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1. Introduction

It is well known [4, 6, 7, 10] that all automorphisms of polynomial algebras and free
associative algebras in two variables are tame. Moreover, the groups of automorphisms
of polynomial algebras and free associative algebras in two variables are isomorphic and
have a nice representation as a free product of groups (see, for example [2, 5]).

It was recently proved that the automorphism groups of polynomial algebras [16, 17, 22]
and free associative algebras [23, 25] in three variables over a field of characteristic 0 can-
not be generated by all elementary automorphisms, i.e. there exist wild automorphisms.
Defining relations of the tame automorphism group of polynomial algebra in three vari-
ables were described in [23, 24].

There are several well-known descriptions of the automorphism group of a free group
by generators and defining relations (see, for example [26]). P.Cohn proved [1] that
all automorphisms of finitely generated free Lie algebras are tame. Later this result was
extended to free algebras of Nielsen-Schreier varieties [9]. Recall that a variety of universal
algebras is called Nielsen-Schreier, if any subalgebra of a free algebra of this variety is
free, i.e. an analog of the classical Nielsen-Schreier theorem is true. The varieties of all
nonassociative algebras [8], commutative and anticommutative algebras [18], Lie algebras
[18, 27] are Nielsen-Schreier. Other examples of Nielsen-Schreier varieties can be found
in [11, 15, 19, 20].

So, the automorphism groups of free algebras of Nielsen-Schreier varieties are generated
by all elementary automorphisms. In this paper we describe a set of defining relations of
these groups. In fact, we show that the relations for elementary automorphisms studied
in [23, 24] are defining relations in this case. Note that groups of automorphisms of free
algebras of Nielson-Schreier varieties (tame automorphism groups of polynomial algebras
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and free associative algebras) of rank at least four over a field of characteristic 0 do not
admit a faithful representation by matrices over any field [14].

The paper is organized as follows. In Section 2 we describe a set of relations for ele-
mentary automorphisms and repeat the proofs of two lemmas from [24] for completeness.
In Section 3 we give some well-known definitions and theorems about free algebras. In
Section 4 we prove the main result.

2. Defining relations

Let F be an arbitrary field, and let M be an arbitrary variety of linear algebras over F .
By A = FM < x1, x2, . . . , xn > denote the free algebra of M with a free set of generators
X = {x1, x2, . . . , xn}, and by AutA denote the group of all automorphisms of this algebra.
Let φ = (f1, f2, . . . , fn) denote an automorphism φ of A such that φ(xi) = fi, 1 ≤ i ≤ n.
An automorphism

σ(i, α, f) = (x1, . . . , xi−1, αxi + f, xi+1, . . . , xn),(1)

where 0 6= α ∈ F, f ∈ FM < X \ {xi} >, is called elementary. The subgroup TA(A)
of AutA generated by all elementary automorphisms is called the tame automorphism
group, and the elements of this subgroup are called tame automorphisms of A. Nontame
automorphisms of A are called wild.

Now we describe some relations for elementary automorphisms (1). It is easy to check
that

σ(i, α, f)σ(i, β, g) = σ(i, αβ, βf + g).(2)

Note that from this we obtain trivial relations σ(i, 1, 0) = id, where 1 ≤ i ≤ n.
If i 6= j and f ∈ FM < X \ {xi, xj} >, then we have also

σ(i, α, f)−1σ(j, β, g)σ(i, α, f) = σ(j, β, σ(i, α, f)−1(g)).(3)

Consequently, if i 6= j and f, g ∈ FM < X \ {xi, xj} >, then the automorphisms
σ(i, α, f), σ(j, β, g) commute.

For every pair of integers k, s, where 1 ≤ k 6= s ≤ n, we define a tame automorphism
(ks) by putting

(ks) = σ(s,−1, xk)σ(k, 1,−xs)σ(s, 1, xk).

Note that the automorphism (ks) of the algebra A just permutes the variables xk and xs.
Now it is easy to see that

σ(i, α, f)(ks) = σ(j, α, (ks)(f)),(4)

where xj = (ks)(xi).

Let G(A) be the abstract group with generators (1) and defining relations (2)–(4).

Lemma 1. The subgroup of G(A) generated by all elements (ks), where 1 ≤ k 6= s ≤ n,
is isomorphic to the symmetric group Sn.
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Proof. By (2) and (3), we have

(ks)2 = σ(s,−1, xk)σ(k, 1,−xs)σ(s, 1, xk)σ(s,−1, xk)σ(k, 1,−xs)σ(s, 1, xk)

= σ(s,−1, xk)σ(k, 1,−xs)σ(s,−1, 0)σ(k, 1,−xs)σ(s, 1, xk)

= σ(s,−1, xk)σ(s,−1, 0)σ(k, 1,−xs)
σ(s,−1,0)σ(k, 1,−xs)σ(s, 1, xk)

= σ(s, 1,−xk)σ(k, 1, xs)σ(k, 1,−xs)σ(s, 1, xk) = σ(s, 1,−xk)σ(s, 1, xk) = id.

Then (4) gives

(ks)(sk) = σ(s,−1, xk)
(sk)σ(k, 1,−xs)

(sk)σ(s, 1, xk)
(sk)

= σ(k,−1, xs)σ(s, 1,−xk)σ(k, 1, xs) = (sk),

i.e. (ks) = (sk). Now it is not difficult to deduce from (2)–(4) that

[(ij), (ks)] = id, (ik)(is) = (ks),

where i, j, k, s are all distinct. It is immediate that the given relations imply the defining
relations of the group Sn with respect to the system of generators (i i+1), where 1 ≤ i ≤
n− 1, which are indicated in [3]. �

By Lemma 1, the elements of the symmetric group Sn can be identified with elements
of G(A). Note that (4) can be rewritten as

σ(i, α, f)π = σ(π−1(i), α, π−1(f)),

where π ∈ Sn.

It is well known that the group of affine automorphisms Afn(F ) of the algebra A is
generated by all affine elementary automorphisms.

Lemma 2. The relations (2)–(4) for elementary affine automorphisms are defining rela-
tions of the group Afn(F ).

Proof. Let ϕ be a product of elementary affine automorphisms. Suppose that ϕ = id.
By (2) and (3), we can represent ϕ in the form

ϕ = σ(1, 1, α1)σ(2, 1, α2) . . . σ(n, 1, αn)ϕ′,

where ϕ′ is a product of elementary linear automorphisms. Obviously, α1 = α2 = . . . =
αn = 0. Therefore we can assume that ϕ is a product of elementary linear automorphisms.
By (2) and (3), we can easily represent ϕ in the form

ϕ = σ(1, α1, 0)σ(2, α2, 0) . . . σ(n, αn, 0)ϕ′,

where ϕ′ is a product of elementary automorphisms of the type σ(i, 1, f). By (2)–(4), we
have

σ(k, α, 0) = σ(s, α, 0)(ks)

= σ(s,−1, xk)σ(k, 1,−xs)σ(s, 1, xk)σ(s, α, 0)σ(s,−1, xk)σ(k, 1,−xs)σ(s, 1, xk)

= σ(s,−1, xk)σ(k, 1,−xs)σ(s,−α, 0)σ(s, 1, (1− α)xk)σ(k, 1,−xs)σ(s, 1, xk)

= σ(s,−1, xk)σ(s,−α, 0)σ(k, 1, α−1xs)σ(s, 1, (1 − α)xk)σ(k, 1,−xs)σ(s, 1, xk)

= σ(s, α, 0)σ(s, 1,−αxk)σ(k, 1, α−1xs)σ(s, 1, (1 − α)xk)σ(k, 1,−xs)σ(s, 1, xk).
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By using this relation, we can represent ϕ in the form

ϕ = σ(n, βn, 0)ϕ′,

where ϕ′ is a product of elementary linear automorphisms of the form σ(i, 1, f). Hence
βn = 1. Note that σ(i, 1, f) can be represented as a product of automorphisms

Xij(λ) = σ(j, 1, λxi), λ ∈ F, i 6= j.(5)

Thus, we can assume that ϕ is a product of automorphisms of the form (5).
Let G be the subgroup of TA(A) generated by all automorphisms of the form (5). We

define a map

J : G −→ SLn(F ),

where J(ψ) is the Jacobian matrix of ψ ∈ G. By eij denote the standard matrix units
and by Eij(λ) denote the elementary matrix E + λeij, where E is the unit matrix, i 6= j,
and λ ∈ F . It is easy to check that

J(Xij(λ)) = Eij(λ),

and that J is an isomorphism of groups.
Now it is sufficient to prove that every relation of the group SLn(F ) is a corollary of

(2)–(4). Obviously, (2)–(3) cover the Steinberg relations (see, for example [13]). Besides,
according to [13], we need to check the relation

{u, v} = id, 0 6= u, v ∈ F,

where

{u, v} = hij(uv)hij(u)
−1hij(v)

−1,

hij(u) = wij(u)wij(−1),

wij(u) = Xij(u)Xji(−u
−1)Xij(u).

Applying (2)–(4) we have

wij(u) = σ(j, 1, uxi)σ(i, 1,−u−1xj)σ(j, 1, uxi)

= σ(j, 1, uxi)σ(i, u, 0)σ(i, 1,−xj)σ(i, u−1, 0)σ(j, 1, uxi)

= σ(i, u, 0)σ(j, 1, uxi)
σ(i,u,0)σ(i, 1,−xj)σ(j, 1, uxi)

σ(i,u,0)σ(i, u−1, 0)

= σ(i, u, 0)σ(j, 1, xi)σ(i, 1,−xj)σ(j, 1, xi)σ(i, u−1, 0)

= σ(i, u, 0)σ(j,−1, 0)σ(j,−1, xi)σ(i, 1,−xj)σ(j, 1, xi)σ(i, u−1, 0)

= σ(i, u, 0)σ(j,−1, 0)(ij)σ(i, u−1, 0) = (ij)σ(i, u, 0)(ij)σ(j,−1, 0)(ij)σ(i, u−1, 0)

= (ij)σ(j, u, 0)σ(i,−1, 0)σ(i, u−1, 0) = (ij)σ(j, u, 0)σ(i,−u−1, 0).

Consequently,

hij(u) = wij(u)wij(−1) = (ij)σ(j, u, 0)σ(i,−u−1, 0)(ij)σ(j,−1, 0)σ(i, 1, 0)

= σ(j, u, 0)(ij)σ(i,−u−1, 0)(ij)σ(j,−1, 0)

= σ(i, u, 0)σ(j,−u−1, 0)σ(j,−1, 0) = σ(i, u, 0)σ(j, u−1, 0).
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Hence

{u, v} = hij(uv)hij(u)
−1hij(v)

−1

= σ(i, uv, 0)σ(j, (uv)−1, 0)σ(i, u, 0)σ(j, u−1, 0)σ(i, v, 0)σ(j, v−1, 0) = id.

Thus we can say that every relation of the group SLn(F ) follows from (2)–(4). �

3. Reductions of automorphisms

Let M be an arbitrary homogeneous variety of linear algebras over a field F . Recall
that if F is infinite, then any variety of linear algebras over F is homogeneous [28]. Let
A = FM < x1, x2, . . . , xn > be the free algebra of M with free generators x1, x2, . . . , xn.
The highest homogeneous part f and the degree deg f can be defined in the usual way.
If f1, f2, . . . , fk ∈ A, then denote by < f1, f2, . . . , fk > the subalgebra of A generated by
these elements.

Let θ = (f1, f2, . . . , fk) be an arbitrary k-tuple of elements of the algebra A. The
number

deg θ = deg f1 + deg f2 + . . .+ deg fk

is called the degree of θ.
Recall that an elementary transformation of a k-tuple θ = (f1, f2, . . . , fk) is, by defini-

tion, a transformation that changes only one element fi to an element of the form αfi +g,
where 0 6= α ∈ F and g ∈ 〈{fj|j 6= i}〉. The notation

θ → τ

means that the k-tuple τ is obtained from θ by a single elementary transformation. A
k-tuple θ is called elementarily reducible or admits an elementary reduction if there exists
a k-tuple τ such that θ → τ and deg τ < deg θ. The element fi of the k-tuple θ which
was changed in τ to an element of less degree is called reducible and we will say also that
fi is reduced in θ by the k-tuple τ .

Consider a finite number of elements

f1, f2, . . . , fk(6)

of the algebra A. The elements (6) are called free if the subalgebra < f1, f2, . . . , fk > of
A is a free algebra of the variety M with free generators (6). If

fi /∈< f1, . . . , fi−1, fi+1, . . . , fn >

for any i, then the elements (6) are called reduced.
From any k-tuple (f1, f2, . . . , fk) by several elementary transformations we can get a

k-tuple (g1, g2, . . . , gs, 0, . . . , 0), where s ≤ k, such that the elements g1, g2, . . . , gs are
reduced. Note that < f1, f2, . . . , fk >=< g1, g2, . . . , gs >.

The statement of the next lemma is well known (see, for example [18]) and very useful
in studying free algebras.

Lemma 3. Assume that the elements f1, f2, . . . , fk are free. If f ∈< f1, f2, . . . , fk >,
then f ∈< f1, f2, . . . , fk >.

5



From now on we assume that M is a homogeneous Nielsen-Schreier variety of linear
algebras. The main property of Nielsen-Schreier varieties is given in the next lemma (see,
for example [9]).

Lemma 4. Assume that f1, f2, . . . , fk are homogeneous elements of A and deg f1 ≤
deg f2,≤ . . . ≤ deg fk. If the elements f1, f2, . . . , fk are not free, then there exists i
such that fi ∈< f1, f2, . . . , fi−1 >.

Corollary 1. Any finite reduced system of elements of the algebra A is free.

Note that the statement of this corollary for infinite systems of elements is also true
[9]. Free systems of elements in free algebras were studied in [12, 21] via Fox derivatives.

Corollary 2. Any automorphism of the algebra A of degree more than n is elementarily
reducible.

Corollary 3. Automorphisms of the algebra A are tame.

Suppose that θ = (f1, f2, . . . , fn) and σ(i, α, f) is an elementary automorphism of the
form (1). If

τ = (f1, . . . , fi−1, αfi + f(f1, . . . , fn), fi+1, . . . , fn),

then instead of θ → τ we often write

θ
σ(i,α,f)
−→ τ.

Assume that

θ = φ1φ2 . . . φr ∈ AutA,(7)

where φi, 1 ≤ i ≤ r, are elementary automorphisms. Put

ψi = φ1φ2 . . . φi, 0 ≤ i ≤ r.

In particular, we have

ψr = θ, ψ0 = id.

To (7) corresponds the sequence of elementary transformations

id = ψ0
φ1

→ ψ1
φ2

→ ψ2
φ3

→ . . .
φr

→ ψr = θ.(8)

So, every tame automorphism θ has a sequence of elementary transformations of the
form (8). If deg θ > n and deg ψi < deg θ for any i < r, then the sequence (8) will
be called a minimal representation of θ. Note that the representations (7) and (8) of
the automorphism θ are equivalent. If (8) is a minimal representation of θ, then the
representation (7) will be also called a minimal representation of θ.

4. The main result

As above, M is a homogeneous Nielsen-Schreier variety of linear algebras over a field
F , and A = FM < x1, x2, . . . , xn > is a free algebra of M. We know that TA(A) = AutA
and the elementary automorphisms (1) are generators of the group AutA.
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Theorem 1. The relations (2)–(4) are defining relations of the group AutA with respect
to the generators (1).

Beginning of the proof. Assume that

ϕ1ϕ2 . . . ϕk = id = (x1, x2, . . . , xn),(9)

where ϕi, 1 ≤ i ≤ k, are elementary automorphisms. Put

θi = ϕ1ϕ2 . . . ϕi, 0 ≤ i ≤ k.

In particular, we have θ0 = θk = (x1, x2, . . . , xn). To (9) corresponds the sequence of
elementary transformations

id = θ0
ϕ1

→ θ1
ϕ2

→ . . .
ϕk→ θk = id.(10)

Put d = max{deg θi|0 ≤ i ≤ k}. Let i1 be the minimal number and i2 be the maximal
number which satisfy the equations deg θi1 = d and deg θi2 = d. Put q = i2 − i1. The
pair (d, q) will be called the exponent of the relation (9).

To prove the theorem, we show that (9) follows from (2)–(4). Assume that our theorem
is not true. Call a relation of the form (9) trivial if it follows from (2)–(4). We choose a
nontrivial relation (9) with the minimal exponent (d, q) with respect to the lexicographic
order. To arrive at a contradiction, we show that (9) is also trivial.

If d = n, then Lemma 2 gives the triviality of the relation (9). Therefore we can assume
that d > n.

Our plan is to change the product (9) by using (2)–(4) and to obtain a new sequence
(10) whose exponent is strictly less than (d, q). Below we prove Lemmas 5–14 and then
complete the proof of the theorem. �

Denote by t = [ q

2
] the integral part of q

2
. Put also

φ = θi1+t−1, θ = θi1+t, τ = θi1+t+1, σ1 = ϕi1+t, σ2 = ϕi1+t+1.

Then we have

φ
σ1−→ θ

σ2−→ τ.(11)

Lemma 5. The following statements are true:

(1) d = deg θ, t = 0, and

θ = ϕ1ϕ2 . . . ϕi1+t(12)

is a minimal representation of θ.
(2) If q = 0, then

θ = ϕ−1
k ϕ−1

k−1 . . . ϕ
−1
i1+t+1

is also a minimal representation of θ.
(3) If q = 1, then (d(τ), t(τ)) = (d, t) and

τ = ϕ−1
k ϕ−1

k−1 . . . ϕ
−1
i1+t+2

is a minimal representation of τ . Moreover, in (9) the product (12) can be replaced
by an arbitrary minimal representation of θ.
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Proof. Assume that (d(θ), t(θ)) < (d, t) and let (7) be a minimal representation of θ.
Then (9) is a consequence of the equalities

ϕ1ϕ2 . . . ϕi1+tφ
−1
r . . . φ−1

2 φ−1
1 = id,(13)

φ1φ2 . . . φrϕi1+t+1 . . . ϕk−1ϕk = id.(14)

To (13) corresponds the sequence of elementary transformations

(x1, x2, . . . , xn) → θ1 → . . .→ θi1+t = θ = ψr → ψr−1 . . .→ ψ1 → (x1, x2, . . . , xn),

and to (14) corresponds

(x1, x2, . . . , xn) → ψ1 → . . .→ ψr = θ = θi1+t → θi1+t+1 → . . .→ θk−1 → (x1, x2, . . . , xn).

Since (d(θ), t(θ)) < (d, t), it follows that (13) and (14) have exponents strictly less than
(d, q). This gives the first statement of the lemma.

It is obvious that the relation

ϕ−1
k ϕ−1

k−1 . . . ϕ
−1
1 = id

has the same exponent (d, q). Applying the first statement of the lemma to this relation,
we get the second statement of the lemma, as well as the minimality of the representation
of τ if q = 1. If q = 1, then (13) has exponent strictly less than (d, q), and (14) has the
exponent (d, q). Consequently, (9) and (14) are equivalent modulo (2)–(4). Thus θ can
be changed by an arbitrary minimal representation in (14). �

Put θ = (f1, f2, . . . , fn). According to Lemma 5, t = 0, q = 0, 1, and

deg φ < deg θ = d ≥ deg τ.

Without loss of generality, we can assume that

τ = (f1, f2, . . . , fn−1, f),(15)

where

f = βfn +B, B = b(f1, f2 . . . , fn−1), deg B ≤ deg fn.

Lemma 6. If φ reduces the element fn of θ, then the relation (9) is trivial.

Proof. Applying (2) we can replace σ1σ2 by an elementary automorphism. Obviously,
this replacement also decreases the exponent of (10). �

By Lemma 6, we can assume that φ reduces one of the elements f1, f2, . . . , fn−1 of θ.

Lemma 7. Assume that φ reduces the element fi of θ, where 1 ≤ i ≤ n − 1. If φ′ also
reduces the element fi of θ, then in (11) the automorphism φ can be replaced by φ′.

Proof. According to (2), in this case the elementary transformation φ → θ can be
changed to φ → φ′ → θ. Since deg φ′ < deg θ = d, the exponent (d, q) of the sequence
(10) does not change after this replacement. But in the new sequence (10) we have φ′

instead of φ. �

From now on we assume that φ reduces the element fi of θ, where 1 ≤ i ≤ n − 1.
Taking Lemma 7 into account, we can assume that

φ = (f1, . . . , fi−1, gi, fi+1, . . . , fn),(16)
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where

gi = fi − C, C = c(f1, . . . , fi−1, fi+1, . . . , fn), deg gi < deg fi.

Thus, we defined the members of the sequence (11) and we have

σ1 = σ(i, 1, c(x1, . . . , xi−1, xi+1, . . . , xn)), σ2 = σ(n, β, b(x1 . . . , xn−1)).

Lemma 8. If the elements f1, . . . , fi−1, fi+1, . . . , fn−1 are not free, then the relation (9)
is trivial.

Proof. If the elements f1, . . . , fi−1, fi+1, . . . , fn−1 are not free, then according to Lemma
4, there exists r such that

fr ∈< f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn−1 > .

Suppose that

fr = T (f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn−1)

and put

gr = fr − T (f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn−1).

Then deg gr < deg fr. Put also

ψ1 = (f1, . . . , fr−1, gr, fr+1, . . . , fi−1, gi, fi+1, . . . , fn−1, fn),

ψ2 = (f1, . . . , fr−1, gr, fr+1, . . . , fi−1, fi, fi+1, . . . , fn−1, fn),

ψ3 = (f1, . . . , fr−1, gr, fr+1, . . . , fi−1, fi, fi+1, . . . , fn−1, f).

Then we have the sequence of elementary transformations

φ
δ1−→ ψ1

δ2−→ ψ2
δ3−→ ψ3

δ4−→ τ,(17)

where

δ4 = σ(r, 1, T (x1, . . . , xr−1, xr+1, . . . , xi−1, xi+1, . . . , xn−1)), δ1 = δ−1
4 ,

δ2 = σ(i, 1, c(x1, . . . , xr−1, δ4(xr), xr+1, . . . , xi−1, xi+1, . . . , xn)),

δ3 = σ(n, β, b(x1, . . . , xr−1, δ4(xr), xr+1, . . . , xn−1)).

By (3) we have

δ1δ2δ3δ4 = δδ4
2 δ

δ4
3 = σ1σ2.

Then, we can replace the subsequence (11) of (10) by (17). Since deg ψ1, deg ψ2, deg ψ3 <
d, the new sequence (10) has the exponent less than (d, q). Consequently, the relation (9)
is trivial. �

Lemma 9. If fi ∈ 〈f1, . . . , fi−1, fi+1, . . . , fn−1〉, then (9) is trivial.

Proof. Assume that

fi = T (f1, . . . , fi−1, fi+1, . . . , fn−1).

According to Lemma 7, we can suppose that

gi = fi − T (f1, . . . , fi−1, fi+1, . . . , fn−1).
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Then σ1 = σ(i, 1, T ). By (3), we have σ1σ2 = σ(n, β, b1)σ1, where b1 = σ1(b) ∈ FM <
x1, . . . , xn−1 >. After the corresponding replacement in (9), θ is replaced by

θ′ = (f1, . . . , fi−1, gi, fi+1, . . . , fn−1, f)

in (10). Since deg θ′ < d, the exponent of (9) is decreased. �

Lemma 10. If fn ∈ 〈f1, . . . , fi−1, fi+1, . . . , fn−1〉, then the relation (9) is trivial.

Proof. Assume that

fn = T (f1, . . . , fi−1, fi+1, . . . , fn−1)

and put

gn = fn − T (f1, . . . , fi−1, fi+1, . . . , fn−1).

According to (3), we have

σ1 = σ(i, 1, c(x1, . . . , xi−1, xi+1, . . . , xn)) = δ1δ2δ3,

where

δ1 = σ(n, 1,−T (x1, . . . , xi−1, xi+1, . . . , xn−1)),

δ2 = σ(i, 1, c1(x1, . . . , xi−1, xi+1, . . . , xn)),

δ3 = σ(n, 1, T (x1, . . . , xi−1, xi+1, . . . , xn−1)).

After the corresponding replacement in (9), the elementary transformation φ → θ is
replaced by the sequence of elementary transformations

φ→ ψ1 → ψ2 → θ,

where

ψ1 = (f1, . . . , fi−1, gi, fi+1, . . . , fn−1, gn),

ψ2 = (f1, . . . , fi−1, fi, fi+1, . . . , fn−1, gn).

Since deg ψ1, deg ψ2 < d = deg θ, the new sequence (10) has the same exponent (d, q).
However, instead of φ we have ψ2, which reduces the element fn of θ. By Lemma 6, we
obtain the triviality of (9). �

Lemma 11. If B does not depend on fi, then (9) is trivial.

Proof. It means that b does not depend on xi. By (3) we have

σ1σ2 = σ(i, 1, c)σ(n, β, b) = σ(n, β, b)σ(2, 1, c1),

where c1 = σ(n, β, b)−1(c) ∈ FM < X \ {xi} >. After the corresponding replacement in
(9), instead of θ we obtain

ψ = (f1, . . . , fi−1, gi, fi+1, . . . , fn−1, f).

Since deg ψ < d, this replacement also decreases the exponent of (9). �

Lemma 12. If fi = γfn + T (f1, . . . , fi−1, fi+1, . . . , fn−1), then (9) is trivial.
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Proof. By Lemma 9, we can assume that γ 6= 0. By Lemma 7, we can also assume that
C = γfn + T (f1, . . . , fi−1, fi+1, . . . , fn−1). Consequently,

gi = fi − γfn − T (f1, . . . , fi−1, fi+1, . . . , fn−1),

fi = gi + γfn + T (f1, . . . , fi−1, fi+1, . . . , fn−1),

fn = −
1

γ
gi +

1

γ
fi −

1

γ
T (f1, . . . , fi−1, fi+1, . . . , fn−1).

These equalities give rise to the sequence of elementary transformations

ψ1 → ψ2 → θ,

where

ψ1 = (f1, . . . , fi−1, fn, fi+1, . . . , fn−1, gi),

ψ2 = (f1, . . . , fi−1, fi, fi+1, . . . , fn−1, gi).

We have

σ1 = σ(i, 1, γxn + T ) = σ(i, 1, γxn + T (x1, . . . , xi−1, xi+1, . . . , xn−1)).

Applying (2) and (3) we get

σ1 = σ(i, 1, γxn)σ(i, 1, T ) = σ(i, 1, γxn)σ(n,−γ, xi)σ(n,−
1

γ
,
1

γ
xi)σ(i, 1, T )

= σ(i, 1, γxn)σ(n,−γ, xi)σ(i, 1, T )σ(n,−
1

γ
,
1

γ
xi)

σ(i,1,T )

= σ(i, 1, γxn)σ(n,−γ, xi)σ(i, 1, T )σ(n,−
1

γ
,
1

γ
(xi − T ))

= σ(i, 1, γxn)σ(n,−γ, xi)σ(i,
1

γ
,−

1

γ
xn)σ(i, γ, xn + T )σ(n,−

1

γ
,
1

γ
(xi − T )).

Since the transposition (in) ∈ Sn can be factored as a product of linear elementary
automorphisms

(in) = σ(i, 1, γxn)σ(n,−γ, xi)σ(i,
1

γ
,−

1

γ
xn),

we obtain

σ1 = (in)σ(i, γ, xn + T )σ(n,−
1

γ
,
1

γ
(xi − T )).

Then

θ = (in)ϕ
(in)
1 ϕ

(in)
2 . . . ϕ

(in)
i1+t−1σ(i, γ, xn + T )σ(n,−

1

γ
,
1

γ
(xi − T )),(18)

where ϕ
(in)
j are elementary automorphisms, according to (4). To (18) corresponds the

sequence of elementary transformations

(x1, . . . , xi−1, xi, xi+1, . . . , xn−1, xn) 7→ (x1, . . . , xi−1, xn, xi+1, . . . , xn−1, xi) →

θ′1 → θ′2 → . . .→ θ′i1+t−1 = ψ1 → ψ2 → θ,
11



where θ′i is obtained from θi only by the permutation of the coordinates with numbers i
and n, and the transformation

(x1, . . . , xi−1, xi, xi+1, . . . , xn−1, xn) 7→ (x1, . . . , xi−1, xn, xi+1, . . . , xn−1, xi)

is a composition of three elementary linear transformations.
If in (9) we replace θ by (18), then the exponent of (10) remains the same. But instead

of φ we have ψ2, which reduces the element fn of θ, and Lemma 6 gives the triviality of
(9). �

Lemma 13. If the elements f1, . . . , fi−1, fi+1, . . . , fn are free, then (9) is trivial.

Proof. By Lemma 3 and (16), we have

fi = C = c(f1, . . . , fi−1, fi+1, . . . , fn).

By Lemma 9 we can assume that fi depends on fn. Consequently, deg fn ≤ deg fi.
Note that if the elements f1, . . . , fi−1, fi, fi+1, . . . , fn−1 are not free, then it follows that

the elements f1, . . . , fi−1, fi+1, . . . , fn are also not free, which contradicts the condition
of the lemma. Consequently, the elements f1, . . . , fi−1, fi, fi+1, . . . , fn−1 are free. Then
B ∈ 〈f1, . . . , fi−1, fi, fi+1, . . . , fn−1〉. By Lemma 11 we can assume that B contains fi.
Then deg fi ≤ deg B ≤ deg fn, i.e. deg fi = deg fn. Hence

C = fi = γfn + T (f1, . . . , fi−1, fi+1, . . . , fn−1).

Lemma 12 gives the triviality of (9). �

Lemma 14. Assume that there exists r such that r 6= i, 1 ≤ i ≤ n− 1, and

fr ∈< f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn > .

Then in (11) the automorphism φ can be replaced by an automorphism which reduces the
element fr of θ.

Proof. Assume that

fr = T (f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn)

where T ∈ FM < X \ {xr, xi} >, and put

gr = fr − T (f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn).

By (3) we have

σ1 = σ(r, 1,−T )σ(i, 1, c1)σ(r, 1, T )

for some c1 ∈ FM < X \ {xi} >. After such replacement, instead of φ→ θ we obtain

φ→ ψ1 → ψ2 → θ,

where

ψ1 = (f1, . . . , fr−1, gr, fr+1, . . . , fi−1, gi, fi+1, . . . , fn),

ψ2 = (f1, . . . , fr−1, gr, fr+1, . . . , fi−1, fi, fi+1, . . . , fn).

Since deg ψ1, deg ψ2 < d = deg θ, the new sequence (10) has the same exponent. Then
instead of φ in (11) we have ψ2, which reduces the element fr of θ. �

12



Completion of the proof of Theorem 1. By Lemma 13, we can assume that the
elements

f1, . . . , fi−1, fi+1, . . . , fn

are not free. Then, according to Lemma 4, there exists j 6= i such that

fj ∈< f1, . . . , fj−1, fj+1, . . . , fi−1, fi+1, . . . , fn > .

By Lemma 10, we can assume that j 6= n, i.e. j ≤ n− 1. According to Lemma 8, we can
also assume that fj depends on fn. Consequently, deg fj ≥ deg fn. If deg fj = deg fn,

then from this we can easily obtain that fn ∈< f1, . . . , fi−1, fi+1, . . . , fn−1 >, and Lemma
10 gives the triviality of (9). Thus, it can be assumed that deg fj > deg fn. Moreover,
by Lemma 14, we may assume that φ reduces the element fj of θ. Interchanging fi and
fj, from now we can assume without of generality that deg fi > deg fn and

fi ∈< f1, . . . , fi−1, fi+1, . . . , fn > .(19)

Suppose that the elements f1, f2, . . . , fn−1 are free. By Lemma 3, B ∈< f1, f2, . . . , fn−1 >.
If B depends on fi, then deg B ≥ deg fi > deg fn, which contradicts (15). If B does not
depend on fi, then Lemma 11 gives the triviality of (9).

If the elements f1, f2, . . . , fn−1 are not free, then there exists r such that

fr ∈< f1, . . . , fr−1, fr+1, . . . , fn−1 > .(20)

By Lemma 9, we can take r 6= i. If fr does not depend on fi, then Lemma 8 gives the
triviality of (9). Assume that fr depends on fi. Then, deg fr ≥ deg fi. If deg fr = deg fi,
then from this we can obtain that fi ∈< f1, . . . , fi−1, fi+1, . . . , fn−1 >, and Lemma 9 gives
the triviality of (9). So, we can assume that deg fr > deg fi. Then (19) gives that

fi ∈< f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn > .

Consequently,

fr ∈< f1, . . . , fr−1, fr+1, . . . , fi−1, fi+1, . . . , fn > .

By Lemma 14, we can assume that φ reduces the element fr of θ. Then, (20) and Lemma
9 gives the triviality of (9).

This completes the proof of Theorem 1. �
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