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A. Preliminary Results

A.l. Theorem (Milnor [14]). Let m : m(Z9) — SLa(R) be a representation of the surface
group and let E be the correspondent flat vector bundle of rank two over ¥9 . Then the Euler
number (x(E),[Z]) satisfies

[(x(E),[E)] < ¢ -1

A.2. Theorem (Goldman [6]). Let 7 : m1(5Y) — PSLo(R) be a representation and let € be
the associated S -bundle over £ . Then |x(£)| < 29 — 2 and if the equality holds, then the
image of © acts discontinuously and cocompactly in the hyperbolic plane H? .

A.3. Theorem (Thurston [20]). Let M be a compact hyperbolic manifold. Then for any
continuous map f : £9 — M there exists a smooth map f , homotopic to f , such that

Area(f) < 4rx(g-1) .

A.4. Theorem (Sullivan [19]). Let M™ be a triangulated manifold with precisely d, n-
simplices, and let E be a flat vector bundle of rank n over M. Then

X(E), [M]] £ dn .

A.5. Remark (Lustig, see Gromov [7]). For any compact manifold A, and any real Lie
group G, there are no more than a finite number of flat G -bundles over A, nonisomorphic
as bundles (without connection).

A.6. Theorem (Kapovich [12]). Let M* be a complete hyperbolic manifold and let ©9' | T£92
be two singular surfaces in M. Then

[E#]N[E2)] < Clg1.92)

for some universal function C.

A.7. Theorem (Gromov [8]). Let A be a compact manifold of negative curvature, and
let © be a finitely presented group. Then there are at most finite number of embeddings
f:m = (M) up to a conjugation by an element of m(M) .

B. Introduction

The celebrated Milnor inequality A.l. gives necessary and sufficient conditions for a plane
bundle over a surface to carry a flat connection. The reader will find a discussion of
various generalizations in spirit of the Sullivan’s theorem in the paper of Gromov [7]. In the
other direction, Goldman [6] showed that a deep connection takes place between the Milnor
inequality and the hyperbolic geometry. He corresponded to a representation of a surfaces
group m(Z9) in PSL2(R) a flat H?-bundle and then constructed a developping section
using a clever induction argument. Later Hitchin [10] showed that the Goldman’s theorem
may be approached from the study of self-duality equations on 29 . In the subsequent paper,
Donaldson [5], proved that these equations describe harmonic sections of the underlying flat
H3 -bundle. Such sections, also called twisted harmonic maps, were intensively used by
Corlette [3] and Jost-Yau [11] for proving rigidity results of Margulis type.

One of the objectives of this work is to give a new and very simple proof of the Goldman’s
theorem A.2. and, therefore, also the Milnor inequality A.1l., using the sharp version of the



Thurston inequality A.3. in the case of harmonic sections. This version, given in C.1. below,
gives a sharp estimate for variable curvature of the ambient space (comp. Gromov [8]).

Moreover, we give a new proof of the Toledo inequality [21, 22] for the first Chern class of
a negative subbundle of a flat SU(1,n)-bundle over £¢ , with a slightly weaker constant.
Our method works for representations of 71{X9) is the isometry group of any Kihlerian
manifold of negative curvature.

Next, we pass to a flat SO(1,n)-bundle over a manifold M. For this object we introduce
a secondary characteristic class in H*(AM,R) , which coincide with the Euler class of
any negative subbundle if n is even. Our secondary characteristic class is a sort of
“hyperbolization” of the “differential characters” of Cheeger-Simons [2]. We use the Thurston
straightening technique to give effective estimates for its value on [M] when dim M =n .
We give an application of our invariant to estimate from below the connectivity of the
representation variety Rep(m (M), SO(1,n)) .

We introduce then a secondary characteristic class for a flat Sp(1,n)-bundle over M. A
somewhat more sophisticated straightening technique allows us to give effective estimates of
it in terms of a given triangulation of M.

The last part of the paper deals with the application of the Thurston inequality and some
isoperimetrical results to “hyperbolic cohomology”, i.e. to deriving restrictions on topology
of negatively curved manifolds. Those concerning the multiplicative structure in cohomology
are especially interesting. A recent theorem of Kapovich, A.6., gives such restrictions for the
case of constant negative curvature. We prove formally similar results for compact manifolds
of variable negative curvature below in F.1. Moreover, using the technique of Schoen-Yau
[16], we prove the version of the finiteness theorem A.7. when 7 is the surface group
T 1(29 ) .

This paper was written during my stay in Ruhr-Universitidt-Bochum and Max-Planck-Institut.
I am most grateful to the both organizations for the excellent working conditions. The
deepest thanks are due to S. Wang, M. Lustig, J. Jost, Z. Sela and E. Rips for various helpful
discussions.

C. Sharp Thurston Inequality

Let N be a complete Riemannian manifold with the curvature satisfying —K < K(N) <
—k < 0. Let ISO(N) be the isometry group of N. Consider a flat N -bundle N — E — 19
over a closed surface £9 , whose holonomy group lies in ISO(N') . For asection s: L9 — F
one defines its area, Area(s) using local projections to fibers, i.e. considering (locally) s as
a map from X9 to N. Suppose now that N is simply connected and the natural action
of the holonomy subgroup of ISO(/N) on the sphere at infinity S.o(/N) is fixed-point-free.
Then we have a following result.

C.1. Theorem There exists a section, s, satisfying

(g —1)

Area(s) < T :

For trivial bundles and compact N , the result is modified as follows.



C.2. Theorem Let f: 39 — M be a smooth map to a compact Riemannian manifold, whose
curvature satisfies —K < K(M) < —k < 0. Then there exists a smooth map f homotopic
to f, such that

Area(f) < w .
C.3. Remark see Thurston [20] for the proof in the hyperbolic case (k = K) .

We will first prove the theorem C.2. and then show how to modify the argument to deal with
the twisted conditions of C.1.

Proof of C.2. First we fix a metric, say Ay, on ¥ of the constant negative curvature, and
denote by hjs the given metric of A. By the existence theorem of Alber-Eells-Sampson,
there exists a harmonic map f : (I, hg) — (M, hyr) , homotopic to f. Consider the product
M = £ x M with the metric chg + Ay, €> 0. Let cp:2—+M be the graph of f |
ie. ¢ = (id, f) , so ¢ is a harmonic embedding of £ . We need a following lemma.

C4. Lemma Let ¢ : ¥ — N be a harmonic immersion. For x € £, let A, be the
second quadratic form of p(X) at p(x) . Then

Ty (Apzy 0 Do) =0

Proof of C.4. Let v(z) be any normal vector field to ¢ , and let p(z) be any smooth
function. Consider a variation ¢;(x) such that T‘Pf( z) = p(z)v(z) . By the first variation
formula we get 0 = ;}% energy (i) = 2 [ u(z)Trpg(4y,0D,) = 0, and the result
follows.

Next, it follows from C.4. that det A ;) <0 for all z, so by the Gauss-Bonnet we have

/I o(z)P (£))d areayy .
Z

We claim that the last integral majorates — f K M( F() f(_,))d areaps , as € — 0, where

$ < ¥ consists of those points where D f has the maximal rank two. Indeed, —K
is everywhere nonnegative and it is clear that locally in £ , K, 1 (Tv(m)tp(E)) goes to

Ky (TT(I)T(Z)) as ¢ — 0 . Finally, we get

an(6—1) > ] Ky (T, F(2)) > k- Area(7)
£
proving C.2.

Proof of C.1. We use the Donaldson existence theorem [S] instead of the Alber-Eells-Sampson
theorem, and find a harmonic section of £ . The further computations are just the same as
in the proof of C.2.

We are now in position to prove the Goldman theorem A.2.

C.5. Proof of the theorem A.2. Consider the associated flat 72 -bundle £ over £ . We can
assume that the action of 71(Z%) on S! does not have fixed points, otherwise x(¢) = 0 ,



so we can apply the theorem C.1. and find a section s of £ with Area(s) < 4n(g —1) .
We next consider over £ the vertical bundle £ (tangent to fibers). Fit together the Levi-
Civitta connection along the fibers and the flat connection of £ to get a connection in F.
Its curvature form is just the inverse image of the area form on fibers under the locally
well-defined projections to fibers. So by the Chern-Weyl we have

21 x(E|s) < Area(s)

for any section s. Now notice that since H? is a cell, the left side is independent on s and is
always equal to 27mx(£) . So choosing s as above, we get |x(£)| = [x(Els)| < 5= Area(s) <
26 — 2 . If the equality holds, then the Jacobian of s (defined locally viewing s as a way
from T to H? ) does not change sign. Since s is harmonic, we can apply the argument of
Schoen-Yau [17] which implies that actually rank Ds = 2 everywhere. Hence s induces a
hyperbolic structure on £ and it is clear that the correspondent representation of m1 (%) in
PSL2(R) is just the holonomy of &£ which is 7 . This proves A.2.

D. Toledo Inequality For Flat SU(1,7)-Bundles

D.1. Before we shall procede any further we give yet another reformulation of the Milnor
and Goldman theorems A.1., A.2., which emphasize the role of the structure group. Consider
a representation m1(X¢) — SO(1,2) and the correspondent flat vector bundle of rank 3
with a self-parallel metric of the signature (1.2). Let E_ be a (unique up to equivalence)
negative subbundle of E, i.e. a subbundle of E such that the restriction of the metric on it
is negatively determined. Then x(F-) is an invariant of the representation and the Milnor-
Goldman inequality says that

X(E-),[Z)] <£2¢g-2.

This formulation suggests that, for structure groups others than SO(1,2) , a similar result
may hold. This is so indeed for the pseudoorthogonal group SO(1,n) , as we will see in
E.9. below. For the pseudounitary structure group, SU(1,7n) , one has the following result,
[22], which we will prove with a weaker constant.

D.2. Theorem Let w : 71(X%) — SU(L1,n) be an irreducible representation in C"*! | and
let E be a correspondent flat complex vector bundle with the self-parallel Hermitian metric
of signature (1,n) . Then for a negative subbundle E_ one has

ler(B-) < (g —1).
D.3. Remark Since E is flat all ¢;(E) vanish. So for a positive line subbundle F, one
has |deg E4| = [c1(E-)] -

D.4. Proof of D.2. Consider the unit ball B” in C" with the Bergman metric and SU(1,n)
acting isometrically and construct a flat B” -bundle F over ¥ , associated to 7 . For a
section s of F let F|S be the restriction of the vertical bundle F' over F, on s .

Lemma |c1(F|S)| = 2|a(E-)| .

Proof: Consider the subfibration of E, say G, consisting of those vectors in fibers, whose
length (with respect to the selfparallel Hermitian metric) is 1. Let E; be the orthogonal
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complement to E_ in E. We give a realization of F as a quotient G/S! under the action
of S' ¢ C by multiplication. For a local unit section z of F, we can write the equation
of G as

jof* —Je-|* =1,

where oz +2- € G, 2- € E_ . In G/S' we can always choose a representative such
that o = 1, hence identifying G/S' with E_ . When z is changed to ¢’z | where J is a
smooth real function, this identification will be twisted by ¢'# . Thus for a section s of G,

FIS=e'E_|S®EL|s,

where ¢ : 7 — I is the bundle map. So ¢)(F|S) = ci(E_|s) — c1(E4|s) = 2c1(E-) by
D.3. (we usually identify ¥ and s(X) ). Now we extend the Bergman metric of B" to all
fibers of F , using the flat connection. We claim the action of the holonomy group in the
sphere at infinity is fixed-point-free. Indeed, the space of geodesics of B" identified with
G|S? is just the quotient of the space of all Lagrangian two-plains in C"*! | such that the
restriction of the Hermitian form on them is not definite, under the natural action of S! .
Every such plane contains precisely two isotropic lines, so the sphere at infinity is K/c- ,
where K is the isotropic cone of €t . So if the action of the holonomy group were not
fixed-point-free, the initial representation = would be reducible. That means we are able to
apply the existence theorem of Donaldson and find a harmonic section s: ¥ — F .

For the following computations consider the complex structure J of B as a section of
A?TgpB . Then the value of the Kihler form on an element z of A?TRB , is just (J,2),
whereas the curvature form acts as —Rp(z) = (z,2) + (J,z)? . For a section s(z) denote
z(z) the unit vector in AZT’S(m)}"x , representing the tangent space of the correspondent
(locally defined) surface in B. By Chern-Weyl we have

e1(FIJT) = /%(J,z).

From the proof of C.2. we get

dr(g—1) > /(z,z) + (J, 2)%area

50
/(J,z)d area < \//(J,z)gd area - Area(s) <
< -;—](J, 2)? +(z,2)d area < 2n(g — 1)
and, finally
1 3 3
E_ ) == — < — —_ .
1)l = 5lea(FINI = 1 [ (Gl < 50 - 1)

)



E. Secondary Characteristic Classes For Representations
in SO(1,n) And Sp(l,n)

E.l1. Let A be a compact manifold and let 7 : m(M) — SO(1,n) be a representation.
Denote by F the correspondent flat ‘H" -bundle over M. Let w be the volume form of
H" , lifted to F , and let s be any section of F .

Definition The volume class vol(r) € H"(M,R) is defined as
Vol(r) = s*w .

E.2. Independence Since X" is a cell, all sections of JF are homotopic to each other, so
Vol(r) is a well-defined invariant of 7 .

E.3. Even Dimension Let E be the flat vector bundle, associated to 7 and let £_ be any
negative subbundle of E. If n is even, then
_ Vol(S")

Vol(7) = 5 x(E-).

Proof: Following D.4., one realizes F as a (hyperboloid) subfibration of £, and for the
vertical bundle F one gets F'|S =~ E_ . The formula then follows from the Gauss-Bonnet-
Weyl formula for x .

E4. Vol(r) and “Differential Characters” The invariant Vol{(w) can be looked at as
a “hyperbolic version” of the secondary characteristic classes introduced by Cheeger and
Simons in [2]. Their classes, called “differential characters” do not lie in the cohomology
ring, basically because the fiber of the bundle, considered by Cheeger and Simons is a sphere,
and so we do not have the independence property E.2.

E.5. Functoriality For a continuous way f: M’ — M and a representation 7 : my(M) —
SO(1,n) one has Vol(w o f,} = f*Vol(r) . In particular, if dim M’ = dimM = n, then
(Vol(m o fu), [M']) = deg f - (Vol(m),[M]) .

E.6. Stability Let Rep(m(M),SO(1,n)) be the representation variety of the fundamental
group of M. Then the map Vol : Rep(m1(M),S0(1,n)) —» H*(M,R) is locally constant,
if n is even.

Proof: Use E.3. and the fact that the isomorphism class of E_ is stable when 7 ranges in
a connected component of Rep(m;(M),SO(1,n)) .

E.7. Example Let A be a hyperbolic manifold, and let 7 : 7;(M) — SO(1,n) be the
fundamental representation. Then

(Vol(r), [M]) = Vol(M) .

E.8. Corollary Let M = M # - #2M; , where all M; are hyperbolic manifolds of the
same even dimension n, and Vol(AM;) # Vol(M;) for ¢ # j . Then

ranky HO(Rep(m1(M),S0(1,n))) > k .

Proof: let f; : M — M; be a continuous map of degree 1. Let )\; : m(M;) —
SO(1,n) be the fundamental representation. Put \; = X; o f;, . By E;5. and E7.
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we get (Vol (/\,-),[M']) = Vol(M;) , so by E.6., all A; lie in different components of
Rep(m(M),S50(1,n)) .

Let K be triangulation of M with precisely d, n-dimensional simplices, where n =
dimM .

E.9. Theorem For any representation = : 71(M) — SO(1,n) and any triangulation K |
(Vol(7), [M]) < pndn ,

where i, depends only on n.

Proof: The idea to prove E.9. and the more complicated case of variable curvature in
E.11. below is to use a twisted version of the Thurston straightening process. We construct
a special section s of F as follows. First choose it arbitrarily over the 0-skeleton. Given
a 1-simplex, say ¢! = zy in k, trivialize the bundle F|o' to be ¢! x H" and join s(z)
and s(y) by the unique shortest geodesic. This gives the extension of s to the 1-skeleton.
Next, given a 2-simplex o2 = zyz , trivialize Flo? = 02 x H" , so that S|do? becomes a
geodesic triangle, and fill it in the totally geodesic plane 7* spanned by S|0o? . We proceed
in this way, and construct a section s, such that for any simplex o | S|o* maps o* to
a geodesic simplex in F|o* ~ oF x H" . Then we see that (Vol(),[M]) < und, , where
tin 18 the Milnor constant, i.e. the maximal volume of a n-simplex in H" .

E.10. Definition Let 7 : m(M) — Sp(l,n) be a representation and let E be the
correspondent flat quaternionic vector bundle of the rank n+1. Consider a negative subbundle
E_ , with respect to the self-parallel quaternionic Hermitian form. Then the volume Vol(~)
is defined as the Euler class y(E-) .

E.11. Theorem For any triangulation k of M and a representation 7 : w1(M) — Sp(1,n)
one has

(Vol(n), [M}) < Cp - dp
where C, depends only on n.

E.12. Lemma Let N" be a simply connected complete Riemannian manifold of the negative
curvature satisfying — K < k(N) < -k . Let 7 : m(M) — ISO(N) be a representation and
let F be the associated flat N -bundle over M. Then there exists a section s of F satisfying
Vol(s) < ¢(n,k,K) - d, .

E.13. Proof of the theorem E.11. Let N be the quaternionic hyperbolic space with the
isometrical acrion of Sp(1,7n), and let F be the correspondent flat N -bundle. We consider
a realization of F out of the flat H-vector bundle E with the self-parallel quaternionic
Hermitian form of the signature (1,n,) as follows. Let G be the subfibration of those
vectors in F, whose length is equal 1. The group S® of unit quaternions acts on G and
we put F = G/S°. Then the computation, analogous to D.4, shows that F|S ~ El QE_

H

as real vector bundles over a section s. Here we identify E4 with their lift on S(M). Let
g € HYM) be the Euler class of E .

E.14. Lemma Y(F) = £(n+ )p® = £(n+ 1)x(E-) .

Proof: Fix J € 5% with J2 = —1 and consider all H-vector bundles to be complex
bundles with respect to J . Then c¢;(Ey) = 0 since $3 =~ SU(2) , and cp(Ey) =
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it . By the classifying space argument we may check \2(F) = (n+1)%4? instead of
X(F) = (n+ 1) . Passing to complexifications, we get Fc ~ E1 @ E_ , so (x(F))? =
Cc

can(Fc) = can(EL ® EZ) . We may assume E} = L @ L* for some line bundle L,
using c;(F4) = 0 and the splitting principle. Then B ® E_. = LOQE_ @ L*Q E_ | s0

2n . 2n . . n K
c(Br®E_) = %ciz\z"" X Zo(_l)ch’\zn_J = Eo Z%c,' Con—i A2 where A = ¢1(L)
1= J: N=U1=

and ¢; = ¢;(E-) . But since F is flat, 1 = ¢(E) = c¢(E4)c(E-) = (1 - p)e(F-) so

Coad(E~) = 0 and cp4(E-) = p* , so a;n(Ej_@E_) = (n+1)%u?" and y(F) =
€

+(n 4+ 1)u™ .

So we can replace the estimate of yx(E_) to that of y{(F'). But the quaternionic hyperbolic
space N has negative curvature, so we can apply lemma E.12. to complete the proof of the
theorem E.11.

Proof of the lemma E.12. We start with the choice of a section over the O-skeleton of & in
an arbitrary way. Then, given a 1-simplex, say o' = 2y, we trivialize F|o' as in E.9 and
join s(z) and s(y) by the shortest geodesic in N. Next, given a 2-simplex, 0% = 2yz , we
trivialize F|o? ~ 0% x N so that S|@c? becomes a geodesic triangle. We find a minimal
bubble A spanning S|0c? by the solution to Plateau problem. Since the curvature of N
is negative, we have (comp. Gromov (7]) % Area(A) < 71—z —qy—- <2 < 7, SO
Area(A) < F . We extend s to the interior of o using A . So we get the extension
to the second skeleton. Now, let 0® be a three-simplex and let p € int 03 . We assume
Flo®* =~ 63 x N . Choose any point in N to stand for s(p) . Then we triangulate o3
baricentrically from s(p) . For any 3-simplex of the subdivision, say po?, we put s|po? to
be the geodesic cone over S|o? from s(p) . The linear isoperimetrical inequality [7) then
gives vol(s|o3) < const(x, K) . We proceed inductively in this way and construct a section
with |(Vol(s), [M])] < const(n,k, K)d, , proving E.12.

E.15. Remark One can use the Gromov’s simplicial volume invariant [7] instead of d,, in
the theorem E.11.

F. The Thurston Inequality And The Hyperbolic cohomology

F.1. Theorem Let M* be a compact manifold of the negative curvature satisfying
-K<K(M)< -k.

Let 59', ¥9 be two singular surfaces in M, i.e. two continuous maps from the surfaces
of genera g, gy respectively, to M. Then for the elements [L9] € Ha(M,Z) one has
[[Z9] N [29] < (g1, 92, K, K, x(M)) for some function C.

This result for hyperbolic M, not necessarily compact, is due to Kapovich [12]. Our proof is
analytic, whereas Kapovich [12] uses geometrical arguments from Thurston theory to provide
a “canonical form” for a surface in a hyperbolic M* .

F.2. Lemma Let w €& Q)M) be a harmonic form. Then ||wljz= <
COHSt(K,I(,X(M))”w”Lz :



Proof: By a theorem of P. Li [13] one has ||w||co < c1(k, K, Vol(M), p(M))||w||zs
where u(M) is the Sobolev constant. The result of Croke [4] shows pu(M) >
co{Vol{ M), diam(M ), k, K') .

By a theorem of Gromov [9], diam(M)} > c3(Vol(M)) , and, finally, the Chern theorem
gives cy{k, K)x(M) < Vol(M) < c3(k, K)x(M) , which completes the proof.

Proof of the theorem F.l. First we find surfaces 9 , £9%  homotopic to £9 , T
respectively and such that Area(Z%) < dxgiz1) using C.2. Next, let wq,- -, wy be the
orthonormed basis of harmonic 2-forms on M. By F.2. we have (w;, £9) < ¢(x, K, x(M))-
g; . The Poincaré duality operator D : Hy(M,R) — H%(M,R) acts as follows: DI¥% =
S (wi, £9)[wi] . Hence [[S2]N[S%]| = |DEAUDS®, [M]| = | T (wi, [29])-(wi, [292))] <

i
c‘(m, K, x(M))- N - g - g2 . Moreover, by the Gromov finitenes theorem [9], or by the Betti
number estimate [7], N = ba(M) is bounded by x(A), so {[E9]N[E%]| < ¢(k, K, x(M))
as promised.

F.3. Corollary Suppose M is a surface fibration over a surface: L9 — M — I
posessing a section s. Let v be the Euler number of the vertical bundle over s. If

H

|V| Z C(K': I('J 91,92)

then there does not exist a metric of negative curvature between x and K, on M.

Remarks 1,2. For complete metrics on vector bundles over £9 and zero section s, this
becomes a conjecture of Kapovich [12]. See also Anderson [1] for positive results. For the
case of holomorphic line bundles over Kéhlerian surfaces which admit complex hyperbolic
structure, see [15].

The following result and the theorem A.7., first appeared in Gromov [8] with a proof sketched
there. Further discussion see in Sela and Rips [18]. Notice that A.7. deals with the groups
more general then a surface group.

F.4. Theorem Let M be a compact manifold of negative curvature and let w1(59) be the
surface group. There exist no more than a finite number of embeddings S : m1(39) — m(M)
up to conjugations by an element of m(M) .

Proof: Suppose ; : m(L9) — m1(M) is a sequence of mutually nonconjugate embeddings.
Consider a sequence of continuous maps f; : 9 — M with f;, = ¢; . By the existence
theorem for harmonic maps, we can choose f; to be harmonic with respect to some metric
of curvature -1, say %, on £9. Then by the theorem C.2. we have Area(f;) < const. Now
choose a conformal structure, say G; on ¥, such that Energy G;(fi) < 2 Area(fi) < const.
Let h; be the unique metric of the curvature -1 in G; . The argument of Schoen and
Yau [16] shows that the class of /; in the modular space Mg, ¢ is contained in some
compact subset. So, twisting of necessary by a diffeomorphism of ¥ | we can assume that
Energy,(fi) < const with respect to some fixed metric / of the curvature -1. Let v be
a closed geodesic of h. Applying again the Schoen and Yau arguments, we get that length
fi(~) remains bounded as ¢ — oo , which is a contradiction to the nonconjugacy of y; ,
and the theorem follows.

10



References

15.

16.

17.

18.

19.

20.

21.

22.

M.T. Anderson, Metrics of negative curvature on vector bundles, Proceedings of
AMS, 99 (1987).

J. Cheeger, J. Simons, Differential characters and geometric invariants, Geometry
and Topology (College Park, Md, 1985/1984) 50-80, Lecture Notes in Math., 1167,
Springer-Verlag, Berlin, 1985.

K. Corlette, Archimedean superrigidity and hyperbolic geometry, Annals of Math.,
135 (1992), 165-182.

C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Scien. Ec.
Norm. Super. 4 série, t. 13, 1980, 419-435.

S. Donaldson, Twisted harmonic maps and the self-duality equation, Proc. London
Math. Loc. 55 (1987), 127-131.

Goldman, Representations of fundamental groups of surfaces, Geometry and Topology
(ed. J. Alexander and J. Karer), Lect. Notes in Math., 1167 (Springer-Verlag, 1985),
95-117.

M. Gromov, Volume and bounded cohomology, Publ. Math. THES, 56 (1982), 5-100.
M. Gromov, Hyperbolic groups, in Essays in group theory, ed. S.M. Gersten.

M. Gromov, Manifolds of negative curvature, J. Diff. Geom., 13 (1978), 223-231.

. N.J. Hitchin, The self-duality equations on a Riemannian surface, Proc. London

Math. Soc., 55 (1987), 59-126.

. J. Jost, S.T. Yau, in preparation.
. M. Kapovich, Intersection pairing on hyperbolic 4-manifolds, Preprint (June, 1992).
. P. Li, On the Sobolev constant and the spectrum of a compact Riemannian manifold,

Ann. Scient. Ec. Norm. Sup., 4 série, t. 13, 1980, 419-435.

. J. Milnor, On the existence of a connection with curvature zero, Comm. Math. Helv.,

32 (1958), 215-223.

A. Reznikov, Ball quotient structures on holomorphic line bundles over a Kéhlerian
surface, in preparation.

R. Schoen, S.T. Yau, Existence of incomprecisible minimal surfaces and the topo-

logy of three dimensional manifolds with non-negative scalar curvature, Annals of
Math. 110 (1979), 127-142.

R. Schoen, S.T. Yau, On univalent harmonic maps between surfaces, Inv. Math., 44
(1978), 265-278.

Z. Sela and E. Rips, Structure and rigidity in Hyperbolic groups I, preprint MPI
92-34,

D. Sullivan, A generalization of Milnor’s inerquality concemning affine foliations and
affine manifolds, Comm. Math. Helv. 51 (1976), 183-189.

W. Thurston, Geometry and topology of three-manifolds, Mimeographed notes, Prin-
ceton, 1979.

D. Toledo, Representations of surface group in complex hyperbolic space,
J. Diff. Geom., 29 (1989), 125-133.

D. Toledo, Harmonic mappings of surace to certain Kihler manifolds, Math. Scand.,
45 (1979), 13-26.

1



Department of Mathematics
Hebrew University
Giv’at Ram, Jerusalem

ISRAEL

Current address: Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

GERMANY

12



