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Abstract

Quasi-shuffle products, introduced by the first author, have been
useful in studying multiple zeta values and some of their analogues and
generalizations. Recently the second author, together with Kajikawa,
Ohno, and Okuda, significantly extended the definition of quasi-shuffle
algebras so it could be applied to multiple ¢g-zeta values. This article
extends some of the algebraic machinery of the first author’s original
paper to the more general definition, and demonstrates how various
algebraic formulas in the quasi-shuffle algebra can be obtained in a
transparent way.

1 Introduction

The point of this article is, as the title indicates, to revisit the construction of
quasi-shuffle products in [5]. In [7] the construction of [5] was put in a more
general setting that had two chief advantages: (i) it simultaneously applied to
“multiple zeta” and “star-multiple zeta” values and their extensions; and (ii)



it could be applied to the g-series version of multiple zeta values studied in
[3]. Here we show that some of the machinery developed in [5], particularly
the coalgebra structure (not considered in [7]), can be carried over to the
more general setting and used to make many of the calculations of [7] more
transparent. We also describe some applications of quasi-shuffle algebras not
considered in [7].

The original quasi-shuffle product was inspired by the multiplication of
multiple zeta values, i.e.,

1
Z i1 i) (1)
ny>>ng>1 nq 1y,
with 4; > 1 to insure convergence. One can associate to the series (1) the
monomial z;, ---z; in the noncommuting variables z;, 29, ...; then we write
the value (1) as ((z;, ---%;,). For any monomials w = zw’' and v = z;0/,
define the product w * v recursively by

wxv =z (W xv) + zj(w*x ) + zip (W x V). (2)

Then ((w)((v) = ((w * v), where we think of ( as a linear function on
monomials. As we shall see in the next section, the recursive rule (2) is a
quasi-shuffle product on monomials in the z; derived from the product ¢ on
the vector space of z;’s given by z; ¢ z; = 2;4;.
In [3] the multiple g-zeta values were defined as
gD gl

> — (3)

n1>"'>nk21 [nl]zl T [nk]q

where [n], = 14+ ¢+ - +q¢"' = (1-¢")/(1 —q). If we denote (3) by
Cy(2iy -+ - 2i,), then to have (,(w)(,(v) = (4(w * v) the recursion (2) must be
significantly modified: in place of z; ¢ z; = 2,4, we must have

Zi O Zj = Ziyj + (1 — q)ZZ'Jrj,l.

This means that to have a theory of quasi-shuffle algebras that applies to
multiple g-zeta values, two restrictions in the original construction of [5]
must be removed: that the product a ¢ b of two letters be a letter, and
that the operation ¢ preserve a grading. This was done in [7]. The same



paper also addressed the relation between multiple zeta values (1) and the
“star-multiple zeta values”

C(ziy - 2,) = Z # (4)

Zl . . Zk
i >esnp>1 T Ny,

This relation can be expressed in terms of a linear isomorphism (here denoted
¥)) from the vector space of monomials in the z;’s to itself. The function ¥
acts on monomials as, e.g.,

Y(zizjzn) = zizjap + (200 25) 26 + 2i(25 0 21) + 2 © 2 © 2,

and then (*(w) = ((3(w)). If we define analogously “star-multiple g-zeta
values” (¥(w), then (F(w) = ((X(w)).

Important properties of ¥ were established in [7], though some of the
inductive proofs are tedious. Here we make use of two aspects of the theory
developed in [5] not used in [7]. First, for any formal power series

f=cit+egt? +---

with ¢; # 0, it is possible to define a linear isomorphism (but not neces-
sarily an algebra homomorphism) ¥y from (the vector space underlying)
the quasi-shuffle algebra to itself. This process respects composition (i.e.,
Uiy = Us¥,), and many important isomorphisms can be represented this
way, e.g., X = \Ifﬁ. Second, the quasi-shuffle algebra together with the
“deconcatenation” coproduct is a Hopf algebra: in fact, it turns out that its
antipode is closely related to X.

This paper is organized as follows. In §2 we define the quasi-shuffle
products x and % on the vector space k(A), where A is a set of noncom-
muting letters equipped with a commutative product ¢. Then in §3 we
explain how to obtain linear isomorphisms from k(A) to itself from formal
power series: as noted above, this gives a useful representation of . In
84 we describe three Hopf algebras: the ordinary Hopf algebras (k(A), %, A)
and (k(A),, A), and the infinitesimal Hopf algebra (k(A), o, A), where A is
deconcatenation, A(w) = A(w) —w®1—1®w, and ¢ is an extension of the
original operation on A to a (noncommutative) product on k(A). Each of
these Hopf algebras is associated with a represention of ¥ via the antipode.
In §5 we apply the machinery of the preceding two sections to obtain many
of the algebraic formulas of [7] (and generalizations thereof) in a transparent
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way. Finally, in §6 we illustrate one of these algebraic formulas (specifically
Theorem 5.2 below) for four different homomorphic images of quasi-shuffle
algebras.

2 The quasi-shuffle products

We start with a field k containing Q, and a countable set A of “letters”. We
let kA be the vector space with A as basis, and suppose there is an associative
and commutative product ¢ on kA.

Now let k(A) be the noncommutative polynomial algebra over A. So
k(A) is the vector space over k generated by “words” (monomials) ajas - - - ay,,
with a; € A: a word w = ay - - - a, has length ¢(w) = n. (We think of 1 as
the empty word, and set ¢(1) = 0.) Following [7], we define two k-bilinear
products * and x on k(A) by making 1 € k(A) the identity element for each
product, and requiring that x and x satisfy the relations

aw * bv = a(w * bv) + blaw * v) + (a o b)(w * v) (5)

aw x bv = a(w * bv) + blaw xv) — (a o b)(w x v) (6)

for all a,b € A and all monomials w, v in k(A). Asin [5] we have the following
result.

Theorem 2.1. If equipped with either the product x or the product %, the
vector space k(A) becomes a commutative algebra.

Proof. We prove the result for x, as the proof for x is almost identical. It
suffices to show that x is commutative and associative. For commutativity,
it is enough to show that uq % us = wuy * uy for words wuy, us: we proceed by
induction on ¢(uy) + €(uz). This is trivial if either u; or uy is empty, so write
u; = aw and uy = bv for a,b € A and words w,v. Then by equation (5),

up * Uy —ug ¥ up = (a0 b)(wxv) — (boa)(vkw),

and the right-hand side is zero by the induction hypothesis and the commu-
tativity of o.

Similarly, to prove associativity it is enough to show that uy * (ug * uz) =
(uy * ug) * uz for words wuq,us, us, and this can be done by induction on
0(uy) + £(uz) + £(u3). The required identity is trivial if any of uy, ug, ug is 1,



so we can write u; = aw, us = bv, and uz = cy for a,b,¢c € A and words
w,v,y. Then

upk(ugkug) — (ugkug)xusz = a(w*b(vxcy)+b(awx (vkcy))+(aob) (wk(vkcy))
+ a(w * c(bv xy)) + claw x (bv xy)) + (a o c)(w * (bv * y))
+a(wx(boc)(vxy))+ (boc)law* (vxy))+ (ao(boc))(wx (vxy))
—a((w*bv) x cy) — cla(w xbv) xy) — (aoc)((w*bv) xy)
—b((aw x v) x cy) — c(blaw x v) xy) — (boc)((aw * v) *x y)

— (@0 b)((wxv) xcy) = c((aob)(wxv) xy) = ((aob) o c)((w*v) xy) =
a(w * (bv *x cy)) + claw * (bv xy)) — a((w * bv) * cy) — c((aw x bv) * y) = 0,

by the induction hypothesis and the associativity of ©. O

If the product ¢ is identically zero, then x and * coincide with the usual
shuffle product L on k(A). We call both * and x quasi-shuffle products.

We note that ¢ can be extended to a product of on all of k(A) by defining
low =wo1 for all words w, and wov = w'(aob)v’ for nonempty words w =
w'a and v = bv’ (where a, b are letters). Then (k(A), o) is a noncommutative
algebra that contains the commutative subalgebra k1 + kA.

3 Linear maps induced by power series

Let ay,as,...a, € A. f w=ayas---a,,and I = (iy,...,14,) is a composition
of n (i.e., a sequence of positive integers whose sum is n), define (as in [5])

Tw] = (a1 0+ 0a;; )(Ai41 00 Qi iy) = (Qiy iy 41 © - - O ). (7)

We call n = |I| the weight of the composition of I, and m = ¢(I) its length.
Note that the parentheses in equation (7) are not really necessary: the right-
hand side is simultaneously an m-fold product in the concatenation algebra
k(A) and a product of length

I+ -+ (Ge—1)+ -+ (lp—1)=n+1-m
in the algebra (k(A), o). If we set

I<w> :al"'ailOail-l—l"'a'i1+i2<>'"<>a/i1+~~~+im71+1"'a/n,



S0, e.g.,
(2,1,2)[araza3a4a5] = a1 © asazay o as = (1,3, 1){a1a2a3a4as),

then I'|w] = I'*(w) defines an involution * on compositions such that [I*| = |I|
and ((I*) = |I|+ 1 —¢(I).
Let P C k[[t]] be the set of formal power series

f201t+02t2+03t3+"'

with ¢; # 0. For f € P we define the k-linear map Wy : k(A4) — k(A) by

\I/f(w) = Z Ciy G L [W], (8)

T=(i1 ,-..vim ) EC(£(w))

where C(n) is the set of compositions of n.
Any two “functions” f,g € P, say

f=Y ct' €k[t]] and g=> dit' €k[[t]], cidi #0,

i>1 i>1

have a “functional composition”

fogzzcigi=cl(d1t+dzt2+---)+02(d1t+d2t2+---)2+---

i>1

= cydit + (c1dy + cod?)t? +--- € P.

Writing [¢'] f for the coefficient of ¢’ in f € k[[t]], it is not hard to see that

k

1 09 =) [PIf1t"]¢’- (9)

j=1
The following result generalizes Lemma 2.4 of [5].
Theorem 3.1. For f,ge P, U, ¥, = Uy,.

Proof. Since

Uy(w)= Z [t"]g - [t ]I [w]



we have

‘I’f‘l’( w) =

Z | Z | Z [tjl]f"'[tjl]f[til]g“-[tim]gJ[[[u}]]_

Upog(w) = Y [t"]fog - [t"]f o gK[w],

K:(kl ..... kl)eﬁ(w)

so we need to show that, for all compositions K = (ky,..., k) € C(n),
[t fog - [t"]fog =

> > > WS [PSEg -] (10)
m=1 J:(]ll.].[.’]l)EC(m)I (31,-++yim )EC(n)

where
JI=(iv+ - +ij,ije+ o g oo bejg 1 00+ i)

is the obvious “composition” of the compositions I = (iy,...,4,) and J =
(J1,---,71), with J € C(m). Now the right-hand side of equation (10) can
be rewritten

Z Z Z Htjs t’]ﬁ— st g [tlntetis)g

T=(j1senrjt) M=1 I=(i1,....im)EC(n) s=1
i
!
= > s,
J=(j1,..-,J1) s=1
JI=K
from which equation (10) follows by use of (9). O



3.1 The isomorphisms 7" and X

We now consider some particular linear isomorphisms from k(A) to itself.
First, it is immediate from equation (8) that W, is the identity homomorphism
of k(A). Now, following [7], consider

T=WV_, and Z:\I/ﬁ.

(The function we call ¥ is written S in [7], but as in [5] we wish to reserve S
for a Hopf algebra antipode.) For words w of k(A), T'(w) = (—1)“®)w and

Y(w) = Z Iw].

1€C(¢(w))

Evidently T is an involution, and X~! = W _: is given by

=
SHw) = ) (=)D w),
1€C(L(w))

where ¢(I) is the number of parts of the composition /. We note that, for
letters a and words w,

T(aw) = —aT(w) (11)
Y(aw) = aX(w) + a o X(w) (12)
Y aw) = aX N w) —ao X H(w) (13)

and (as in [7]) the property (12) can be used to define ¥. The functions ¥
and T" are not inverses, but we have the following result.

Corollary 3.1. The functions ¥ and T satisfy TST = Y71, and generate
the infinite dihedral group.

Proof. From Theorem 3.1 we have " = \Ifﬁ, so all powers of ¥ are distinct.

We have also TXT = \II%H =y O
It follows immediately that 7% and 37T are involutions (cf. [7, Prop. 2]).
For future reference we note that the equation X* = 1111%5 defines P for any

p € k: from Theorem 3.1 we have YP¥7 = ¥P*% and Y* is the pth iterate of
> when p is an integer.

From [5] we have the (inverse) functions exp = ¥, and log = Wlog(1+41)-
As shown in [5, Theorem 2.5], exp is an algebra isomorphism from (k({A), LL)
to (k(A), x). The functions exp and log are related to ¥ and T as follows.
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Corollary 3.2. X =expT'logT .

Proof. This is immediate from Theorem 3.1, since expT = ¥ -+_4, logT =
Wiog(1—1), and log(1 — t) composed with e~ — 1 gives

1 1_1—(1—15)_15
1—+¢ T

We now turn to the algebraic properties of 7" and 3.
Proposition 3.1. T : (k(A),x) — (k(A),*) and T : (k(A),*) — (k(A), %)

are homomorphisms.

Proof. We prove the first statement; the second then follows because T is
an involution. We shall show that T'(uj % uy) = T'(u1) * T'(uz) for any words
uy, g by induction on £(u;) + ¢(usz). The result is immediate if u; or uy is 1,
so write w1 = aw and uy = bv for letters a,b and words w,v. Then

T (uy *ug) = T(a(w * bv) + blaw * v) + (a o b)(w * v))
= —a(T(w) * T(bv)) — b(T (aw) * T(v)) — (aob)(T(w) *
= a(T(w) *bT(v)) + b(aT (w) * T'(v)) — (a© b)(T(w) x T(v))
= aT(w)*bT(v) = T'(u1) * T(uz),
where we have used the induction hypothesis and equation (11). O

The following result was proved as Theorem 1 in [7] in a much less direct
way.

Corollary 3.3. The linear isomorphism ¥ : (k(A),*) — (k(A),x) is an
algebra isomorphism.

Proof. This follows from Corollary 3.2, since ¥ is the composition
((A), %) T (k(A), %) =5 (k(A), ) T (k(A), 1) = (k(A), %)

of homomorphisms (that 7" is an endomorphism of (k(A), L) follows by tak-
ing ¢ to be the zero product in Proposition 3.1). U



In fact, the following is a commutative diagram of algebra isomorphisms:

(k{A4), )
(k(A), I_LI)\ > (14)
(k(A), %)

Corollary 3.4. The involutions ¥T : (k(A),*) — (k(A),*) and TY :
(k(A),*) — (k(A), %) are algebra automorphisms.

Proof. Immediate from Proposition 3.1 and Corollary 3.3. O

3.2 A one-parameter family of automorphisms
Let p # 0 be an element of k, and set
H, = exp ¥V, log

Evidently H; = id and H,H, = H,,, so this is a one-parameter family of
isomorphisms of the vector space k(A). We can write H, = W (144»_1, Where
(14 t)? — 1 is the power series

Z<§)tn:pt+p(p—1)t2+p(p—1)(p—2)t3+_,_.

2! 3!
n>1

From Corollary 3.2 H_; = T, so
H_ j(wxv)=YXT(wx*xv) =3(T(w)*xT(v)) = H_1(w) * H_1(v)
for any words w, v. In fact, this property holds for all p.
Theorem 3.2. For all p # 0 and words w,v, Hy(w * v) = H,(w) * H,(v).

Proof. Since
U (w) = p @

for all words w, it follows that

Ut (w o) = Wpp(w) W Wy (v)

10



for all words w,v. Hence, since log(w % v) = logw LU log v,

H,(w *v) = exp(¥(logw L logv)) = exp(V,:(logw) W W, (logv))
= Hy(w) *x Hp(v).

O

Thus, H, is an automorphism of the algebra (k(A),*). Note also that
TH,T = V,__4p is an automorphism of the algebra (k(A),x).

4 Hopf algebra structures

As in [5] we define a coproduct A on k(A) by

Alw) = Zu@v,

for words w, where the sum is over all pairs (u,v) of words with uv = w
including (1,w) and (w,1), and a counit € : k(A) — k by €(1) = 1 and
e(w) = 0 for f(w) > 0. It will also be convenient to define the reduced
coproduct A by A(1) = 0 and A(w) = A(w) —w® 1 — 1 ® w for nonempty
words w.

The coproduct can be used to define a convolution product on the set
Homy, (k(A), k(A)) of k-linear maps from k(A) to itself, which we denote by
©: for Ly, Ly € Homy(k(A), k(A)) and words w of k(A),

Ly © Ly(w) = Y Ly(u)Ly(v).

Uv=w

(The reader is warned that this is not the usual convolution for either of the
Hopf algebras defined below.) The convolution product ® has unit element
ne, where n : k — k(A) is the unit map (i.e., it sends 1 € k to 1 € k(A)).
It is easy to show that any L € Homg(k(A),k(A)) with L(1) = 1 has a
convolutional inverse, which we denote by L&D,

We call C' € Homg(k(A), k(A)) a contraction if C(1) = 0 and C(w)
is primitive for all words w, and £ € Homy(k(A),k(A)) an expansion if
E(1) = 1 and E is a coalgebra map. If C is a contraction and E is an
expansion, we say (F,(C) is an inverse pair if

E:(UE—C)QGI)2776+C+C®C+C@C@C+... (15)

11



or equivalently

C =ne — E°CY (16)
Proposition 4.1. Suppose C' € Homy(k(A), k(A)) is a contraction and E
is given by equation (15). Then (E,C) is an inverse pair. Conversely, if
E € Homy(k(A), k(A)) is an expansion and C is given by equation (16),
then (E,C) is an inverse pair.
Proof. Suppose first that C' is a contraction. Evidently F(1) = 1 from equa-
tion (15), so it suffices to show E a coalgebra map. Now equation (15)
implies

Ew)= Y C(u)---C(uy)

UL Up =W
for words w # 1, where the sum is over all decompositions w = uy - - - u,, into
subwords u; # 1. Hence

AE(w)=Ew)®1+1® E(w)+

Y S ) Clu) @ Cluge) - Clun),

UL Up=w,n>2 =1

which can be seen to agree with (£ ® E)A(w).

Now suppose E is an expansion. Equation (16) implies C(1) = 0, so it
suffices to show C'(w) primitive for words w. We proceed by induction on
¢(w). Suppose C' primitive on all words of length < n, and let ¢(w) = n.
Then equation (16) implies

Clw) = Ew)— > CE®)

wu=w,v#1

and by the induction hypothesis it follows that AC'(w) can be written

AEw) - Y (Clw)®@1AEw) - > 1®C(u)E(@)=

uwv=w,v#1 uwv=w,v#1
Cw)®1+ Y Ew@E@v)— Y Cu)E)® E(w)+1C(w).
u1v e

Then

ACw)= Y |Euw)— Y C(w)E(u)| @ E(v),

ww=w,u#1#v UL U2=U

12



and the quantity in brackets is zero by equation (16). O
Now let
f201t+02t2+"', 017&0

be a formal power series, and let ¥y be the corresponding linear map of k(A)
as defined in §3. Define the linear map Cy : k(A) — kA by C¢(1) = 0 and
Crlaray - - a,) = cpa; ©az o - -0 ay for ay,as,...a, € A. Then we have the
following result.

Theorem 4.1. For any f € P, (Y, Cy) is an inverse pair.

Proof. 1t is evident from definitions that, for w = a; - --a,, a; € A,

Uy (w) =3 Cplar- - an) plara - - a).

Stated in terms of the convolution product, this is
Wy =Cr© Wy e,

from which equation (15) (with £ = ¥y, C = () follows. Since evidently
C is a contraction, the result follows. O

For a word w of k(A), say w = ay - - - a, with the a; € A, the “reverse”
of wis R(w) = ana,_1---aj. If we set R(1) =1, then R extends to a linear
map from k(A) to itself, which is evidently an involution. While R is not a
coalgebra map for A (despite the incorrect statment in [6]), we do have the
following result.

Proposition 4.2. R is an automorphism of both (k(A),*) and (k(A),*).

Proof. We prove the result for x, as the proof for x is almost identical. It
suffices to show that R(w; * we) = R(wy) * R(wy) for any words wy, wy. We
proceed by induction on ¢(w;) + ¢(w,). The result is trivial if wy or wy is 1,
so we can write w; = ua and wy = vb for letters a,b € A. From [11, Theorem
9] we have

ua * vb = (uxvb)a + (ua *v) + (uxv)(aob)

R(wy % ws) = R(ua * vb)
= R((u*vb)a + (ua *v)b+ (uxv)(aob))
= aR(uxvb) + bR(ua * v) + (a < b)R(u * v)

13



By the induction hypothesis, the latter sum is

a(R(u) x R(bv)) + b(R(au) * R(v)) + (a o b)(R(u) * R(v)) = aR(u) x bR(v)
= R(w1) * R(ws).

O

Theorem 4.2. (k(A),x, A) and (k(A),*, A) are Hopf algebras, with respec-
tive antipodes S, = XTR and S, = TYXR.

Proof. The inductive argument in [5, Theorem 3.1] that A is a homomor-
phism for x works equally well for x, so (k(A),*,A) and (k(A),, A) are
bialgebras. Although these bialgebras are not necessarily graded, they are
filtered by word length: k({A)™ is the subalgebra generated by words of length
at most n. Since k{A)" = k1, these bialgebras are filtered connected, and
thus automatically Hopf algebras (see, e.g., [10]). In fact, the proof of the
explicit formula for S, in [5, Theorem 3.2] (by induction on word length)
carries over to this setting, giving

So(w) = (=1)" Y~ Iany_1---ai]

IeC(n)

for a word w = ayay---a, in k(A), ie., S.(w) = XTR(w). The antipode
S, of the Hopf algebra (k(A),x, A) is uniquely determined by the conditions
that S,(1) =1 and

S.(1)=1 and Z Se(u)xv =0 for words w # 1. (17)

Now S, satisfies

> S (Tu)«Tv=0

Uv=w

for w # 1; apply T both sides to get

Z TS.T(u)xv =0,

from which we see that S, = T'S,T satisfies (17). Since T' commutes with R,
this means that S, = TXR. O

14



Since S, and S, are antipodes of commutative Hopf algebras, they are in-
volutions and algebra automorphisms of (k(A), %) and (k(A), ) respectively.
Since R commutes with Y and 7', this gives another proof of Corollary 3.4.
Note also that S.S, = X% and S, S, = X2

For any f € P, ¥, is a coalgebra map by Theorem 4.1. In particu-
lar, the maps H, of the last section are automorphisms of the Hopf algebra
(k(A),x,A), and (14) is a commutative diagram of Hopf algebra isomor-
phisms.

Recall that (k(A),¢) is a noncommutative algebra. We will now show
that (k(A), o, A) is an infinitesimal Hopf algebra (see [1] for definitions).

Theorem 4.3. (k(A),o,A) is an infinitesimal Hopf algebra, with antipode

So - _2_1.

Proof. First we show that (k(A), o, A) is an infinitesimal bialgebra, i.e., that
A(w <o U) = Z(w O U(l)) @ V) + Z W) @ (w(g) <o U), (18)

v

for words w, v, where

A(w) = Zw(l) & w(g) and A(’U) = Z’U(l) X v(2)-

(2

Equation (18) is immediate if w or v is 1, so we can assume both are
nonempty. Write w = ay---a, and v = by ---b,,, where the a; and b; are

letters. If n =1 we have A(w) = 0, so equation (18) becomes

Alayov) =) (a1 0va)) ® ),

v

which is evidently true. The case m = 1 is similar, so we can assume that
n,m > 2. Then

m—2
A(w ov) = Z ar- - Gp-1(an ©b1)ba -+ by @ by -+ - b+

i=1

n—2
Zal cry X Ajtp1 - an,1<CLn fod bl)bQ s bm, (19)
j=1

and the right-hand side evidently agrees with that of equation (18).
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To show (k(A), o, A) an infinitesimal Hopf algebra we now need to show
that it has an antipode, i.e., a function S, € Homy(k(A), k(A)) with

D Selwq) 0wy + So(w) +w=0= wa)o Se(we) +w + Se(w)

for any w € k(A), where A(w) = 3 wq) ® wez). This follows from [1, Prop.
4.5], but we shall prove that S, = —X~! by showing that —X~! satisfies the
defining property. We prove that the equation

D SN (way) o we = =X (w) + w (20)

holds for all words w by induction on the length of w. Evidently equation
(20) is true if /(w) < 1. Now suppose equation (20) holds for w # 1: we
prove it for aw, a € A. Since A(aw) = aA(w) + a ® w, we must show that

Z S awm)) o we) + X7 (a) ow = =X aw) + aw

Using equation (13), this is

CLZ 271<w(1)) W) —ao Z 271<w(1)) Cwe) +adow
= —aX H(w) +ao Y (w) + aw.

The conclusion then follows by use of the induction hypothesis (20). The
proof that

Zw(l) oYX N we) =w— Y N (w)
is similar, except that in place of equation (13) one needs the identity
Y Hwa) =X Hw)a — X Hw)oa
for words w and letters a. O

The algebra (k(A), o) has the canonical derivation D = oA, i.e. D(w) =0
for words w with ¢(w) <1 and

n—1

D(a1a2...an): E al...aioai+1...an

=1

16



for letters aq,...,a,, n > 2. We note that D"(w) = 0 whenever n > {(w),
so that

0 n D2
D_ —_. —_— o ..
e _ZO —r=id+D e+

makes sense as an element of Homy(k(A), k(A)), and similarly for e=”. By
[1, Prop. 4.5], ¥7! = —S, = ¢7P. In fact, this can be sharpened as follows.

Corollary 4.1. For anyr € k, ¥" = ¢"P.

Proof. By definition

Sw) =W o (w)= > O[] (21)

1—rt
]=€(w)
for any word w of k(A). On the other hand, by [1, Prop. 4.4]

Dk

— oK) A(K)
— =oWA
k! ’

where o®) : E(A)2*HD) 5 k(A) and AP : k(A) — k(A)SFD are respec-
tively the iterated o-product and coproduct maps. Now for a word w of
k{A),

oW A® (1) = > I{w) = > I*[w).

01 =k+1,|T|=£(w) 0(I)=k+1,|T|=£(w)
and so
eP(w) = Z r* ok AW () = Z rk Z I"[w]
k>0 E>0  4(I)=k+1,/I|=0(w)
_ Z rﬁ(])—lj* [w] _ Z TZ([*)—lj[w] _ Z T\I\—E(I)I[w]’
[=€(w) ]=€(w) ]=€(w)
which agrees with the right-hand side of equation (21). O

Corollary 4.2. For any r € k, X" is an automorphism of (k(A),©).

Proof. The exponential of a derivation is an automorphism [9, sect. 1.2], so
this follows from the preceding result. O
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5 Exponentials and logarithms

Let
f201t+02t2+...

be a formal power series in P. Let A be a formal parameter, and e any of
the symbols *, x, L, or ¢. We define

fo(hw) = Z New® € k(A)N].

where w € k(A). We write exp,(Aw) for 1 4 go(Aw) and log,(1 + \w) for
fo(Aw), where

2 .
g:t+5+§+-~-:e—1,
fot—Lt4t log(1 4 ¢)
— - — — — ... =10 .

273 &

Then for any w € k(A),
log, (expy(Aw)) = Aw and  exp,(log,(1 + Aw)) = 1 + Aw;
and for w,v € k(A) for ¢ = x or ¢ = x, and w,v € kA for ¢ = o,
exp, (A(w + v)) = exp, (Aw) @ exp, (Av). (22)

We extend the automorphisms W of k(A) to k(A)[[A]] by setting W ;(\) = .
The following result generalizes Lemma 3 of [7] .

Theorem 5.1. For any f = cit + cot? +--- € P and z € kA[[)\]],

1 1
v = .
! (1—)\,2) 1— f,(\2)
Proof. In fact, we shall show that

1 1
E(l—Az):l—C()\z+)\222+---) (23)

for any inverse pair (F,C): the conclusion then follows by Theorem 4.1,
noting that fo(Az) = Cp(Az + A?22 4+ ---). We can write the left-hand side
of equation (23) as

e+ C+COCH+- )+ A2+ N2+ ) =14 Y C¥m2"),

n>1 k<n

18



which we will denote by [J. Evidently each term except 1 in [J has an initial
factor of form C(\*2F), so

O-1=C\)O+C\AHO+---=C(Az+ 22+ )0,
and equation (23) follows. O

Since exp : (k(A), W) — (k(A), ) is an algebra isomorphism, we have
exp fu = f.exp for any f € P. For such f we also have Xf, = f,> and
Tf. = fiT. In particular, for z € kA[[N]], f.(A2) = f.(A2) and T f.(Az) =
fx(=Az). For z € EA[[\]] we also have

1
exp. (49 = explexpu (1) = e (15 ). (24
where we have used the identity
1
eXpu_I<)\Z) = 1 _'_ )\Z + )\2z2 + )\323 _'_ c e — m7

which in turn follows from z*" = nlz" for z € kA[[\]]. We can now give a
quick proof of the following result (cf. [8, Prop. 4] and [7, Prop. 3|).

Theorem 5.2. For z € kKA[[)\]],

1 1
exp, (log, (1 + \2)) = T and exp,(—log (1 + Az)) = v
Proof. In view of equation (24), the first identity is equivalent to
1 1
=1 25
1 —log,(1+ Az) Og(l—)\z) ’ (25)
which is just Theorem 5.1 applied to the formal power series f = log(1 + t).
To get the second identity, apply T' to both sides of the first. O

Remark. By applying Theorem 5.1 to the formal power series ¢! — 1, we get

(%) "

or exp,(Az) = (2 — exp,(\z)) 7!, as in [8, Prop. 4].
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Here are some corollaries of Theorem 5.2.

Corollary 5.1. Forp € k and z € EA[[)\]],

1 1 *p
Hp(l—)\z) B (1—)\,2) '

Proof. Using Theorems 5.2 and 3.2, the left-hand side of the identity can be
written

Hy(exp,(log,(1 + A2))) = exp, (Hy(log, (1 + 12))).
Now log,(1 4+ Az) € kA[[A]], so the latter quantity is

exp, (plog, (1 + A2)) = (exp. (log, (1 + A2)))"” = (1 - )\z> :

Corollary 5.2. For any f = cit + cot> +--- € P and z € kA[[)]],

1 1
s (I—Az) * Y (m) =5

where g(t) = (14 f(—t))"' =1, i.e., g is the composition o (—t)o fo(—t).

Proof. By Theorem 3.1 ¥, = XTV,T'= H_;V ;T so the conclusion can be
written as £ x H_1(¢) =1 for

1
EZ\I]f(l—)\z)'

Now Theorem 5.1 says that & = ﬁ for

U= c12 4+ Aeez®® + N2e32® - € kA[[N]],

so we can apply Corollary 5.1 with p = —1 to obtain the conclusion. O

Remark. In particular, taking f = %m in the preceding result gives

1 1
P »i-r =1 2
(1—)\2)* (1+)\z> (26)

for any p € k, generalizing Corollary 1 of [7].
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Corollary 5.3. Fory,z € kA[[\]],

S 1
1=y 1—=Xz 1-)dy—Xdz—Xyoz

and
1 1 1

* = :
I+Xxy 14Xz (I4+Ay)o(1+Az2)
Proof. Using Theorem 5.2, the left-hand side of the first identity is

exp, (log, (1 + Ay)) * exp, (log, (1 + Az)) = exp, (log, (1 + Ay) +log,(1+ Az))
= exp, (log, ((1 + Ay) o (1 + A2))) = exp, (log, (1 + Ay + Az + Ny o 2))
1
1=y — Az —Nyoz

so the identity follows. To get the second identity, apply T to both sides of
the first. 0

We also have the following result, which is proved in [7, Prop. 4] by
another method.

Theorem 5.3. Fora,b e A,

1 1 1
2(1—)@()) - <1—)\ab) *2<1—)\a<>b)'

Proof. Using equation (26) with p = 1, the conclusion can be written as

1 1 1
2 * = (—).
<1—)\ab) (1+)\a<>b) <1—>\ab)

Now use Corollary 3.2 and apply log to both sides to make this

1 1 1
0g<1—)\ab)mog<1+)\aob> Og<1—mb) (27)
Now
1 i (_l)n i
ot (=)~ PN T )
>1 I=(i1,...,in)
1227



and applying 7" simply eliminates the signs. Further,

log (m) YN Y Y ey,

i1 T= (g T2
=i

so to prove (27) and hence the conclusion it suffices to show

S| Y || Y S gaen

i=0 |\ T= (i1, i) T=(rge) TR
7]=2i | J[=m—i
= g . —I[(ab)™]. (28)
. N S T 7%
I=(inroin)
|[I|=2m

To prove the latter equation, we consider an arbitrary term of the form

(11,12, .-, in)[(@D)™], i1+ -+ + i, = 2m, (29)
and note that every even i;, = 2j produces a factor (aob)®. Write (i1, ..., i,)
as (t1*,...,t8°), where the exponents mean repetition, and let (t.,,...,t,,) =

(2Juys - - - 2Ju;) be the subsequence of even t;’s. Then (29) appears on the
right-hand side of equation (28) with coefficient

(_1)p1+---+ps (_1)Pu1+“-+puf

s - s ) (30)
t’fl---t’s’ tll’l...tls’
and on the left-hand side of equation (28) with coefficient
Z 1 (_1)‘11L1+"'+Quf <pu1) <puf>
7 T qu T T )
0<quropuy T 8 Gt Guy N Qs
where
, Dis if t; is odd;
b; = . .
pi — qi, if t; is even.
Since juih = 2 %ntyh for h = 1,2,..., f, we can write the latter coefficient
as .
g X (e () (),
! * 0= qu;, <pu,, u1 uf
which by the binomial theorem agrees with (30). O
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6 Applications

To demonstrate the scope of applications of quasi-shuffle products, in this
section we will outline four types of objects that are homomorphic images of
quasi-shuffle algebras: multiple zeta values, (finite) multiple harmonic sums,
multiple ¢g-zeta values, and values of multiple polylogarithms at roots of unity.
In each case we show how Theorem 5.2 can be applied.

6.1 Multiple zeta values

Suppose A = {21, 22, ...} with the product z; ¢ z; = 2;4;. Then (Q(A), %)
is the “harmonic algebra” of [4], and is in fact isomorphic to the algebra of
quasi-symmetric functions. If we let ! = k(A) and H° C H' the subspace
generated by monomials that don’t start in z;, then there is a homomorphism
¢: (9% %) — R given as in the introduction:

1
C(zklsz e zkl) = Z k1, ko kp*

my1>meo>-->myp>1 my my™ -y

(The restriction that k; # 1 is necessary for convergence of the series.) One
also has the multiple star-zeta values (MSZVs)

1
Z ki, ke Kk (31>
mi2>2mo > 2my>1

and if we define (*(zy, 2k, - - 2,) to be (31) then ¢* : (§°x) — R is a
homomorphism.
From Theorem 5.2 we have

exp, <Z %A’z,‘?) = Z 2N (32)

i>1 i>0

and applying ¢ to both sides gives

exp (Z %A%(zk)) =1+ Z C(zp) N

i>1 i>1

That is, the MZV ((k, ..., k) (with r repetitions of k > 2) is the coefficient
of A" in
(_1)@'71 o
exp E ——\'((ik) | .
i
i>1
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This is a well-known result: it goes back at least to [2] (see equation (11)). To
obtain the counterpart for zeta-star values, replace A with —\ in the second
part of Theorem 5.2 and set z = z; to get

exp, (Z )\legz> = Z ZEN (33)

i>1 i>0

Now apply ¢* to both sides:

exp (Z —WZ@“) =14 Y C DN

i>1 i>1

so that

¢ (ik
C*(k, ..., k) = coefficient of A" in exp E C(Z ) .
" iz1

T

Cf. [7, p. 203].

6.2 Multiple harmonic sums

If one defines, for fixed n, the finite sums

1
A(kl ~~~~~ kl)<n) = Z ki k2 ok

and

n=mi2me2--2m>1
then there are homomorphisms (<, : (H',%x) = R and ¢, : (%',x) = R
given by
CenlZhy - 2hy) = Ay, (D)
and
Cr(Zhy *+ 2hy) = Stk ()
If we apply these homomorphisms to the equations (32) and (33) above,
we obtain

. . -1,
C<n(k, ..., k) = coefficient of A" in exp <Z ( Z) )\ZAik(n)> .

M i>1
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and

" . ro- )\ZAZ n
¢Z,(k, ... k) = coefficient of A" in exp (Z %) . (34)

T i>1
Note that £ can be 1 in these formulas since the sums involved are finite.
Equation (34) can be compared to the explicit formula given by equation

(21) of [6].

6.3 Multiple ¢-zeta values

As in the preceding examples let A = {21, 29, ... }, but now define the product
o by

Zi O Zj = Ziyj -+ (1 — Q)ZZ'Jrj,l. (35)
Here we take as our ground field £ = Q[1—g]. Then we have homomorphisms

G (9% %) = Q[[g]] and ¢ : (5°,%) — Q[[q]] given by

mi(k1—1)+ma(ka—1)+--+m;(k;—1)

)

CQ(Zk12k2 o 'Zkz) = Z a

My > >my>1 [ml]/ﬁ [mQ]/Q - [ml]kl

and

mi (k1—1)+ma(k2—1)+-+my(k;—1)

* q
Cq (zklzk‘z T zkz) = Z
mi>mo>-->mp>1
where [m] = (1 —¢™)/(1 —q).
Formulas like those obtained in the last two examples are complicated by
presence of the extra term in equation (35). Iteration of (35) gives

)

[ml]kl [mg]k2 . [ml]kz

i—1

f=) (Z ; 1) (1= q) zip—;.

J=0

Then, as in [7, Ex. 4], we can apply ¢, and ¢ to equations (32) and (33) to
get, for k > 2,

Colk, ... k) =
i1 [i-1 .
coefficient of \" in exp [Z # (Z (Z ; 1) (1—- Q)qu@k - J))]
i>1 =0
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coefficient of A" in exp [Z; (Z (Z ; 1) (1—q)¢,(ik —j))] .

i>1 j=

6.4 Multiple polylogarithms at roots of unity
Fixr > 2, and let w = e**. Then for an integer composition I = (iy, ..., 1),
the values of the multiple polylogarithm Li; at rth roots of unity are given

by

n1j1 NgJk
. . . w e W
Lij(w’, ... w’*) = E —_—

ny>-->np>1

I

and the series converges provided w'i; # 1. We can define the “star-
multiple” polylogarithms by

, , WML L. L TRk
1k
Lij(w, ... wl*) = E i a

ik
ny>->nEp>1 LSt ny

Here we let A ={z,;:1>1,0<j <r—1} and z;; 0 2pg = Zitpjt+q Where
the second subscript is understood mod r. The algebra (k(A), %) is called the
Euler algebra in [5] (see Example 2). Let €, = k(A), € the subalgebra of
k(A) generated by words not starting in 21 o. Then there is a homomorphism
Z from (€2 ) to C given by

Z(’Zihjl o 'Zilmjk> = Li(il ik)<wj17 T 7wjk>7

.....

.....

From Theorem 5.2 we have

EXPx <Z ﬂz?J = Z zgt)\i.

i>1
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Now zﬁft = Ziu, and if ¢ is relatively prime to r the preceding equation is

r—1 _1)i—1y3 o
€XPy Z Z M%Zis,j :Zzz‘,t)\la
§=0

i>1 i>0
ti=7 mod r

with fewer terms on the left-hand side if ¢ has factors in common with r.
Applying Z to both sides, we have

Li(s

9

r—1 i—1 )i
coefficient of A" in exp Z Z — Lijs(w?)
7=0 i>1
ti=j mod r
In the case r =2, t = 1, and s > 1, this simplifies to equation (12) from [2].
The counterpart for star-multiple polylogarithms is
Li7 wh o wh) =
(s009)f :

S,

r—1 )\z
coefficient of \* in exp E E — Lijs(w?)
)
3=0 i>1
ti=j mod r
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