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§0. Summary of results

0.1. Introduction. In this paper we adress the following three problems.

A. Calculate the Betti numbers and Euler characteristics of moduli spaces My ,,
of stable n—pointed curves of genus zero (see e.g. [Kel), or rather an appropriate
generating function for these numbers.

B. The same for the space X[n], a natural compactification of the space of n
pairwise distinct labelled points on a non-singular compact algebraic variety X
constructed for dim X = 1 in [BG| and in general in [FMPh]. (Beilinson and
Ginzburg called this space “Resolution of Diagonals”, Fulton and MacPherson use
the term “Configuration Spaces”).

C. Calculate the contribution of multiple coverings in the problem of counting
rational curves on Calabi-Yau threefolds (see [AM], [Ko], and more detailed expla-
nations below).

All these problems are united by the fact that available algebro-geometric in-
formation allows us to represent the corresponding numbers as a sum over trees
with markings. M. Kontsevich in [Ko] invoked a general formula of perturbation
theory in order to reduce the calculation of the relevant generating functions to
the problem of finding the critical value of an appropriate formal potential. We
solve problems A and B by applying this formalism in a simpler geometric context
than that of [Ko]. Problem C is taken from [Ko]; we were able to directly complete
Kontsevich’s calculation in this case and obtain a simple closed answer.

We will now describe our results (0.3—0.5) and technique (0.6) in some detail.

0.2. General setup. Let Y be an algebraic variety over C, possibly non-
smooth and non-compact. Following [FMPh| we denote by Py(q) the virtual
Poincaré polynomial of ¥ which is uniquely defined by the following properties.

a). If Y is smooth and compact, then

Py(q) = dim HI(Y)q’. (0.1)
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In particular

x(Y) = Py(-1). (0.2)

b). If X = []; Xi s a finite union of pairwise disjoint locally closed strata, then

Py(a) = 3 Pri(a). 03

c). Pyxz(q) = Py(¢)Pz(q). It follows that if Y is a fibration over base B with
fiber F locally trivial in Zariski topology, then Py(q) = Pg(q)Pr(q).

|



A definition of Py{q) can be given using the weight filtration on the cohomology
with compact support:

Py(q) =Y (-1)*dim (gr}, Hi(Y, Q))¢’. (0.4)

iJ

We apply the additivity formula (0.3) to the strata of the natural stratifications
of Mg, and X[n] in Problems A, B. These strata can be indexed by marked trees
describing various coalescing patterns of n-point configurations.

In (Ko, the role of Y is played by a compactification M(W) of the space of
parametrised rational curves in some manifold W. The relevant trees describe
Gromov type degenerations of these curves. Kontsevich calculates certain Chern
numbers of vector bundles over M (W) and uses Bott’s fixed point formula instead
of (0.3) in order to represent them as a sum of local contributions. To make Bott’s
formula applicable, Kontsevich assumes that W is endowed with a torus action and
lifts this action to M(W). (Actually, his M(W) is not a manifold but a smooth
stack).

0.3. Moduli spaces. We put

'—t+2 o (0 eqlqmtn, (0.5)
X(#) 1= (- 1t)-t+ZxMo”+l)* € Q[it])- (0.6)

0.3.1. Theorem. a). ¢(q,t) is the unique root in t + t2Q[q][[t]] of any one of
the following functional/differential equations in t with parameter q:

(1+9)" =g*e— (¢ — 1)t +1, (0.7)
1+t — ) =1+ (0.8)

b). x is the unique root in t + t*Q[[t]] of any one of the similar equations
(1+x) log(1 + x) = 2x — ¢, (0.9)

(I+t—x)x: =1+x. (0.10)

Equations (0.8) and (0.10) are equivalent to the following recursive formulas for
the Poincaré polynomials. Put p, = pa(q) = Pgz, n+1/n!'

0.3.2. Corollary. We have for n > 1:

(Tl + 1)p11+1 = Pn + (]2 Z j;Din, (011)

itj=n<4+l
i»2



Piran® = Pty @+ ¢ 5 (V)P @Pr,, 0 (012

Thjmn4l t
i>2

One can compare (0.11) with recursive formulas in [Ke], p. 550.

From (0.10) one sees that the function inverse to x has a critical point at t =
e — 2. Don Zagier has shown me how to derive from this the following asymptotical

formula: 3
— o1 n "
X(Mou1) = N (62 - 26) '

We will prove Theorem 0.3.1 in §1. We will also discuss the ramification prop-
erties of ¢ as a function of ¢ for ¢% # 1.

0.4. Configuration spaces. For a compact smooth algebraic manifold X of
dimension m, set

vx(0.t) = 1+ Y Pxu(a); € Qlalld], (0.13)
n>l )
xx(t) =vx(-1,t) =1+ Y _ x(X[n)) —eQ[[t]] (0.14)
n>1
Put also 2m _ |
Km = qq2 -1 Pprm-1(q).

0.4.1. Theorem. Denote by y° = 3°(q,t) the unique root in t + t2Q|[q%][[t]] of
any one of the following equations:

rim(l +y0)q2m — q2:f1((12m + Ky — l)yo _ q2m(q2m _ l)t + Km, (0.15)

[t + 1= (" = 14+ km)y®) 4 =1+°. (0.16)
Then we have in Q|q]{[t]]:

¥x(g,t) = (1+y°)*@. (0.17)

0.4.2. Theorem. Denote by n = n(t) the unique root in t + t2Q|[t]] of any one
of the following equations:

m(1+n) log(1+n) = (m+1)n - (0.18)
t+1=—mn)p=1+n. (0.19)

Then we have in Q][t]]:
Xx(t) = (1 + )X, (0.20)

Theorems 0.4.1 and 0.4.2 are proved in §2.



I am grateful to C. Soulé who remarked that (0.17) follows from a less neat
identity which I deduced initially. He has also informed me that he and H. Gillet
constructed a map X — [A*(X)] from varieties to the Ky—-ring of Grothendieck’s
motives having all the formal properties of the virtual Poincaré polynomial. We
can more or less mechanically use it in all our constructions; in particular, ¢* will
be replaced by Tate’s motive [hZ(P!)].

For the reader’s convenience, we list the first terms of the generating series we
have considered:

2 3 #4 t5
ple,t) =t+ 5+ 5:(¢" + 1) + (" +5¢° +1) + 5(¢° + 164" +16¢° + 1)+
tG
g(q8 +42¢% +127¢" +42¢ + 1) + ...,

t2
P (x(q,t) = 1) =t + o (mm + P — 1)+

t3

3 [(P—1)(P—2)+su(q®™ —2) + 3(P = 1)rm + 362, ] +

t .
E[P?' — 6P% 4+ 11P — 6 + £,,(6P? —26P + 26 + 4P¢*™ — 9¢*™ + ¢*™)+

k2 (15P +10¢°™ — 35) + 153 ) + ...
where we put P = Px(q).

0.5. Multiple coverings. Consider the following general problem of enumer-
ative geometry.

Problem P, (X, 3,Z). Given a projective algebraic manifold X, find the num-
ber of parametrised algebraic curves of genus g in X, in the homology class 3, with
k marked points, satisfying some incidence conditions T.

Notice that in this vaguely stated problem we implicitly assume that the number
of solutions is only “virtually” finite, and look for the number of virtual solutions.

In [Ko], Maxim Kontsevich suggested a general scheme allowing him to simul-
taneously define this number for a wide class of problems and to calculate it in
many cases using Bott’s residue formula. In the three examples he considered in
full detail we have X = P" for some n, ¢ = 0, and f is d[P?] for some d > 1. The
remaining data is as follows.

() n=2: X =P?, k=3d-1. The problem is to find the number of rational
curves of degree d in P? passing through 3d — 1 points in general positions.

(i) n =4: X = P* k = 0. The problem is to find the number of rational
curves of degree d lying in a quintic hypersurface V.

(i) n=1: X =P!, k =0. Here we additionally assume that X is a rational
curve embedded in the quintic threefold (or a more general Calabi—Yau threefold)
with normal sheaf O(—1)@® O(—1), and the problem is to calculate the contribution
of maps of degree d, P! = X to the number of solutions of problem (ii).

Using a different definition of the last contribution which we denote m; P. As-
pinwall and D. Morrison [AM] calculated it and confirmed an earlier prediction by
P. Candelas et al.

In this note we show that Kontsevich’s formula gives the same answer:



0.5.1. Theorem. my = d™3.

0.6. Summation over trees. A tree 7 here is a finite connected simply
connected CW-complex. We denote by V; the set of its vertices, E, the set of its
edges. Valency |v| of a vertex v € V; is the number of edges adjoining v. A flag of
7 is a pair (v, e) where v is a vertex, and e is an adjoining edge.

A marking of a tree 7 is a vaguely defined notion. It may consist of a family
of marks of given type(s) put onto vertices, edges, flags, and satisfying certain
restrictions. Below we will describe pecisely a family of markings which we will call
standard ones.

The generating functions ¢ studied above and in [Ko] are calculated in three
steps.

STEP 1. Represent ¢ as an (infinite) sum of certain weights w, (7, ) taken over
1somorphism classes of marked trees (7, 1)

p = Z w7, ). (0.21)

(r.)/(iso)

This stage mvolves a combinatorial encoding of the raw algebro-geometric data,
determining type of marking and weights.

STEP 2. Try to rewrite (0.21) in a standard form of the following type. Choose
a set A (finite or countable) and a family of symmetric tensors indexed by A:
g%t ab € A; Cay,...uny @& € A, k > 1. The coordinates gt Ca,,...,a, must be
elements of a topological commutative ring.

The standard marking corresponding to this data is a map f: F; = A.

The standard weight of a marked tree (7, f) corresponding to this data is

1 ;
— I | (da) I l 2
w(r, f): Aat 7] f Cf(,,,,). (0.22)

ack, vEV,

Here we use the following notation. For an edge «, da denotes the set of two
flags of this edge, and f(O«) is the set of two marks («,b) put on these flags by f.
Similarly, for a vertex v, ov denotes the set of all flags containing v, and f(ov) is
the respective family of marks.

Finally, the standard sum over trees, or in physics speak, a partition function is

Z = Z Z w(r, f). (0.23)

r/{is0o} [ Fr— A

The passage from (0.21) to (0.23) is not completely automatic and indeed not
always possible. Luckily, in can be made for all the problems discussed in {Ko]
and here. I cannot explain conceptually why this is so. In particular, the factor
1/|Aut 7| in the Problems A, B, resp. C, occurs for different geometric reasons.

If we managed to represent (0.21) in the form (0.23), then we can try to complete
the calculation of ¢ = Z with the help of the following identity.



Assume that the matrix (¢**) has an inverse matrix (gu4).

STEP 8 Consider an auxiliary family of independent variables (fields) ¢ =
{@a | a € A}. Construct the formal function {potential)

(Pu(pob
S) ==Y gas + Z Cuyooar Pay - Pa- (0.24)
a,bEA >1,a; EA '

Denote by ©® = {pY | a € A} an appropriate critical point of S(p) that is, a
solution of equations aﬁf-hng,o =0, a € A.

0.6.1. Claim. .
Z = 8§t = S((,oo). (0.25)

This remains a “physical” statement until we specify the relevant topological
ring containing ¢ and C, prove the existence and uniqueness of °, and the con-
vergence of S(¢°). (See [Ko] for the standard physical argument “proving” 0.6.1).
For example, considering (g”", Cu,,....u ) as Independent formal variables, one can
treat (0.22) as a formal series in these variables, and prove (0.6.1) as an identity in
a localization of this ring.

Anyway, STEP 3 involves three calculational difficulties.

a). We must be able to sum S(¢). In our problems A,B this is easy. In [Ko], a
partial success is achieved, reducing S(¢) to a new potential which is quadratic in
@q but highly non-linear in a finite set of new auxiliary variables.

b). We must be able to solve dS = 0 and to find °,
c). We must be able to calculate S(°).

The following trick, also well known to physicists, will allow us in certain cases
to avoid the last unpleasant calculation.

We will deform the data (9%, C.,,..4,) by introducing independent parameters
t = {t, | a € A} and replacing C, by t,C,. The rest of the data 4, ¢°?, Ca,,... a0
for & > 2 remains unchanged. Let Z*!, S*, 0% be respectively the deformed partition
function, potential, and the critical point. Then we have

0.6.2. Claim. For alla € A, we have

az!
Ot

= C.pot. (0.26)

From the view point of generating functions, we lose no information replacing
(0.25) by (0.206).
To deduce (0.26) from (0.25), one applies Claim 0.6.1 to Z* and differentiates in

ozt 0
T = i (5 @Neme) =

t:

95 () a‘r"’b as! —_ ot
; a(rob |['D_ afu ata |5P=¢gl - Cutp”



because S* depends on ¢ only via linear terms Y #,Chq.

On the other hand, to prove (0.26) in a formal context, one can totally bypass
Claim 0.6.1 and simply apply a universal inversion formula to the formal map
(pa) — (85'/0p,) giving simultaneously existence, uniqueness, and expression for
©°! as a sum over trees. Such inversion formulas are classical. The version closest
to our needs is given in [GK]; the only difference is that 85*/9p, at 0 does not
vanish. We leave details to the reader.

Functional equations (0.7), (0.9), (0.15), (0.18) are essentially relations for co-
ordinates of the critical point. Differential equations are obtained from them by
differentiating in t.

Acknowledgements. I am grateful to M. Kontsevich for many enlightening ex-
planations, and to Don Zagier for teaching me PARI. After this work was written,
I learned that E. Getzler proved (0.7) and (0.9) by essentially the same method.

§1. Moduli spaces

In this section, we prove the Theorem 0.3.1 following the three step procedure
described in 0.6.

1.1. Marked trees and strata. A treeis called stable if |v] # 2 for all vertices
v. If [v] = 1 we call v end vertex. Let V! be the set of end vertices. An n-marking
of r is a bijection p: V! — {1,...,n}. We also put V! = V\ V! and refer to it as
the set of interior vertices.

Let now (C;z1,...,x,) be a compact connected curve of arithmetical genus zero
with n > 3 labelled non-singular points. The combinatorial structure of this curve
is described by the following stable tree with n-marking (v, x): V2 = {irreducible
components of C}, V} = {x1,...zn}; £ 1 z; = 1; an edge connects two interior
vertices 1If the respective components of ¢ have non-empty intersection; an edge
connects an interior vertex to an end vertex if the respective point belongs to the
respective component.

Denote now by M(r,p) C -Ho‘,, the set of points parametrising stable curves of
the type (r,u). If 7 has only one interior vertex, M(r,u) := Mg, is the big cell.
The following statement summarises the main properties of these sets; for a proof,
see {Ke].

1.1.1. Proposition. a). M(7,p) is a locally closed subset of My, depending
only on (the isomorphism class of) (7, 1).
b). Mo is the union of pairwise disjoint strata M(r,p) for all marked stable
n—trees (T, 1).
¢). For any (7, ),
M’(T,,u) = H MOJ"|'
vEVD

Notice that there exists exactly one stable tree o ¢ which does not correspond

to any stable curve.

We can now calculate Poincaré polynomials.



1.1.2. Proposition. We have

PM("',J‘)((]) = H PA”Q,|.,|(Q)’ (11)
UEVP

Prsla) = (4 2 )t - 9y (1.2

Proof. (1.1) follows from the Proposition 1.1.1 and the multiplicativity of
Poincaré polynomials.

To prove (1.2), one can use the following geometric facts. First, the morphism
T HO.'H-I — Mo,n forgetting the last marked point is (canonically isomorphic to)
the universal curve. Second, the infinity of the source consists of structure sections
and fibers at infinity of the target. Therefore, over the big cell My, this morphisin
is a Zariski locally trivial fibratiou with fiber P!, and My .41 = 771 (Mo ,.) \ {unton
of structure sections}.

From the addivity of Poincaré polynomials it follows that

Ppt, 41 (1) = Phto . (0)Pp1(0) = Pty (@) = (4" + 1~ )P, ().
Since P, ,(q) = 1, we get (1.2).

Summarizing, we have for n > 3:

Py, (atr= > ] (I(i)lj)('”"w IT ¢ (1.3)

(rin)f{iso) yeVD neV}
|V,,.1 |=n

where t is a new formal variable, and the sum is taken over n-marked stable trees.

1.2. Passage to the standard marking. Comparing (1.3) to (0.22) and
(0.23) we are more or less compelled to choose A = {*} (one element set), ¢g** =
1, C, =t, Civ = 0 (this gives weight zero to non—stable trees), and finally, denoting

by Cy the component with £ > 3 indices,

Cr = ("'_2 N 2)(1: — 3. (1.4)

In particular, we can forget about f: F, — {*}.
This makes the weight of (7,s:) depend only on 7/(is0), but not p. Now, if

[V} = n, the set of all n-markings of 7 consists of n! elements and is effectively
acted upon by the group Aut 7. Therefore,

_ nl
~ |Aut 7

card {(7,u)}/(is0)

card {7}/(iso).

Putting together (1.3), (0.22), and (0.23), we see finally that ®(q,t) = Z*' where

t2 Ak
(I)((],f) = 50 + z -T:TP.A_’I(]'" (q)a (15)

n>3



>

T/(is0)

|Aut 7| H €t (16)

veEV:

The summation in (1.6) is now taken over all trees, the term ¢? /2 in (1.5) comes from
the two—vertex tree, and the generating function argument ¢ in (1.5) corresponds
precisely to the deformation parameter ¢t introduced at the end of the subsection

0.6.

We will now use (0.26) in order to calculate

8z!  0d(q,t)

1.3. Potential. From (0.24) and (1.4) one sees that

2
S )= -2 +to+ D Cupt =

k>3

k

“”“”*Z:Cf_> =

This can easily be summed. We need.only the derivative.

1.3.1. Proposition. For generic ¢ we have

0 i, v (1+9)T —1—g'p
and for q = —1,
a
555(0) = (1) log(1 +) ~ 2 + ¢ (18)

1.4. End of the proof. We see now that (0.7), resp. (0.9), are equations for
the critical point d,S5* = 0. Differentiating them in ¢ and eliminating (1 + f.p)”z,
resp log (1 4+ ¢), we get (0.8), resp. (0.10).

1.5. Ramification of ¢(q,t) as a function of ¢t. If ¢* is rational but # 1,
we see from (0.7) that ¢ is an algebraic function of t of genus 0. Otherwise it is
transcendental and infinitely valued. In order to understand its topology, we can
use the following classical trick.

Consider the differential equation for a function y = y(x):
yy. = ax + by; a,b € C. (1.9)
Let w; 2 be roots of its characteristic equation
w? —bw —a = 0. (1.10)

Assume that w; # ws and put
w w
A= —— A= % (1.11)

¥
Wy — MWy wy — Wy

so that A, + A2 = —1. A direct calculation shows:
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Proposition 1.5.1.. Put w(z) = y(z)/z. Then the general solution of (1.9) is
qwen by the wmplicit equation

Cz = (w —wy)™ (w — wy)?2, (1.12)
where C 1s an arbitrary constant.
We can apply this to (0.8} putting
y=1+4+¢t—-q¢*p, z=q¢*t +¢* + 1.
Then we find

q* 1
/ 2,/4.2: 2 .
1—gq gt —1

wy = 13 Wy = q_2aAl =

One can calculate C evaluating (1.12) at the point t = 0 where we have . =
¢“+1L,y=1 w= (¢ +1)"%

§2. Configuration spaces

In this section, we prove Theorems 0.4.1 and 0.4.2.

2.1. Nests and strata. Let X be a smooth compact algebraic variety. The
configuration space X[n], n > 2, is defined in [FMPh] as the closure of its big cell
X"\ (UigjAij)  (Ajj is the diagonal @; = ;) in X" x Hs)“;s’ where S runs over
subsets S C {1,...,n}, |S| > 2; X7 denotes the respective partial product of X's,
and X3 is the blow up of the small diagonal Ag in X5,

Every S determines a divisor at infinity D(S) C X [n]. Namely, let 75 : X[n] —
X be the canonical projection. Then ﬂgl(As) = UrHsD(T).

The natural stratification of X[n] described in [FMPh] consists of (open subsets
of) intersections X (S) = Ni_, D(S;) corresponding to sets S = {S1,...,5,} of
subsets in {1,...,n} called nests.

2.1.1. Definition. «). § = {5,...,5,} 1s a nest (or n-nest) if |S;| > 2 for
all i, and either S; C Sj or §; C S; for all 1,5 such that S;NS; # 0.

In particular, S =0 1s a nest, and S = {S} is a nest, if | S| > 2.

b). A nest S 1s called whole (vesp. broken) if {1,...,n} €S (resp. {1,...,n} ¢
S).

Denote by X(S) C X(S) = NgesD(S) the subset of points not belonging to
smaller closed strata. The following facts are proved in [FMPhL).

2.1.2. Proposition. a). For anyn > 2 and n-nest S, X(S) s a locally closed
subset of X[n].

b). X[n] is the union of pairwise disjoint strata X(S) for all n—-nests S.

2.2. From nests to marked trees. Asin 1.1 we consider a bijection so: V! —
{1,...,n} as a part of the appropriate marking for our problem. The remaining
data is supplied by choosing orientation of all edges.
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2.2.1. Definition. A tree 7 marked in this way is called admassible iff:
a). Every vertez of T except of one has ezactly one incoming edge.

b). The ezceptional vertez has only outgoing edges, and their number s > 2.
This vertez 18 called source.

c). All interior vertices with possible ezception of source have valency > 3.

2.2.2. Proposition. The following maps are (1,1):
{broken n —nests} — {whole n — nests} — {admissible marked n —trees}/(iso),

S—=SU{L,....n}} = 7(8)=r(SU{{1,...,n}}).

Here 7 is defined by its sets of vertices and edges: if S = {Sy,...,S5;}, then
Ve ={S1,...,8usr} :={51,..., 5, {1},..., {n}},

and an edge oriented from §,- to §j connects these two vertices iff §j C g.‘ and no

Sy lies strictly in between these two subsets.

This is proved by direct observation. The following facts are worth mentioning.
a). {1,...,n} is the source of 7(§) for any S.
b). {1},...,{n} are all end vertices.

c). 1 € §; iff one can pass from S; € V; to {i} € V; in 7 by going always in
positive direction.

A reader is advised to convince him- or herself that the source has valency > 2
and all other interior vertices have valency > 3.

Denote the source by s and the set of the remaining interior vertices V2.

2.2.3. Proposition ([FMPh]). The virtual Poincaré polynomials of strata
X(8) are given by the following formulas (we add a formal variable t).

If § is a broken n-nest, s € V(-

PR H,,‘(‘fluri'__32>(|v|—3)!x II: e

vE VP(S) vE Vfl(s)

S

Px(@))

t"Px(s)(q) = ( 5

If § 13 ¢ whole n-nest:

, q‘lm -9
U Pxa) = Px(@en {0 5 N

5| — 2)!x

11 H,,L(‘flliji‘_‘32>(|v1-3)zx 1T + (2.2)

VeV
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Comparing (2.1) and (2.2) one sees that one can express the joint contribution
of two nests corresponding to an admissible marked tree T as a product of local
weights corresponding to all vertices of 7. The local weight of the source will be

(P s+ o (%) ) 1= 20

s

and the remaining local weights in (2.1) and (2.2) coincide and depend only on the
valency.
2.3. Passage to the standard marking. We make the following choices.

Put A = {4,—}. Interpret a mark + (resp. —) on a flag as incoming (resp.
outgoing) orientation of this flag. Thus, f: Fr, — A is a choice of orientation of
all flags.

Put gt~ =g¢~t =1, g** = ¢~ = 0. This makes the standard weight of (7, f)
vanish unless all edges are unambiguously oriented by f.

Put C4 =t (see (2.1) and (2.2)) and C_ = 0. The last choice makes the standard
weight vanish unless all end edges are oriented outwards.

Put Cy_ = C—+ = 0. This excludes vertices of the type — o — .
Put also Cy,,  «, = 0if {+,+} C {a1,...,ar}. This eliminates vertices with > 2
incoming edges.

For tensors with k > 2 minuses among the indices we put

Coo = (P“;C(")) k! ki Py () (i_‘;) (k — 2)! (2.3)

(because only the source has all outgoing edges), and
q2m -9
Coeric =K T (k= 2)! (2.4)

(cf. (2.1) and (2.2)).

The standard weight of a marked tree defined by this data again is independent
on the part : V! — {1,...,n} of the initial marking which accounts for the

!
factor ——— below.
|Aut 7|
Suminarizing, we put
tl’!
(I)‘\'((],t) = Z ;'!'PX[H]((])’ (25)
n>?2
1 [a4
zt= Y Yoo T 9 I Crioms (2.6)
~ |Aut 7
r/(ive) fFr={+,—-}c€E, veEV,

and get from the previous discussion

)
Z'=0x(q,1), 5= éx(at). (2.7)
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2.4. Potential. We change notation: ¢4+ = z ,o— = y. From 2.3 we see that
(already t-deformed) potential is

S'z,y) = —a:y+ta:+r:,,,i ¢ =2 i__l_
' k=2 Jk(k—1)

k=2
(we have two arguments z,y but only one t = t4 because C_ = 0).

We must solve the system

a5S" ast
B e = e =0, (2.9)
and (0.26) then tells us that
9 0
—Z'=px(q,t)y=x". (2.10)

ot

Again, S'(z,y) can be easily summed. To write down the functional equation,
we need only z—derivative which for general ¢ 1s

ast (1 + y)q?'" —1- q2ruy

= = _ t+ Ko, ‘ . 2.11

BLL' Y + + h q'Zm(qu — 1) ( )
For g = —-1:

aS!

a—x:—y-l-zf-+-m[(1—l—y) log(1+y) —y). (2.12)

2.5. End of the proof. We now see that (0.15), resp (0.18), are the equations
defining y°. Differentiating in t we get (0.16) and (0.19). And since S'(z,y) is
linear in x, the vanishing of the y—derivative gives an explicit expression of z° via

0
Yo
(1 1+ yD)P_\-(q) + (q2m + Ky — l)yO _ q2mt -1

1+ (1 - q2m - ﬁ'm)yo + (Ith

vx(q,t) = Px(q)

To see that this is equivalent to (0.17) one can differentiate (0.17) in ¢t and use
(0.16).

2.6. Ramification of y°. Replaying the game of 1.5, we put (changing the
meaning of z,y in favor of those in 1.5):

y=y(@t) ="t + 1= (¢"" + mm ~ 1)3°(a,1),

2m
o "7+ K o
.E.—-t-l—T, I[?(q,t)—y/.l’!.
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Then (0.16) becomes
Yy = _q?.mm + (q2m + l)y

so that in the notation of 1.5

" 1 2m
101=1,w2=02,f41=—2;;——,142=—£-—
P

and finally
Cz = (w —wy)? (w — wy) A2

for some C.
§3. Multiple coverings

3.1. Kontsevich’s formula for Problem C. Kontsevich represents my as a
rational function of two variables A1, A; which is formally homogeneous of degree
zero and actually is expected to be a constant.

Geometrically, this statement must be a corollary of Bott’s fixed point formula
for smooth stacks. The A-variables in this context are coordinates of a toric vector
field on the target P'. Until this has been worked out, we simply go ahead with
Kontsevich and take this independence for granted.

The function in question is a sum of contributions indexed by isomorphism classes
of connected trees 7 endowed with markings: each vertex.-v is marked by f, =1 or
2 so that no neighbors have the same mark; each edge o is marked by a positive
integer do. Only those marked trees contribute to my for which deg 7 := 3 _do = d.

We introduce the following notation for a marked tree 7: F= the number of
vertices marked by 2; 0y = 32 e daj wi =2, 5 Zi(lv] = 1), i =1,2.

Then we have

my = ()\1 - )\2)2_2‘1 Z

r:degr=d

1 Y4+ F 2wy y 2w
|Aut TI( 1) ’\] ’\2 V(T)E(T)’

. B .
vir)= T[], E(r) =] ﬁ(_ﬁ I (ah +0a0)%

o a+b=d,;a,bh>1
3.2, Theorem. my = d™".

Proof. We will calculate the value of my at Ay = 1, A3 = 0. The drastic
simplification results from the fact that the factor A2“? vanishes unless wy = 0.
Now, wy = 0 implies that 7 has no vertices of multiplicity > 2 marked by 2. Hence
7 either has only one edge, or is a star with central vertex marked 1, and end
vertices marked by 2. We will consider the first case as one ray star as well.

Now, let 7 be such a star of degree d. The set {d,} forms a partition of d
into positive summands which uniquely defines the isomorphism class of 7. It is
convenient to write this partition as the set of inultiplicities R = {ry,r3,...}, where
r;= the number of edges marked by ¢ so that ), 7r; = d. Obviously, |[Aut 7| = [], r;!.



After some reshufling, our assertion thus reduces to the following identity:
DOl | AR

Now, the left hand side of (7) can be obtained in the following way. Consider the

formal series eX-i21 %! take its terms of degree d in ¢ and put in them y; = —d /t.
But we can clearly proceed in reverse order first making the substitution y; = —d/1.
Then the series in the exponent becomes Y. (—d/i)t' = dlog(l — t), so that finally
we get the coefficient of ¢4 in (1 —¢)*. QED

Remark. One can observe that (—1)¢ coincides with the contribution of just one
trivial partition: ry = 1. The remaining terms cancel. Geometrically, this means
that degenerating configurations do not contribute with this choice of vector field.
Algebraically, this can be rewritten as an equality of two sums, one over proper
partitions with odd, another with even number of summands.
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MORDELL-WEIL PROBLEM FOR CUBIC SURFACES

Yu.l.Manin
Muaz-Planck—Institut fir Mathematik, Bonn, Germany

§0. Introduction

Let V be a plane non-singular geometrically irreducible cubic curve over a finitely
generated field k. The Mordell-Weil theorem for V' can be restated in the following
geometric form: there is a finite subset B C V(k) such that the whole V (k) can
be obtained from B by drawing secants (and tangents) through pairs of previously
constructed points and consecutively adding their new intersection points with V.

In this note [ address the question of validity of this statement for cubic surfaces.
After reminding some constructions from the book [Ma], I analyze a numerical
example, and then prove a different version of the Mordell-Weil statement for
split cubic surfaces. A shameless change of the composition law allows me to
reduce this problem to the classical theorem on the structure of abstract projective
planes. Unfortunately, the initial question, which is more natural to ask for minimal
surfaces, remains unanswered. [ would like to call attention to this problem and its
calculational aspects.

I am grateful to Don Zagier whose tables are quoted in §2, and to M. Rovinsky
and A. Skorobogatov, discussions with whom helped me to state and prove the
main theorem.

§1. A summary of known results

1.1. Notation. Let V be a cubic hypersurface without multiple components
over a field & in P9, d > 2. If z,y,z € V(k) are three points (with multiplicities)
lying on a line in P* not belonging to V, we write « = y o z. Thus o is a (partial
and multivalued) composition law on V(k). We will also consider its restriction on
subsets of V(k), e.g. that of smooth points.

If z € V(k) is smooth, and does not lie on a hyperplane component of V| the
birational map t, : V = V, y = z oy, is well defined. Denote by Bir V the full
group of birational automorphisms ov V.

The following two results summarize the properties of {t, } for curves and surfaces
respectively. The first one is classical, and the second one is proved in [M].

1.2. Theorem. Let V be a smmooth cubic curve. Then:
a). Bir V 1s a semidirect product of the group of projective autornorphisms and
the subgroup generated by {t, | « € V(k)}.
b). We have identically
t2 = (totyt:) =1 (1.1)

for all z,y,z € V(k).

If in addition k is finitely generated over a prime field, then:

¢). Bir V is finitely generated.

d). All points of V(k) can be obtained from a finite subset of them by drawing
secants and tangents and adding the intersection points.



1.3. Theorem. Let V be u mimimal stnooth cubic surface over a perfect non-
closed field k. Then:

a). Bir V is a semi-direct product of the group of projective automnorphisms and
the subgroup generated by

{tz | z € V(k)} and {s4,» | u,v € V(K); [K : k] =2; u,v are conjugate over k}

where

Su,p = tytuovty.

b). We have dentically

t2 = (tztzoyty)? = (Su,u)? =1, stzs™! = ty(n), (1.2)
for all patrs u,v not lying on hines in V| and projective automorphisms s.
¢). The relations (1.2) form a presentation of Bir V.

We remind that V is called minimal if one cannot blow down some lines of V by
a birational morphism defined over k. The opposite class consists of split surfaces
upon which all lines are k-rational.

1.4, Discussion. Although the two theorems are strikingly parallel, there is
an important difference between finiteness properties in one- and two-dimensional
cases.

Basically, (1.1) means only that © + y := eo (z o y) is an abelian group law with
identity e, whereas the statements c) and d) of the Theorem 1.2 additionally assert
that this group is finitely generated. Therefore, (1.1) generally is not a complete
system of relations hetween {t,}.

Contrariwise, since (1.2) is complete, BirV in the twodimensional case cannot be
finitely generated if V(k) is infinite. This can be proved by a direct group theoretic
argument establishing a canonical form of a word in {t;, s} (cf. [Ma], sections

39.8.1 and 39.8.2).

Therefore, if something like the statement d) of Theorem 1.2 is expected to be
true for cubic surfaces, this must reflect a deep difference between relations among
{tz,su,»} in Bir V and relations among {z} in (V(k),0). The latter are much less
understood than the former. One reason is that exceptional subvarieties of bira-
tional automorphisms are rationally parametrized curves in V which presumably
should be treated as a whole in a reasonable finiteness statement. In fact, a typical
example of such subset is a cubic curve C(z) with double point z € V(k) obtained
as intersection of V' with tangent plane at z. Now, the set (C(z)(k)\ {z},0) with a
composition law ¢ +y = eo (z oy) is isomorphic to the group of k—points of a form
of the multiplicative group. Such a group is not finitely generated even for k = Q.
On the other hand, in (V(k), o) this whole set must be considered as the domain of
multivalued expression a o @, because geometrically all its points can be obtained
by drawing tangents with k-rational direction to . Therefore finite generation is
still conceivable.

This comment must also help the reader to accept the definition of a generalized
operation o(¢ ) in §3, which is another way to deal with the same difficulty.



§2. Minimal cubic surfaces: somme numerical data

2.1. The structure of data. Let V be a smooth cubic surface over a field &k
such that V(k) is infinite. Let i : V(k) = R4 be a counting function (i.e. for all
H > 0, theset Vy := {z € V(k) | h{(z) < H} is finite). In order to find a generating
subset in (V(k),0), one can proceed as follows.

A. Choose a large H and compile the list of all elements of Vy. Let points z in

it be ordered by increasing h(z). We will write z < y if z precedes y, and use the
number of a point in this list as its name.

B. For every z and every y < z, calculate points z o y and choose among them
those z = z oy for which z < «. Rewrite every such relation as z = yoz, v,z < =,
and register it at the same line as (coordinates and number of) z. Notice that if
by chance y = z, the last relation means exactly that z lies in the tangent section
of V with double point z.

If such a relation exists for x, we will call « strongly decomposable.

If all points 2 with sufficiently large h(z) were strongly decomposable, then the
ones which are not would form a finite generating set. This is the case for cubic
curves with height as counting function. For cubic surfaces the tables strongly
indicate that it is not the case.

Therefore we have to consider decompositions of length > 3, z = M(zy,...,z,),
z; < z, where M is a non-associative monomial w.r.t. o. We will call weakly
decomposable points admitting such a decomposition.

A direct search of such decompositions is very time-consuming (as well as a
direct search of points). One problem is that intermediate results can have height
much larger than H; another is that we have no a priori bound for the length of
decomposition.

In the example discussed below we used simple search algorithms allowing to
list those monomials M(zy,...,2,) < H for which there is a computation scheme
representing it as an iteration of double compositions with all intermediate results
registered in V. For example, if we have two strong decompositions z = yoz = uov
with, say, y > z,u,v, then we get a weak decomposition y = 2 o (1w o v).

2.2. An example. D. Zagier produced a table of all primitive solutions of
ZL] iz? = 0 with h(x) := Y5, |#:} < 1100. He found 379 such points and strong
decompositions of 339 among them.

By the search described above we found weak decompositions of further 24
points. This left us with 16 generators for 379 points, probably too many to state
a finiteness conjecture. However, there remains a possibility that this number will
diminish if decompositions with larger intermediate results are taken into account.

Here are some numerical illustrations. The first three points 1 = (1,0,1, 1), 2 =
(1,1,-1,0), 3 =(1,-1,-1,1) are indecomposable. The next 26 points are strongly
decomposable, e.g.

24 =(1,28,-19,-18) =202=13013 =14021 = 50 23.

Points 27, 28, and 29 are only weakly decomposable, and 30 = (15,—37,5,29)
stubbornly resisted decomposition.



One of the longest decompositions found is

T7=50(10(350(20(330({(2011)0(120(21070)))))))-

§3. Birationally trivial cubic surfaces: a finiteness theorem

3.1. Modified composition. Let V be a smooth cubic surface, and z,y €
V(k). Let C C V be a curve on V passing through z,y, and p : C — P? an
embedding of C into a projective plane such that p(C) is cubie, and p(z) o p(y) is
defined in p(C). We assume that C and p are defined over k.

In this situation we will put
 o(c,p) ¥ = p (p(x) 0 p(y)).

Ezample 1. Choose C = a plane section of V containing z,y. If p is the em-
bedding of C into the secant plane, then xo(¢ )y = x oy in the standard notation.
Notice that the result does not depend on C if z # y. If x = y, then the choice of C
1s equivalent to the choice of a tangent line to V at = so that the multivaluedness
of o is taken care of by the introduction of this new parameter.

Ezample 2. Assume now that V admits a birational morphism p : V — P?
defined over k (e.g., V is split). We will choose and fix p once for all. Then any
plane section C' of V not containing one of the blown down lines as a component
is embedded by p into P? as a cubic curve. Therefore we can apply to (C,p) the
previous construction. Notice that this time z o(¢ ,) ¥ depends on C even if « # y.

The following Theorem is the main result of this note:

3.2. Theorem. Assume that k 1s a finitely generated field. In the situation
of Example 2, the complement U(k) to the blown down lines in V(k) is finitely
generated with respect to operations o(c ;).

Proof. Let us start with the following auxiliary construction. Choose a k-
rational line { C P%. Then I' := p~!(l) is a twisted rational cubic in V. The family
of all such cubics reflects properties of that of lines: a) any two different points a,b
of U(k) belong to a unique I'(a, b); b) any two different I'’s either have one common
k—point, or intersect a common blown down line.

Define now a (partial) quaternary operation on U(k):
#(a,b; ¢, d) :=T(a,b) N T (e, d).

It is defined for a Zariski dense open subset in U(k)*.

Claym 1. If © = (a,b; c,d) is well-defined, then there exists a plane section C
of V such that
*(a,byc,d) = ao(c )b

In fact, choose C containing a, b, and x. Then p maps I'(a, b) to a line intersecting
p(C) at a,b,z.



It suffices now to establish the following fact:
Claimn 2. U(k) is finitely generated with respect to *.

To prove this, it suffices to demonstrate that P2(k) is finitely generated with
respect to the similar quaternary operation

*(a,b; ¢, d) :=l(a,b) Nl(c,d)

where {(a,b) is the line containing a, b.

In fact, start with four points in general position in P?(k). Introduce projec-
tive coordinates using these four poits as basic. Generate all points starting with
these four and adding intersections of lines passing through pairs of constructed
points. Obviously, the resulting set will be an abstract projective plane satisfying
the Desargues axiom. Hence it will coincide with P%(ko) where ko is the prime
subfield. Represent k& as ko(f1,...,t,). Add to the initial four points the ones with
coordinates (1 : t; : 0) and generate a new abstract projective plane as earlier. It
will contain P!(k) and hence coincide with P?, by a classical reasoning: cf. [H].
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