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§o. SUlllluary of results

0.1. Introduction. In this paper we adress the following three problenls.

A. Calculate the Betti nUlnbers and Euler characteristics of Inoduli spaces M a,u
of stable n-pointed curves of genus zero (see e.g. [Ke]) , 01' rather an appropriate
generating function for these nunlbers.

B. The same for the space X[n}, a natural cOlllpactification of the space of n
pairwise distinct labelled points on a non-singular cOlllpact algebraic variety X
constructed for diln X = 1 in [BG] and in general in [FMPh]. (Beilinson and
Ginzburg called this space "R.esolution of Diagonals" , Fulton and MacPherson use
the tenn "Configuration Spaces").

C. Calculate the contribution of lllultipie coverings in the problelu of counting
rational curves on Calabi-Yau threefolds (see [AM], [Ko), and nlore detailecl expla­
nations helow).

All these problelus are united by the fact that available algebro-geoluetric in­
formation allows us to represent the corresponding nUlnhers as a sunl over trees
with Iuarkings. M. Kontsevich in [1(0] invoked a general formula of perturbation
theory in order to rechlce the calculation of the relevant generating functions to
the probleIn of finding the critical value of an appropriate fonnal potential. \Ve
solve problenls A aud B by applying this fonnalislu in a sitnpler gec>Iuetric context
than that of [Ko]. Prohlenl C is taken froI11 [Ko]; we were ahle to directly conlplete
I(ontsevich 's calculation in this case and obtain a siInple closed answer.

We will 110W describe Dur results (0.3-0.5) and technique (0.6) in SOlne detail.

0.2. General setup. Let Y be an algebraic variety over C, possibly non­
SIll00th and nOn-C0I11pact. Following [FMPh] we denote by Py(q) the virtual
Poincan~ polynolnial of Y which is uniquely defined by the following properties.

a). If Y is smooth and cornpact, then

In particular

Py-(q) = L dirn Hj(Y)qj.
)

x(Y) = Py( -1).

(0.1)

(0.2)

b). If X = Ili Xi is a finite union of pairwise disjoint locally closcd strata, then

(0.3)

c). Py x z(q) = Py (q)Pz (q). It follows that if Y is a fihrat.ion over hase B with
fiber F locally trivial in Zariski topology, thcn Py(q) = PB(q)PF(q).
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Adefinition of Py(q) ean be given using the weight filtration on the eohomology
with eompaet support:

Py(q) =L( -l)i+idim (grivH~(Y,Q))qi.
i,j

(0.4)

We apply the additivity formula (0.3) to the strata of the natural stratifications
of MO,n and X[n] in Problems A, B. These strata ean be indexed by marked trees
describing various eoaleseing patterns of n-point eonfigurations.

In [1<0], the role of Y is played by a eompaetifieation M(W) of the spaee of
parametrised rational curves in sorne rnanifold W. The relevant trees deseribe
Gromov type degenerations of these curves. Kontsevieh calculates eertain ehern
nurnbers of veetor bundles over M(W) and uses Bott's fixed point forrnula instead
of (0.3) in order to represent them as a surn of local contributions. To rnake Bott's
formula applieable, I(ontsevich assurnes that W is endowed with a torus action and
lifts this action to M(rV). (Actually, his M(W) is not a manifold hut a smooth
stack).

0.3. Moduli spaces. We put

00 t n

tp(q, t) := t + L PMo,n+l (q) 12! E Q[q][[t]],
n=2

00 t n

X(t) := ep ( -1, t) = t + L X (.!vI0 , Tl +d 12! E Q [[t]] .
u=2

(0.5)

(0.6)

0.3.1. Theorelll. a). tp(q, t) is the 'Uniq'Ue root in t + t 2Q[q][[t]] 01 any one 01
the lollowing lunctional/differential equations in t with pammeter q :

b). X is the 'lLnitj'ne root in t + t 2Q[[t]] 0/ any une 01 the si1nilar equations

(1 + X) log(l + X) = 2X - t,

(1 + t - X)Xt = 1 + X.

(0.7)

(0.8)

(0.9)

(0.10)

Equations (0.8) und (0.10) are equivalent to the following recursive formulas for
the Poincare polynomials. Put Pn = Pn(q) = fuM In!.

0,n+1

0.3.2. Corollary. We haue lor 11, 2' 1:

)
2(n + 1 Pn+ 1 = pu +q (0.11)
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Px1o.n+,(q) = Px10 •n+1 (q) + q2 ;+~+l (7) Px10 •i +1 (q)Px10,j+l (q). (0.12)
i~2

Oue can compare (0.11) with recursive formulas in [Ke], p. 550.

From (0.10) one sees that the function inverse to X has a critical point at t =
e - 2. Don Zagier has shown me how to derive from this the following asymptotical
formula:

X(M0.n+1) ~ Jn C2 : 2e) n-!

We will prove Theorem 0.3.1 in §l. We will also discuss the ramification prop­
erties of t.p as a function of t for q2 =lI.

0.4. Configuration spaces. For a compact smooth algebraic manifold X of
dimension m, set

Put also

t n

'l/Jx(q, t) = 1 + L PX[n](q), E Q[q][[tll,
n.

n~l

t n

xx(t) = 'l/Jx( -1, t) = 1 + L x(X[n]) , E Q[[t]].
n.

n~l

q2m -1
Km = 2 = Ppm-l(q).

q - 1

(0.13) ,

(0.14)

0.4.1. Theorenl. Denote by yO = yO(q, t) the unique root in t + t2Q[q2][[tll 01
any one 01 the lollowing equations:

(q2m t + 1 - (q2m - 1 + Km)yD] y? = 1 + yD. (0.16)

Then we haue in Q[q][[t]]:

(0.17)

0.4.2. Theorem. Denote by 1] = 7J(t) the unique root in t + t2Q[[t]] 01 any one
01 the lollowing equations:

n~(1 + 'I]) log(1 + '']) = (m + 1)1} - t,

(t + 1 - 'In7J)7Jt = 1 + 1}.

Then we haue in Q[[tll:
xx(t) = (1 + ry)Xe x ).

Theorems 0.4.1 and 0.4.2 are proved in §2.

(0.18)

(0.19)

(0.20)
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I anl grateful to C. Soule who relna.rked that (0.17) follows fro111 a less neat
identity which I deduced initially. He has also infonned me that he and H. Gillet
constructecl a luap X t--+ (h*(X)] fro111 varieties to the ](o-ring of Grothenclieck's
1110tives having all the fonnal properties of the virtual Poil1can~ polynolnial. We
can luore 01' less lnechanically llse it in all our constructions; in particular, (/ will
be replaced by Tate's motive [h2 (P I )].

For the reacler's cOl1vel1ience, we list the first tenns of the gel1erating series we
have considered:

t 2 t 3 t 4 t 5

<p(q, t) = t + 2! + 3! ((l + 1) + 4! (q4 + 5q2 + 1) + 51 (q6 + 16q4 + 16q2 + 1)+

t~ (q8 + 42(/ + 127q4 + 42q2 + 1) + ... ,
6.

t2

p-I('Ij;X(fJ, t) - 1) = t + 21 (Km + p - 1)+

~~ [(p - l)(P - 2) + ".,,(q2m - 2) + 3(P - l)"m + 3K~,,] +
t4
4! (p3 - 6p2 + 11P - 6 + K m (6p2 - 26P + 26 + 4Pq2m _ 9q2m + q4m)+

K;n(15P + 10(/m - 35) + 15K~I!] + ...
where we put P = Px(q).

0.5. Multiple coverings. COl1sider the following general probleIn of enumer­
ative geometry.

Problenl Pg,k(X, ß, I). Given a projective algebraic 7fl.aniJold X 1 find the 71U1n­

her 0/ ]Jaraul.etrised algebraic C7L7'VeS 0/ genus 9 in )(, in the houl.ology dass ß, with
k marked ]JoinL"i) ."iatis/ying SOll~e incidence cunditions I.

Notice that in this vaguely stated problenl we inlplicitly assunle that. the lllllnber
of solutiollS is only "virtually" finite, anel look for the number of virtual solutions.

In [Ko], Maxinl I(ontsevich suggesteel a genera.l schen1e allowing hün to sil1ul1­
taneously define this nunlber for a wide dass of probleIns and to calculate it in
111any cases using Bott 's residue fornlll1a. In the three exalnples he consiclered in
full detail we have .)( = pu for sonle 'H, 9 = 0 1 and ß is d(PI] for SOlne cl 2:: 1. The
remaining data is as follows.

(i) n = 2: X = p2 1 k = 3d - 1. The probleIn is to find the lunnber of rational
curves of degree d in p2 passing through 3d - 1 points in general positions.

(ii) n = 4: X = p4, k = O. The problenl is to find the nlllnber of rational
curves of degree cl lying in a quintic hypersurface V.

(iii) 11, = 1: X = pI, k = O. Here we additionally assume that )( is a rational
curve embedded in the quintic threefold (01' a Inore general Calabi-Yau threefolel)
with nonnal sheaf V( -1) E9 O( -1), and the probleIn is to calculate the contribution
of lnaps of clegree d, pI --+ X, to the l1tllnber of solutions of problelU (ii).

Using a different definition of the last contribution which we denote md P. As­
pinwall and D. Morrison [AM] calculated it and confinned an earlier precliction by
P. Candelas et al.

In this note we show tha.t Kontsevich 's fonnula gives the salne answer:
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0.5.1. Theoreul. Tnd = d- 3 .

0.6. Suullllation over trees. A tree T here is a finite connected siluply
connected CW-co1l1plex. We denote by VT the set of its vertices, Er tbe set of its
edges. Valency lvI of a vertex v E VT is the nurnber of edges adjoining v. A /lag of
T is a pair (v, e) where v is a vertex, and e is an adjoining edge.

A rnarking of a trce T is a vaguely defined notion. It may consist of a fanlily
of lnarks of given type(s) put onto vertices, edges, flags, anel satisfying certain
restrietions. Below we will desCl,ibe pecisely a faluily of ll1arkings which we will call
standard ones.

The generating functions <p studiecl above and in [Ko] are calculated in three
steps.

STEP 1. Repl'esent'P as an (infinite) SUIU of certain weights W<p(T, p,) taken over
iSOn101'phisn1 classes of n1al'ked trees (T, JL):

'P = L W<p(T,p,).
( T, Jl ) / ( i ~ U )

(0.21)

This stage involves a cOlubinatorial encoding of the l'aw algebro-geoluetric data,
detenuining type of ruarking and weights.

STEP 2. Try to rewrite (0.21) in a standard fonu of the following type. Choose
a set A (finite 01' countable) and a fanüly of syrnrnetric tensors indexed by A:
gab, a, b E A; Ca! ,... ,(q~, (Li E A, k 2:: 1. The coordinates gUb, Cal, ... ,UIt 111ust be
eleluents of a t.opological cOlun1utative ring.

The standard rnarking corresponding to this elata is a map f: Fr -f A.

The standard weight of a nUtrked tree (T, f) corresponding to this data is

(0.22)

Here we use the following notation. For an eeIge 0', aa denotes the set of two
Rags of this eclge, and f( aa) is the set of two lnarks (L, b) put on these Rags by f.
Sinlilarly, for a vertex v, av denotes the set of all flugs containing V , and f(av) is
the respective fanüly of ll1arks.

Finally, the standa.rd sunl over trees, 01' in physics speak, a ])(J,rtition functioH is

Z:= L L w(T,f).
T/(i,ofU) f:Fr-tA

(0.23)

The passage froll1 (0.21) to (0.23) is not con1pletely antOluati c ancl incleeel not
always possible. Luckily, in can be lnade for all the problen1s discussed in [1(0]
anel here. I cannot explain conceptually why this is so. In particnlar, the factor
I/lAut TI in the Problems A, B, resp. C, occurs for different geon1etric reasons.

If we managed to represent (0.21) in the fol'lU (0.23), t.hen we can try to complete
the calculation cf<p = Z with the help of the following identity.
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ASStllUe that the l1uttrix (gilI,) has an inverse luatrix (gab)'

STEP 3. Consicler an auxiliary fan1ily of independent variables (fielcls) 'P ­
{<Pli I Cl E A}. Construct the forn1al function (potential)

(0.24)

Denote by r.p0 = {'P~ I a E A} an appropriate critical point of S( r.p) that 18, a
solution of equations aa:a L,o=lf'0 = 0, (l E A.

0.6.1. Clahn.
(0.25)

This remains CL "physical" statelnent until we specify the relevant topological
ring contail1ing g and C, prove t.he existence and uniqueness of <po, and t.he con­
vergence üf S( 'PO). (See [1(0] for the standard physical argtuuent "proving" 0.6.1).
Für exaluple, considering (gul', Cal , ... ,u H ) as independent formal variables, one can
treat (0.22) as a forn1al series in these variables, and prove (0.6.1) as an identity in
a localization of this ring.

Anyway, STEP 3 involves three calculatiol1al difficnlties.

a). vVe ll1USt be able to sun1 S(<p). In our problen1s A,B this is easy. In [Ko], a
partial success is achieved, reducing S( 'P) to a new potential which is quadratic in
'Pa but highly non-linear in a fini te set of l1ew auxiliary variables.

b). We nUlSt be ahle to solve ciS = 0 allel to find <po.

c). We finst be able to calculate S(r.p°).

The following trick, also weIl known to physicists, will allow us in certain cases
to avoid the last llnpleasant calculation.

'Ve will deforIl1 the data (gilb, C\'l , ,11.11) by introducing independent pararneters
t = {ta I a E A} and replacing CII by t(JCa, Thc rest of the data A, gab, Ca1, ... ,Uk

for k 2:: 2 reluains unchanged. Let. zt, st, <pOt be respectively the cleforIl1eel partition
function, potential, anel the critical point. Then we have

0.6.2. Clailn. Für alt CL E A, we have

az t
Otat

a
= C1lepa . (0.26)

Fron1 the view point of genernting fUl1ctions, we lose no informa.tion replacing
(0.25) by (0.26).

To deduce (0.26) fnnll (0.25), one applies Clailll 0.6.1 to zt and different.iates in
t:
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because Si depends on t only via linear tenns I: taCa<Pa.

On the ather hand, to prove (0.26) in a fonnal context, one can totally bypass
Claim 0.6.1 and silnply apply a universal inversion fonnula to the formal lUftP
(<Pa) f---+ (ast / O<pa) givillg silnultaneously existence, uniqueness, and expression for
<pOt as a surn over trees. Such inversion fonnulas are classical. The version dosest
to our needs is given in [GI(]; the only difference is that ost / o<p a at 0 does not
vanish. We leave details to the reader.

Functional equations (0.7), (0.9), (0.15), (0.18) are essentially relations for co­
ordinates of the critical point. Differential eqllations are abtained fronl thenl by
differentiating in t.

Acknowledge1nents. I alU gl'ateful to M. Kontsevieh for many enlightening ex­
planations, anel to Don Zagier for teaching nle PART After this work wa.s written,
I learneel that E. Getzler proved (0.7) anel (0.9) by essentially the salne lnethoel.

§1. Moduli spaces

In this section, we prove t.he Theorenl 0.3.1 following the three step proceelure
eleseribed in 0.6.

1.1. Marked trees and strata. A t.rec is ealled stable if Iv! =j:. 2 for all vertiees
v. If lvi = 1 we call 'V end vertex. Let Vr] be the set of enel vertices. An n-nlarking
of r is a bijection Il : Vr

1 -t {I, ... , n}. We also put v,.o = V \ 1/; anel refer t.o it. {L..'{

the set of interior vertiees.

Let now (C; Xl, ... , X n) be a COlUpaet conneeted cnrve of ari tlunetiea! genus zero
with n 2:: 3 labelled non-singular point.s. The cOlllbinatorial strueture of this curve
is clescribecl by the following stahle tree with 'I1.-luarking (r, fl): V~ = {irrec1ucible
COll1ponents of C}, v/ = {;t: 1 , •.. ;c u}; fl : ;c 1" f---+ i; an edge eonnects two interiol'
vertices if the respective eornponents of C have non-empty interseetionj an edge
eonnects an interior vertex to a.n end vel'tex if the respective point belongs to t.he
respective cOlllponent.

Denote now by M( T, fl) C M o,u the set of points panunetrising stable CUl'ves of
the type (T,fl). If r has only one intel'ior vertex, M(r,p) := Mo,n is the big cell.
The following sta.telnent sUllunal'ises the lna.in properties of these sets; für a proof,
see [I(e].

1.1.1. Proposition. a). A1(r,fl) i..~ (J. locally closed $'lLb~~et 01 Ma,n depending
only on (th e is07norphism cla$s 0f) (T, Il ).

b). M a,n i~~ the union 01 ]JainlJise disjoint ~~trnta M( T, p.) lor all marked stable
n-trees (r, J.-l).

c). For any (r,p),

A1(T, p) = I1 Mo, 11'1'
vEVrO

Notice that there exists exaetly one stable tree .--. which does not correspond
to any stable eurve.

vVe can now calculate Poincal'e polynoluials.



8

1.1.2. Proposition. We h(LVe

PM(r,/J)(q) = rr PA10 ,l v l (q),
tJEVTo

_ (q2 - 2) _ ,
PMo.1t (q) - k _ 3 (k 3) ..

(1.1 )

(1.2)

Proof. (1.1) follows from the Proposition 1.1.1 aud the multiplicativity of
Poincan~ polyno111ials.

To prove (1.2), one can use the following geolnetric facts. First, the Inorphis111
7T: M a,u+l -+ M a,u forgetting the last marked point is (canonically iS01110rphic to)
the universal curve. Second, the infinity af the source consists of structure sectians
and fibers at infinity of the target. Therefore, aver the big cell Mo,u this 1110rphisln
is a Zariski locally trivial fibration with fiber pI , and M a,u+l = 1T- I (Mo,u) \ {nnion
of s truct'/Lre s ectiuns} .

From the addivity of P.oincan~ polynol1lials it. follows that

PMO ,II+1 (q) = PMo,n (q)Pp l (q) - nPMo," (q) = (q2 + 1 - n)PA10,,, (q).

Since PMO,3(Q) = I, we get (1.2).

SUllunarizing, we have for '11 2: 3:

(1.3)

where t is a new fonnal variable, and the sutn is taken over n-tnarked stahle trees.

1.2. Passage to the standard lllarking. Cotnparing (1.3) to (0.22) and
(0.23) we are 1110re 01' less C0111pelled to choose A = {*} (one eleInent set), 9 ** =
I, C. = t, CH = 0 (this gives weight zero to non-stable trees)1 and finally, denoting
by CI.' the C0l11pOnent with k 2: 3 indices,

(
q'l. _?)

CI.' = . ... (k - 3)1.
/,;-3

(1.4)

In particular, we can forget about f; Fr ~ {*}.

This tnakes the weight of (T,/t) depend only on T/(iso), hut not p.. Now, if
IV; I = 11, the set of ::-tll n-Inarkings of T cOl1sists of n! elell1ent.s anel is effectively
actecl upon by the group Aut T. Therefore,

. n!
card {(T,fL)}/(tso) = IA Icarel {T}/(iso).

ut T

Putting together (1.3), (0.22), and (0.23), we see finally that <I>(fj, t) = zt where

. t 2 tU
<1>( f], t) ;== -, + " -,PM (q),2. LJ n. 0."

u;:::3

(1.5)
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(1.6)

The sumnlation in (1. 6) is now taken aver aU t.rees 1 t.he t.enn t'2 /2 in (1.5) cOlnes froln
the two-vertex tree, anel the generating function argument t in (1.5) cC>1Tesponcls
precisely to the defonnation panuneter t introduced at the end of the subsection
0.6.

We will now use (0.26) in order to calculate

az t _ Dip (fj, t) ._ ( )
Dt - Dt .- <p fj 1 t .

1.3. Potential. FroIll (0.24) and (lA) one sees that

'2

st(<p) = - ~ + t<p + L Ck<pk =
... k~3

<p2 '"' ((l -3) <pk
-2 + t<p + Li k - 3 k(k - l)(k - 2)'

k~3

This can easily be Sll1l1lned. We need,only tbc derivative.

1.3.1. Proposition. Par generic (j wc IW1Je

and for q = -1,

(1. 7)

(1.8)

1.4. End of the proof. We sec now t.hat (0.7), resp. (0.9), a.re equations for
the critical point dtpSt = O. Differentiatillg' theill in t and elinlinating (1 + <p yJ 2

1

resp log (1 + <p), we get (0.8), resp. (0.10).

1.5. Ralllification of <P((j1 t) as a function of t. If q2 is rational hut #- 1,
we see froln (0.7) that <p is an algebraic function of t of genus O. Otherwise it is
transcendental and infinitely valued. In orcler to undel'stand its topology, we cau
use the following classical trick.

Consider the differential equation for a function y = y(:c):

YY:l: = (LX + by; CL, b E C.

Let Wl,2 be roots of its cha1'acte1'istic eq'/Latioll

:l
10 - bw - a = O.

Assulne that 101 =1= W2 and put

10 1 'W2
Al = ,A2 = ---

'lU2 - wl 'WI - 102

so that Al +A2 = -1. A direct calculation shows:

(1.9)

(1.10)

(1.11)
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Proposition 1.5.1 .. P'ut 1O(a:) = y(x)/x. Then the general sol1Ltion 01 (1.9) 1S

given by the i1n]Jlicit equation

(1.12)

where C is an arbitrary constant.

Vve can apply this to (0.8) putting

Then we find
q2 1

Wt=l,w2=q-2,A t = 2,A2 = 2 .
l-q Cf -1

one can calculate C evaluating (1.12) at the point t = 0 where we have :1:

q2 + 1, y = 1, w = ((l + 1)-1.

§2. Configuration spaces

In this section, we prove Theorenls 0.4.1 and 0.4.2.

2.1. Nests and strata. Let X be a snl00th cOlupact algebraic variety. The
configuration space X[n], n 2:: 2, is defined in [FMPh] as the closure of its big cell
X n

\ (Ui<j ßij) (~ij is the diagonal :l:j = :c j) in X n x TIs XS , where S runs over
subsets S C {I, ... , n}, ISI 2:: 2; X S denotes the respective partial product of X's,
and X5 is the blow up of the snlall diagonal ßs in ){ s.

Every S detennines a. divisor at infinit.y D(S) C ){[n]. Naluely, let 'lrS: X[n]---+
X S be the canonical projection. Then 1rS

I (l:1s) = UT-:JsD(T).

The natural stratification of X[n] described in [FMPh] consists of (open subsets
of) intersections X(S) = ni~lD(Si) corresponding to sets S = {51, ... ,Sr} of
subsets in {I, ... ,n} called nests.

2.1.1. Definition. (l). S = {SI,,,,,Sr} is a neBt (or n-nest) i/lSj l2:: 2 for
all i, and eithel' Sj C Sj or Sj C Si f01' all i,j such that Si n Sj =I=- 0.

In partiC7Llt1r, S = 0 is a 1U:'St} and S = {S} is a nest, i/ ISI 2:: 2.

b). A nest S is callcd whule (1'eS]J. b1'oken) if {I, ... , n} E S (1'eS]'- {I, ... , TI,} ~

S).

Denote by X(S) c X(S) = nsEsD(S) the subset of points not belonging to
slualler closed stra.ta. The I'ollowing facts are proved in [FMPh].

2.1.2. Proposition. a). For any 'n 2:: 2 and n-nest S, X(S) is a locally closed
s1tbset 0/ X[n].

b). X [n] is thc union 0/ ]Jai1'wise disjoint strata ){ (S) /ur all n-nests S.

2.2. FrOlll nests to lllarked trees. As in 1.1 we consider a bijection Il: V/ ---+
{I, ... , n.} as apart of the appropriate luarking for our problen1. The relnaining
clata is supplied by choosing 01'ientatiun ul all cdgf:.s.
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2.2.1. Definition. A tree r 1na1'keel in this wa!! is called ad1nissible iff:

a). EtJer!! tJertex 0/ r except 0/ one ha$ exactly one inco1ning edge.

b). The exce]Jtional tJertex has unly o'u,tgoing edges, and their nnm.be1· is > 2.
This vertex is c(J,lled S07J,rce.

c), All interior vertices with ]Jossible exception 0/ S01Lrce have tJalency ~ 3.

2.2.2. Proposition. The /ollowi71g 1fLa]}S are (1 ,1):

{broken n - nests} --+ {whole n - nests} --+ {adrnissible 'ma1'ked n - t1'ees} / (-iso) 1

S r-+ S U {{l, ... ,n}} r-+ r(8) = r(S U {{l, ... , n}}).

Here T is defined by its 8et8 0/ tJe7,tiees and edges: i/ S = {SI, ... , Sr} J then

......, ""'"- .-.- .......

~nd an eelge o1'iented f7'01n Si to Sj C01lnects these t·WO vertiees iff Sj C Si and no

S k lies strictly in between these two subse ts.

This is proved by direct observation, The foUowing facts are worth Inentioning.

a). {l, , 'n} is the source of 7(8) for any S.

b). {l}, , in} are aU end vertices.

c). i E Sj iff one can pass froln Sj E Vr to {i} E Vr in r by going always in
positive direction.

A reacler is advised to convince hün- 01' herself that the source has valency ~ 2
anel all other interior vertices have valellcy 2:: 3. .

Denote the source by s anel the set of the reluainillg illterior vertices VrD.

2.2.3. Proposit ion ([FMP h]) . The tJirtual Poineare ]JOlyno1nials 0/ strata
X (S) a1'e given by the /ollowillY /orllL'I/,las (we add a /onnal variable t).

1/ S is a uroken n,-nest, .... E Vr(S):

1/ S is a whole n-1lest:

t. (2.1 )

(2.2)
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Cornparing (2.1) anel (2.2) one sees that one can express the joint contl'ibution
of two nests eorresponeling to an adnlissible ll1arkeel tree T as a product of loeal
weights corresponding to all vertices of T. The Ioeal weight of the source will be

and the remaining local weights in (2.1) and (2.2) coincide anel depend only on the
valeney.

2.3. Passage to the standard luarking. We ll1ake the I'ollowing choices.

Put A = {+, -}. Interpret a Inark + (resp. -) on a flag as incoming (resp.
outgoing) orientation of this fiag. Thns, f: FT -t A is a choice of orientation of
all flags.

Put g+- = g-+ = 1, g++ = g-- = O. This Inakes the standard weight of (T, f)
vanish unless aU edge.<; are unalnbignonsly oriented by f.

Put C+ = t (see (2.1) and (2.2)) and C_ = O. The last choice Inakes the standard
weight vanish nnless all end eclges are orienteel outwards.

Put C+_ = C-+ = O. This exdudes vertices of the type --+ • --+ .
Put also CU) ,... ,/11< = 0 if {+, +} C {Ul" .. ,(Lk}. This elinlinates vertices with 2:: 2

ineolning edges.

For tensors with k 2:: 2 rninnses arnong the indices we pnt

(
PX(q)) (q2m - 2)C_... - = k k! + t"m Ps (q) k _ 2 (k - 2)!

(because only the source has aU ontgoillg edges), and

(
(/7H _ 2)

C+_ ..._ = ~J11 (k - 2)!
k-ö'J

(2.3)

(2.4)

(cf. (2.1) and (2.2)).

The standard weight of a Inarked tree defined by this data again is independent
on the part IL: Vi --+ {1, ... , n} of the initial Inarking which acconnts for the

n!
factor IA I below.ut r

Sumlnarizing, we pnt

t"
cFx(CJ, t) := L n! PX[nj(q),

Il22

zt;= L IA\~t TI L I1 gf(i),,) I1 Cf(uv),

TI(i.~u) j:FT-+{+,-}aEET 1JEVT

and get fronl the previous discussion

(2.5)

(2.6)

zt = <I>x(q, i), ~ zt ;= q,x(q, t). (2.7)
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2.4. Potential. \Ve change notation: 'P+ = x ,'P- = y. Frolll 2.3 we see that
(already i-defonued) potential is

t 00 (q2TU - 2) xyk
S (x, y) = -xv + tx + /im L k _ 2 k(k _ 1) +

k;;2

co (Px(q)) k 00 (q2TU _ 2) yk
(; k Y + ii:",Px(q) (; k - 2 k(k - 1)

(we have two argtunents x, y hut only one t = t+ because C_ = 0).

We lUUSt salve the systenl

anel (0.26) then teIls U8 that

B t 0
Bt Z = 'P X ( q, t) = x .

(2.8)

(2.9)

(2.10)

Again, st(x, y) can be easily sUlluued. Ta writ.e down the functional equatioll,
we need only :c-derivative which fo1' general q is

Far q = -1:
ast
Bx = -y + t + 1"n((1 + y) log(1 + y) - V]·

(2.11)

(2.12)

2.5. End of the prüof. \\Te now see that (0.15), resp (0.18), are the equations
defining yo. Differentiating in t we get (0.16) anel (0.19). Anel since st(x, y) is
linear in :c, the vanishing of the v-derivative gives an explicit expression of :1;° via
yo:

(1 + yO)Px(q) + (q2111 + n.m - l)yO - q2m t - 1
'P X ( q, t) = Px (q) 1 + (1 2 TU ~) °+ 2mt .- q - t\,m Y q

Ta see that this is equivalent to (0.17) one can differentiate (0.17) in t anel use
(0.16).

2.6. Ralnification of yO. Replaying the galne of 1.5, we put (changing the
meaning of X, y in favor of those in 1.5):

(/m + ti
:c := t + 2 m 1q 711

111 ( q, t) = y / :c .
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Then (0.16) becolues
YY:J.' = _q21H x + (q2fH + 1)y

so that in the notation of 1.5

1 q2fH
1 2m A A'WI = ,'W2 = q , 1 - 2 = ---

q2m _ 1 ' 1 _ q2fH '

and finally

for SOlne C.

§3. Multiple cover1l1gs

3.1. I(ontsevich 's forulll1a for Problen1 C. Kontsevich represents m·d as a
rational function of two variables )'1, A2 which is fonnally hOlllogeneous of degree
zero and actually is expected to be a constant.

Geollletrically, this stateluent IUUst be a corollary of Bott 's fixed point forlllllia
for sm,ooth stacks. The A-variables in this coutext are coordinates of a toric vector
field on the target pI. Until this has been worked. out, we sinlply go ahead with
Kontsevich and take this independence for granted.

The function in question is a sunl of contributions indexecl by isolnorphislll dasses
of connected trees T endowecl with nUlrkings: each vertex-v is 111arked by Iv = 1 01'

2 so that no neighbors have the salne nlarkj each edge 0' is lnarkecl by a positive
integer dn . Only those lnarked trees contribute to '1nd for which deg T := Lo da = d.

We introduce the following notation für a 111arkecl tree T; F= the nlunber of
vertices lnarkecl by 2; (111 = LO:IIEn der; 'Wj = LII:!u=j(lvl- 1), i = 1,2.

Then we have

'In d = (A 1 - A2 ) 2 -:2d" 1 ( - 1)d+F A2
U! 1 A2

Ul2 V (T ) E (T ) ,
~ lAut TI, 1 2

r:degr:;::d

3.2. Theorenl. '1'1'1'11 = d-:~.

Proof. We will calculate the value of 711d at Al = 1, A2 = O. Thc drastic
silnplification rcsults [roln the fact that the factor A~W2 vanishes unless 'W2 = O.
Now, 'W2 = 0 inlplies that T has no vertices of ulult.iplicity 2:: 2 lnarked by 2. Hence
T either has only aue edge, 01' is a st.ar with ceut.ral vert.ex lnarked 1, and end
vertices nUl.l'ked by 2. "vVe will consider the first case as one l'ay star as wen.

Now, let T be such a star of degree d. The set {da} fonns a partition of d
into positive sUllunands which uniqucly defines the isolllorphislu dass of T. It is
convenient to write this partition (loS the set. of lnultiplicities R. = {Tl, 1'2,' .. }, where
rj= the nUluber of edges ularked by i so that L' i1'i = d. Obviously, lAut TI = TI· rjL

t. t
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After SOUle reshuffiing, our assert.ion t.hus recluces to the following identity:

(?)

Now, the left hand siele of ('?) cun be obtainecl in the following way. Consider the

fonnal series eLi 2: 1 Yi
ti

, take its t.enns of degree cl in t and put. in theIn Vi = -cl/i.
But we can clearly proceed in reverse order first I1Htking the substitution Yi = -d/i.
Then the series in the exponent becornes Li( -d/i)t i = (nog(l - t), so that finally
we get the coefficient of td in (1 - t)d. QED

Remark. One can observe that (_l)d coincicles with the contribution of just. one
trivial partition: 1'd = 1. The relnaining tenns cancel. Geonletrically, this I1leanS
that degenerating configurations da not contribut.e with this choice of vector field.
Algebraically, this can be rewritten as an equality of two SUlllS, one over proper
partitions with odd, another with even nlunber of sUllunands.
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MORDELL-WEIL PROBLEM FOR CUBIC SURFACES

Yu.I.Manin

Max-Planck-Institut /1'ir Mathematik, Bonn, Germany

§o. Introduction

Let V be a plane non-singular geol11etrically irreducible eubie eurve over a finitely
generated field k. The Mordell-Weil theoreln for V eau be restated in the following
geometrie fonn: there is a finite subset B C V(k) such that the whole V(k) can
be obtained frol11 B by drawing seeants (and tangents) through pairs of previously
constructed points and consecutively adding their new intersection points with V.

In this note I aeldress the question of validity of this statement for cubic surfaces.
After reminding SOUle constructions frol11 the book [Ma], I analyze a nUlllerical
example, anel then prove a different version of the Mordell-Weil statelnent for
split cubic surfaces. A shanleless change of the composition law allows lue to
rechlce this problell1 to the classical theorell1 on the structure of abstract projective
planes. Unfortuna.telYl t.he initial question, which is l110re natural to ask for mil1ilnal
surfaces, reluains ul1answered. I would like to caU attention to this problem and its
calculational aspects.

I anl grateflll to Don Zagier whose tables are quoted in §2, and to M. Rovinsky
and A. Skorobogatov, discllssions with WhOI11 helped Ule to state and prove the
main theorelu.

§1. A SUl1unary of known results

1.1. Notation. Let 11 be a cubic hypersurface without untltiple cOluponents
over a field k in pd, d 2:: 2. If x,y,z E V(k) are three points (with multiplicities)
lying on a Ene in pd not belongil1g to 11, we wl'i te x = y 0 z. Thus 0 is a (partial
and multivalued) cOluposition law on V(k). We will also consider its restrietion on
subsets of 11(k), e.g. that of Sl1l00th points.

If x E V (k) is sluooth, and does not lie on a hyperplaue component of V, the
birational lllap tx : V -t V, Y H x 0 y, is weH defined. Denote by Bir V the fuU
group of birational autoluorphis111S ov V.

The following two results SUDllllarize the properties of {t x } for curves anel surfaces
respectively. Tbe first one is classical, anel tbe second one is proved in [MJ.

1.2. Theoreln. Let V be a srfLooth cubic C1Lrve. Then:
a). Bir V is a se7nidirect ]Jrod'ILct 0/ the gr01L]J 0/ ]Jrojective ll1Lt07noryJhisms and

the S1J,bg7'OU]J genel'lLted by {t;l: I ;t: E II (k)}.
b). Wehave identic(J.lly

(1.1 )

/or all x, y, z E l1(k).

I/ in addition k is finitely generated over a ]Jrime fieId, the71:
c). Bir V is finitely gene7'ated.
d). All ]Joints 0/ V (k) can be obtained from, a fin ite ~~1J,bset 0/ th em by drawing

secants and tangents and adding the i1ltersectio71 ]JOint~.

1
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1.3. Theorenl. Let V be U 7ninimul sm.oot'" cubic s1Lr/ace over U J)er/ect non­
closed fieZd k. Then:

a). Bir V is a se1lLi-direct ]Jrod1Lct 0/ the grOU]J 0/ projective a1Ltornor]Jhis1nS and

the subgrou]J generuted by

{t x I x E V(k)} and {su,v I u, v E V(I(); (1(: k] = 2; u, v are conjugate over k}

where

b). We have identically

(1.2)

/01' all]1Uirs U, v not lying on lines in V, and ])rojective automor]Jhisms s.

c). The relations (1.2) /onn a ]Jresentation 0/ Bir V.

We remind that V is called m.iniuLal if one cannot blow down some lines of V by
a birationallnorphisln defined over k. The opposite clMS consists of split surfaces
upon which all lines are k-rational.

1.4. Discussion. Although the two theorelns are strikingly parallel, there is
an inlportant difference between finiteness properties in one- and two-dimensional
cases.

Basically, (1.1) nleans only that ;c + y := e 0 (x 0 y) is an abelian group law with
identity e, whereas the statenlents c) and d) of the Theorem 1.2 additionally assert
that this group is finitely generated. Therefore, (1.1) generally is not a cOlnplete
system of relations between {t x }.

Contrariwise, since (1.2) is cOlnplete, BirV in the twodimensional case cannot he
finitely generated if V(k) is infinite. This can be proved by a direct group theoretic
argument establishing a eanonical fonn of a word in {t x , su,v} (cf. [Ma], sections
39.8.1 and 39.8.2).

Therefore, if sonlething like the stateluent cl) of Theorem 1.2 is expected to be
true for cubic surfaces, this luust refiect a cleep difference between relations among
{tx, S u, v} in Bil' V <lllel relations aillong {x} in (V(k ), 0). The latter are luuch less
understood than the fornler. One reason is that exceptional subvarieties of bira­
tional autoluorphisluS are rationally paranletrized curves in V which presumably
should be treated as a whole in a reasonable finiteness statement. In fact, a typical
exaluple of such subset is a eubic curve C(.oz:) with double point x E V(k) obtained
as intersection of V with tangent plane at x. Now, the set (C(x)(k) \ {x}, 0) with a
composi tion law x + y = e 0 (x 0 y) is isoluorphic to the group of k-points of a form
of the nlultiplicative group. Such a grollp is not finitely generated even for k = Q.
On the other hand, in (V(k), 0) t.his whole set nlust be considered M the cloluain of
luultivalued expression ;,: 0 ;':, because geonletricaUy aU its points ean be obtained
by clrawing tangents with k-rational direction to x. Therefore finite generation is
still conceivable.

This conuuent lunst a.lso help the reader to aecept the definition of a generalized
operation o(C,p) in §3, which is nnother way to deal with the salne difficulty.
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§2. Minilnal cubic surfaces: SOHle nUlnerical data

2.1. The structure of data. Let V be a slnooth cubic surface over a field k
such that V(k) is infinite. Let h: V(k) ~ R+ be a counting function (i.e. for all
H > 0, the set VH := {x E V(k) Ih(x) < H} is finite). In order to find a generating
snbset in (V (k ), 0), one can proceed as follows.

A. Choose a large Hand cOll1pile the list of all elements of VH. Let points x in
it be orelered by increasing h(x). We will write x < y if x precedes y, and use the
number of a point in this list as its naine.

B. For every x and every y < x, calculate points x 0 y and choose among them
those z = x 0 y for which z < :r:. Rewrite every such relation as x = y 0 z, y, z < x,
and register it at the saHle line as (coordinates anel nUlllber of) x. Notice that if
by chance y = z, the last relation Illeans exactly that x lies in the tangent section
of V with double point x.

If such a relation exists for :t:, we will call :c stro71gly decomposable.

If all points x with sufficiently large h(x) were strongly decoIl1posable, then the
ones which are not wonlcl f01"111 a finite generating set. This is the case for cubic
curves with height as counting function. For cubic surfaces tbe tables strongly
inclicate that it is not the case.

Therefore we have to consicler clecolllpositions of length 2:: 3, :c: = M(XI,' .. ,x n ),

Xi < x, where M is a non-associative nlonOlnial w.r.t. o. We will call weakly
decom]1osable points achnitting such a clecolllposition.

A direct search oi' such decoillpositions is very time-consunüng (as weIl as a
direct sea.rch of points). One problell1 is tha.t intenllediate results ean ha.ve height
much larger than H; another is that we have no apriori bound for the length of
decoillposi tion.

In the exarnple discusseel below we used siu1ple search algorithn1s allowing to
list those n10norllials A1(.'tl" .. ,x n ) < H for which there is a cornputation scheme
representing it as an iteration of double cornpositions with all intermediate results
registered in VH. POl' exanlPle 1 if we 11ftve t.wo strong decornposi tions x = y 0 Z = U 0 v
with, say, y > z, '/L, v, then we get a weak decoillposition y = z 0 (u 0 v).

2.2. An exanlple. D. Zagier produced a table of all prilnitive salutions of
L:=l ix~ = 0 with h(;c) := L:=r [:l:d ~ 1100. He faund 379 such points anel strong
deeolnpositions of 339 an10ng thern.

By the seareh deseribed above we found weak deeompositions of further 24
points. This leH us with 16 generators for 379 points, probably toD many to state
a fil1iteness conjecture. However, there rernains a possibility that this number will
diluinish if clecornpositions with larger intennediate results are taken into account.

Here are S0l11e nuulerical illustrations. The first three points 1 = (1,0,1, -1), 2 =
(1,1, -1,0), 3 = (1 1 -1, -1,1) are indecoluposabie. The next 26 points are strongly
decoillposable, e.g.

24 = (1,28, -19, -18) = 202 = 130 13 = 14021 = 5023.

Points 27, 28, and 29 are only wealdy decomposable, and 30 = (15, -37,5,29)
stubbornly resisted decornposition.
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One of the longest clecolllpositions founcl is

77 = 5 ° (1 0(350 (2 0(330 ((2 ° 11) ° (12 ° (21 070))))))).

§3. Birationally trivial cubic surfaces: a flniteness theorem

3.1. Modifled C0111position. Let V be a snlooth cubic surface, and x, y E
V(k). Let C C V be a curve 011 V passing through x, y, and p: C -t p2 an
embedding of C into a projective plane such that p(C) is cubic, and p(x) 0 p(y) is
defined in p(C). We asStuue that C and p are defined over k.

In this situation we will put

:C o(C,p) Y := p-l(p(X) 0 p(y)).

Exam]Jle 1. Cboose C = a plane section of V containing x, y. If p is the elU­
bedding of C into tbe secant plane, then x o(C,p) Y = x oy in tbe standard notation.
Notice tbat tbe result cloes not depend on C if x =I=- y. If x = y, then the choice of C
is equivalent to the choice of a tangent line to V at :c so that the luultivaluedness
of 0 is taken care of by the illtroduction of this new parameter.

Exal1l.]Jle 2. Assunle 110W that V adluits abirational morphislu p: V ---7 p2

defined over k (e.g., V is split). We will choose and fix p once for all. Then any
plane section C of V not containing one of the blown down lines as a cOlllponent
is elubeddec1 by ]J into p2 as a cubic curve. Therefore we can apply to (C, p) the
previous construcbon. Notice that this tilne x o(G',p) Y depends on C even if x =I=- y.

The following Theorenl is the nutin result of this note:

3.2. Theorell1. ASS'lL1/l.e that k is a finitely genemted field. In the situation
0/ Exul1l.]Jle 2, tILe corll.]Jlerll.ent U(k) tu the blown down lines in V (k) is finitely
generated with res],ect tu operations o( C,p)'

Proof. Let us start with the following auxiliary construction. Choose a k­
rationalline 1C p 2 . Thell r := p-l (l) is a twisted rational cubic in V. The family
of all such cubics reflects pl'opel'ties of t.hat of lilles: a) any two different points fL, b
of U(k) belang to a uniqne r(a, b); b) any two different r's either have aue COlunlon
k-point, 01' intersect a conunon blown down line.

Define now a (part.ial) quaternary operat ion on U (k ):

*(a,b;c,d) := f(a,b) n f(c,d).

It is defined for a Zariski dense open subset in U(k)4
•

Claim 1. If x = *(CL, b; c, cl) is well-defillecl, then there exists a plane section C
of V such that

*( (L, b; c, d) = a o( C,l') b.

In fact, choose G' containing CL, b, anel :1:. Tben p luaps f(a, b) to a Ene intersectillg
p(C) at a,b,x.
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It suffices now to establish the following fact:

Clai1TL 2. U(k) is finitely generated with respect to *.

To prove this, it suffices to denl0nstrate that P 2 ( k) is fini tely generated wi th
respect to the sirnilar quaternary operation

*(a, b; c, d) := l(a, b) () l(c, d)

where l (a, b) is the line containing a, b.

In fact, start wi th foul' points in general posi tion in P 2 (k ). Introduce projec­
tive coordinates using these foul' poits as basic. Generate all points starting with
these foul' anel adding intersections of lines passing through pairs of constructed
points. Obviously, the resulting set will be an abstract projective plane satisfying
the Desargues aXi0111. Hence it will coincide with p 2 (ka) where ka is the prilne
subfiele!. Represent. k as ka(tl,' .. , tu). Adel to the initial foul' points the ones with
coordinates (1 : ti : 0) iUlel generate a new abstract projective plane as earlier. It
will contain pI (k) and hence coi:nciele wi th p2, by a classical reasoning: cf. [H].
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