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FINITE CODIMENSIONAL SUBALGEBRAS OF
STEIN ALGEBRAS AND SEMIGLOBALLY STEIN ALGEBRAS

by

*
Ha Huy Khoai and Nguyen Van Khue

Abstract. The following theorem is proved: For each finite codimensional subalge-
bra A of a Stein algebra B there exists a natural number n such that B is
algebraically ismorphic to A & C" .

§ 1. Introduction.

This paper continues a series of papers on the finiteness of complex analytic spaces.
It is well-known that for complex Stein spaces a number of problems of complex analysis
have solutions: the first Cousin problem, the problem of continuation of holomorphic
functions on analytic sets, and so on. In [4] we give a vector space structure to the class
of additive Cousin date {Ui,goi} on a complex space X , and we consider the class of
complex spaces for which the set of additive Cousin date having a solution (i.e. the set of

additive Cousin data {Uj,p,} i € I for which there exists a meromorphic function ¢
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on X such that ¢— ¥ is holomorphic on U, for each i € I) is "sufficiently large", it
is a finite codimensional subspace. In [5] we study complex spaces with the following
property: for each analytic set V in X the space ¢(X) of holomorphic functions on
X considered as a subspace of the space (V) of holomorphic functions on V is a
finite codimensional subspace. In the present paper we consider certain properties of
finite codimensional subalgebras of Stein algebras and obtain some corollaries for the

continuation of holomorphic functions on Stein subspaces of complex spaces.
First of all we recall some notation and formulate the results of this paper.

A (-—algebra is called a Stein algebra if it is algebraically isomorphic to the C—algebra
J(X) of holomorphic functions on a Stein space X . For every algebra B we denote by
S(B) its spectrum and by S#(B) the non—continuous spectrum. It is known that for a

Stein algebra B we have
B x 0(S(B)) and S¥(B) = 5(B).

Main Theorem. For each finite codimensional subalgebra A of a Stein algebra B there

exists a natural number n such that B is algebraically isomorphic to A © .

There are some corollaries that can be deduced from the Main Theorem but we need

some more notation to explain them.

A complete m-convex algebra B is said to be a semiglobally weakly holomorphic
algebra if it is isomorphic to the algebra ¢(K) of holomorphic functions on a weakly

holomorphic compact set K (we recall that a compact set K is said to be weakly
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holomorphic if it has a decreasing neighborhood basis consisting of open sets having an
envelope of holomorphy).

Corollary 1. Let A be a finite codimensional subalgebra of a semiglobally weakly

holomorphic algebra B . Then B is algebraically isomorphic to A @ ¢" for some

natural number n .

Corollary 2. Let V be a Stein subspace of a complex space X , and let
R: 0(X)— 0 (V) be the restriction map. If dim J(V)/RJ(X) < o , then there
exists a finite subset T C V such that:

i)  V\T is an analytic subset of X ;
ii) the restriction map R : 0(X) — 0(V\T) is surjective.

§ 2. Proof of Main Theorem.

2.1. Lemma. Every finite codimensional subalgebra of a Stein algebra is a closed
subalgebra.

Remark. It is well known that a finite codimensional subspace of a Banach space must

be closed and complemented.

Proof of Lemma 2.1. Let B be a finite codimensional subalgebra of a Stein algebra B .

Assume that A # A . Take fe X\A , and consider the subalgebra A[f] of A . Since
dim A [f] /A < dim B/A < o, there exists the minimal polynomial for f:



_.n n-1
P(x)=x + g tetoxtap,

where Cls - €y € C, ag € A, P(f) = 0. We first prove that the discriminant D
of the polynomial P is non—zero. Suppose on the contrary that D = 0, then for every
Pe S#(B) we have

nf(B)" 1 + (=1, KO 2+ ..+ ¢, =0,

where If denotes the Gelfand transform of f. It follows then

C
fn_1+“—;1cn_1fn‘2+...+n—1=0.

This however contradicts the fact that the polynomial P(x) is minimal. This shows
D # 0. Now take we— S#(A) so that D(w) # 0 . One finds two complex numbers AL
and A, satisfying

n n—1 ~ _
Alte,_qA] H A Hag(w)=0

n n—1 ~ _
Agtc Ay T H . H Ay Hag(w) =0

We define then two multiplicative linear functionals w, and w, on A[f] by the

following formulas:



W 2 bjfj = 2 gj(w),\%.
j=0 =0

It is easy to see that the functionals w, and w, are correctly defined, since if for some
polynomial Q we have Q(f) =0 then Q(x) =P(x)R(x) and w,(Q(f)) =
=wy(Q() =0.

Let I and L be the integral closures of ker L and ker W, in'B, respectively.

Then we have I, N A[f] = ker w, and ILLNA[f] =kerwy; I, 12#B.Welet I

and Iy denote maximal ideals of B which contain L and L, , respectively. Then

B/I; and B/I, are fields which are integral over A[f]/I, =C and A[f]/I,=C.

This implies that B/I1 = B/I2 = €, and hence I1 = ker Vvl , 12 = ker %2 , where
3;1 , 32 € S#(B) = §(B) . By the continuity of \';1 and \';2 we have

W |— =W
1 2
|A[f]

Aff]
This contradiction proves Lemma 2.1.

2.2. Proof in the special cage: S#(A) is normal

Let R: S#(B)————rs#(A) be the restriction map. Since B is integral over A, R is
finite, proper and surjective. By Cartan’s theorem, S#(A) has a Stein space structure
such that
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i) A isdensein o(ST(A)) (and then, by Lemma 2.1, A = A = o(S#(A)) ;

i) if fe 0(8#(B)) is such that for all we S#(A) one has f| _, = const.,

(w)

then f e 2(S™(A)).

Let S#(A) = l_|_Yj be the decomposition of S#(A) into irreducible branches. For
every j we denote Xj = R_le . Then we have

dim TT 0(X)/0(Y;) = dim o(s#(B))/ 0(s#(A)) < o .
]

This implies that for j sufficiently large we have 0(Xj) = d(Yj) . Thus, without loss
generality we may assume that S#(A) is irreducible.

We prove the Main Theorem by induction on n = codim A .
1) n=1.In this case we have B = Cf + A and there exist a,fe € ; gh e A such
that f2=af+g, 13=ﬁf+h.Thisimpliestha.t
£ =pi+h=af +gf=af+gf +ag,
2 -
fla®-B+g)=h-0ag.

We consider separately two cases depending on whether or not oz2 — B+ g is zero:

i) a® - B+g#0 . In this case V(c!2 —B+g) (the analytic set defined by
a? - B+ g) is an analytically rare set and we have



_ st a\vie?pig) |
_ﬁ.}.
g|S*"‘(B)\ (V(a2-ptg))

f
| SHB)\R™ (V(a® - B+ g))

Thus fe O(SP(A)\V(a®—B+g)) . Since R is proper, f is locally bounded on
S#(A) . From the normality of S¥(A) it follows that there exists f ¢ 2(S#(A)) such
2 :
that = f . On the other hand, since R “(V(a“ -8+ g)) is an
ls# A)\V(a®~+g)
analytically rare set, we have TR =f. Hence, fe 0(5#(A)) and we have

0(8#(B)) = 0(8#(}\)) —A=A , which contradicts the hypothesis that codim A = 1.
Thus, we have only the following case.

ii) a2—ﬂ+g=0.1nthisca.se g=Ae C, and we have 2 —af+ A=0. It follows
that f takes only two distinct values. We prove that in this case there exists a '
compact set K C A such that the map

R : S (B)\R™L(K) — S#(A)\K

is injective. f we assume the contrary, then there exist sequences {zk,l} ,

{zk,2} C S#(B) such that Rzk . = Rzk ) =t, — o and Zy 1 # Zy 9 for all

k. Take ue 0(5#(B)) such that u(z, )=k, u(z ,) =—k . Assume that
u=7f+ £ ,where e €, £ € A. Then we have

'T{f(zkjl) - f(zk’z)} — .
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This contradicts the fact that f takes only two distinct values. Thus there exists a

compact set K such that fl M e 0(S*(A)\K) . We denote by W the
S7(B)\

R(K)
set of irreducible branches of S™(B) intersecting with S#(B)\R_I(K) . Then we have

S#(B) =W | | T,where T is a finite subset of S#(B) . Let m be the number of

elements in T . We have

B o(s*(B)) v o(W) @ €@ » o(s*(A) @Rz AB T = A0 (.
This completes the proof in the case n=1.
2) Codim A =n > 1. In this case we have
B =A9€f16...$Cfn.

We consider separately two cases: A[f,] #B and A[f;] =B.
i) A[f;] # B. Then we have dim A[f;]/A <dim B/A=n.

We consider the restriction map:

R, : ST(A[f,]) — s*(A).
Rl is proper and surjective. It follows from the Grauert—Remmert theorem that

S#(A [f;]) has Stein space structure such that A[f;] o 0(8#(A [f,1)) . Hence,

A[f;] isa Stein algebra. From the inductive hypothesis it follows that

n n,+n
AlfJuAec!, BuA[f] ©C2. Thus, BxA®C L 2.



ii) Af[f;] =B.Since codim A < w, there exists m such that
ol @y am_lfT‘l +otagf) +ag;
42 = BT + By 57+ + By + By
where Qyy e ,61, ,,Bm eC; ao,bo e A. We have:
Bf + o+ Byfy + by =a 1T+ L+ af =
a (e 7+ am_lf‘f‘l + .o +ag) +
Fag off + o] +agf)
From this it follows that
fT(ﬁm - 0131 t am—l) t fx;l_l(ﬁm—l e ' am—2)+
+1,(8; —aga; —3y) =-by.

Therefore, a proof similar to that in the case n =1 gives us:

B o(S#(B)) ~ A @ C* for some k.
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2.3. Proof in general case.

P

We denote by v: S#(A) — S#(A) the normalization of S#(A) . Consider the

commutative diagram:

7=5s%B)x s#(A) —B . s#(a)
s#(A)

v

S*(B) —R . s#(A)

Let {Gy} be an increasing exhaustion sequence of holomorphically convex domains in

S#(A) . Then {R_le} , {ﬁ—lu_le} and {u_le} are exhaustion sequences of
: TN

holomorphically convex domains in S#(B) , Z and S#(A) , respectively. For each

k > 1 we consider the following exact sequence:
0— 0(G,) — O(R™1G,) — o(R7H(G,))/0(G,) — 0.

Since for every k > 0 the restriction map (G +1) — 0(Gk) has a dense image, we

have

o(s*(B))/ o(s%(A)) = lim O(RTG,)/0(Gy) -

Therefore there exists a kO such that for all k > kO we have

dim 0(R1G,)/ 0(G,) = dim o(s*(B))/ o(5¥(A)) .
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From the relation ﬁ"ly ={xeS(B); Rx=wy} = R_luy it follows that
o(v R TG ) 071Gy

is an integral extension of O(R_le)/ 0(Gy) of degree < sup {# R;l} <o,
ye S#(A) . This implies that there exists kl > k0 such that for k > kl we have

dim 0(;—1R—1Gk)/ 0(u_1Gk) = const.
By the result of § 2.2. we have
o Ry ¢ o le ) @
for some n independent of k > kl .

Therefore we have:

os* (A)e ™) x 0(z); 2us*(A) ] | {py, -2}

T

and ﬁ.: Z\{pl, ,pn} n S#(A)\{ﬁpl, ,ﬁpn} . From this it follows that there
exists an analytically rare set V C S#(A) such that

R:S¥(B)\R IV sFA)\V (1)

On the other hand, we have



dim o(R™IV)/0(V) < dim o(S(B))/ 2(S(A)) < o .

By induction we have o(R_1V) v o(V)® (P for some p >0 . Hence there exist

-1
qy, - 50y € R "V such that

R: R_IV\{ql, ,qp} N V\{qu, ,qu} . (2)
From (1) and (2) we obtain:
R:S¥(B)\{ay, - a;} - S*(A)\{Ray, . Ra } .

Hence we have

By o(s*(B)) » o(s*(A) @ PrAOP=AOCP.

The theorem is proved.

§ 3. Proof of the corollaries.

3.1. Proof of Corollary 1. Let A be a finite codimensional subalgebra of a semiglobally
weakly holomorphic algebra B : B~ ¢(K) , where K is a weakly holomorphic compact
set. Take a decreasing neighborhood basis % of K consisting of open sets having
envelope of holomorphy such that dime >0 forall Ue # and xe U\K . Suppose
that B = Cfle...GCprA , and set Ay =ANJ(U) . We may assume that
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£, ,fp € O(Ul) . Foreach Ue % we denote by ﬁ its envelope of holomorphy and
by &y, &, the canonical maps: 6;:U—U, § :K— SO(K) . Then we have
dim 0(U)/Ay = dim 0(K)/A , dim U>0 for al Ue % , UCU, , and
X€ ﬁ\&UU. Since 66: a(ﬁ)f-» o(U) for al Ue % , it is easy to see that
dim SO(K) > 0 for all x € SO(K)\6_K . Therefore, by the Main Theorem, there exists

a finite subset {z, .. ,zp} CK such that 2(U)2 Ay ® o({z, .. ,zp}) for all
Ue ¥, UC U, . This implies that

O(K)=1im 0(U) 2 1im Ay @ Py A@CP.
—_ —_—

Ue % Ue %

The corollary is proved.

3.2. Proof of Corollary 2. Let V be a Stein subspace of a complex space X , and let
R: 0(X)— 0(V) be the restriction map and dim /(V)/RO(X) <@ . We set
A = Ro(X) . By the Main Theorem we have ¢(V)~ A ® ¢ for some n . From this it
follows that there exists a finite set {zl, ,zn} C V such that

Avn 0(V\{z1, .- 2, }) . Corollary 2 is proved.

3.3. Proof of Corollary 3. Let A be a finite codimensional subalgebra of a Stein algebra
B . From the Main Theorem we have B~ A ® €* for some n and S#(A) = S(A) .
Hence, S#(B) v S#(A) 1 | T,where T isasetof n elements.

We now assume that S#(B) = S#(A) L LT, where T isaset of n elements in
S#(B) . Then we have B 0(8#(A))9Cn . Since S#(A) is A—convex and A
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separates points of S#(A) , it follows that A = A = 0(8#(A)) . From this we obtain
ByA®C".
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