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p ~ adic families of motives, Galois representations and L - functions.
A.A.Panchishkin (Moscow State University)

Hida [Hi2] has constructed interesting families of Galois representations of the type

pp : Gq = GL(Z,[[T]]), Gq = Gal(Q/Q),

which are non ramified outside p. These representations have the following property: if
we consider the homomorphisms

Z,([T]} Z,, 1+T — (1+p)"7,
then we obtain a family of Galois representations
pl : Gq = GLy(2,),

which is parametrized by &k € Z, and for k = 2,3, - - - ,these representations are equivalent
over Q, to the p - representations of Deligne, attached to modular forms of weight k.
This means that the representations of Hida are obtained by the p - adic interpolation
of Delign’s representations. A geometric interpretation of Hida’s representations was
given by Mazur and Wiles [Maz-W3|. For example, for the modular form A of weight
12 Hida has constructed a representation

poa : G — GL2(Zp[[T])),

as an example of his general theory, where the prime number p have the property
7(p) # (modp) (e.g. p < 2041,p # 2,3,5 and 7).

Also, Hida has generalized his construction to the case of Hilbert modular forms.

In this paper we would like to describe a conjectural generalization of his construc-
tion to arbitrary motives, and to formulate a certain conjecture. The important case,
in which this conjecture can be verified, corresponds to Hecke characters of CM-type.
We describe certain p - adic families, which are in general bigger than those obtained
by the cyclotomic twist. We stress the fact that the corresponding p - adic L - functions
depend analytically on the parameter of these p - adic Galois representations.

Summary.
§1. Motives and L - functions over a totally real field.
§2. The group of Hida and the algebra of Iwasawa - Hida.

§3. A conjecture on the existence of p - adic families of Galois representations
attached to motives.

§4. A generalization of the Hasse invariant of a motive.
§5. A conjecture on the existence of certain families of p - adic L - functions.
§6. Examples.

Throught the paper we fix embeddings

i0:Q—=C, i,: Qo C,
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and we shall often regard algebraic numbers (via these embeddings) as both complex
and p - adic numbers, where C, = ap is the Tate field (the completion of a fixed
algebraic closure -Q-p of Q,), which is endowed with a unique norm | - |, such that
|pls=p7"

1. Motives and L - functions over a totally real field.

Let F be a totally real number field of degree n = [F' : Q] and T is in another
number field T which will be supposed a subfield of C. By a motive M over F of with
coefficients in T we shall mean a collection of the following objects:

AJB,U =M01 MDR: MA) IOO,U'.\ I)\,O’:

where o runs over the set Jp of all complex embeddings of F,

M, is the Betti realization of M (with respect to the embedding ¢ € Jp) which
is a vector space over T of dimension d endowed for real o € Jp with a T - rational
involution p, ; )

Mpp is the de Rham realization of M, a free T ® F' - module of rank d, endowed
with a decreasing filtration {Fz(M) C Mpgr |: € Z} of T ® F - modules (which may
not be free in some cases when F # Q);

M, is the A - adic realization of M at a finite place A of the coefficient field T (a
T - vector space of degree d over Ty, a completion of T at A) which is a Galois module
over Gp = Gal(F/F) so that we a have a compatible system of ) - adic representations
denoted by

TMA=T)! GF — GL(MA).
Also,

Ioo,o' : M, ®r C — Mpp ®U(F)'T C

is the complex comparison isomorhism of complex vector spaces for each o € Jp,

Ing: My @r T\ — M)

is the A - adic comparison isomorphism of T - vector spaces. It is assumed in the nota-
tion that the complex vector space M, ®q C is decomposed in the Hodge bigraduation

M, ®r C = @&;;M;’
in which p,(M27) C M2 for 0 € Jr and the Hodge numbers
h(i,J,)o = (3, j, M), = dime My’
do not depend on ¢. Moreover,

Tooo(®ir3iME7) = Fiyp(M) ®F,0 C.

Also, I, , takes p, to the r) - image of the Galois automorphism which is denoted by
the same symbol p, € Gp and corresponds to the complex conjugation of C under
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an embedding of F to C extending 0. We assume that M is pure of weight w (i.e.
i+j=w).
The L - function L{M, s) of M is defined as the following Euler product:

L(M,s) = [[ Lo(M, Np™),
p

extended over all maximal ideals p of the maximal order Of of F' and where

Ly(M,X)™' = det(1 — X -ry(FryV) | My?) =
(1-aME)X)- (1 -aP(P)X)-...- (1 - (p)X) =
1+ Ai(p)X + ... + Aa(p) X,

here N'p is the norm of p and Fr, € GF is the Frobenius element at p, defined modulo
conjugation and modulo the inertia subgroup I, C G, C GFp of the decomposition
group Gy (of any extension of p to F). We make the standard hypothesis that the
coefficients of L,(M, X)~! belong to T, and that they are independent of A coprime
with A'p. Therefore we can and we shall regard this polynomial both over C and over
C,. We shall need the following twist operation: for an arbitrary motive M over F' with
coefficients in T an integer m and a Hecke character y of finite order one can define the
twist N = M(m)(x) which is again a motive over F' with the coeflicient field T'(x) of
the same rank d and weight w so that we haver

L(N,s) = [] Lo(M, x(p)Vp~*7").
14

§2. The group of Hida and the algebra of Iwasawa - Hida.

Now let us fix a motive M with coeflicients in T = Q({a(n)a}) of rang d and of
weight w, and let EndpM denote the endomorphism algebra of M (i.e. the algebra of
T-linear endomorphisms of any M,, which commute with the Galois action under the
comparison isomorphisms. Let

Gal, = Gal(F:L /F)

denotes the Galois group of the maximal abelian extension F;";o of F' unramified out

side primes of F' above p and co. Define Opr, = Op ® Or ® Z,.
Definition. The group of Hida GHp = GHyy ), is the following product

GHM = End;‘(OF,T,p) X Ga.lp,

where End;‘- denotes the algebraic T-group of invertible elements of Endr and it is
implicitely supposed that the group End} posesses an Or-integral structure given by
an appropriate choice of an Oy - lattice. Consider next the C, - analytic Lie group

XM,p = Homcont:'n(GHM) C:)

consisting of all continuous characters of the Hida group G Hys, which contains the C,
- analytic Lie group



Xp = Homconiin(Ga'lpa Cx)

P
consisting of all continuous characters of the Galois group Gal, (via the projection of

GH s onto Gal,.
The group X'z, contains the discrete subgroup A of arithmetical characters of the

type
X-n: Ncm;l = (X,Tr’,m),

where

X € Xafy
is a character of finite order of GHps, n is a T - algebraic character of Endé,‘w(Op,T,p),
m € Z, and Mz, denotes the following natural norm homomorphism

Nz, : Gal, — Gal(Q3),./Q) 2 Z) — Cf, Nz, € X,.

Definition. The algebra of Iwasawa - Hida Ips = Ip , of M at pis the completed
group ring O,[{GH )], where O, denotes the ring of integers of the Tate field C,,.

Note that this definition is completely analogous to the usual definition of the
Iwasawa algebra A as the completed group ring Z,[[Z,]] if we take into account that Z,
coincides with the factor group of Z; modulo its torsion subgroup.

Now for each arithmetic point P = (x,7,m) € A we have a homomorphism

vp:GHy — Oy
which is defined by the corresponding group homomorphism
P:GHy — OF CC}.
For a Iys-module N and P € A we put
Np=NQrnve Op
("reduction of N modulo P”, or a fiber of N at P).

Therefore, for each Galois representation
r:Grp — GL(N)
its reduction r mod P is defined as the natural composition:

Gp — GL(N) = GL(Np).

§3. A conjecture on the existence of p - adic families of galois represen-
tations attached to motives.

Note first that the fixed embeddings T' — C,
too : Q — C, ip :Q — C,
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define a place A(p) of T attached to the corresponding composition
T < 0eQ I, C,.

Conjecture I. For every M over F of rang d with coeflicients in T there esists a
free Ipr-module M7 of the same rang d, a Galois representation

rr: Gp — GL(My),

an infinite subset A" C A of "positive” characters, and a distinguished point P, € A
such that
(a) the reduced Galois representation

TI,Po . GF - GL(MI,PO)

is equivalent over C, to the A(p) - adic representation rps () of M at the distinguished

place A(p);
(b) for every P € A’ there exists a motive Mp over F of the same rang d such that

its Galois representation is equivalent over C, to the reduction
rr,p: Gr — GL(M1 p).
We call the module Mp the realization of Iwasawa of M.

§4. A generalization of the Hasse invariant of a motive.

We define the Hasse invariant of a motive in terms of the Newton polygons and
the Hodge polygons of a motive. Properties of these polygons are closely related to the
notions of a p - ordinary and a p - admissible motive.

Now we are going to define the Newton polygon Pnewton,o(%) = PNewton,o{t, M)
and the Hodge polygon Prodge,o(%) = PHodge,o(u, M) attached to M, o. First for
p = p(o) we consider (using i) the local p - polynomial

Ly(M,X)™ ' =14 A (P)X +--- + Aa(p)X*?
= (1= aD(E)X) - (1 - aDEX) ... (1 - 2D (p)X),
and we assume that its inverse roots are indexed in such a way that
ord,aM(p) < ord,a®@(p) < --- < ordyal?(p)

Definition. The Newton polygon Pnewton,o(u)(0 < u < d) of M at p = p(o) is the
convex hull of the points (7,ord,4;(p)) (: =0,1,---,d).

The important property of the Newton polygon is that the length the horizon-
tal segment of slope ¢ is equal to the number of the inverse roots a{/)(p) such that
ord,af?(p) = i (note that this number may not necessarily be integer but this will be
the case for the p - ordinary motives below).

The Hodge polygon Prodge,o(#) (0 < u < d) of M at o is defined using the Hodge
decomposition of the d - dimensional C - vector space

Mg = Ma- ®T C = ®1,JM;-,J
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where M7 as a C - subspace. Note that the dimension h,(i,7) = dimgc M}? may
depend on o.

Definition. The Hodge polygon Prodge,o () is a function [0, d] — R whose graph
is a polygon which passes through the vertices

(0,0), oy (DO ho(i',5), D kot ko', 5)),
i <i i <i
so that the length of the horizontal segment of the slope ¢ is equal to the dimension
ho(2,7)-
Now we recall the definition of a p - ordinary motive in the simplest case F =T = Q
(see [Co], [Co - PeRi]). We assume that M is pure of weight w and rank d. Let
G, = Gal(Q,/Qp) be the decomposition group (of a place in T over p) and

qbp:Gp—)Z:

be the cyclotomic character of G,. Then M is called p ordinary at p if the following
conditions are satisfied:
(i) The inertia group I, C G, acts trivially on each of the ! - adic realizations M;

for 1 # p;

(i1) There exists a decreasing filtration F;V on V=M, =Mg®Q, of Q, -
subspaces which are stable under the action of G, such that for all 2 € Z the group G,
acts on FiV/F3;*1V via some power of the cyclotomic character, say 1. Then

erl(M) 2 -+ 2 e(M)

and the following properties take place:

(a) —
dimq, FyV/Fyt'V = h(e;,w — &;);

(b) The Hodge polygon and the Newton polygon of M coincide:

PNew!on(u) = PHOd!]e(u)'

If furthermore M is critical at s = 0 then it is easy to verify that the number d, of the
inverse roots a{/)(p) with

ord,a?(p) < 0 is equal to d* = d* (M) of M.

In the general case (of a motive M over F with coefficients in T") the notion of a p -
ordinary motive can be defined using the restriction of the ground field F' to Q and the
restriction of the coefficient field T' to Q (the last operation corresponds to fogetting of
the T - module structure on the realizations of M). In this way we get a motive M’ over
with coeflicients in Q of the same weight w and the rank rk(M') = [F: Q[T : Q] - d.

However, it turns out that the notion of a p-ordinary motive is too restrictive, and
we introduce the following weaker form of it.
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Definition. The motive M over F with coefficients in T is called admissible at p if for
all ¢ € Jr we have that

PNewton,o(dj) = PHodge,a(dj)

here d} = d}(M) is the dimension of M,, ¢ € Jr.
In the general case we use the following vector quantity h = (h, ), which is defined
in terms of the difference between the Newton polygon and the Hodge polygon of M:

ha = PNewton,o(dj) - -PHodgc,o'(dj-

We call the vector h = h(M) = (hy ), the Hasse invariant of M at p. Note the following
important properties of the quantity h:

(i) h = h(M) does not change if we replace M by its Tate twist.

(i1) h = h(M) does not change if we replace M by its twist M = M(x) with a
Hecke character x of finite order whose conductor is prime to p.

(iii) A = h(M) does not change if we replace M by its dual MV

In the next section we state in terms of this quantity a general conjecture on p -
adic L - functions.

§5. A conjecture on the existence of certain families of p - adic L -
functions.

We are going to describe families of p - adic L - functions as certain analytic
functions on the total analytic space, the C, - analytic Lie group

XM,p = Homcontin(GHM, C:),
which contain the C, - analytic Lie subgroup (the cyclotomic line) X, C X p:
Xp = Homontin(Galp, C;).

In order to do this we need a modified L - function of a motive over F. Following
J.Coates this modified L - function has a form appropriate for further use in the p - adic
construction. First we multiply L(M, s) by an appropriate factor at infinity and define

Ao)(M, 3) = Ex(M, s)L(M,s)

as A(oo)(T, RpyqM, p,s) in the notation of J.Coates [Co] with p = ¢ so that Eoo(M,s) =
Eeo(T, RpiqM, p, s) is the modified I - factor at infinity which actually does not depend
on the fixed embedding T of T into C. Also we put

Q“(M) = (2°(M)7) = ¢/ (RM)(27i)"BM) ¢ (T @ C)*
where

v=(=1)",r(RM) =) _jh(i,j,RrjqM) =3 jh(i,5, M), n=[F:Q],

j<o j<o
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¢’(RM) = ¢*(Rp/qM) is the period of RpyqM. Then the period conjecture of Deligne
can be stated in the following convenient form: if s = 0 is critical for M then for any
m such that M(m) is critical at s = 0 we have that

Aoo(M(m),0)

won €T

In order to deduce this statement from the original conjecture on critical values we
can use the same arguments as in the J.Coates’s work [Co], where it was shown that
Eo(M, 0) ~ (27)"BM) mod QX
and it follows that

Ew(M(m), 0) ~ (zwi)r(RM)—-md‘(RM) — (27rz')n(r(M)—md‘(M)) mod Qx,

where e = + if j < 0 and ¢ = — if > 0 for j = w/2. If we combine this fact with the
equivalence

cH(M(m)) ~ (2mi)? "™ ¥ (M) mod T
we deduce from the above form of the conjecture that
Aqooy(M(m), 0) ~ (2ri)" (M= D4 (Mo 1)

Note that in our situation we have that d*(M) = d¥(M) because both M and M(m)
are critical at s = 0: we have that v = 4 only for j — m < 0 because M(m) is critical
but according to Lemma 3 in [Co] the condition j < 0 is equivalent in this situation to
g—m<0.

Modifled conjecture on the critical values. Assume that A is critical at
s = 0. Then there exist constants ¢%* (o, M) € (T @ C)*(es = %) defined modulo T
such that if we put for a given sign ¢o = (€0,0) € Sgnr

Qeo, M) = (1 @ (2ri))" M) T c=o (0, M)

with r(M) = Ej«,jh(i,j, M) then for any integer m and Hecke character x such that
M(x)(m) is critical at s = 0 and &,(x)v = €p,, we have that

Aey(M(x)(m), 0)(G(x)~ (1 ® DY*)* e, M)~ € T(x)

where v = sgn{(—-1)™) =+ .
We recall that by definition

Eoo(M,8) = Eco(r, RF/QMs py8) = Ex(U, p, s),

where U runs over direct summands of the Hodge decomposition, p = ¢ and E.(U, p, )
is given by:

(a) HU = M?* @ M*J with j < k, then Eoo(U, p,s) = T'c,,(s — §)10%;

(b) If U = M** with k > 0, then Eoo(U, p,s) = 1;
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(c) U = MM with k < 0, then Eoo(U,p,8) = Roo(U,p,s). Here p~* =
exp(—pms/2), Tc,p(s) = p~°Tc(s), Ta(s) = 2(27)*T(s), Tr(s) = 77*/*T(s/2),
Reo(U,p,8) = Loo(T, U, 8)/(€co(T,U, p, §)Loo(T, Uv(l)! —3))
with L - and ¢ - factors described in [De3] on p.329, so that we have in case (c)

Tr(s—k+6)  2[(s—k+6)cos(m(s —k+6)/2

e oy ey s 18 (2m)o—F+3

where § = 0,1 is chosen according with the sign of the scalar action of p, on U = MF*
so that p, acts as (—1)*+%,
We define

Ap (o) (M(m)(X), 8) =

Aooy(M(m)(x), s)(G(x) " DT MDD TT Ap(M(m)(x), s) >
pAp

where
(T g2 (1= X(P)aD (PN D) TIEL, (1 — X~ (p)aD(p)~ N p*1)
Ap(M(x),s) = < for p fe(x)

d'+ N ]
| iz (m’kT)

Let A be the discrete subgroup A of arithmetical characters,

,otherwise.

)Ofdp ()

X"?'Ncm;n=(X$n,m)€A,

A' C A the subset of "positive” Py € A characters, a distinguished point of conjecture
I. Let A” C A’ be the subset of critical elements, which consists of those P, for which
the corresponding motives Mp are critical (at s = 0). Now we are ready to formulate
the following

Conjecture II. For a canonical choice of periods Q(P) € C* for P € A" there
exists a C, - meromorphic function

Ly :Xup— G,

with the properties:
(i)
Ap(00) (M(m)(x), 0)

for almost all P € A";
(i1) For arithmetic points of type

P = (Xﬁ?,m) € A"
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with 7 fixed there exists a finite set = C A'pr,p of p - adic characters and positive integers
n(€) (for £ € E) such that for any go € Gal, we have that the function

1 (=(90) — (o)™ O Lrs(z - P)

<

is holomorphic on A’;
(iii) For arithmetic points of type

P = (X,'?,m) €A
with n fixed the function in (i1) is bounded if and only if the Hasse invariant h(P) =
h(Mp) vanishes;
(iv) In the general case the function Lp(P - ) of z € A}, is of logarithmic growth
type o(log N'(+)*¢ with
ho = [mf.xh,,] + 1.

§6. Examples.

6.1. Hecke characters of CM-type. Let K O F be a totally imaginary quadratic
extension, and 1 : A% /K>* — C* be an algebraic Hecke’s Grossencharakter such that

7((a)) = (lj—il)w () TR

for « € K, = 1(mod¢(n)), where £ = brac; : K — C, is a fixed CM-type of K, w; are
positive integers, wo = max; w;. Then there exists a Hilbert modular form f of weight
k=(wi+1, --,ws+1)such that L(s, f) = L(s,n), and M(f) coincides with the motive
M(n) = Rk, r[n] obtained by restriction of scalars from the motive [n] (the last motive
exists as an object of the category of motives of CM-type, see [BI1]).

The Hodge structure of M(n), has the form

(wo = w5)/2, (wo +w0)/2) + ((wo + wo)/2, (wo —w,)/2),
p=p,= { PP', if p splits in K,

B, if p is inert in K.
Then the local factor of L(M(n), s) is given by

-1 _ [ (1 =n(PX)(A - n(PHX), if p splits in K,
Ly(M(n), X)™" = {(1 —n(P)?, if p is inert in K.

Therefore the generalized Hasse invariant A = (h,), of M(7n) is given by

b = 0, if p splits in K,
T | wo/2, if pisinertin K.
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In the additive notation the type of n can be written in the following form:

-+ R 4D =L el =) e Yo,

-4

where my = wy,d, = (w, — wy)/2. Using a shift one sees that the point s = m is
critical for L(s,n) iff s = 0 is critical for the character A\(a) = n(a)Na~"™.
Then one sees that the character 5 of the type 3} do(0 — )+ mq >, ¢ is critical
at 0iff
mo,de 20 or mg < 1,dy, > 1 — my.( for all o) (%)

In order to state the thorem of Katz on p-adic L-functions of CM-fields (in a
simplified form) we let € C O denote an integer ideal of the maximal order of K,
Goo(€) the ray class group of K of conductor €p™.

For each CM-type T one can canonicaly choose a constants

Qoo = (-QOO(O'))O'GE € (Cx)na

Qp = (2p(0))oes € (C)"

(complex and p-adic periods).

The theorem of Katz states that under the assumption 2 = 0 there exists a bounded
p-adic measure gt on Goo(€) such that for all critical characters A of conductor dividing
Cp the value of the p - adic integal

faw(c) Adp
Qfﬂoz+2d
P

coinsides essentially with the normalized special value
fracAp co)(A, 0), QmeE+2d,

where A denotes the p - adic avatar of A.
This theorem provides an example of a p -adic family of Conjectures I and II,
because Endr(M) is essentially K, and by class field theory GH s is related to Goo(€).
6.2. Families of Hida of Hilbert modular forms. In this case we start from a
motive M (f) attached to a (general) Hilbert modular form and obtain the group GHy =
O;‘.T,p x Gal,w hose characters parametrize "the weights” of Hilbert modular forms in
the corresponding family. 7. Hilbert modular forms and motives associated
with them.
We use the notation of Shimura [Shi6], [Shil0] and we regard the group GL(F') as the
group Gq of all Q - rational points of a certain Q - subgroup G C GL3,. Then Hilbert
modular forms will be regarded as complex fuctions on the adelic group G = G(A)
which is apparently identified with the product

GLy(Fa) = Geo X Ga'

where
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Goo = GLy(Foo) % GLy(R)", G = GLy(F),

A, Fa denote the rings of finite adels of Q and F respectively.
The subgroup

G = GL} (F.) = GLF(R)"

ab
a"‘(ala""an)aa— (Cd)

such that deta, >0, v =1,2,---,n. Every element a € G¥, acts on the product H™ of
n copies of the upper half plane according to the formula

consists of all elements

afzy, v+, 2p) = (@1(z1), =+, an(zn)),

where

ay(zy) = (avzy + b)) (cvzy +d) (v=1, 2, ---, n)

For z = (21,22, +,2n) € H™ we put erp(z) = e({z}),{2} = z1 + ... + 2z, and e(z) =
exp(2wiz) and we use the notations Nz = 2z - ... - z,, and i = (3, ..., 7). For @ € GZ,
an integer n - tuple k = (ky,--,k,) and an arbitrary function f:$" — C we use the

notation
(f e @)(z) = [J(cvz + du) ™™ f(a(2))det(ay )k /2

Let ¢p C OF be an integral ideal, ¢ = ¢Oj its p - part, 0, = 00, the local different. We
shall need the open compact subgroups W = W, C G4 defined by
W.=G% x Wp),

We(p) = (i 3) € GLy(F,) | be 0,7, c € yey, a,d € Op,ad —bec € OF

By a Hilbert automorphic form of the weight k = (ky,---, k,), the level ¢, and the Hecke
character ¥ we mean a function
f: Ga — C satisfying the following conditions (7.1) — (7.3):
f(saz) = (s)f(z) for all z € G4,
s € FY (the center of G4), and a € Gq (7.1)

We let 19:(0O/c)* — C* denote the ¢ - part of the character 1 and the extend the
definition of 1 over the group W, by the formula

()=

then for all z € Ga
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f(zw) = Y(w")f(z) for w € W, with we, =1, (7.2)

where .

a by _(d =b

¢c d/]  \=¢c a /)’
If

= w(8) where w(f) = (w1 (61), -+, wa(bn)),
cosf, -sinf,
wy(6,) = (sin&,, cos @, ) ’

then

f(zw(8)) = f(z)exp(—i(k161 + ... + k,.0,)).

An automorphic form f is called a cusp form if

/ f( é;)gdt=0forallg€GA. (7.3)
Fa/F

The vector space M (¢, ¥) of Hilbert automorphic forms of holomorphic type is defined
as the set functions satisfying (7.1)—(7.3) and the following holomorphy condition (7.4):

for any ¢ € G4 with £, = 1 there exists a holomorphic function g,:$H" — C such that

forally = (i 3) € GL, we have that

f(zw) = (92 |x w)(i) (7.4)

(in the case F' = Q we must also require that the function g, is holomorphic at the
cusps). Let Sg(c, ) C My(c, ¥) be the subspace of cusp forms.

Hecke operators which act on Si(¢, ) and Mg(c, ¥) are introduced by means of
the double cosets of the type WyW for y in the semigroup

Ye=GaN(GS x Yi(p),

where

b
Yc(p) = {((Cld) € GLQ(FP) | be D;I, c € 0ycyp, a, de 0P1 GOP +ep = Op}

The Hecke algebra H. consists of all formal finite sums of the type 3 y cyWyW, with the
multiplication in H, defined by a standard rule. By definition T(m) 1s the element of H.
obtained by taking the sum of all different WwW with w € Y such that div(det(y)) = m.
Let

Te(m)' = M(m)*Fo=D/2T(m)
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be the normalized Hecke operator, where k¢ denotes the maximal component of the
weight k. Suppose that f € Si(c, ¥) is an eigenform of all T¢(m)" with the eigenvalues
C(m, f). Then there is the following Euler product expansion:

L(s,f) = Y C(n, N n=* = [J(1 = C(p, N p™* + (p)Npro71 724!

P

All of the numbers C(n, f) are known to be algebraic integers.

Let f € §i(¢, ¥) be a primitive Hilbert cusp eigenform. In this case the numbers
C(n, f) can be regarded as the normalized Fourier coefficients of f. The important
analytic property of the corresponding L - function L(f, s) (see [Shi6], p.655) is that
it admits a holomorphic analytic continuation onto the entire complex plane, and if we
set

A(f,s) = [ To(s — (ko — ki)/2)L(£, s)

then A(f, s) satisfies a functional equation, which expresses A(f, s) in terms of the func-
tion A(f”, ko — s). According to the general conjecture on the analytic properties of the
L - functions of motives we may suggest that f should correspond to a motive M = M(f)
over F of rank 2, and weight k¢ with coefficients in a field T' containing all C(n, f) such
that

L(M,s) = L(s,f), A(M,s) = A(s,f)

and for fixed embeddings r € Jpr and ¢ = 0; € Jr the Hodge decomposition of M, is
given by

Mc(r:) = Ma; ®T,-r C= 7.5

y(ko=R M 2tk gtk )/ 2-1 ) (kg +R)/2=1,(k o=k )/2

oM

ML
where k; is the component of the weight k, attached to the fixed embedding o; (as was
mentioned above this decomposition may depend on 7 and o;). It is obvious from (7.5)
that if such motive exists then the weight £ must saisfy the condition ky =k, = ... =
k., mod 2.

There are several confirmation of the conjecture. First of all it is known in the
elliptic modular case F' = Q due to U.Jannsen and A.J.Scholl [Ja], [Scho]; the existence
of the Galois representations of Gal(F/F) corresponding to A - adic realizations of these
motives was discovered earlier by Deligne [Del]. If we restrict such representation to
the subgroup we obtain the L - function of certain Hilbert modular form of the same
(scalar) weight which is the Doi - Naganuma lift (or "base change”) of the original
elliptic cusp form. In the general case the existence of Galois representations attached
to Hilbert modular forms was established by Rogawski - Tunnell [Ro-Tu} and Ohta [Oh]
(n odd) (under a local hypothesis) and by R.Taylor [Ta] in the general case. Also a
number of results on special values of the fuction L(s,f) is known, which math the
above conjectures on the critical values and on the p - adic L - functions [Shil], [Man],
[Kal]. As in the elliptic modular case there is a conjectural link between motives of



15

the type M(f) and the cohomology of certain Kuga - Shimura variety (fiber product of
several copies of the universal Hilbert - Blumenthal abelian variety with a fixed level
structure and and endomorphisms): namely, for the decomposition Rp/qM =; (M7
the tensor product ®"_,M? is a motive over Q of rank 2" which conjecturally lies in
the above cohomology, see the interesting discussion of this link in [Ha2}, [Oda]. In case
ky = ... = k, = 2 the motives have the Hodge type H%! & H'*. In some cases (e.g.
when n is odd) the motives M? can be realized as factors of Jacobians of Shimura
curves corresponding to quaternion algebras, which split at one fixed infinite place o;
and ramified at all other infinite places o;(j # ¢) ([Shi7]; see also forthcoming work of
M. Harris).

8. Examples.

8.1. Periods of Hilbert cusp forms.

Let f € Si(c, 1) be a primitive Hilbert cusp eigenform which is supposed to be "motivic”
it the sense of the previous section, and let

L(s,£(x)) = D_ x(n)C(n, N n~* = (1 = x(p)C(p, HNP ™" + x*(p)ib(p)N pFo=1724) 71,

Then the critical strip of L{s,f(x)) is given by m, < m < m*,
m. = max{(ko — k;)/2} + 1, m* = min{(ko + k:)/2} — 1.
Using the Rankin - Selberg method G.Shimura proved that there exist constants
ct(o,f) € (T ® C)*
defined modulo T such that if we put

(. f) = DF*6(x) [ X (o,1)
ocEJF

then for all m € Z,m, < m < m* we have that
i"™A(m, f(x))
c(x, 1)

€ T(x),

where v = (-1)™.

This statement coincides with that of the modified period conjecture if we take for
c*(a, M(f)) the quantities ¢ (o, f).

In order to formulate the results on p - adic L - functions, put

1-C(p,H)X +¢p(PINp*7IX? = (1 - a(p)X)(1 - &/ (p)X) € C,y[X]

where a(p), o/(p) are the inverse roots of the Hecke polynomial assuming that

ordya(p) < ordya’(p).
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Note that in the p - ordinary case we should have
ordpa(p) = (ko — k;)/2,0rdpa’(p) = (ko + ki)/2 -1

for the prime p = p; = p(o;) attached to the embedding o; (see Section 5).

8.2. Theorem. Put h = [max(ord,(a(p(c;)) — (ko — ki)/2)] + 1. Then for each sign

€0 = {€0,0} € Sgnp there exists a C, - analytic function Lg;‘;)on X, of the type o(log")

with the properties:
(i) for all m € Z, m, < m < m*, and for all Hecke characters of finite order
X € X:Ofs with veo(x) = €0,0 (0 € Jr) the following equality holds

Dga™" Af(x), m)

(20) my _ ki Vel U VA Rkl 4
L (XN:EP)_ G(X) !__I!Ab(f(X)’m) Q(So, f) 9

(r)

where

(1= x(p)a' (PINP~™)1 — x~ ' (p)a(p) ' Np™~1),

if pe(x)

Ap(f(x),m) = Ap™ ordpc(x)
(55) £ 3 fex)
1 o x

and the constant §(eo, f) is given by

Qeo, £) = (2m5)™"™ - DY* - ] e** (o, 1),

(i1) If A < m* —m, +1 then the function LE;‘)') on &, is uniquely determined by (i).
(iii) If
max(ord,(a(p(oi)) — (ko — k;)/2) =0

then the function LE;';) is bounded on A,

In the p - ordinary case this theorem was established by Yu.I.Manin (in a less
explicit form) using the theory of generalized modular symbols on Hilbert - Blumenthal
modular varieties. The non p - ordinary case was treated only for F = Q by Visik [V1].
For an arbitrary totally real field F' one can use the Rankin method and the technique
of the Shimura’s work [Shi6].

8.3. The Rankin convolution and the tensor product of motives. Let us
consider the Rankin convolution

L(s,f,g) = Y _C(n,f)C(n,g)N(n)™" (8.1)

attached to two Hilbert modular forms f, g over a totally real field F of degree n =
[F : Q}, where C(n, ), C(n,g) are normalized ”Fourier coefficients of f and g, indexed
by integral ideals n of the maximal order Op C F (see §7). We suppose that f is a
primitive cusp form of vector weight ¥ = (k1,---,k,), and g a primitive cusp form of
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weight I = (Iy,---,1,) We assume that for a decomposition of Jr into a disjoint union
Jr = J U J' the following condition is satisfied

ki > ( for o; € J), and I; > k; (for g; € J'). (8.2)
Also, assume that
ky=ky=--- =k, mod?2, (8.3)
and
Lh=lh=--=1l,mod2. (8.4)

Let ¢(f) C Op denote the conductor and 3 the character of f and ¢(g), w denote the
conductor and the character of g (¢,w : A7/F* — C* being Hecke characters of finite
order).

The essential property of the convolution
L(s,f,8(x)) = }_ x(MC(n,£) C(n, g)N (n)™*
" .

(twisted with a Hecke characer x of finite order) is the following Euler product decom-
position

L(25 +2 — ko — lo,pwx?)L(s,f,g(x)) =
I (0 = x(9)a(@)B(@)NV(9)"* )1 - x(@)a(a)B8' ()N (a)™*)x (8.5)

q
x (1 = x(@)a (DB@N(a)~*)(1 = x(a)a' (B (N (3)™*) ™,
where the numbers a(q), a'(q), A(q), and §'(q) are roots of the Hecke polynomials
X2 = C(a, )X + (N (@) ™ = (X — a(a))(X — (1)),

and
X? - C(4,8)X +w(@N(9)°™! = (X — B(a))(X - B'(a)).

The decomposition (8.5) is not difficult to deduce from the following elementary lemma
on rational functions, applied to each of the Euler g-factors: if

o0 ; 1 o0 i 1
LAX = Ty 2PN = a e Ry

1=0 =0

then

> i L 1 - ad'BB' X2
2 ABX = T e e —apx) &Y

1=0

Assume that there exist motives M(f) and M(g) associated with f and g. Then

Le(2s +2 —~ k = 1, pwx®)L(s,f,g(x)) = L(M[x],s)
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where M = M(f) @ M(g) is the tensor product of motives over F' with coeflicients
in some common number field T. Using the Hogde decompositions for M(f) and M(g)
and the Kinneth formula for M = M(f) ® p M(g) we see that under our assumption
the motive M has d = 4, w = kg + ly — 2, and the following Hodge type:

M,, ®C

ko+ilog—kT —17)/2 (ko+lo+kT+IT - Ead-lodt kT 417 —2 (kod-lo— kT —1IT
@rEJT (Mg;o-*- o=k —1[)/2,(ko+lo+k[ +17)/2-2) @Mg‘_o'f' o+k]+17)/2-2,(kotlo—k] —1])/2

@ Mgfo+10—|k?‘lri)/2-1,(ko+‘o+|k?_Iﬂ)/Z—l ® Mc(rfo+lo+|k.r“;|)/2—1:(ko+1o—|k?"17|)/2“1)'

Moreover,

A(M(x],s) = A(s, f,8(x)) =

n

[T @ols = (ko + o = ki = 1)/2)Cc(s = (ko + o — [ki — Li])/2 + 1)) x

i=1

X LH:(2~9 +2 - kO - lOv ¢wX2)L(S7 f} g(X))a

and this function satisfies a functional equation of the type s — ko + [y — 2 — s.
8.4. The critical values of the Rankin convolution. Let us now set

m, =max{((ko +lo — |k; = L;])/2=1),+1, m* =ko+ 1 — 2 —m..

The periods c¢*(o, M) can be easily computed in terms of ¢(o, M) (as in the ellip-
tic modular case; see a more general calculation in [Bl2]). As a result one gets that
cx(o, M) = ¢(o, M) does not depend on the sign +, and is given by

C:l: o = c"’(a, f)c_(o', f)6(01 g)» ifoeld
( ,M) {c'l'(o', g)C_(G,g)é(a, f): ifoeJ,

Moreover,

E(Mx]) = G(x)7? [] (o, M).

ceJ

Let us apply the modified conjecture on special values to the L-function

A(M(x], ) = A(s, ,8(x));
and set ¢(f,g) =[], ¢t (o, M),
o(J,f) = H C+(U’ f)c™(0,1), c(J',8) = H C+(Ja g)c (0,8),
o€J a€J’

and

§(J,£) = [] 8(e,8), 6(J',8) = [] 6(o.8).

ceJ ocJ!

Then we see that
C(J, f)C(J” f) = (f,f), (I, f)é(J',f) — G(i/))—l(?.ﬂ'z')n(ko_l),
C(J,g)C(J',g) = (ga g), 6(-], f)ﬁ(.f’,g) — G(w)—l (27.”')11(10—1),
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and
e(M[x]) = E(MIx)) = G(x)"2e(J,£)8(J, g)c(J', g)6(J', T).

With this notation the conjecture 1.8 takes the following form: for all Hecke char-
acters y of finite order and r € Z,m, > r < m*™ we have that

Al £, 8(x)) _ AMx],7)
G(x)~2e(J,£)6(7,g)c(J,g)6(J, f) ~ G(x)~2c(M) € Q(f, g, x)-

8.5. Let us consider the special case when J' = @, 1.e. k; > [; for all 0; € Jp. Then

o J,f) =c(Jr,f) = (f,f), §(J,8)=86(JF,8)= G(w)_1(27ri)"(l°_l),

and the above property transforms to the following:

A(r f,8(x))
G(X)"‘2 (f, f), G(w)“l (211-3')“(10-1)

E Q(f‘J g’ X)’

where Q(f, g, x) denotes the subfield of C generated by the Fourier coefficients of f and
g, and the values of x. This algebraicity property was established by G.Shimura [Sh1]}
by means of a version of the Rankin —Selberg method.

In the general case the above algebraicity property was also studies by G.Shimura
[Sh2], [Sh3] (for some special Hilbert modular forms, coming from quaternion algebras)
and by M.Harris [Ha3] using the theory of arithmetical vector bundles on Shimura
varieties. The idea of the proof was to replace the original automorphic cusp form
f : G(A) — C of holomorphic type by another cusp form f7 : G(A) — C such that

fJ(gla Tt agn) = f(91j1,° e 7gnjn):

. o), ifieJ
EG L), e

where g; € GLz(R),

1

Then f7 can be described by functions fj on £", which are holomorphic in z; (i € J)
and antiholomorphicin z; (7 € J'). Then the differential forms

£y Aiey dz:

define a certain class cl(f”) of the degree || in the coherent cohomology of the Hilbert —
Blumenthal modular variety, or rather its toroidal compactification ([Hal], [Ha2]). This
space of coherent cohomology has a natural rational structure over a certain number
field F/, defined in terms of canonical models. From the theory of new forms it follows
that there exist a constant v(J,f) € C* such that the differential form attached to
v(J,£)71f7 is rational over the extension of FY obtained by adjoining the Hecke eigen-
values of f. Then the critical values of the type A(r,f,g) can be expressed in terms of
a cup product of the form
cd(f)Ucl(g”)UE,

where E is a (nearly) holomorphic Eisenstein series. Then the above algebraicity prop-
erty can be deduced from the fact that the cup product preserves the rational structure



20
in the coherent cohomology. However, the technical details of the proof are quite diffi-
cult.

8.6. p-adic convolutions of Hilbert cusp forms. Now we give a precise
description of the p-adic convolution of f and g assuming that both f and.g are p-
ordinary, 1.e.

ordpa(p;) = (ko - k,)/2, ordpa'(p;) = (kg -+ k,‘)/2 -1,
ord,A(p;) = (lo — 1;)/2, ord,B'(p:)=(lo +1;)/2 -1,

or equivalently, ord,C(p;,f) = (ko — k;)/2, and ord,C(p;i,g) = (lo — I;)/2. We assume
also that the conductors of f and g are coprime to p and we set

Aip(s,f,8(x)) =
II Q-=x(r)e'(p)BPINPT )L = x(p:)e (p)B (PN PFT)x

g €J\S(x)
X (1= x(pi) " ea(pi) T BP)TINPITINL — x(pi) " a(pi) T B (pi) TN P T )X
X H (1 = x(ri)a(pa)B' (PONPT YA — x(Pi)a' (9:)B' (Pi)N P ?) X

oi€J'\S(x)
x (1= x(pi) " a(p) T B(p:) NPT — x(p) T e (p) T B(R) TIN P TY).
Then we introduce the following constant:
Qf,8) = o(J,£)6(J, g)c(J', g)6(J', ) =
Il ¢t(o. ) (o, 1)8(0,8) [] ¢*(0,8)c™ (0, 8)6(0, f)

e€J ecJ!

8.7. Description of the p-adic convolution. Under the conventions and no-
tation as above there exists a bounded C,-valued measure u = pu¢ g on Gal,, which is
uniquely determined by the following condition: for all Hecke characters x € A;°™ and
all r € Z satisfying m, > r < m* the following equality holds:

] x_l./\fx;dpf,s =
Gal,

; (D%'r(*l)r A(rafsg(X)) Vv
PUG(x)E Q(f,g)@,(r, f,8(x))

Npi™! ords <00 Npi? ordy,; ¢(x)
X };[J (a(Pi)'a‘ﬁ(Pi)ﬂ’(Pe)) o'gp (ﬂ(m)za(p;)a'(p,-)) ),

and the measure s g defines a bounded Cp-analytic function

Galp

(the p-adic Mellin transform of ug g ), which is uniquely determined by its values on the
characters z = x ' Nz} € A,.
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(Note that the above expression could be written in a slightly simplier form if we
take into account the equalities:

a(p)?A(P)F'(p) = a(p)’w(PINPOT!,  B(P)a(p)d(p) = B(P)P(PINP*".)

8.8. Concluding remarks. The existence of the p-adic measure in 8.7 is known in
the special case, and J = @ (see [Pa2]), where f and g are assumed to be automorphic
forms of scalar weights k£ and {, ¥ > l. One verifies easily that the description 8.7
perfectly matches with the modified period conjecture and with the general conjecture
on the p - adic L - functions of Section 6. Also, this construction was recently extended
by My Vinh Quang (Moscow University) to Hilbert automorphic forms f and g of
arbitrary vector weights k = (ky,--,kn), and [ = (I4,--+,{,) such that k; > I; for all
i =1,---,n, and to the non-p-ordinary, i.e. supersingular case, when | ip(a(p) |p< 1
for all p | p. In this situation the p-adic convolution of L¢ ¢ is also uniquely determined
by the above condition provided that it has the prescribed logarithmic growth on X,
(see [V1]).

In the general case the proof of the algebraic properties of the Rankin convolution
in [Ha3] can be used also in order to carry out a p-adic construction. First of all, one
obtains an expression for complex-valued distributions attached to A(r, f, g(x)) in terms
of the cup product of certain coherent cohomology classes, and one verifies that these
distributions take algebraic values. Then, integrality properties of the arithmetic vector
bundles can be used for proving some generalized Kummer congruences for the values
of these distributions, which is equivalent to the existence of p-adic L-functions in 8.7
However, some essential technical difficulties remain in the general case, and 8.7 can
not be regarded yet as a theorem proven in full generality.
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Introduction

Hida [Hi2] has constructed interesting families of Galois representations of the type

oy : Gq = GLa(Z,[[T]]), CGq = Gal(Q/Q),

which are non ramified outside p. These representations have the following property: if
we consider the homomorphisms

Z,[T) =5Zp, 1+T — (1 +p)*7,
then we obtain a family of Galois representations
Py 1 Gq = GLa(Z,),

which is parametrized by k € Z, and for k = 2, 3, - - - ;these representations are equivalent
over Q, to the p - adic representations of Deligne, attached to modular forms of weight
k. This means that the representations of Hida are obtained by the p - adic interpolation
of Deligne’s representations. A geometric interpretation of Hida’s representations was
given by Mazur and Wiles [Maz-W3]. For example, for the modular form A of weight
12 Hida has constructed a representation

pp.a : Gq — GL2(Z,[[T])),

as an example of his general theory, where the prime number p have the property
7(p) # (modp) (e.g. p < 2041,p +# 2,3,5 and 7).

Also, Hida has generalized his construction to the case of Hilbert modular forms.

In this paper we would like to describe a conjectural generalization of his construc-
tion to arbitrary motives, and to formulate a certain conjecture. The important case,
in which this conjecture can be verified, corresponds to Hecke characters of CM-type.
We describe certain p - adic families, which are in general bigger than those obtained
by the cyclotomic twist. We stress the fact that the corresponding p - adic L - functions
depend analytically on the parameter of these p - adic Galois representations.

Summary.
§1. Motives and L - functions over a totally real field.
§2. The group of Hida and the algebra of Iwasawa - Hida.

83. A conjecture on the existence of p - adic families of Galois representations
attached to motives.

§4. A generalization of the Hasse invariant of a motive.

§5. A conjecture on the existence of certain families of p - adic L - functions.
§6. Hilbert modular forms and motives associated with them.

§7. Example: Hecke characters of CM-type.

§8. p-adic L-functions of Hilbert modular forms and their convolutions.



Throught the paper we fix embeddings
o : Q — C, ip : Q- C,
and we shall often regard algebraic numbers (via these embeddings) as both complex
and p - adic numbe?s, where C, = 6,, is the Tate field (the completion of a fixed
algebraic closure ap of Qp), which is endowed with a unique norm | - |, such that
|plp= pt.
§1. Motives and L - functions over a totally real fleld.

Let F be a totally real number field of degree n = [F' : Q] and T is another number
field T which will be supposed a subfield of C. By a motive M over F of with coeflicients
in T we shall mean a collection of the following objects:

Mpo = M,, Mpr, My, In,e, Ixe,

where o runs over the set Jp of all complex embeddings of F,

M, is the Betti realization of M (with respect to the embedding ¢ € Jg) which is
a vector space over T of dimension d endowed for real ¢ € Jp with a T - rational
involution p, ;

Mpr is the de Rham realization of M, a free T @ F' - module of rank d, endowed with
a decreasing filtration {F},5(M) C Mpr | i € Z} of T ® F - modules (which may not
be free in some cases when F # Q);

M, is the A - adic realization of M at a finite place A of the coefficient field T (a
T - vector space of degree d over Ty, a completion of T at A) which is a Galois module
over Gp = Gal(F/F) so that we a have a compatible system of A - adic representations
denoted by

rma=r1r:Gr — GL(M,).

Also,

Ioo,u' : My @r C — Mpr ®0(F)-T C

is the complex comparison isomorhism of complex vector spaces for each o € JF,

o : M; Q7 Th - M,

is the A - adic comparison isomorphism of T - vector spaces. It is assumed in the nota-
tion that the complex vector space M, ®q C is decomposed in the Hodge bigraduation

M, ®r C = &; ;M}’
in which p,(Mi7) C MJ* for o € Jr and the Hodge numbers
ho(i,j) = ho(i, j, M) = dime M

do not depend on ¢. Moreover,



Ioo.a(GB."ziMfr"j) = Fpp(M) ®F,. C

Also, I , takes p, to the ry - image of the Galois automorphism which is denoted by
the same symbol p, € GFr and corresponds to the complex conjugation of C under
an embedding of F to C extending o. We assume that M is pure of weight w (i.e.
t+y=w)

The L - function L(M, s) of M is defined as the following Euler product:

L(M,s) = [[ Lo(M, Np™*),
p

extended over all maximal ideals p of the maximal order Of of F and where

Lo(M,X)™ = det(1 — X - ra(Fry*) | MJ?) =
(1= aME)X) - (1 - P (P)X) .. (1 - D(p)X) =
1+ A(P)X + ...+ Aa(p)X %,

here M'p is the norm of p and Fry € G is the Frobenius element at p, defined modulo
conjugation and modulo the inertia subgroup I, C Gy C GF of the decomposition
group G, (of any extension of p to F). We make the standard hypothesis that the
coefficients of L,(M, X)™! belong to T, and that they are independent of A coprime to
Np. Therefore we can and we shall regard this polynomial both over C and over C,.
We shall need the following twist operation: for an arbitrary motive M over F with
coefficients in T an integer m and a Hecke character x of finite order one can define the
twist N = M(m)(x) which is again a motive over F' with the coeflicient field T(x) of
the same rank d and weight w so that we haver

L(N,s) = HLP(Mx(p) -,

§2. The group of Hida and the algebra of Iwasawa - Hida.

Now let us fix a motive M with coefficients in T = Q({a(n)a)) of rang d and of
weight w, and let Endr M denote the endomorphism algebra of M (i.e. the algebra of
T-linear endomorphisms of any M,, which commute with the Galois action under the
comparison isomorphisms). Let

Gal, = Gal(F22, /F)

denotes the Galois group of the maximal abelian extension F,‘,‘_‘;O of F' unramified outside
primes of F above p and co. Define Op 1, = Or @ Or ® Z,.
Definition. The group of Hida GHps = GHpp is the following product

GHM = End;(Op’T.p) X Galp,



where End} denotes the algebraic T-group of invertible elements of Endr (it is im-
plicitely supposed that the group End} posesses an Op-integral structure given by an
appropriate choice of an Or - lattice). Consider next the C, - analytic Lie group

XM,p = Homconﬁn(GHM) C:)
consisting of all continuous characters of the Hida group G Hp, which contains the C,
- analytic Lie group
X, = Homeontin(Gal,, C))

consisting of all continuous characters of the Galois group Gal, (via the projection of
G H)p onto Gal,.
The group A'ys,, contains the discrete subgroup A of arithmetical characters of the

type
x -7 Nezy =(x,n,m),

where

x € Xifp
is a character of finite order of GHp, 1 is a T - algebraic character of Endr(Or,7,p),
m € Z, and Nz, denotes the following natural norm homomorphism

Nz, : Gal, —» Gal(Q2',/Q) = ZY — CX, Nz, € X,

Definition. The algebra of Iwasawa - Hida Ips = Ip , of M at p is the completed
group ring O,[[GH )], where O, denotes the ring of integers of the Tate field C,.

Note that this definition is completely analogous to the usual definition of the
Iwasawa algebra A as the completed group ring Z,[[Z,]] if we take into account that Z,
coincides with the factor group of Z; modulo its torsion subgroup.

Now for each arithmetic point P = (x,n,m) € A we have a homomorphism

vp:GHpy — Oy
which is defined by the corresponding group homomorphism
P:GHy — O C C;.
For a Iy;-module N and P € A we put
Np=NQryuvr Op

("reduction of N modulo P”, or a fiber of N at P).
Therefore, for each Galois representation

rn : Grp — GL(N)
its reduction ry, = r mod P is defined as the natural composition:



§3. A conjecture on the existence of p - adic families of Galois representations
attached to motives.

Note first that the fixed embeddings T — C,
oot Q — C, tp Q- C,
define a place A(p) of T attached to the corresponding composition
T Q I, C,.
Conjecture 1. For every M over F of rang d with coefficients in T there esists a
free Ing-module My of the same rang d, a Galois representation
rr: Gp — GL{Mp),

an infinite subset A’ C A of "positive” characters, and a distinguished point Py € A
such that ‘
(a) the reduced Galois representation

TP GF — GL(MI,P;,)

is equivalent over C, to the A(p) - adic representation rps () of M at the distinguished

place \(p);
(b) for every P € A’ there exists a motive Mp over F' of the same rang d such that

its Galois representation is equivalent over C, to the reduction
rrp:Gr — GL(M; p).
We call the module Mp the realization of Iwasawa of M.

§4. A generalization of the Hasse invariant of a motive.

We define the Hasse invariant of a motive in terms of the Newton polygons and
the Hodge polygons of a motive. Properties of these polygons are closely related to the
notions of a p - ordinary and a p - admissible motive.

Now we are going to define the Newton polygon Pnewton,e(4) = PNewton,o(u, M)
and the Hodge polygon Phodge,o(t) = PHodge,o(t, M) attached to M, o. First for
p = p(o) we consider (using i) the local p - polynomial

Ly(M, X)™ =14+ Ai(p)X + - + Ag(p)X*
= (1-aD(P)X) - (1 - a®(p)X) - ... (1 - !V (p)X),
and we assume that its inverse roots are indexed in such a way that
ord,a™M(p) < ord,a@(p) < -+ < ord,a!?(p)

Definition. The Newton polygon Pnewton,o(u)}0 < u < d) of M at p = p(o) is the
convex hull of the points (¢,0ord, 4;(p)) (i =0,1,---,d).

The important property of the Newton polygon is that the length the horizontal
segment of slope i € Q is equal to the number of the inverse roots a{/)(p) such that



ord,a?(p) = i (note that i may not necessarily be integer but this will be the case for
the p - ordinary motives below).

The Hodge polygon Prisdge,o(4) (0 £ u < d) of M at o is defined using the Hodge
decomposition of the d - dimensional C - vector space

M, =M, ®7C =®; ;M

where M%7/ as a C - subspace. Note that the dimension h,(i,;) = dimgc M}’ may
depend on o.

Definition. The Hodge polygon Prodge,0{1) is & function [0,d] — R whose graph
consists of segments passing through the points

(0,0), i O ho(i3), Y hoi'hali', 1)),
i <i <i
so that the length of the horizontal segment of the slope ¢ € Z is equal to the dimension
he(,7).
Now we recall the definition of a p - ordinary motive in the simplest case F = T = Q
(see [Co], [Co - PeRi]). We assume that M is pure of weight w and rank d. Let
Gp = Gal(Q,/Q;) be the decomposition group (of a place in T' over p) and

qbp:Gp—»Z;:

be the cyclotomic character of G,. Then M is called p ordinary at p if the following
conditions are satisfied:
(1) The inertia group I, C G, acts trivially on each of the ! - adic realizations M;

for | # p;

(ii) There exists a decreasing filtration F;;V onV =M, = Mg®Q, of Q, -
subspaces which are stable under the action of G, such that for all i € Z the group G,
acts on F, ;V/ F _,:"HV via some power of the cyclotomic character, say ¢,;*. Then

er(M) 2 -+ 2 e(M)
and the following properties take place:

(a) L
dimgq, F;V/F;'HV = h(e;,w — ¢e;);

(b) The Hodge polygon and the Newton polygon of M coincide:
PNewton(u) == PHodgt(u).

If furthermore M is critical at s = 0 then it is easy to verify that the number d, of the
inverse roots o/ (p) with

ord,a)(p) < 0 is equal to d¥ = d+ (M) of M}.

In the general case (of a motive M over F with coefficients in T') the notion of a p -
ordinary motive can be defined using the restriction of the ground field F to Q and the
restriction of the coefficient field T to Q (the last operation corresponds to fogetting of



the T - module structure on the realizations of M). In this way we get a motive M’ over

with coefficients in Q of the same weight w and the rank rk(M') = [F : Q][T : Q] - d.
However, it turns out that the notion of a p - ordinary motive 18 too restrictive,

and we introduce the following weaker version of it.

Definition. The motive M over F with coefficients in T is called admissible at p if for

all ¢ € Jg we have that

PNewton,a(d:) = PHodge,a'(d:)

here d}f = d}(M) is the dimension of M,, o € Jp.
In the general case we use the following vector quantity k = (h,), which is defined
in terms of the difference between the Newton polygon and the Hodge polygon of M:

ha = PNcwton,a(d:) - PHadgc,a(di)'

We call the vector h = h(M) = (h,), the Hasse invariant of M at p. Note the following
important properties of the quantity h:

(1) h = h(M) does not change if we replace M by its Tate twist.

(1) h = h(M) does not change if we replace M by its twist M = M(x) with a
Hecke character x of finite order whose conductor is prime to p.

(111} h = h(M) does not change if we replace M by its dual MY

In the next section we state in terms of this quantity a general conjecture on p -
adic L - functions.

§5. A conjecture on the existence of certain families of p - adic L - functions.

We are going to describe families of p - adic L - functions as certain analytic
functions on the total analytic space, the C, - analytic Lie group

XM,p = Homconﬁn(GHM, C:)a

which contain the C, - analytic Lie subgroup (the cyclotomic line) A}, C Xz,
Xp = Homeontin(Galp, C;‘)

In order to do this we need a modified L - function of a motive over F. Following
J.Coates this modified L - function has a form appropriate for further use in the p - adic
construction. First we multiply L(M, s) by an appropriate factor at infinity and define

Aco)(M, s) = Eoo(M, s)L(M,s)

as A(eo)(T, RryqM, p, s) in the notation of J.Coates [Co] with p = i so that E(M,s) =
Ew(1,Rp/qM, p,s) is the modified I - factor at infinity which actually does not depend
on the fixed embedding 7 of T into C. Also we put

Q" (M) = ((M)) = ¢*(RM)(2mi)"*M) ¢ (T @ C)*
where

v=(-1)"r(RM) = > _jh(i,j,RrjqM) =) _jh(i,j,M), n=[F:Q)],

i<o0 j<0



c*(RM) = c*(Rp/qM) is the period of RpyqM. Note that the quantity r(M) has a

natural geometric interpretation as the minimum of the Hodge polygon Phodge(M).
Then the period conjecture of Deligne can be stated in the following convenient

form: if s = 0 is critical for M then for any m such that M(m) is critical at s = 0 we

have that
Aw(M(m),0)
Qv(M)

In order to deduce this statement from the original conjecture on critical values we
can use the same arguments as in the J.Coates’s work [Co], where it was shown that

eT.

Eoo(M, 0) ~ (27i) (M) mod QX
and it follows that

Eoo(M(m), 0) ~ (2ﬂi)r(RM)-—md'(RM) = (27ri)n(r(M)—md'(M)) mod Qx,

where ¢ = + if j <0 and ¢ = — if > 0 for j = w/2. If we combine this fact with the

equivalence
ct(M(m)) ~ (2n1)* *™c*(M) mod T™

we deduce from the above form of the conjecture that
Aoy (M(m), 0) ~ (2i) (M= (M)+ma” (M) 1)

Note that in our situation we have that d*(M) = d¥(M) because both M and M(m)
are critical at s = 0: we have that v = + only for j — m < 0 because M(m) is critical
but according to Lemma 3 in [Co] the condition j < 0 is equivalent in this situation to
7—m<0.

Modified conjecture on the critical values. Assume that M is critical at
s = 0. Then there exist constants ¢** (o, M) € (T ® C)*(e, = %) defined modulo T
such that if we put for a given sign €0 = (€0,0) € Sgnr

Qeo, M) = (1@ (2mi))" M [[ e*o< (0, M)

with r(M) = 3., jh(i,j, M) then for any integer m and Hecke character x such that
M(x)(m) is critical at s = 0 and €,(x)v = €¢,, we have that

Ay (MG)(m), (G (18 DY*)** M (eo, M) € T(x)
where v = sgn((-1)") =% .
We recall that by definition
Eoo(Ma S) = EOO(Ta RF/QMv 2, ‘S) = EOO(U) P S)v

where U runs over direct summands of the Hodge decomposition, p =t and E(U, p, s)
is given by:

(a) H U = M7* @ M*J with j < k, then Eoo(U, p,8) = g, (s — j)*5F);

(b) f U = M** with k > 0, then Eo(U, p,s) = 1;



(c) £ U = M** with k < 0, then E(U,p,s) = Roo(U,p,s). Here p=° =
exp(—pm3/2), Tc,p(s) = p~*Tc(s), To(s) = 2(2m)~°T(s), Tr(s) = 7~*/*T(s/2),

ROO(UHO:‘S) = LOO("" U: 3)/(5°°(T$ U1Pa S)LOO(T’ UV(1)7 _3))
with L - and ¢ - factors described in [De3] on p.329, so that we have in case (c)

Fr(s—k+6)  2I(s —k+é)cos(n(s —k+8)/2

Rw(U, Pvg) = i'SPR,(l — s+ kE— 5) - z‘a(zw)a—-k-i-ﬁ

where § = 0,1 is chosen according with the sign of the scalar action of p, on U = MFk*
so that p, acts as (—1)¥+¢,
We define

Ap,o0)(M(m)(x),8) =

(GO)T D * )" MMED TT Ap(M(m)(x), 5) - Aqoo)(M(m)(x),5)
plp

where
[Tt ia (1= X(P)D (PN P=) I, (1 = X~ ()2 () N p*~1)
Ap(M(x),s) = ¢ for p fe(x)

dt Np’
e, (5

Let A be the discrete subgroup A of arithmetical characters,

ordpe(x)
) ’ ,otherwise.
\

x -1 Nexy = (x,n,m) € A,

A' C A the subset of "positive” Py € A characters, a distinguished point of conjecture
I. Let A" C A’ be the subset of critical elements, which consists of those P, for which
the corresponding motives Mp are critical (at s = 0). Now we are ready to formulate
the following

Conjecture II. For a canonical choice of periods (P) € C* for P € A" there
exists a C, - meromorphic function

CM . XM_p — Cp

with the properties:
(i)

EM(P) = Q(P)

for almost all P € A"
(ii) For arithmetic points of type

P= (Xa’?»m) e A"



with 7 fixed there exists a finite set = C Ay, of p - adic characters and positive integers
n(¢) (for € € E) such that for any gy € Gal, we have that the function

[ (=(g0) = €(g0)" O Lps( - P)

£es

is holomorphic on A%;
(111) For arithmetic points of type

P =(x,7,m)e A"

with 1 fixed the function in (ii) is bounded if and only if the Hasse invariant h(P) =
h{Mp) vanishes;
(iv) In the general case the function L (P - z) of z € &), is of logarithmic growth
type o(log N'(-)*¢ with
ho = [mf.x h,] + 1.

Don Blasius has suggested us the following modification of the Conjecture II, based
on the theorem of Katz on p-adic L-functions of CM-type, and on the theory of p-adic
periods [BI3]:

Conjecture II'. There exists a certain choice of complex periods Q.(P) € C*
and p-adic periods Q,(P) € C) for all P € A" such that "the ratio® Qoo(P)/Qp(P) is
canonicaly defined, and there exists a C, - meromorphic function

EM . XM,;, — Cp
with the properties:
(i)
M(P) _ Ap(eo)(M(m)(x),0)
Q,(P) Q(P)

for almost all P € A",
(1) For arithmetic points of type

P =(x,n,m)e A"

with 1 fixed there exists a finite set = C Aps, of p - adic characters and positive integers
n(¢) (for ¢ € Z) such that for any go € Gal, we have that the function

H(“’(gn) - 5(90))"(£)£M(-'5 - P)

1=

is holomorphic on A%;
(iii) For arithmetic points of type l

P=(x,n,m)e A"

with 7 fixed the function in (ii) is bounded if and only if the Hasse invariant h(P) =
h(Mp) vanishes;

10



(iv) In the general case the function Lp(P - z) of x € A&} is of logarithmic growth
type o(log N(-)*¢ with
hy = [max h,] + 1.

§6. Hilbert modular forms and motives associated with them.

We use the notation of Shimura [Shi6], [Shil0] and we regard the group GL,(F') as the
group Gq of all Q - rational points of a certain Q - subgroup G C GLy,. Then Hilbert
modular forms will be regarded as complex fuctions on the adelic group G4 = G(A)
which is apparently identified with the product

GLy(Fa) = Goo x G
where
Goo = GLy(Fo) = GLy(R)", G = GLy(F),

A, Fjp denote the rings of finite adels of Q and F respectively.
The subgroup

Gl = GL} (F.) = GLF (R)"

b
a:(ah...,au),az ((Cld)

such that deta, >0, v = 1,2,---,n. Every element « € G}, acts on the product H" of
n copies of the upper half plane according to the formula

consists of all elements

01(21, Y Zn)= (al(‘z])a T an(zn))a

where

a,(z,) =(ayz, + b,)/(cyz, +d,) (v=1, 2, ---, n)

For z = (21,22, +,2,) € H" we put ep(z) = e({z}),{z} = z1 + ... + z,, and e(z) =
exp(2miz) and we use the notations Nz = z; - ...- zp, and i = (3, ..., 1). For a« € G,
an integer n - tuple k = (k;,---,k,) and an arbitrary function f:$" — C we use the

notation
(f |k O‘)(z) = H(Cuzu + dv)_ky f(C]f(i“'))det'(a'u)k"/‘2

Let ¢, C OF be an integral ideal, ¢ = ¢Oy its p - part, 0p = 00, the local different. We
shall need the open compact subgroups W = W, C G defined by

W( == G; X Wc(p),

b
Wp) = (Ccld) € GLy(Fy) | be D;l, c € 0pctp, a,d € Op,ad —bc € O;‘

11
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By a Hilbert automorphic form of the weight k = (ky,- -+, ky), the level ¢, and the Hecke
character 1 we mean a function
f: Ga — C satisfying the following conditions (6.1) — (6.3):
f(saz) = Y(s)f(x) for all z € G4,
s € FY (the center of G), and a € Gq (6.1)

We let ¢:(0O/c)* — C* denote the ¢ - part of the character ¢ and the extend the
definition of 3 over the group W, by the formula

(2 8wt

then forall T € G5

f(zw) = Y(w*)f(z) for w € W, with we =1, (6.2)
where .
a b _(d -b
c d) \—-¢ a /’
If
w = w(8) where w(8) = (wy1(61), -++, wa(br)),
cosf, —siné,
wy(6,) = (sine,, cos b, ) !
then

f(zw(0)) = f(z)exp(—i(k161 + ... + knb,)).

An automorphic form f is called a cusp form if

/ f( (1] ;)gdt=0forallgEGA. (6.3)
Fa/F

The vector space M (¢, ) of Hilbert automorphic forms of holomorphic type is defined
as the set functions satisfying (6.1) — (6.3) and the following holomorphy condition (6.4):

for any z € Go with o, = 1 there exists a holomorphic function ¢g;:H" — C such that

for all y = (z 3) € G we have that

f(zw) = (g2 [« w)(i) (6.4)

(in the case F = Q we must also require that the function g, is holomorphic at the
cusps). Let S(c, ¥) C My(¢, ¥) be the subspace of cusp forms.
Hecke operators which act on Sk(¢, ¥) and Mg(c, ) are introduced by means of
the double cosets of the type WyW for y in the semigroup
Y.=GAN(GL x Yp),

where

12



b
Y(p) = {(:d) € GLy(Fp) | b€, c€pey, a, dE€EOp, ap +¢p = Op}-

The Hecke algebra H. consists of all formal finite sums of the type 3 - ¢, WyW, with the
multiplication in H, defined by a standard rule. By definition T¢(m) is the element of H,
obtained by taking the sum of all different WwW with w € Y, such that div(det(y)) = m.
Let

T(m)' = N(“‘)(ko_z)/QTc(m)

be the normalized Hecke operator, where ky denotes the maximal component of the
weight k. Suppose that f € S(r, ¥) is an eigenform of all T¢(m)' with the eigenvalues
C(m, f). Then there is the following Euler product expansion:

L(s,f) = Z C(n,f)An~° = H(l ~ C(p, NP~ + p(p)Npro—1-22)~1
n r

All of the numbers C(n, f) are known to be algebraic integers.

Let f € Si(c, ¢) be a primitive Hilbert cusp eigenform. In this case the numbers
C(n, f) can be regarded as the normalized Fourier coefficients of f. The important
analytic property of the corresponding L - function L(f, s) (see [Shi6], p.655) is that
it admits a holomorphic analytic continuation onto the entire complex plane, and if we
set,

A(f,s) = [[ (s = (ko — ki)/2)L(f, s)
i=1
then A(f, s) satisfies a functional equation, which expresses A(f, s) in terms of the func-
tion A(f?, k¢ —s). According to the general conjecture on the analytic properties of the
L - functions of motives we may suggest that f should correspond to a motive M = M(f)

over F of rank 2, and weight ko with coefficients in a field T containing all C(n, f) such
that

L(M,s) = L(s,f), A(M,s) = A(s, )

and for fixed embeddings 7 € Jr and ¢ = o; € Jr the Hodge decomposition of M,, is
given by

M =M, @r,.C= (6.5)

—k )2 (kg k) 2-1 otk -1 (kg=-k))/2

M oMD"

where k; is the component of the weight k, attached to the fixed embedding o; (as was
mentioned above this decomposition may depend on r and o;). It is obvious from (6.5)
that if such motive exists then the weight k£ must saisfy the condition k; = k; = ... =
kn mod 2.

There are several confirmation of the conjecture. First of all it is known in the
elliptic modular case F' = Q due to U.Jannsen and A.J.Scholl [Ja], [Scho); the existence
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of the Galois representations of Gal(F/F) corresponding to A - adic realizations of these
motives was discovered earlier by Deligne [Del]. If we restrict such representation to
the subgroup we obtain the L - function of certain Hilbert modular form of the same
(scalar) weight which is the Doi - Naganuma lift (or "base change”) of the original
elliptic cusp form. In the general case the existence of Galois representations attached
to Hilbert modular forms was established by Rogawski - Tunnell [Ro-Tu] and Ohta {Oh]
(n odd) (under a local hypothesis) and by R.Taylor [Ta] in the general case. Also a
number of results on special values of the fuction L(s,f) is known, which math the
above conjectures on the critical values and on the p - adic L - functions [Shil], [Man],
[Kal]. As in the elliptic modular case there is a conjectural link between motives of
the type M(f) and the cohomology of certain Kuga - Shimura variety (fiber product of
several copies of the universal Hilbert - Blumenthal abelian variety with a fixed level
structure and and endomorphisms): namely, for the decomposition RpjqM =i M7
the tensor product ®7_, M is a motive over Q of rank 2" which conjecturally lies in
the above cohomology, see the interesting discussion of this link in [Ha2], [Oda)]. In case
ky = ... = k, = 2 the motives have the Hodge type H%! @ H!®. In some cases (e.g.
when n is odd) the motives M7 can be realized as factors of Jacobians of Shimura
curves corresponding to quaternion algebras, which split at one fixed infinite place o;
and ramified at all other infinite places o;(j # i) ([Shi7]; see also forthcoming work of
M. Harris [Ha3], and [Bl-Ro}).

§7. Example: Hecke characters of CM-type.

7.1. Let K D F be a totally imaginary quadratic extension, and 5 : A¥ /K> — C*
be an algebraic Hecke’s Grossencharakter such that

for a € K,a = 1{mod ¢(5)), where ¥ = brag; : K — C, is a fixed CM-type of K, w; are
positive integers, wy = max; w;. Then there exists a Hilbert modular form f of weight
k=(w;+1,:-+,ws+1) such that L{s,f) = L(s,n), and M(f) coincides with the motive
M(n) = Rg;r([n] obtained by restriction of scalars from the motive ] (the last motive
exists as an object of the category of motives of CM-type, see [BI1]).

The Hodge structure of M(%), has the form

((wo —we)/2, (wo +ws)/2) + ((wo + ws)/2, (wo — ws)/2),

Let
p=p, = PP, if p splits in K,
AR 2 if p is inert in K.

Then the local factor of L(M(7), s) is given by

L, 37 = { BB, i e

14



Therefore the generalized Hasse invariant h = (h,)s of M(n) is given by

b = 0, if p splits in K,
7 | wo/2, ifp isinertin K.

In the additive notation the type of n can be written in the following form:

Z_“;_“ 0_3)4.%2(0-{—&‘):Zd,(a—ﬁ)+m020,

o

where mg = wy,d, = (ws — wo)/2. Using a shift one sees that the point s = m is
critical for L(s,n) iff s = 0 is critical for the character A(a) = n(a)AVa™"™.
Then one sees that the character n of the type Y. d,(0 —7) +mq ), o is critical
at 0 iff
mg,de 20 or my £1,d, 21— mg( for all o) (%)

In order to state the thorem of Katz on p-adic L-functions of CM-fields (in a
simplified form) we let € C Ok denote an integer ideal of the maximal order of K,
G oo(€) the ray class group of K of conductor €p™.

For each CM-type ¥ one can canonicaly choose a constants

Qoo = (Qeo(0))wes € (C)",

0y = (Qp(0))oex € (C))"

(complex and p-adic periods).

The theorem of Katz states that under the assumption 2 = 0 there exists a bounded
p-adic measure p on Goo(€) such that for all critical characters A of conductor dividing
Cp®° the value of the p - adic integal

fcm(c) Adp
Qn102+2d
P

essentially coinsides with the normalized special value

A(p,00)(2,0)

where  denotes the p - adic avatar of .
This theorem provides an example of a p -adic family of Conjectures I and II,
because Endr(M) is essentially K, and by class field theory GH )y is related to Goo(C).
7.2. Families of Hida of Hilbert modular forms. In this case we start from
a motive M(f) attached to a (general) Hilbert modular form and obtain the group
GHy = O;‘,,T’p X Gal, whose characters parametrize "the weights“ of Hilbert modular
forms in the corresponding family.
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§8. p-adic L-functions of Hilbert modular forms and their convolutions.

8.1. Periods of Hilbert modular forms.
Let f € Si(c, ¥) be a primitive Hilbert cusp eigenform which is supposed to be "motivic*
in the sense of Section 6, and let

L(s,£(x)) = D x(mC(n, IV = (1 = x(p)C(p, )N p™* + X* (P)p(p)Npe~"72%) 71

Then the critical strip of L(s, f(x)) is given by m. < m < m*,
m, = max{(ko — k;)/2} + 1, m* = min{(ko + k;)/2} - 1.

Using the Rankin - Selberg method G.Shimura proved that there exist constants
cE(o,f) € (T ® C)*
defined modulo T* such that if we put

(x,f) = D5 *G(x) [ (o, 1)
oedp

then for all m € Z,m, < m < m* we have that
"M A(m, (X))
c’(x,f)

€ T(x),

where v = (-1)™.

This statement coincides with that of the modified period conjecture if we take for
c*(a, M(f)) the quantities c*(o, f).

In order to formulate the results on p - adic L - functions, put

1= C(p, )X +h(pINpH 71X = (1 - o(p)X)(1 - o' (p)X) € C,[X]
where a(p), a'(p) are the inverse roots of the Hecke polynomial assuming that
ordya(p) < ordya (),
Note that in the p - ordinary case we should have
ordya(p) = (ko — k;)/2, ord,a’(p) = (ko + ki)/2 -1

for the prime p = p; = p(o;) attached to the embedding o; (see Section 5).
8.2. Theorem. Put h = [max(ord,(a(p(o;)) — (ko — ki)/2)] + 1. Then for each sign
€0 = {€0,0} € Sgnp there exists a C, - analytic function Lg;‘;)on X, of the type o{log")
with the properties:

(i) for all m € Z, m, < m < m*, and for all Hecke characters of finite order
X € X;&ors with ve,(x) = €0,0 (¢ € JF) the following equality holds

) promy _ DRI™" A(f(x),m)
Ly ONep) = =ors HA,(f(X),m), TR
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where

(1= x(p)'(P)NP~™)1 = x~(P)a(p) "' Np™~1),
if p|e(x)
Ap(f(x),m) = (Mf_r;)ordp «(x)
alp 4

if p fe(x)
and the constant (e, f) is given by

Qeo, f) = (2m1)™"™ - D* - [[ = (o, 1),

(ii) If h < m* ~m, +1 then the function LE;')’) on X, is uniquely determined by (i).
(iii) If
max(ordy(a(p(:)) = (ko — k:)/2) = 0
then the function LE;;) is bounded on X,

In the p - ordinary case this theorem was established by Yu.L.Manin (in a less
explicit form) using the theory of generalized modular symbols on Hilbert - Blumenthal
modular varieties. The non - p - ordinary case was treated only for F = Q by Visik [V1].
For an arbitrary totally real field F' one can use the Rankin method and the technique
of the Shimura’s work [Shi6].

8.3. The Rankin convolution and the tensor product of motives. Let us
consider the Rankin convolution

L(s,f,g)= Y _C(n,f)C(n,g)N(n)™* (8.1)

attached to two Hilbert modular forms f, g over a totally real field F' of degree n =
(F : Q], where C(n,f), C(n,g) are normalized " Fourier coefficients® of f and g, indexed
by integral ideals n of the maximal order O C F (see §6). We suppose that f is a
primitive cusp form of vector weight k£ = (k;, -+, k,), and g a primitive cusp form of
weight | = (l;,--+,1,) We assume that for a decomposition of Jr into a disjoint union
Jr = J U J' the following condition is satisfied

k; >l (foro; € J), and §; > k; (for o; € J'). (8.2)
Also, assume that
klEkQE"‘Ekn mod2, (8.3)
and
h=lh=-=1, mod2. (8.4)

Let ¢(f) C Op denote the conductor and ¢ the character of f and ¢(g), w denote the
conductor and the character of g (¢,w : Aj/F>* — C* being Hecke characters of finite
order).
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The essential property of the convolution
L(s,f,8(x)) = Y x(MC(n, ) C(n,g)N(n)~*
(twisted with a Hecke characer x of finite order) is the following Euler product decom-
position
L (2s 42— ko — lo, Ywx*)L(s, f,g(x)) =
I (@ = x(a)a(@)B(a)M(a)*)(1 = x(a)a(a)B' ()N (9)~*)x (8.5)
q

x (1= x(0)/ (BN (@) 7)1 = x(a)a (DB (DN (9)™")) 7,
where the numbers a(q), a'(q), A(9q), and f'(q) are roots of the Hecke polynomials
X - C(0, D)X + (N (@)™ = (X — o(q))(X - '(a)),

and
X? - C(q,8)X +w(a)N(a)*™! = (X - B(@))X ~ B'(a)).

The decomposition (8.5) is not difficult to deduce from the following elementary lemma
on rational functions, applied to each of the Euler g-factors: if

- ) > 1
2 AX = o T &P S aTEma Ry

i=0 =0
then 2
3 .Y — 1-ad'pf'X
ig; AiB; X' = (1 - aﬁX)(l — O!ﬂ'X)(l _ Cl'ﬁX)(l _ O”ﬁ'X). (86)

Assume that there exist motives M(f) and M(g) associated with f and g. Then
Le(2s +2 -k — 1, ywx®)L(s, f,g(x)) = L(M(x), s)

where M = M(f) ® p M(g) is the tensor product of motives over F' with coeflicients
in some common number field T. Using the Hogde decompositions for M(f) and M(g)
and the Kiinneth formula for M = M(f) ® p M(g) we see that under our assumption
the motive M has d = 4, w = kg + lp — 2, and the following Hodge type:

M, @C=
@rEJT (Mc('f0+10—k; —t.‘ )/21(k0+‘0+k; +l.' )/2-2) @

ko+lo— |k =17 ])/2=1,(ko+lo+|k] —(T])/2—-1 ko+lo+ KT =17 ])/2=1,(ko+lo—|k] =17 ) /21
EBM.-(;.-°+° | n/ (ko+io+] D/ @Mt(nu ot| D/ (kot+lo—| 1/ )

M(ko+!o+k.-'+1.-’)/2—2,(ko+ln—k.-'—l.-')/2
o
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Moreover,

A(M(X)s S) = A(Safv g(X)) =

n

I (To(s = (ko + 1o — ki = 1;)/2)Tc(s = (ko + lo — [ki — Lil)/2 + 1)) x
i=1 :

x Le(2 +2 — ko — lo, Ywx*) L(s, f,8(x)),
and this function satisfies a functional equation of the type s +— kg + lp — 2 — s.

8.4. The critical values of the Rankin convolution. Let us now set

M, = ma.x((ko + IO - |k, - I,!)/2 - 1),+1, m* = k{) + lu -2- mMy.

The periods c¢¥(o, M) can be easily computed in terms of c*(a, M) (as in the ellip-
tic modular case; see a more general calculation in [Bl2]). As a result one gets that
c*(o, M) = ¢(o, M) does not depend on the sign %, and is given by

C:t g = C+(0, f)c_(a’ f)6(01g): lf g E J
(:80) {C’L(U,g)c‘(o,g)ﬁ(a, f), foceld.

Moreover,

E(M(x)) = G(x)7* [] (e, M).

ceJ
Let us apply the modified conjecture on special values to the L-function

A(M(x),s) = A(s, ,8(x)),
and set () = [1, (o, M),
c(‘L f) = H C+(a: f)c_(a! f)s C(J'ag) = H C+(0) g)c“(o,g),
ocJ e€J!

and

5(J,8) = [[ 6(o,0), 6(7",8) = [] é(o,8)

o€J cEJ
Then we see that
o, £)e(J', £) = (£,1), 8(J,)6(J',f) = G(sp) ™" (2mi)"FoD),
c(J,g)e(J',g) = (g,g), 6(J,£)6(J',g) = G(w)™!(2mi)*(o~D)
and
e(M(x)) = c*(M(x)) = G(x)"*c(J, £)8(7,8)c(J', 8)5(J', F).

With this notation the modified conjecture on the critical values takes the following
form: for all Hecke characters x of finite order and r € Z,m, > r < m* we have that

A(r, £, g(x)) — A(M(x),r)
G(x)~2c(J,£)5(J,8)c(J',g)8(J', f)  G(x)~%c(M)

€ Q(f,g,x)-
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8.5. Let us consider the special case when J' = 0, i.e. k; > [; for all o; € Jp. Then
() = c(Jp, ) = (£,f), 6(J,8) =6(Jr,g)=G(w) ! (2mi)" =D,
and the above property transforms to the following:

A(r, f,8(x))
G(x)~2f, ), G(w) =1 (2mi)n(l—1) € Q(f,8,x),

where Q(f, g, x) denotes the subfield of C generated by the Fourier coefficients of f and
g, and the values of x. This algebraicity property was established by G.Shimura [Shl]
by means of a version of the Rankin - Selberg method.

In the general case the above algebraicity property was also studies by G.Shimura
[Sh2], [Sh3] (for some special Hilbert modular forms, coming from quaternion algebras)
and by M.Harris [Ha3] using the theory of arithmetical vector bundles on Shimura

varieties. The idea of the proof was to replace the original automorphic cusp form
f: G(A) — C of holomorphic type by another cusp form f/ : G(A) — C such that

fJ(gli' °t )gﬂ) = f(gljl,’ * )gnjn)s

where ¢; € GL2(R),
(Y, e
3"{ 22, el
Then f7 can be described by functions f{ on H", which are holomorphic in z; (1 € J)
and antiholomorphic in z; (i € J'). Then the differential forms

fi] Nies dz;

define a certain class c/(f’) of the degree |J| in the coherent cohomology of the Hilbert -
Blumenthal modular variety, or rather its toroidal compactification ((Hal|, [Ha2}). This
space of coherent cohomology has a natural rational structure over a certain number
field FY, defined in terms of canonical models. From the theory of new forms it follows
that there exist a constant v(J,f) € C* such that the differential form attached to
v(J,£)~'f7 is rational over the extension of F/ obtained by adjoining the Hecke eigen-
values of f. Then the critical values of the type A(r,f,g) can be expressed in terms of
a cup product of the form
d(fyuel(g’)UE,

where E is a (nearly) holomorphic Eisenstein series. Then the above algebraicity prop-
erty can be deduced from the fact that the cup product preserves the rational structure

in the coherent cohomology. However, the technical details of the proof are quite diffi-
cult.

8.6. p-adic convolutions of Hilbert cusp forms. Now we give a precise
description of the p-adic convolution of f and g assuming that both f and g are p-
ordinary, i.e. for p; = p(o;) one has

ord,a(p;) = (ko — k;)/2, ordya’(p:) = (ko + k:)/2 -1,
ord,B(p:) = (lo — 1:)/2, ordpf'(pi) = (lo +1:)/2 -1,
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or equivalently, ord,C(p;,f) = (ko — ki)/2, and ord,C(pi,g) = (lo — 1;)/2. We assume
also that the conductors of f and g are coprime to p and we set
AP(svf9 g(X)) =
[T (- xee(p)BrINDT*)N = x(Po)a! (BB (PINPT*)x

o, €\S(x)
X (1= x(p:) " alp:) 7 Bp:) T NI~ — x(pi) " a(ps) ™ B (pi) T N~ )x
x JI @ =xpa®@)f ()N )1 = x(9:)a' (i)' (PN P;*) X

o €J'\S(x)
X (L= x(pi) " a(p:) 7 B(pa) T NI = x(pi) T (pi) T B(P) T NPT,
Then we introduce the following constant:
Wf, g) = c(J,1)8(J, 8)e(J',8)6(J', 1) =
[T <* (0.0 (0,080, 8) ] *(o,8)e (0, 80600, D)

ocJ o€t

8.7. Description of the p-adic convolution. Under the conventions and no-
tation as above there exists a bounded C,-valued measure u = ug g on Galp, which is
uniquely determined by the following condition: for all Hecke characters x € X;“’ and
all r € Z satisfying m, < r < m* the following equality holds:

/ X Wzpdus g =
Gal,

. DZr(_l)r A(T, fa g(X))
in GF (tg) 1T 4501200

plp

NP,- -1 ord,, ¢(x) NP,-_I ordy, ¢(x)
* ,:!';[J (G(Pf)zﬁ(Pi)ﬂ'(Pi)) o]-;[J (ﬂ(p;)’a(p;)a'(p;)) )’

and the measure ug g defines a bounded C,-analytic function

Leg: X, = C, A3z Tdusg
Gal,

(the p-adic Mellin transform of ug g ), which is uniquely determined by its values on the
characters ¢ = X_IN:B; € &,.

(Note that the above expression could be written in a slightly simplier form if we
take into account the equalities:

a(p)?A(p)B'(p) = a(p)’w(P)Np"!,  B(p)a(p)a(P) = A(p)*h(P)NP™ 1)

8.8. Concluding remarks. The existence of the p-adic measure in 8.7 is known in
the special case, and J = @ (see [Pa2]), where f and g are assumed to be automorphic
forms of scalar weights & and I, k£ > I. One verifies easily that the description 8.7
perfectly matches with the modified period conjecture and with the general conjecture
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on the p - adic L - functions of Section 6. Also, this construction was recently extended
by My Vinh Quang (Moscow University) to Hilbert automorphic forms f and g of
arbitrary vector weights k = (ky,---,k,), and | = (I;,---,1,) such that k; > {; for all
: = 1,---,n, and to the non-p-ordinary case. In this situation the p-adic convolution
of L¢g is also uniquely determined by the above condition provided that it has the
prescribed logarithmic growth on &), (see [V1)).

In the general case the proof of the algebraic properties of the Rankin convolution
in [Ha3] can be used also in order to carry out a p-adic construction. First of all, one
obtains an expression for complex-valued distributions attached to A(r, f, g(x)) in terms
of the cup product of certain coherent cohomology classes, and one verifies that these
distributions take algebraic values. Then, integrality properties of the arithmetic vector
bundles can be used for proving some generalized Kummer congruences for the values
of these distributions, which is equivalent to the existence of p-adic L-functions in 8.7.
However, some essential technical difficulties remain in the general case, and 8.7 can
not be regarded yet as a theorem proven in full generality.
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