraction ¢r : Xp — Xp.

Observe that ¢r~1{P) is an union § of circles §;. The restriction of er on X; — S is an isomorphism.

Definition 2.1 We will call the the free homotopy loop S; in « ﬁrst' homotopy group of X; a

geometric vanishing cycle.
We need the following easy lemma.

Lemma 2.1 1)The monodromy tmnéfofmation T acts via a unipotent transformation Ty on the
homology group Hyi(X:,Z).

2) (1 —Tg)* =0.

3)(1- Tg) = 0(modN) for any N.

Lemina 2.2 The surface Xy coniracts to the central fiber Xg.

Indeed the fiberwise contraction of Xp to Xy can be lifted into a contraction of Xy.
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Remark 2.1 The fundamental group 71(Xp — P) = mi(Xp) = m1(Xo) since the singular points of

the fiber Xo are nonsingular points of Xp. The analogous statement is not irue however for Xy.
The proof of the following theorem can be found in [1].

Theorem 2.1 The fundamental group m(Xy — P) is equal to the quotient of m1(X;) = 7, by a

normal subgroup generated by the elements sf’r .

~ Let us denote by Gx the fundamental group of Xy — P and by X its universal covering. Here
we start to develop the idea of the construction. Namely we show that we can work with open
surfaces and get results concerning the universal cove rings of the closed surfaces. The advantage

is that we get bigger variety of fundamental groups.

Theorem 2.2 There is a natural Gx-invariant imbedding of X into a smooth surface )NCU with

XU |Gx = Xy. The complement of X in Xy consists of a discrete subset of points.

Now we globélize the construction. We will show that we can do the construction described
above globally in a compact surface. Let X be smooth surface with a proper map to a smooth
projective curve C. We assume that the map f : X — C is described locally by a set of holomorphic
Morse functions. Thus the generic fiber is a smooth curve Xy,t € C of genus g. As in the previous
section we denote the fundamental group of X; by m,. Abusing the notations now we denote by P
the set of all singular po ints of the fibers and by P¢ the set of points in C corresponding to the
singular fibers. Thus f(P) = Py and all the points in P are singular double points. The principal
difference of the gldbal situation les in the presence of the global monodromy group which is the
image of m(C — P¢) in the mapping class group Map(g). We denote this group by Mx. Let
us chose an integer N and consider a base change h : R — C where R such that the map £ is

" N-ramified at all the preimages of the points from Pp in R. Now consider a surface S obtained
via a base change h : B — C. We have the finite map A’ : § — X defined via h and the projection
z: 8 = R with a generic fiber S; = Xj(;). The surface S is singular with the set of singular points
equal to A~1(P) = Q and the set-of singular fibers over the points of #~*P¢ = Pg. The monodromy
group Mg of the family S is subgroup of finite index of the group My.

Theorem 2.3 The fundamental group m1(S — Q) is an estension of m1(R) by the quotient of ny by
a normal subgroup generated by the orbits of Mg(s)).

Now we move to the second step of our construction, modifying S — @) so that we get a smooth
compact surface SV with almost the same fundamental group. Let us assume that IV > 2.

Lemma 2.3 There erists a smooth projective surface SV with a finite map f: SN — S such that
the image of the homomorphism fa : T (SY) — m1(S—Q) is a subgroup of finite indez in 71(S— Q).
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-3 Applications

This is the end of the construction and we suggest some possible applications. To find a coun-
terexample to the Shafarevich conjecture we need fo control the existence of an infinite connected
chain of compact curves in the universal covering of SV¥. In other words we need to control the
image of the fundamental groups of the irreducible components of the reducible singular fibers in
the fundamental group of the whole surface SN. The above construction shows that we need to

look at the i mage of the fundamental groups of the ‘open irreducible components of the reducible
| smgulaa: fibers in the fundamental group of the open surface S — (). We can construct a smooth
family of curves § — R with the following properties:

1) The fundamental group of Ry surjects on the components group of the moduli space Mg‘ -
the mapping class group Map(g). Here Ry is the open curve that parameterizes only the smooth
fibers.

2} § — R has a section s : R — §.

3) All singular fibers have singularities that are ordinary double points.

It easy to arrange so that in the above family of curves of genus ¢ = 2k there is a fiber which

consists of two components each of genus & that intersect in one point.

Definition 3.1 Denote by g/ (N = 1) the quotient of the fundamental group of @ Riemann surface
of genus g by the group generated by the N — th powers of the images of the primitive elements in
' #g under the action of a subgroup of a fini te indez in Map(g).

The free group on 2k generators F% embeds in a standard way in the fundamental group of a

‘Riemann surface of genus 2k punctured at one point.

- Definition 3.2 We will denote by P(2K)N the quotient of IEQ’“ by the subgroup generated in F2¢ by
’ the orbits of the N powers of embedded loops in the fundamental group of a Riemann surface of
genus 2k punctured in one point.

Applying the above construction we get that the image of the fundamental group of every
component in the fundamental group of S — Q is equal to PY (k). The image of the fundamental
group of a generic fiber in the fundamental group of S — Q is equal to 7,/(zY = 1). We formulate
the following question.

Question Are there such a 2k and N such that PN (2k) is a finite group and mg/(z = 1) is
an infinite group?

If the answer of the above question is affirmative then we get a counterexample to the Shafarevich
conjecture. Observe that irreducible components in the construction above could be made of
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different genus. This gives us much bigger variety of examples. Each of these examples produces
hard ( according to Olshanskii and Zelmanov) group theoretic question similar to the one we have
formulated above. The Shafarevich conjecture in particular implies that all these questions have
negative answer. It is also worth noticing that the surfaces SV described above most probably have
nonresisually finite fundamental groups as it was conjectured: »

Conjecture 3.1 ( Zelmanov) The group mor/(z = 1) is not residually finite.

4 Some arithmetic and symplectic reflections

Observe that the construction defined above extends to the symplectic category where it could
lead to interesting examples of symplectic four dimensional manifolds. Using this construction
Bogomolov and Katzarkov have defined in {2] an obstruction to a symplectic Lefschetz pencil being
a Kihler Lefschetz pencil. Let us begin with a symplectic fourfold X. Consider the corresponding
Lefschetz pencil with reducible fiber and apply to it the construction. It is shown in [2] that the
construction goes through and for a fix integer N we get a symplectic fourfold S¥. Let p be a
representation p : 71 (SY) — GL(n,C) such that Im(p) is not virtually equal to Z. Denote by ¥;
the components of the preimage of the reducible fiber of S in SY and denote by F the general fiber
of S¥. Denote by T the image of 1 (F) in 71 (S¥) and by T; the images of the fundamental groups
of ¥; in 71(SY). If the restrictions of p on T' and I'; for all 4 are both finite or infinite we will say
that the obstruction O(X )i is equal to zero and to one otherwise.

Proposition 4.1 If X is a Kahler surface then O(X)V™ is trivial for every pair N,n.

Indeed otherwise we will have that covering of SV with linear Galois group contains infinite

chain of compact curves so it cannot be holomorphically convex.

Remark 4.1 The above obstruction does not distinguish in general Kdhler surfaces from symplectic

fourfolds. Tt distinguishes only symplectic from Kdihler Lefschetz pencils.

All these suggest that holomorphic convexity of the universal coverings of projective surfaces
could have a motivic character so we formulate an arithmetic variant of the Shafarevich conjecture.
Let K be a number field with a ring of integers Og. Start with a projective semi-stable curve Cx
over K. Since K is not algebraically closed we can find a nontrivial map C' -+ Spec(Ox) whose
generic fiber is isomorphic to Cx. Due to the semi-stable reduction theorem we may assume (after
passing to a finite extension of K if necessary) that C is also semi-stable. This means that C is a

normal variety with semi-stable fibers consisting of normally intersecting divisors. For any finite




nonramified geometric extension L of K(C) we have a model O, with a finite map onto C. As it
follows from the above discussion the fibers of this new model Cy, are uniquely determin ed by C.
We formulate an arithmetic version of the Shafarevich conjecture.

Question Is fhere a constant J(K(C)) such that the number of components of any fiber of Cf,
is bounded by J(K(C)) for any finite extension L of K (C) contained in K(C)™".

There exists some evidence for the above arithmetic conjecture - it is true if we consider only
abelian coverings. Bogomolov proved that the torsion group of an abelian variety A is finite if the
latter is defined over an infinite nonramified extension of K (see e.g. R.Coleman’s paper in Duke
Math. Journal, 54 (1987), p. 615).
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Elliptic Moduli in Algebraic Topology

Haynes Miller
MIT

This is a report on joint work in progress with M. J. HopPKins.

The theme. Recently topology has been interacting in new ways with algebra via the
following pull-back diagram.

topology +— new stuff

!

sets — algel")ra

- The “new stuff” here forms a natural enrichment of the algebra under it. The algebra
today is moduli of elliptic curves.

Here’s the pattern. If I is some shape of diagram—some small category—and D is
a functor from it to groups, I can form lim D, the group of of compatible families of
elements of the D(i). For example a pull-back is a limit, as is the fixed point set of a
group action.

Now suppose that D, = m,.(X), for a diagram of spaces. A characteristic feature
of homotopy theory is that one can form a modification of the notion of limit which is
both more homotopy-invariant and more interesting: the homotopy limit holim X. For
example, ‘

X T
holim lf =
y 4y 7 Ly (w:g@y)~ f(=))

If X = *x =Y then the holim is empty if they land in different path components, and
homotopy equivalent to the space of pointed loops on Z if the are in the same component.
The homotopy limit of a group action is the homotopy fized point set mapo(EG, X). The
homotopy limit is not the limit in the homotopy category, but rather a more sophisticated
construction which in general depends not just on the image of the diagram in the
homotopy category but rather on the diagram of spaces itself. On the other hand, unlike
the actual limit, a map of diagrams which is a homotopy equivalence on each object
induces a homotopy equivalence of the homotopy inverse limits.

There is a map
: 7 holim X — limr, X

which is in general neither injective nor surjective. It's the edge homomorphism of a
spectral sequence. ‘

Model example. In this work we'll replace spaces by spectra. These Obje(;ts should be
better-known outside Topology since they they make life so much easier. They behave




like spaces which can have homotopy groups in negative dimensions. In compensation the
homotopy in each dimension is an abelian group. They represent cohomology theories.
For example, topological K-theory is represented by a spectrum K. m,K = K(S"),
which is zero for n odd and Z for n even. In fact K-theory is a “ring-spectrum,” and
mK = Z[u*]. Tt is a “periodic ring spectrum,” in the sense that it has no odd homotopy
and has a unit in dimension 2 (the Bott class).

Periodic ring spectra represent computable cohomology theories. For example if E is
a periodic ring spectrum then

E*(CP™) = E°[[a]]

so there is a “first Chern class” or Euler class for complex line bundles (Novikov and
QUILLEN). It satisfies a product law

e(Ly ® Lo) = F(e(Ly), e(Ls)).

The power series F' is a formal group law. For example we can take e(L) = 1 — L in
the case of K-theory, and then the formal group law is the multiplicative formal group
Gnl(z,y) =z +y —zy. I should point out that the formal group law depends upon the
parameter z, while the formal group is canonically determined by E.

Complex conjugation acts on this spectrum; this is a diagram of spectra. Tu = —u
so the fixed subring is Z[u*?]. On the other hand
| | holim K = KO.
CZf2 ‘
4k+2

There is a natural map 7, KO — (m,K)%/?, which is neither onto (u is not in the
“image) nor one-to-one (there is 2-torsion in mgr41,2/0). There is a spectral sequence

H(Z])2;7.K) = 7.KO.

Why spectra? Perhaps I should say a word about why you should care about spec-
tra. I'll motivate from index theory. A genus is an additive and multiplicative bordism
invariant of manifolds with some geometric structure; for' example a complex structure,
or, better, a complex structure on the normal bundle: a U-manifold. NOVIKOV and
MILNOR showed that a genus on U-manifolds with values in a Q-algebra is determined
by its values on CP™. The Todd genus for example is such that

Td(CP’“) =1

for every n. According to Thom, the ring of bordism classes of U/-manifolds is isomorphic
to the homotopy ring of a spectrum, the unitary Thom spectrum MU. The Todd genus
thus defines a homomorphism of graded rings m,(MU) — Z[u*!].

HIRZEBRUCH'’s book is devoted to showing that for complex manifolds this coincides
with the arithmetic genus, i.e. (after HIRZEBRUCH) the alternating sum of the dimensions
of the cohomology groups (which are finite dimensional) of the Dolbeault complex

0 —> C(M) -2 ¢ (T* M) -2 C= (AT M) 25 -+ - 25 0 (APT* M) —> 0.



Now suppose that F' | X is a family of complex manifolds. Any genus gives us a
number for each point in X—Ilocally the same number, of course.. But the Dolbeault.
complex gives us more: the cohomology groups form wector bundles over X, and their
alternating sum is an element of K(X). By pairing the Dolbeault complex with a vector
bundle over E you get a map K(E) — K(X).

On the other hand, the fact that complex vector bundles have K-theory Euler classes
leads to a map of ring spectra MU — K. This map induces the Todd genus in homotopy,
and also constructs from the bundle £ — B a Gysin map K(E) — K(B). The index
theorem for families identifies these two covariant maps.

The homotopy type of the spectrum reflects the geometry (vector bundles here), and
the orientation MU — K reflects the analysis (index theory).

Elliptic curves. The next analogue is much more interesting. Here the diagram is
indexed by a certain category of elliptic curves, which I review in pedestrian form.

Look at a smooth cubic plane projective curve E over a field &k, and suppose that
o € E(k). The k-valued points form a group by requiring that the sum of the three
points at which £ meets a line is o. This curve can be normalized so that o = [0,1,0] .
is the unique point at infinity and that the line at infinity is tangent to E. By scaling z
and y appropriately this curve is given by a Weierstrass equation

E: P+4aay+ay =1+ +az+a, 0 €R

I've written R here because this equation makes sense over any ring 2. Smoothness is

equivalent to a certain polynomial, the discriminant A, being a unit in R. There are still

some coordinate changes that preserve this form. (Il omit scaling, which contributes a

grading to everything.) '
: z = ' +r

y = y +sz'+1

The set of Weierstrass equations is a functor of R which is representable by the ring
A= Z[a;l, Q, G3, G4, G5, A7
Thé group of coordinate changes is reﬁresented by a Hopf algebra with underlying ring
S = Zlr, s, 1

which co-acts on A: ¢ : A — A®S.

We can form a category of Weierstrass curves E/R, with maps E/R — E'/R' given
by a ring homorphism f : E — E’ and a coordinate change fE — E'. Actually, it is
better to form the assocated stack £l in the flat topology on affine schemes, and we do
50. ‘ ) : ‘
Now E/R > R is a functor on this category, and we may form the limitf 'I‘ his will
give natural invariants of elliptic curves in the ground-ring: i.e., polynomials in a;, A,




which are left fixed by coordinate changes. This ring of “integral modular forms” can

also be thought of as the ring )
o HY(S; A)

of primitive elements for the coaction of S by coordinate changes, and was computed by

TATE and DELIGNE: ‘

H® = Zcy, cs, AT/ (c} — c§ = 12°A).

Topological modular forms. To begin with one wishes to associate a spectrum to an
elliptic curve. I do not know how to do this in general, but if E/R satisfies a simple
flatness condition then it can be done. The ﬂatness condition is that the map ' ‘

Aty a05 28 Re S (1)

should be flat. For example the universal case B = A works, as does the “Legendre
curve” '

4 =a(o— 1)(o - A over  Z[/2 X (1=

Theorem I. There is a lift in
Periodic
Ring Spectra

& Ellgay — (Formal Groups)
completion
' along o

This is based on the work of QUILLEN, relating complex cobordism to the theory of
formal groups. PETER LANDWEBER used this to give a general prescription for con-
structing a spectrum from a formal group. The theorem of PIERRE CONNER and ED
FLoyp relating K-theory to complex bordism was the motivating example. The first
example of such a construction starting with an elliptic curve was due long ago to JACK
-~ Morava, and more recently to LANDWEBER, DoUG RAVENEL, and Bos SToNG. The
possibility of a more general construction was perceived by JENS FRANKE. The final
touches rely on recent work of MARK HOVEY and NEIL STRICKLAND. (As a technical
point, one must restrict still further to insure that the completion at o is a formal group
in the usual sense, rather than just locally so, but we won’t belabor the issue.)

Now we’d like to form a homotopy limit of this diagram, but a diagram up to homo-
topy is not sufficiently rigid to make this construction (even though the homotopy limit is
homotopy invariant!). We have to lift further to some category of spectra and real maps
rather than homotopy classes of maps between them. For this it turns out to be useful to
use the ring-structure. There is a category of “A.,-ring spectra,” which is a topological
version of the theory of associative rings. It forms a topological model category. It is
due in different forms to a large group of people. The result I am reporting on is the



sort of application one can make of the technical work on spectra and could not be done
without it. ’

Three obstruction theories. First, there is an obstruction theory for the existence
of an A, structure. To make the obstructions vanish I must restrict the elliptic curve
further, requiring that the map (1) should be not just flat but “étale.” Etale means
that in a homotopical sense there are no relative differentials; so that R can’t be too big
relative to A. In fact the universal Weierstrass curve itself is not étale, but the Legendre
curve and enough other examples are.

Theorem II: Objects. For E/R étale, £7/% admits an essentially unique Ao structure.

Here we rely on an obstruction theory- developed by ALAN ROBINSON and more
. recently and in different form by CHARLES REZK and by HOPKINS and PAUL (GOERSS.

Theorem ITI: Morphisms. There is a lift in

Ho(PeriodicAs)
s
E:Ellgy — (Periodic Ring Spectra)
and the lift is fully faithful.

The final job is to lift the diagram from HoA, to a diagram in A,, itself. For this a
key observation is that any f : E/R — E’/R' induces a homotopy equivalence

AOO(SE/R,gE’/R')f (_Jf*_Aoo(EE/RJ £BIRY, .
the diagram is centric. This allows us to apply an obstruction theory developed by BiLL

DwyYER and DAN KAN for use in the theory of p-compact groups. It leads to

Theorem IV: Associativity. There is an essentially unique lift

Aoo

/
E:Elly —> HoAn.

This rigid diagram is elliptic cohomology. It is the sort of structure which would
emerge naturally from a construction involving geometric cocycles (analogous to vector
bundles).

Now, finally, I can take

TMF =holim&
Ellet

in the category A.. The result, like KO, is an Ay ring spectrum. There is a spectral
sequence
H*(S; A) = n.TMF

whose edge homomorphism
n,TMF — H°




is neither one-to-one nor onto.” There is nontrivial higher cohomology (all killed by 24).
There are nontrivial differentials (on A, for example). So A is not a topological modular
form, though 24A and A?* are. A?* is a unit, giving TMF a periodicity of degree 242,
The homotopy of TM F (which is hardest to understand at the prime 2) has been studied
in detail by HoPkKINs and MARK MAHOWALD. Indeed, MAHOWALD was aware of the
completion at 2 of this spectral sequence some twenty-five years ago.

The Witten genus and further questions. The action by complex conjugation on
K leads to a variant of the Todd genus MU — K with values in KO, no longer on
U-manifolds but rather on Spin manifolds: the A genus, or, more subtly, the “Atiyah
invariant” « : M Spin — KO, This genus also has an index-theory interpretation, by
means of the Dirac operator.

It seems that there should be an analogue for TMF'. Witten produced a genus which
takes values in modular forms on “String manifolds,” that is, manifolds whose structure
group reduces to the next connective cover of Spin(n). This amounts to p; = 0. The
connective covering group is a good topological group but is no longer finite dimensional.
(It’s a bundle over Spin(n) with CP™ as fiber.) An analogue of the Clifford algebra
approach would be nice.

MATTHEW ANDO, HOPKINS, and NEIL STRICKLAND have shown that there is a
canonicel ring-spectrum map

MStr — EE/IR

for any flat object E/R (or indeed for any “elliptic spectrum”). The proof uses the
“theorem of the cube.” This is a beautiful result, but doesn’t quite do what we want.
- We would like to lift this to a map from the constant diagram M Str to the diagram &
" in Ae. If this can be done, then we get an orientation

wi:MStr—TMEF

enriching the Witten genus. This would put interesting restrictions on the image of the
Witten genus and also define a whole batch of new torsion invariants for string manifolds.

The motivating question remains: what is the corresponding theory of geometric
cocycles? What is the analogue of index theory?



Branes

Werner Nahm
Physikalisches Instituf der Universitat

Branes are objects in string theory/ M-theory/ F-theory (which are all aspects of
the same mathematical structure). A p-brane extends in (p-+1) spacetime dimensions.
More precisely, solitonic p-branes have a (p+1)-dimensional core, but include a description
of spacetime deformation around this core. Membranes are 2-branes, strings 1-branes,
particles O-branes, instantons (-1)-branes.

To construct a solitonic p-brane, consider first the massless fields of a string or mem-

brane theory in a flat spacetime. These include gravitons and various kinds of gauge fields.
The corresponding fields can take non-zero values when the string motion in the corre-
sponding background remains unobstructed. This yields equations for the background
fields (modifications of Einstein and Yang-Mills equation). To find solutions of minimal
energy (BPS configurations), one has to solve stronger first order equations.
; As an example consider the 11-dimensional theory which has membranes and 5-branes
(Duff, Stelle, Gueven). The background fields are the metric and a closed 4-form K. The
5-brane carries a charge proportional to the integral of K along a four sphere wrapping
around it, the membrane analogously for *K. The product of the 2-brane and 5-brane
charges is constrained by an analog of Dirac’s quantization condition for electric and mag-
netic charges. '

For a given background, string theory yields a quantum field theory. When the pa-
rameters of such a theory are varied, heavy semiclassical solitons may become light and
are better described by local fields. For example, the soliton of the two dimensional sine-
Gorden equation '

(07 — 07)¢ = sin(¢)

corresponds to a quantum field which describes a 27 jump of ¢ which is localized at a
point. For p-branes with p > 0 one can expect analogous localized objects.

Such configurations turned up for open strings in R”/A, where A is a lattice (Polchin-
sky). Free strings are described by guantizing the equation

(atz - (95)@5(:1:, t) =0 ’

é(z,t) € R™/A. The Hilbert space is a tensor product of a Fock space given by the non-zero
Fourier modes and a zero mode factor. For closed strings, the latter corresponds to the
classical solution ¢ = Az + ut, where A € A. By momentum quantization, y must belong
to the dual lattice A”. Correspondingly, the Hilbert space gets a factor I2(A) ® I2(AY).
The lattices A and A? yield isomorphic quantum theories (T-duality). For the classical
solutions, this corresponds to an interchange of z and ¢.

For the standard open strings with Neumann boundary conditions, the zero modes are
given by ¢ = ut and the Hilbert space has a zero mode factor I?(A”). An isomorphic theory
is obtained by ¢ € R™/A”. with Dirichlet boundary conditions #(0,1) = ¢(1,1) = const.
One also may obtain isomorphic quantum theories by restricting some components of ¢(0, 1)
and ¢(1,%) to a hyperplane in the target space and to use Neumann boundary conditions




for the others. Such hyperplanes are called d — branes. As for the solitonic branes, the

background configuration can be deformed to yield moving d-branes. Again, such d-branes

may carry charges. For a given string theory, a (p + 2) — form gauge field K indicates
the existence of p- branes Similar considerations determine which p; — branes can end on
ps — branes.

Apart from their applications in string theory itself, branes can be used to obtain
quantum field theories and their moduli spaces. In particular, one can put a p-brane in
some background and study the induced quantum field theory on the (p-+1)-dimensional
world sheet. More generally, one can consider some parallel branes with distances small
. compared to the length scales under study, since this configuration behaves as a single
spacetime. This procedure supplements the Kaluza-Klein construction of field theories by
compactifying some of the space dimensions. It has the advantage that it easily yields
mass paramefers.

) When p + 1 is the spacetlme dimension, p-branes have no dynamics, but label the
ends of open strings (Chan-Paton factors). For n distinct labels and oriented strings, one
obtains U(n) gauge fields, as noticed in the early days of string theory. The symmetry can
be broken by separating the branes, with a breaking scale proportional to their distances.

This is the mechanism which has been used by Connes and Lott to describe the broken
U(1) x SU(2) invariance of the standard model. As in their case, one obtains a geomet-

_ric interpretation of the leading term of the -function, in other words the logarithmic
divergence of 1-loop Feynman graphs..

Another application yields a conception interpretation of the ADHMN description
of BPS monopoles (Diaconescu). For an SU(2) monopole of charge k in 3+1 spacetime
dimensions one needs two 3-branes joined by k superimposed strings. Along the strings
one finds the expected differential equation of three k x k matrices. For SU(n) monopoles
one needs n of the 3-branes joined by a varying number of strings. This corresponds to
a differential equation for matrices of varying size, with suitable continuity conditions at
the locations of the 3-branes, exactly as in the ADHMN formalism.

- Many of the applications are still at a purely heuristic level, but they certainly are

- promising and have uncovered a new aspect of string theory.



COUNTING ELLIPTIC CURVES IN PROJECTIVE SPACES

E. GETZLER

There are two possible ways of counting genus g curves in a projective
variety (except in genus 0): we may fix the modulus of the curve, or allow
it to vary. In this talk, we concentrate in the second of these problems.

Thus, we are “integrating” over M,. Think of M, as the space of (con-
formal classes of) metrics on a topological surface of genus g. Then the
problem of integrating over M is a model for the problem of integrating
over the space of metrics on space-time, which arises in the (unsolved) prob-
fem of quantizing gravity. Some of the ideas in this talk first arose in the
study of gravity in two dimensional space-times.

Let Mg (V') be the moduli space of data (f : C — V, z1,...,2,), where
' is a smooth projective curve of genus g, V' is a smooth projective variety
of dimension D, [ is an algebraic map, and z; are distinct points of . The
tangent space of Mg, (V, ) at such a map is given by the zeroth cohomology
group of the complex

TO(=Zs,...,~Z)1] s Fo1V,
which has Buler characteristic '

(p-3)1-9) - [ K+

Let NE; (V) be the semigroup
NE{(V) = ZE;(V)/numerical equivalence,
where ZE; (V) is the semigroup of effective 1-cycles on V. Mgn(V) may be
partitioned according to degree of the map j:
Mg;n(_v) = H Mg,n(v» B),
, BENE; (V)

where My, (V,8) = {[f : C = V,z]| £.[C] = B}

We have evaluation maps

Mg,n (V7 ,6) —E ym

g
Mym
where the horizontal arrow is given by evaluation of f at the points z;, while
the vertical arrow forgets V and f. Given differential forms «; on V dual to
cycles Z;, consider the problem of calculating
{1 C = Viml € MV, B) | flz) € Zi}-

If My ,(V,0) is compact and compact, this should equal the integral of
e* (o B -+ Ray,) over My (V,B). )




This program has many difficulties, all of which have been resolved in the
last few years: '

1. My na(V, ) is not compact: Kontsevich has shown how to compactify
B e

2. Mgn(V,B) is a stack, not a variety — this is a minor problem, but
forces us to work over a ring of characteristic zero; :

3. Mgy, (V, ) may have excess dimension, and even be singular — Kont- .
sevich proposed a solution to this, the definition of a “virtual funda-
mental class” of dimension (D — 3)(1 —g) — Ky - B+ n, which has been
carried out by Behrend and Fantecchi, and Li and Tian, and by 1i and
Tian in the symplectic setting.

" Finally, we obtain the so—called Gromov—Wltten invariants, which are lin-

ear forms
IV, 5) tH'(V",Q) — Q.

These satisfy a number of axioms (see Behrend and Manin), and are the
solution of a generalized enumerative problem. However, in general, the
answer must be corrected, since Kontsevich’s compactification has ghost
components, which do not correspond to embedded rational curves. (Along
‘these components, the curve C has double points, and some components
of C may be contracted to a point by f.) This problem of correction has
been solved in three cases: for del Pezzo surfaces, it does not arise (roughly,
because the normal bundle of a map from a curve to a surface is a line
‘bundle, and hence its H* may be controlled by its degree), for g = 0 and flag
vareties, the moduli problem is unobstructed, while for g = 1 and V = CP?,
we have shown in joint work with Pandharipande that the true emumerative
invariant is

2k 3
(I kH) + = (Icwka .

Our approach to calculatmg the Gromov-Witten invariants (Iﬁ ng) 18 o
find a relation among cycles in the homology of HM. There is a generaliza-
tion of the Gromov-Witten invariants, which takes values in H* (M_g,n,Q),
and which is determined on Knudsen’s strata by the classes (I, om,3)- Thus,
our relation gives relations among Gromov-Witten invariants which, when
there are no primitive cohomology classes of degree greater than 2 in V,
reduce the calculation (I}, 5) to that of

(1) HH(V,Q) »Q, 0<i=-KynpB<D,

together with the rational Gromov-Witten invariants.

Using mixed Hodge theory, we have proved that the cycles [M(G)], as
G ranges over all stable graphs of genus 1 and valence n, span the even
dimensional homology of ﬁl,m and that our new relation, together with
those already known in genus 0, generate all relations among these cycles.
This result is the analogue, in genus 1, of a theorem of Keel in genus 0.

We may introduce a filtration on Gromov-Witten invariants with respect
to which the leading order of our new relation takes a relatively simple form;
by analogy with the case of differential operators, we call this leading order
relation the symbol of the full relation. Unfortunately, the nature of this



relation remains rather mysterious: we obtained it as the null-vector of an
intersection matrix.

We define a total order on the symbols (Ig‘{ n,ﬁ) by setting (I;{,n',ﬂ’> ~
(I;n’ﬁ) ifg <g,org =gandn' <myorg =g, n' ' =nand =48 +758"
where " € NE; (V) is non-zero. Thus, knowledge of the symbol determines
relations among Gromov-Witten invariants such that the error in the relation
on (I;fnﬁ) involves invariants (I;'/,n',ﬁ’> with (I;f’n,,ﬂ,) = anﬁ' (Here,
we must of course exclude (If34).) We use the symbol ~ to denote this
equivalence relation.

Abbreviating <IKn,ﬁ (01,09,03,...,0a,)) to {aq, az}, we have

U(a,b,c,d) = {aUb,cUd} +{aUc,bUd}+ {aUd,bUc}
—{a,bUcUd} —{b,aUcUd} —{c,aUbUd}—{d,aUbUc} ~ 0.

Our new relation is closely related to a relation in A(M3) ® Q discov-
ered by Faber (Lemma 4.4 of Faber); the image of his relation in Hy (M3, Q)
under the cycle map is the same as the push-forward of our relation under
the map My 4 — Ms obtained by contracting the 4 tails pairwise. Pand-
haripande has found a direct geometric proof of the our relation, showing
that it is a rational equivalence, by means of an auxilliary moduli space of
admissible covers of CP*.

Let us illustrate our results with the case of the projective plane. The
genus 0 and genus 1 potentials of CP? equal

1 \ ) o) o . tBn—l
Fo(CP?) = 5 (to] +tita) + 3 NiVq"e™
ot b
F (@2) — _E —}—iN(l)anntl—é%i*
1 3 L Gy

where tg, t; and %3 are formal variables, of degree —2, 0 and 2 respectively,
dual to the classes 1 € HO(CP?,Q), w € H2(CP?,Q) and v? € H*(CP?,Q)
respectively, and N,(,O) and N,(LI) are the number of rational, respectively
elliptic, plane curves of degree n which meet 3n— 1, respectively 3n, generic
points. Kontsevich and Manin establish the recursion

AN D .2 . /3p—4 0) A-(0
N = Z (Gi2)d® - 233(3?-1))1\7; )Nj ),
n=i+j]
which, together with the initial condition Nlm) = 1, determines the coeffi-
cients N”. Our method gives the recursion

NP = Y (o )ik — - ONONOND

3j—1,3k—1
n=itjtk
AT 5 M n—2\ . o . 0
+2 Z ((3’%& 2)@32(82, — g) — @32‘—12)2(3 + ])Jg)Ni(l)Nj; )
n=ig
1 ! - T I 0 0 g, ‘ y
- 521'( > Grdn*—3n— 6i)i%;3 N )N} ) 4 6n3(n — 1)N£"7>.

n=i4j




TABLE 1. Rational and elliptic Gromov-Witten invariants of Ccp?

| N D
1 0
2 | 1 0
3| 12 1
4 620 225
5 87304 87192
| 6| 26312976 | 57435240

In Table 1, we list the first few coefficients N s ) for comparison, we also
include the corresponding rational Gromov~W1tten invariants.

Recently, Eguchi, Hori and Ziong have proposed a bold conjecture, gen-
eralizing the conjectured of Wiiten and proved by Kontsevich, that the
. Gromov-Witten invariants of a point (“in the large phase space”) are the
highest weight vector for a certain Virasoro algebra. Their conjecture im-
plies in particular the recursion

0 By 9.
N = N +5 Y (o) -
n=i+j . )
which is far simpler than ours. Pandharipande has proved that this recursion

is a formal consequence of our recursion, but otherwise, their conjecture
remains very mysterious.

zfz)jNi(“)NJ@,
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DISCRIMINANTS OF K3 SURFACES
AND KAC-MOODY ALGEBRAS

V. GRITSENKO

In this talk we give review of our joint results with V. Nikulin. For more
results, details and conjectures see our paper “K3 surfaces, Lorenizian Kac—Moody
algebras and mirror symmetry’ in Math. Res. Let. vol. 3 (1996) pp. 211-229 and
our preprint of RIMS of Kyoto University N 1129 (1997) “The arithmetic mirror
symmetry and Calabi-Yau manifolds” (alg-geom/9612002).

1. Mirror symmetry for K3 surfaces. Let X be a K3 surface (i.e. a regular
compact complex-analytic surface with trivial canonical class). Its Picard lattice
Pic(X) is an even hyperbolic lattice, i.e. a free Z-module with an integral even
symmetric bilinear form of signature (1,7n). The orthogonal complement of the
Picard lattice in H%(X,Z)

TX = (PiC(X))IJﬁ(X’Z)

is called the lattice of transcendental cycles (transcendental lattice) of the K3 sur-
face X.

We consider two families of K3 surfaces.

(A) S is a Picard lattice of some K3 surface. The family

Mg = { K3 surface X | S C Pic(X)}

has dimension 20—dim S. A general member X of this family has the Picard lattice
s. | |
(B) We choose a primitive isotropic element ¢ € T and we put S = (cF)/Zc for
the lattice of transcendental cycles T of some K3 surface. We define the second
family of dimension dim S as

My = { K3 surface X | Tx C T}

A general member X of this family has T'x = T. These two families Mg and Mo
are called dual (or mirror symmetric, or mirror). This is how mirror symmetry
for K3 surfaces had first appeared in the papers of H. Pinkham, I. Dolgachev-V.
Nikulin and V. Nikulin. It was inspired by explanation of the Arnol’d Strange
Duality (1974) for exceptional unimodular critical points. See the modern review
of I. Dolgachev (alg-geom/9502005) about this subject.

The main aim of my talk is to show that the mirror symmetry for K3 surfaces is
not eshausted by the duality (Mg, Mr). It turns out that in some cases “geometry”
of irreducible and effective classes of divisors of general X € Mg is reiated with
interesting automorphic forms (@utomorphic discriminants) on the dual family Mz,
This relation involves generalized Lorentzian Kac-Moody Lie superalgebras.

1




2 V. GRITSENKO

2. Discriminant of M.
The moduli space Mr is a quotient of a symmetric domain of type IV by some
arithmetic group.
Let ,
UT) ={Cw CcTO®C|w?=0, w-T >0}

be the (connected) homogeneous ‘domain of type IV. We introduce a quadratic
divisor Hs = {Cw € Q(T) | w -8 = 0}. The discriminant is defined as a union of
some rational quadratic divisors

pMy= |J Hs

" 3€eT, 62=-2

For a. connected component of the moduli space of K3 surfaces with a condition
on the transcendental cycles we have (Mr)g = O(T) \ (1) ~ D(T)) for an
appropriate subgroup O(T')’ of finite index of O(T).

Problem: To construct a holomorphic modular form F with respect to O(T)’
such that div(F) = D(T).

‘'We use two different methods to construct such modular forms. The first one
was proposed by the author in 1988 as a generalization of MaaBspezialschar (see
my more recent paper on this subject “Modular forms and moduli spaces of Abelian
and K3 surfaces” in St.Petersburg Math. Jour. vol. 6 (1994) pp. 1179-1208).

3. Arithmetic Lifting. ‘

The boundary of the Satake compactlﬁcatlon of the quotient O(T)’ \ Q(T) con-
sists of two types of boundary components: points and curves. An isotropic vector
¢ € T defines a zero dimensional component (see the definition of My and M(S)
above). A boundary curve is determined by an isotropic plane P or, equivalently,
by a maximal parabolic subgroup I'p.of O'(T). Let I’} be the Jacobi subgroup
of I'p. The arithmetic lifting is an embedding of the modular forms M (T'L, x) of
weight k with a character with respect to the Jacobi group I'}, (i.e. of some Ja-
cobi modular forms) into the space of modular forms with respect to O'(T). This
construction can be represented as follows.

Let f € Mx(TE, x) be a Jacobi form. Then

Lift(f) = fle LEE(F, xo)

where LEg*e(k, xo) is a formal Dirichlet series with Euler product (a formal Hecke
L-function of S La-type) over the Hecke ring of the parabolic subgroup 1"1"3 It means
that we know the Fourier expansion of Lift(f) at the one dimensional cusp P. This
is the so-called Fourier-Jacobi expansion.

In what follows we restrict ourselves to the case of the moduli My of dimension
three. This case is closely related with the moduli spaces of polarized Abelian and
Kummer surfaces (see our joint paper with K. Hulek “Commutator co'uermgs of
Siegel threefolds” in alg-geom/9702007 for more details).

We explain the main construction on the following example. Let S & U(8)@(~2)
and T2 U(8) ® U(8) & (—2). We consider a general member X of the family Mg
- (dim(Mg) = 17). An element h € 9 is called irreducible if it contains an irreducible
curve on X. An element h € S is called effective if it is a finite sum of irreducible
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elements. The set AT, = {§ € A¥ |62 = -2} of classes of the non-singular
irreducible rational curves (the exceptional curves) on X consists of four elements
{€e1,ea,€3,e4}. They generate the lattice S and their intersection matrix is

-2 2 6 2
2 -2 2 6
(e - e5) = | 6 2 —2 91 (CM)
2 6 2 -2 '

The K3 surface X can be realized as intersection of three quadrics in P®. The
corresponding linear system is defined by the element 4p where p = (e1 +e3)/4 =
(eq + e4)/4. For this embedding, all four non-singular rational curves on X have
degree 4. The curves e + e3 and es + e4 give two hyperplane sections of X.

Since S is hyperbolic, the cone

V(S)={zcS@R| 2> > 0}

is the union of two half cones £V +(S) where V+ (S) contains the class of a hyper-
plane section. It is easy to see that

NEF(S)={he S |heV*+(S) - {o} and h - AT, > 0}

the set of all numerically effective divisors of X.

There is another homogeneous description of the both sets NEF(S) and A¥, of S
in terms of the group W(S) C O(S) generated by all reflections s;5 : x +— z+(z-9)J,
x € S of the lattice S in elements § € S with 62 = —2. The real convex cone
R, NEF(S) is a fundamental domain (the Weyl chamber) for the gronp W(S) acting
in V*(S) with the set of orthogonal vectors AF,.

There are two realizations of §}(T) as a tube domain. They are the complexifi-
cation of the cone V*(S) and the Siegel upper half plane Hp

AT) = SQR+VH(S) 2 Hy ={Z = (Z 5) Tm(Z) > 0}.

The orthogonal group PO,(T) is isomorphic to the group T'y/{+14} where I'; is
the integral symplectic group of the skew-symmetric form with elementary divisors
(1,2). (The space I's \ H is the moduli space of (1, 2)-polarized Abelian surfaces.)
Thus we can define a modular form with respect to O'(T) as a Siegel modular form.

To construct a modular form as the arithmetic lifting we use the Jacobi theta-

series ; |
d(r, 2) = —g"*r 2] (1~ " ') (L — " r (1~ ¢")
n>1
where we put g = exp (2mir), r = exp (2mir), p = exp (2miw). Let us define
Aa(Z) = Lift(n(r)>3(r, 2))IM5** (T2, Xa)

is a Dy-cusp form of weight 2 with a character of order 4. This function has the
following Fourier expansion at zero-dimensional cusp

Ax(Z) =" 3y (-1)F (:1\7’%) Nd;‘z (;’;) g2,

N21 Imn—~Z=N? (n,l,m)
nm=lmod4
- n>0, =1mod?2,
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We remark that this is the first example of a Siegel cusp form with elementary
Fourier coefficients. Using a formula for a character 4 it is easy to see that

As(w.3) = (=1)%) Ay (5)

for arbitrary w € W(S) with 3 € S @R + ¢V *(S). Thus Div(Deltas) contains the
discriminant D(T') for the lattice T fixed above. Using the fact that the weight of
" Ay is very small one can prove that Div(A;) = D(T) and the multiplicities of zero
is one along any component. Moreover using the anti-invariantness of the modular
forms with respect to the Weyl group W(S) we can rewrite the Fourier expansion
in the followmg form

Ay(3) =) det(w) (exp(m(w(p) -3)) — >, m(a) exp(2mi(w(p + a) '3)))-

weW (S) aeNEF(S)

It follows that the Fourier expansion of Ay(3) at the zero dimensional cusp ¢ (see
the definition of M(S)) defines a generalized Kac—Moody superalgebra g(S, ;A). It
is defined by a set ;A of simple roots which consists of a set of simple real (even)
roots ;AT = A,(S) and a set of simple imaginary roots ;A™ divided in a set of
even simple imaginary roots A‘m and a set of simple odd 1ma.gmary roots A‘m

By definition, the sequences of i Imagmary roots are

A‘m(resp SAT) =
~ {|m(a)|-times a,la € NEF(S) a® > 0, m(a) > 0 (resp. m(a) < 0)}

(plus some more complicated condition if a® = 0). The generalized Kac~Moody su-
peralgebra (without odd real simple roots) g(S, sA) is a Lie superalgebra generated
by hr, e, fr where r € ;A. All h; are even, e,, f, are even (respectively odd) if r
is even (respectively odd). The algebra has the following defining relations:

(1) The map 7 + h, for r € ;A gives an embedding of S ® R into g(5, ;A) as
an abelian subalgebra (it is even since all A, are even). In particular, all elements
h, commute.

(2) [hr,en] = —(7' err, and [hy, fo] = (r-") frr.

(3) lers fr] = hy ifr =17/, and is Olfr;é‘r

(4) (ad e,.)l"""'e ’ —(ad F T £ --Olfrgér and 7 € ;A

(5) If r - ' =0, then [e,,en] = [fr, fr] = 0.

The algebra g(S, ;A) is called automorphic correction of the Lorentzian Kac—
Moody algbera with the set of real simple roots ;A™. This superalgebra is graded
by S as follows

98, ) =( P w)ene( P )

dEEF(S)z_g QEEF(S)E,;

where EF(S)>.2 is the set of all effective elements of § such that o > —2. Thus
according to the Weyl-Kac-Borcherds denominator formula for g(S, ;A) we obtain
that | ;
As(s) =exp(2ri(p-2)) [ (- exp(@mifa-2)™" .
a€EF(S)s -2
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5. Borcherds Lifting. How to find a formula for mult « in the last forroula? The
answer is given by a variant of Borcherds construction of the automorphic products
(see Borcherd’s paper Automorphic forms on Osya2(R) and infinite products in
Invent. Math. vol. 120 (1995) pp. 161-213). It gives us the second method of
construction of automorphic discriminants. In genral the Borcherds lifting can be
represented as follows. Let ¢ be a nearly-holomorphic Jacobi form ¢ € 9(I'%) of

weight 0. Then
B(¢) = ¥(3) exp(~glo LEE*(0))

where LFge%e is the same formal Hecke L-function we considered in the arithmetic
lifting and ¥(3) is a meromorphic Jacobi form.
For the modular forms A, we should take the weak Jacobi form

_ ¥(r22)* J(r,42)0(r, 2) n
¢0’?(T’ 2)= 91, 2)39(7,32) * I(7,22)9(7,32) Z e(m D) g"r'.

.l

Then we can prove that V

7 = ql/4,1/2,1/2 — b 2mye(nm,l)
Dy (Z) =q*r'%p 1 A-q"rp™)

n,l, meZ
(n,i,m)>0

where (n,l,m) > 0 means that n > 0, m > 0, l is an arbitrary integral if n+m > 0,
and [ > 0 if n = m = 0. It gives the formula for multiplicities of all positive roots
of the Kac-Moody algbera defined above.

6. Classification. Using some evidence from the classification theory of hyper-
bolic lattices we can formulate the following conjecture

Conjecture. Let us assume that for an even integral lattice T of signature (2, m)
there exist automorphic form with divisor equals to the discriminant D(T') of the
moduli space My of K3 surfaces with a condition on the transcendental lattice T
Then

a) For any primitive isotropic ¢ € T such that ¢ contains an element with
square —2, the hyperbolic lattice S = cf[/Zc is 2-reflective.

b) The set of such lattices T of kT > b is finite.

Roughly speaking a lattice S is 2-reflective if the Weyl group W(S) has a finite
index in O(T) (see our joint preprint with V. Nikulin alg-geom/9610022 for more
details).

The first multi-dimensional automorphic form which defines a generalized Kac—
Moody algebra with an automorphic form as denominator function was found by
R. Borcherds in his paper cited above. He constructed it for the even unimodular
lattice T of rank 28. Then S is the even unimodular hyperbolic lattice of rank 26
and the corresponding generalized Kac-Moody Lie algebra is the fake monster Lie
algebra. In this case the number of real symple roots is infinite. It is expected
that this case is the most multi-dimensional. This case does not correspond to K3
surfaces but considering a primitive sublattice T3 C T with two positive squares
and restriction of the Borcherds form to Q(71), one can construct other examples.
(Usually such restrictions have rather complicated structure of its divisor.) Consid-
ering this restriction, R. Borcherds found the form @ which gives the discriminat
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for T = U(2)aU @ Es(—2) (we denote by K (¢) a lattice K with the form multiplied
by t € Q). See Borcherds paper “The moduli space of Enrigues surfaces and the
fake monster Lie superalgebra” in Topology vol. 35 (1996) pp. 699-710. This case
corresponds to the moduli space of K3 surfaces which cover twice Enriques surfaces.
Considering orthogonal complement to ¢ € U(2), we get the mirror symmetric fam-
ily with § = U & Eg(—2). This corresponds to K3 surfaces with involution having
the set of fixed points equals to union of two elliptic curves. ‘

It would be very interesting to make a classification of all automorphic discrim-
" nants. We hope to do it at least in the case when rank (T)=5. Some steps in this
direction have been made in our joint preprints with V. Nikulin Automorphic forms
and Lorentzian Kac-Moody algebras I, IT (alg-geom/9610022 and 9611028). In
particular we construct automorphic discriminants and corresponding Kac-Moody
algebras (when they exist) for the lattices

T=UsUs<-2%k> k=2 3, 4,

and '
T=UkoUkd<-2> k=1,...,7, 8, 10, 12, 16.

At the end of this talk we remark that there are some connections between the
subject we disscussed above and the theory of mirror symmetry of Calabi-Yau
manifolds. See, for example, the papers of T. Kawai, G.L. Cardoso, G. Curio, D.
Liist where Siegel modular forms constructed in our papers mentioned above (f.e.
the modular form A,) provide the heterotic perturbative Wilsonian gravitational
“coupling. The Borcherds automorphic form for T' = U@U (2) @ Es(—2) was recently
used by J. Harvey and G. Moore.

ST. PETERSBURG DEPARTMENT STEKLOV MATHEMATICAL INSTITUTE FONTANKA 27,
191011 ST. PETERSBURG, RUSSIA

AND MPI FilR MATHEMATIK, BONN

E-mail address: gritsenk@mpim-bonn.mpg.de; gritsenk@pdmi.ras.ru



Anabelian Geometry
by F. Pop, Universitit Bonn

~Report on new and recent results—

Let X be an integral scheme, and 71 (X, %) its étale fundamental group, which
we simply denote 74(X) hence leaving away the geometric point Z. We say that X
is anabelian if X is functorially encoded in m1{X) viewed as a profinite group. In
particular, if X and Y are anabelian schemes, then

Isom(X*, YY) 2 Tsomout (7 (X ), m(Y))

where the superscript ! means up to pure inseparable covers (which are not “seen”
by 71) and Isomout means outer Isomorphisms.

We say that a category A of anabelian schemes is itself anabelian, if for all X, Y
in A one has V _ A '
Hom®™ (X!, ¥') = Homout?*® (m(X), m ().

where Homdom denotes dominant morphisms of schemes and Homout®®*® denotes
outer Morphisms of profinite groups with open image.

One can also work relatively to a base scheme S, and define S-anabelian objects,
respectively an S-anabelian category of S-anabelian schemes.

It was conjectured by Grothendieck that the finitely generated infinite fields, as
well as the hyperbolic curves over finitely generated fields are anabelian, even more,
that the category of all such schemes is itself anabelian. Here, for a given field &, a
hyperbolic curve over k is by definition a smooth, geometrically integer curve over %.

The following new results were mentioned:
1) Birational results:

Let k be an arbitrary field, £ # char(k) a rational prime number. Let &’ be the
maximal pro-£ abelian extension of k[usw], and k" := (k'). Then K"}k is a Galois
extension, and let G}, denote its Galois group. One has:

Theorem [Pop].

(1) Global version: ZLet K be a finitely generated field of absolute iranscendence
degree > 2, and £ # char(K). Then K is functorially encoded in Gy . In
particular, such fields K are anabelian schemes.

(2) Local version: Let k be a local field, £ # char(k). The every finitely generated
field K|k is encoded in G% — GY. In particular, the finitely generated fields over
k are k-anabelian.
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This extends the famous result of Neukirch, Ikeda, Uchida, Iwasawa concerning
global fields.

2) Results concerning curves:

Theorem [Tamagawa).

The hyperbolic curves over finitely generated fields are anabelian schemes. In partic-
wlar, if X and'Y are such curves, then

Isom(X', Y1) = Isbmout (m1(X), m(Y)).

The fact that the hyperbolic curves over finite fields are anabelian schemes is quite
unexpected.

Finally, the very impressive (and very recent) results by Mochizuki: We say that
a field k is sub-~p-adic, if k is contained in some finitely generated extension of Q,. Let
X be a geometrically integral scheme over k, and denote X = X x k the base change
to k. If Ax is the maximal pro-p quotient of 71(X), then D = ker (m(X) — Ax) is
a normal subgroup in 71 (X). Setting Ilx = 71 (X)/D we get a projection IIx — Gg
with kernel Ax. ‘ o

Theorem [Mochizuki].
(1) With the above notations, every hyperbolic curve X over k is functorially encoded
in lIx.— Gy, and for X,Y hyperbolic curves over k one has:

Hom{*™ (X, Y) & Homoutgy™ (ILx, ITy).

In pdrtz'cular, the category of all hyperbolic curves over k is anabelian.

(2) If K lk is a finitely generated field extension, then K is functorially encoded in
g — G, and for K, L finitely generated fields over k one has:

Homy, (L, K') & Homout®* (I, I1z).

In particular, the category of all finitely generated regular field extensions k is »
k-anabelian. :

This answers the question of Grothendieck completely in the case of schemes of
dimension < 1 in characteristic zero. The result is even stronger than conjectured by
Grothendieck in two directions: First, one works with IIx instead of the full 7 (X)
and second, over the p-adics instead of the rationals.
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Curves of higher genus and homotopy theory

Mark Mahowald

This is an abstract of a talk based on joint work with Mike
Hopkins and Vassily Gorbonov.

Let (k,T) be a pair consisting of a formal group I' and a field % of character-
istic p > 0. A deformation of (k,I') to a complete local ring B (with maximal
ideal m) is a pair (G,%) consisting of a formal group G over B and a map
1 : k — B/m such that ©*I’ = 7*G where 7 : B — B/m.

Lubin and Tate proved that there is universal deformation ring, E,.. BT
has height n then Ep. = WFpe[[ur, -+ < tt—1]}. I we consider a hight n formal
group over Fy», then the group of strict automorphisms of T is called the Morava
stabilzer group, S,. If {p — 1)|n then S, contains a finite subgroup of prime p
power order. Let G, be a maximal finite subgroup. We have the following:

e There is & spectrum En with Epy = WFp [[ug - -+ tin—1]][w, w™] with ho-
motopy dimension of v = —2. (Landweber exact functor theorem)

o (@, acts on E,. (Hopkins and Miller)

e EO, = (E,)*C~. There is a spectral sequnce computing EO,,. with
Fy = (H*(Gn;En*)Gal.

When n = 2 ellptic curves over Fjz with p = 2 or 3 are sources of such
formal groups and the role of ellptic curves in the construction of £O, is rather
well understood. {Compare the talk by Haynes Miller in these same abstracts.)
The goal here is to show that the universal lift of a formal group of height n
over F, comes as a summand in the formal completion of the Jacobian variety
of a certain curve with p marked points. The action of G, on the curve can be
expressed in terms of the action on the marked points. This leads to a precise
description of the Lubin-Tate action of G, on Ep..

We will call the plane curve C,, over E = Z[[uy, - -+, Ups]] defined by

Y=g b uaP T b upan® + (-1 B w)e

the generalized Lengendre curve. Let b= —1 — X222,

Let I = (p,ua,- -, up-z). Then the reduction of the curve Cpto F=EJI
is the curve C, defined by y?~ = 2P — . The roots of the right side are just
(0,---,p—1) mod p. Hensel’s lemma gives a lift of these roots to E and we can

write the equation as

g = 2(z — s — 1) (& — epm2)

%




g

where e; = (i + 1) mod I.
Let n = p— 1. We see that C, is an n covering of a projective line with p
marked points. Z/p acts on C), via

x'Hx'-t—l

Yy y
and Z/n® acts by
T = ptz

y = pPy

- and so G, is a semi direct product of Z/p and Z/n>.

Proposition 1 For all primes p, Cp and C, are non-singular curves of genus
g=(p—~1)(p—2)/2: The differentials w;; = z* dzfy? for 0<i <3 <p—3
form o basis of the space of the holomorphic differentials.

. Over the the Jacobian variety we have a formal group F of dimension g.

. Theorem 1 For dll primes p, F splits into p — 2 summands of dimension

1,2, -,p — 2 respectively. The differentials dzfy corresponds to a summand
of F of dimension one. This defines a one dimensional formal group Fc, of
height p— 1.

Theorem 2 The formal group law Fe, is o universal Lubin-Tate lift of a formal
group of height n over Fy.



Artin groups, projective arrangements
and fundamental groups of smooth complex varieties

John J. Millson (U. Maryland)

What follows is a short account of my joint work [2] with Michael Kapovich. Qur
work concerns Serre’s problem of determining which finitely presented groups are funda-
mental groups of smooth (not necessarily compact) complex algebraic varieties. The first
examples of finitely presented groups which were not fundamental groups of smooth com-
plex algebraic varieties were given by Morgan [5]. We find a new class of examples which
consists of Artin groups. We now recall the definition of an Artin group we will use here,

Let A be a finite graph where two vertices v, w are connected by at most one edge
€vw, there are no loops (i.e. no vertex is connected by an edge to itself) and to each edge e
is assigned an integer e(e) > 2. Let V(A) denote the set of vertices of A. The Artin group
G$ is generated by {g, : v € V(A)} subject to the relations

Gv9woGw - - - = GuivGwv - -«

e(eyw) factors  e(eyy) factors

as v, w vary over pairs of vertices of A which are connected by an edge. We warn the reader
that our definition of Artin group is somewhat different from the usual one. u

The result that there are Artin groups which are not the fundamental groups of smooth
complex varieties is surprising because the basic examples of Artin groups, the Artin groups
corresponding to finite Coxeter groups, are fundamental groups of smooth complex guasi-
projective varieties. Also free groups and free abelian groups are Artin groups which are
fundamental groups of smooth complex quasi-projective varieties.

Our results on Serre’s problem follow by combining Theorems 1 and 2 below:

Theorem 1. For any affine scheme S of finite type over Z there exists an Artin group G
such that a Zariski open subset U of S is biregularly isomorphic to a Zariski open subset
U in the character variety Hom(G, PO(3))//PO(3). The subset U contains oll real points
of S. ’

Roughly speaking, Theorem 1 implies that any algebraic germ (S, so) defined over Z
can be realized inside a character variety of an Artin group. In [2] it is also proved that
G may be chosen so that the basepoint sp of the germ corresponds to a representation pg
which is irreducible and has finite image.

We combine Theorem 1 with the following theorem, a variant of a theorem of Hain
[1].

Theorem 2. Suppose M is a (not necessarily compact) connected smooth algebraic va-
riety, G is a reductive algebraic group and p : m (M) — G is a representation with finite
image. Then the germ (Hom(w1(M)), p) is a weighted-homogeneous cone with generators
of weights 1 and 2 and relations of weights 2,3 and 4. Suppose further that there is a
local cross section through p to the Ad(G)-orbits in Hom(ni(M),G). Then the quotient
germ (Hom(w1(M),G)/]/G,[p]) is a weighted-homogeneous cone with generators of weights
1 and 2 and relations of weights 2,3 and 4.




Here we use the following

Definition. Let X be a real or complex analytic space, x € X and G a Lie group acting
on X. We say that there is a local cross section through z to the G-orbits if there is a
G-invariant open neighborhood U of = and a closed analytic subspace § € U such that
the natural map G x 8§ — U is an isomorphism of analytic spaces.

Proofs.

Theorem 1 is proved by showing that the character variety Hom(G%, PO(3))//PO(3)
is isomorphic to a moduli space of line arrangements in the projective plane P2. (The
graph A is chosen to be bipartite and determines the abstract incidence relations of the
arrangement.) We then prove a scheme theoretic version of a theorem of Mnev [4] to the
effect that all affine schemes of finite type over Z occur as Zariski open subschemes of
moduli spaces of line arrangements in P2,

Theorem 2 is proved by giving the controlling differential graded Lie algebras L for
deformations of p the structure of a mixed Hodge differential graded Lie algebra with the
appropriate weights. The weight filtration induces a grading of the complete local ring
Ry, associated to L', see [3]. ' :

References:
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eties and convex polytope varieties, Springer Lecture Notes in Math. 1346 (1988), 527-543.
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Motivic homotopy theory
V. Voevodsky.

Consider the category Sm/k of smooth algebraic varieties over a field %.
This category has a distinguished object A! called the affine line over . Let
us say that two morphisms f,g : X — Y are elementary A'-homotopic if
there is a morphism X x A' — Y whose restriction to X x {0} is f and to
X x {1} is g. Let us say that f and g are A'-homotopic if they are equivalent
with respect to the minimal equivalence relation generated by the relation of
being elementary Al-homotopic. Motivic homotopy theory is the homotopy
theory of smooth algebraic varieties (or more generally of smooth schemes
over a base scheme S) which is based on the notion of A'-homotopy between
morphisms.

The category Sm/k is very inconvenient for the purposes of homotopy
theory. Indeed most of the standard constrcutions of the ordinary homo-
‘topy theory such as smash products, suspensions etc. can not be performed
in Sm/k since the required colimits do not exist in this category. To deal
with this problem one replaces Sm/k with the category PreShv(Sm/k) of
presheaves on Sm/k (i.e. of contravariant functors from Sm/k to the cat-
egory of sets). Since any presheaf is a colimit of representable presheaves
passing from Sm/k to PreShv(Sm/k) we just formally add all colimits to
Sm/k. For a number of technical reasons it is convenient to further enlarge
the category PreShu(Sm/k) and work with the category A PreShv(Sm/k)
of simplicial presheaves on Sm/k.

One defines a closed model structure on A% PreShu(Sm/k) which is
called the Al-closed model strcuture in two steps.

First let us say that a morphism f: X — Y is a Nisnevich weak equiva-
lence if for any smooth X over k and a point z of X the map of simplicial
sets

X (SpecO% ) — V(SpecO% ,)

where O% , is the henselisation of the local ring of X in z is a weak equiva-
lence of simplicial sets. The general theory of simplicial presheaves on sites
developed by Joyal and Jardine implies that there is a closed model structure
on A PreShu(Sm/k) where all monomorphisms are cofibrations and Nis-
nevich weak equivalences are weak equivalences. Denote the corresponding
homotopy category by Huyis(k).

e



An object X in Hyis(k) is called Al-local if for any simplicial presheaf
Y the map Hom;,gm(k)(y X) = Homy,, (Y x Al X) induced by the
projection Y x A' — Y is a bijection. A morphism Y — ) is called an
Al-weak equivalence if for any Al-local X the map

Homy,,, (k) (y . X ) —H OM ;. (k) (y , X )

is a bijection. As was shown by F. Morel and myself there is a proper simpli-
cial closed model streuture on A% PreShv(Sm/k) where all monomorphisms
are cofibrations and A'-weak equivalences are weak equivalences. The cor-
- responding homotopy category H(k) is called the A'-homotopy category of
(smooth) schemes over k.

Together with the unstable homotopy category H(k) one can also de-
fine the stable homotopy category SH(k). More generally to any Ey-ring
spectrum R over A®PreShu(Sm/k) one can assign the stable homdtopy
category SH(k,R) of modules over R. If R is a commutative ring it turns
out that there are two different Eilenberg-Maclane spectra. which can be as-
sociated to R. The corresponding generalized cohomology theories are called
fake motivic cochomology with coefficients in R and motivic cohomology with
coefficients in R respectively. Motivic cohomology with coefficients in Z are
canonically isomorphic for smooth varieties to the higher Chow groups intro-
duced by S. Bloch. We do not know at the moment any description of the
fake motivic cohomology with coefficients in Z in terms of algebraic cycles.



Hilbert’s 3rd Problem and 3-manifolds

Walter Neumann

In this talk I described the history of the scissors congruence problem and the current
state of knowledge (due primarily to Bloch, Bokstedt, Brun, Dupont, Parry, Sah and
Suslin) about the scissors congruence groups P(H*) and P(S?) for 3-dimensional hyperbolic
and spherical geometry.

Namely, if X is either of these geometries and Kerd(X) is the kernel of the Dehn
invariant §: P(X) - R ® R/7Q then it is known that the image of vol: Ker§(X) — R is
countable, that P(X) is uniquely divisible (and hence a Q-vector space, and that the Q-
vector-subspace Kerd(X) is infinite dimensional. It follows that the first of the following
two “standard conjectures” implies the second.

Conjecture (Sufficiency of Dehn invariant). The volume map vol is injective on
Kerd(X).

Conjecture (Rigidity). Kerdé(X) is Q-vector subspace of P(X) of countably infinite di-
mension. :

The first of these conjectures is generally considered to be very difficult, and unlikely to
be resolved in the foreseeable future. It includes as a very special case a conjecturé of Milnor
about relations between values of the dilogarithm at roots of unity and is closely related to
a conjecture of Zagier about relations among special values of the dilogarithm. The second
conjecture is equivalent to the rigidity conjecture for K3(C) that Ki"4(Q) = Ki¢(Q),

where Q is algebraic numbers.

‘ A hyperbolic 3-manifold represents a class in P(H?) but this is a slightly unsatis-
factory invariant because scissors congruence is orientation insensitive. However, there
is an “orientation sensitive” version of scissors congruence for which the kernel of Dehn
invariant is the Bloch group B¢ of Bloch, Wigner and Suslin. Any hyperbolic 3-manifold
M represents a class 3(M) in this group. This is a very computable invariant (at least
modulo torsion) and it gives a lot of interesting information. A program “snap” written
by Oliver Goodman at Melbourne computes this invariant and other arithmetic data.

This “orientation sensitive” scissors congruence is still unsatisfactory, for instance in
that the invariant (M) determines Chern-Simons invariant, but only modulo Q.

The Bloch group is defined in terms of C — {0,1}. A simple modification of the
definiton to use instead a Z x Z cover of C — {0,1} leads to an “extended Bloch group.”
This extended Bloch group is a Q/Z extension of B¢ and is naturally isomorphic (modulo
a possible kernel and cokernel of order dividing 4) to H3(PSL(2,C)°). Any hyperbolic 3-
manifold still represents a class in this extended group in a way that is directly computable
from ideal triangulation. In particular one obtains a satisfactory “simplicial” computation
of Chern-Simous invariant.

This is joint work with Jun Yang.
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