Harmonic maps, hyperbolic cohomology and higher Milnor inequalities

Alexander G. Reznikov

Max-Planck-Institut fuir Mathematik Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

A. Preliminary Results

A.1. Theorem (Milnor [14]). Let $\pi: \pi_{1}\left(\Sigma^{g}\right) \rightarrow S L_{2}(\mathbf{R})$ be a representation of the surface group and let E be the correspondent flat vector bundle of rank two over Σ^{g}. Then the Euler number $(\chi(E),[\Sigma])$ satisfies

$$
|(\chi(E),[\Sigma])| \leq g-1
$$

A.2. Theorem (Goldman [6]). Let $\pi: \pi_{1}\left(\Sigma^{g}\right) \rightarrow P S L_{2}(\mathbf{R})$ be a representation and let ξ be the associated S^{1}-bundle over Σ. Then $|\chi(\xi)| \leq 2 g-2$ and if the equality holds, then the image of π acts discontinuously and cocompactly in the hyperbolic plane \mathcal{H}^{2}.
A.3. Theorem (Thurston [20]). Let M be a compact hyperbolic manifold. Then for any continuous map $f: \Sigma^{g} \rightarrow M$ there exists a smooth map \bar{f}, homotopic to f, such that Area $(\bar{f}) \leq 4 \pi(g-1)$.
A.4. Theorem (Sullivan [19]). Let M^{n} be a triangulated manifold with precisely $d_{n} n$ simplices, and let E be a fat vector bundle of rank n over M. Then

$$
|\chi(E),[M]| \leq d_{n}
$$

A.5. Remark (Lustig, see Gromov [7]). For any compact manifold M, and any real Lie group G, there are no more than a finite number of flat G-bundles over M, nonisomorphic as bundles (without connection).
A.6. Theorem (Kapovich [12]). Let M^{4} be a complete hyperbolic manifold and let $\Sigma^{g_{1}}$, $\Sigma^{g_{2}}$ be two singular surfaces in M. Then

$$
\left|\left[\Sigma^{g_{1}}\right] \cap\left[\Sigma^{g_{2}}\right]\right| \leq C\left(g_{1}, g_{2}\right)
$$

for some universal function C.
A.7. Theorem (Gromov [8]). Let M be a compact manifold of negative curvature, and let π be a finitely presented group. Then there are at most finite number of embeddings $f: \pi \rightarrow \pi_{1}(M)$ up to a conjugation by an element of $\pi_{1}(M)$.

B. Introduction

The celebrated Milnor inequality A.1. gives necessary and sufficient conditions for a plane bundle over a surface to carry a flat connection. The reader will find a discussion of various generalizations in spirit of the Sullivan's theorem in the paper of Gromov [7]. In the other direction, Goldman [6] showed that a deep connection takes place between the Milnor inequality and the hyperbolic geometry. He corresponded to a representation of a surfaces group $\pi_{1}\left(\Sigma^{g}\right)$ in $P S L_{2}(\mathbf{R})$ a fat \mathcal{H}^{2}-bundle and then constructed a developping section using a clever induction argument. Later Hitchin [10] showed that the Goldman's theorem may be approached from the study of self-duality equations on Σ^{g}. In the subsequent paper, Donaldson [5], proved that these equations describe harmonic sections of the underlying flat \mathcal{H}^{3}-bundle. Such sections, also called twisted harmonic maps, were intensively used by Corlette [3] and Jost-Yau [11] for proving rigidity results of Margulis type.
One of the objectives of this work is to give a new and very simple proof of the Goldman's theorem A.2. and, therefore, also the Milnor inequality A.1., using the sharp version of the

Thurston inequality A.3. in the case of harmonic sections. This version, given in C.1. below, gives a sharp estimate for variable curvature of the ambient space (comp. Gromov [8]).
Moreover, we give a new proof of the Toledo inequality [21, 22] for the first Chern class of a negative subbundle of a flat $S U(1, n)$-bundle over Σ^{g}, with a slightly weaker constant. Our method works for representations of $\pi_{1}\left(\Sigma^{g}\right)$ is the isometry group of any Kählerian manifold of negative curvature.

Next, we pass to a flat $S O(1, n)$-bundle over a manifold M. For this object we introduce a secondary characteristic class in $H^{*}(M, \mathbf{R})$, which coincide with the Euler class of any negative subbundle if n is even. Our secondary characteristic class is a sort of "hyperbolization" of the "differential characters" of Cheeger-Simons [2]. We use the Thurston straightening technique to give effective estimates for its value on [M] when $\operatorname{dim} M=n$. We give an application of our invariant to estimate from below the connectivity of the representation variety $\operatorname{Rep}\left(\pi_{1}(M), S O(1, n)\right)$.
We introduce then a secondary characteristic class for a flat $S p(1, n)$-bundle over M. A somewhat more sophisticated straightening technique allows us to give effective estimates of it in terms of a given triangulation of M.

The last part of the paper deals with the application of the Thurston inequality and some isoperimetrical results to "hyperbolic cohomology", i.e. to deriving restrictions on topology of negatively curved manifolds. Those concerning the multiplicative structure in cohomology are especially interesting. A recent theorem of Kapovich, A.6., gives such restrictions for the case of constant negative curvature. We prove formally similar results for compact manifolds of variable negative curvature below in F.1. Moreover, using the technique of Schoen-Yau [16], we prove the version of the finiteness theorem A.7. when π is the surface group $\pi_{1}\left(\Sigma^{g}\right)$.

This paper was written during my stay in Ruhr-Universität-Bochum and Max-Planck-Institut. I am most grateful to the both organizations for the excellent working conditions. The deepest thanks are due to S. Wang, M. Lustig, J. Jost, Z. Sela and E. Rips for various helpful discussions.

C. Sharp Thurston Inequality

Let N be a complete Riemannian manifold with the curvature satisfying $-K \leq K(N) \leq$ $-k<0$. Let $\operatorname{ISO}(N)$ be the isometry group of N. Consider a flat N-bundle $N \rightarrow E \rightarrow \Sigma^{g}$ over a closed surface Σ^{g}, whose holonomy group lies in $\operatorname{ISO}(N)$. For a section $s: \Sigma^{g} \rightarrow E$ one defines its area, Area (s) using local projections to fibers, i.e. considering (locally) s as a map from Σ^{g} to N. Suppose now that N is simply connected and the natural action of the holonomy subgroup of $\operatorname{ISO}(N)$ on the sphere at infinity $S_{\infty}(N)$ is fixed-point-free. Then we have a following result.
C.1. Theorem There exists a section, s, satisfying

$$
\operatorname{Area}(s) \leq \frac{4 \pi(g-1)}{k}
$$

For trivial bundles and compact N, the result is modified as follows.
C.2. Theorem Let $f: \Sigma^{g} \rightarrow M$ be a smooth map to a compact Riemannian manifold, whose curvature satisfies $-K \leq K(M) \leq-k<0$. Then there exists a smooth map \bar{f} homotopic to f, such that

$$
\operatorname{Area}(\bar{f}) \leq \frac{4 \pi(g-1)}{k}
$$

C.3. Remark see Thurston [20] for the proof in the hyperbolic case $(k=K)$.

We will first prove the theorem C.2. and then show how to modify the argument to deal with the twisted conditions of C.1.
Proof of C.2. First we fix a metric, say h_{Σ}, on Σ of the constant negative curvature, and denote by h_{M} the given metric of M. By the existence theorem of Alber-Eells-Sampson, there exists a harmonic map $\bar{f}:\left(\Sigma, h_{\Sigma}\right) \rightarrow\left(M, h_{M}\right)$, homotopic to f. Consider the product $\hat{M}=\Sigma \times M$ with the metric $\varepsilon h_{\Sigma}+h_{M}, \quad \varepsilon>0$. Let $\varphi: \Sigma \rightarrow \hat{M}$ be the graph of \bar{f}, i.e. $\varphi=(i d, \bar{f})$, so φ is a harmonic embedding of Σ. We need a following lemma.
C.4. Lemma Let $\varphi: \Sigma \rightarrow N$ be a harmonic immersion. For $x \in \Sigma$, let $A_{\varphi(x)}$ be the second quadratic form of $\varphi(\Sigma)$ at $\varphi(x)$. Then

$$
\operatorname{Tr}_{h_{\Sigma}}\left(A_{\varphi(x)} \circ D \varphi\right)=0
$$

Proof of C.4. Let $\nu(x)$ be any normal vector field to φ, and let $\mu(x)$ be any smooth function. Consider a variation $\varphi_{t}(x)$ such that $\frac{d}{d t} \varphi_{t}(x)=\mu(x) v(x)$. By the first variation formula we get $0=\frac{d}{d t}$ energy $\left(\varphi_{t}(x)\right)=2 \int \mu(x) T r_{h_{\Sigma}}\left(A_{\nu} \circ D_{\varphi}\right)=0$, and the result follows.
Next, it follows from C.4. that $\operatorname{det} A_{\varphi(x)} \leq 0$ for all x, so by the Gauss-Bonnet we have

$$
4 \pi(g-1) \geq-\int_{Z} K_{\hat{M}}\left(T_{\varphi(x)} \varphi(\Sigma)\right) d \operatorname{area}_{\hat{M}}
$$

We claim that the last integral majorates $-\int_{\bar{\Sigma}} K_{M}\left(T_{\bar{f}(x)} \bar{f}(\Sigma)\right) d$ area $_{M}$, as $\varepsilon \rightarrow 0$, where $\tilde{\Sigma} \leq \Sigma$ consists of those points where $D \tilde{f}$ has the maximal rank two. Indeed, $-K_{\hat{M}}$ is everywhere nonnegative and it is clear that locally in $\tilde{\Sigma}, \quad K_{\hat{M}}\left(T_{\varphi(x)} \varphi(\Sigma)\right)$ goes to $K_{M}\left(T_{\bar{f}(x)} \bar{f}(\Sigma)\right)$ as $\varepsilon \rightarrow 0$. Finally, we get

$$
4 \pi(\delta-1) \geq \int_{\bar{\Sigma}} K_{M}\left(T_{\bar{f}(x)} \bar{f}(\Sigma)\right) \geq k \cdot \operatorname{Area}(\bar{f})
$$

proving C.2.
Proof of C.1. We use the Donaldson existence theorem [5] instead of the Alber-Eells-Sampson theorem, and find a harmonic section of Σ. The further computations are just the same as in the proof of C.2.
We are now in position to prove the Goldman theorem A.2.
C.5. Proof of the theorem A.2. Consider the associated flat \mathcal{H}^{2}-bundle \mathcal{E} over Σ. We can assume that the action of $\pi_{1}\left(\Sigma^{\delta}\right)$ on S^{1} does not have fixed points, otherwise $\chi(\xi)=0$,
so we can apply the theorem C.1. and find a section s of \mathcal{E} with Area $(s) \leq 4 \pi(g-1)$. We next consider over \mathcal{E} the vertical bundle E (tangent to fibers). Fit together the LeviCivitta connection along the fibers and the flat connection of \mathcal{E} to get a connection in E. Its curvature form is just the inverse image of the area form on fibers under the locally well-defined projections to fibers. So by the Chern-Weyl we have

$$
2 \pi \chi\left(\left.E\right|_{s}\right) \leq \operatorname{Area}(s)
$$

for any section s. Now notice that since \mathcal{H}^{2} is a cell, the left side is independent on s and is always equal to $2 \pi \chi(\xi)$. So choosing s as above, we get $|\chi(\xi)|=\left|\chi\left(\left.E\right|_{s}\right)\right| \leq \frac{1}{2 \pi} \operatorname{Area}(s) \leq$ $2 \delta-2$. If the equality holds, then the Jacobian of s (defined locally viewing s as a way from Σ to \mathcal{H}^{2}) does not change sign. Since s is harmonic, we can apply the argument of Schoen-Yau [17] which implies that actually rank $D s=2$ everywhere. Hence s induces a hyperbolic structure on Σ and it is clear that the correspondent representation of $\pi_{1}\left(\Sigma^{\mathcal{K}}\right)$ in $\mathrm{PSL}_{2}(\mathbf{R})$ is just the holonomy of \mathcal{E}_{1} which is π. This proves A.2.

D. Toledo Inequality For Flat $\mathrm{SU}(1, n)$-Bundles

D.1. Before we shall procede any further we give yet another reformulation of the Milnor and Goldman theorems A.1., A.2., which emphasize the role of the structure group. Consider a representation $\pi_{1}\left(\Sigma^{g}\right) \rightarrow \mathrm{SO}(1,2)$ and the correspondent flat vector bundle of rank 3 with a self-parallel metric of the signature (1.2). Let E_{-}be a (unique up to equivalence) negative subbundle of E, i.e. a subbundle of E such that the restriction of the metric on it is negatively determined. Then $\chi\left(E_{-}\right)$is an invariant of the representation and the MilnorGoldman inequality says that

$$
\left|\chi\left(E_{-}\right),[\Sigma]\right| \leq 2 g-2 .
$$

This formulation suggests that, for structure groups others than $\mathrm{SO}(1,2)$, a similar result may hold. This is so indeed for the pseudoorthogonal group $\mathrm{SO}(1, n)$, as we will see in E.9. below. For the pseudounitary structure group, $\operatorname{SU}(1, n)$, one has the following result, [22], which we will prove with a weaker constant.
D.2. Theorem Let $\pi: \pi_{1}\left(\Sigma^{\delta}\right) \rightarrow \mathrm{SU}(1, n)$ be an irreducible representation in \mathbb{C}^{n+1}, and let E be a correspondent flat complex vector bundle with the self-parallel Hermitian metric of signature ($1, n$). Then for a negative subbundle E_{-}one has

$$
\left|c_{1}\left(E_{-}\right)\right| \leq(g-1) .
$$

D.3. Remark Since E is flat all $c_{i}(E)$ vanish. So for a positive line subbundle E_{+}one has $\left|\operatorname{deg} E_{+}\right|=\left|c_{1}\left(E_{-}\right)\right|$.
D.4. Proof of D.2. Consider the unit ball B^{n} in \mathbb{C}^{n} with the Bergman metric and $\operatorname{SU}(1, n)$ acting isometrically and construct a flat B^{n}-bundle \mathcal{F} over Σ, associated to π. For a section s of \mathcal{F} let $F \mid S$ be the restriction of the vertical bundle F over \mathcal{F}, on s.
Lemma $\left|c_{1}(F \mid S)\right|=2\left|c_{1}\left(E_{-}\right)\right|$
Proof: Consider the subfibration of E, say G, consisting of those vectors in fibers, whose length (with respect to the selfparallel Hermitian metric) is 1 . Let E_{+}be the orthogonal
complement to E_{-}in E. We give a realization of \mathcal{F} as a quotient G / S^{1} under the action of $S^{1} \subset \mathbb{C}$ by multiplication. For a local unit section z of E_{+}we can write the equation of G as

$$
|\alpha|^{2}-\left|z_{-}\right|^{2}=1
$$

where $\alpha z+z_{-} \in G, \quad z_{-} \in E_{-}$. In G / S^{1} we can always choose a representative such that $\alpha=1$, hence identifying G / S^{1} with E_{-}. When z is changed to $e^{i \beta} z$, where β is a smooth real function, this identification will be twisted by $e^{i \beta}$. Thus for a section s of G,

$$
F\left|S \approx \varepsilon^{*} E_{-}\right| S \otimes \varepsilon^{*} E_{+}^{*} \mid s
$$

where $\varepsilon: \mathcal{F} \rightarrow \Sigma$ is the bundle map. So $c_{1}(F \mid S)=c_{1}\left(E_{-} \mid s\right)-c_{1}\left(E_{+} \mid s\right)=2 c_{1}\left(E_{-}\right)$by D.3. (we usually identify Σ and $s(\Sigma)$). Now we extend the Bergman metric of B^{n} to all fibers of \mathcal{F}, using the flat connection. We claim the action of the holonomy group in the sphere at infinity is fixed-point-free. Indeed, the space of geodesics of B^{n} identified with $G \mid S^{1}$ is just the quotient of the space of all Lagrangian two-plains in \mathbb{C}^{n+1}, such that the restriction of the Hermitian form on them is not definite, under the natural action of S^{1}. Every such plane contains precisely two isotropic lines, so the sphere at infinity is K / c •, where K is the isotropic cone of \mathbb{C}^{n+1}. So if the action of the holonomy group were not fixed-point-free, the initial representation π would be reducible. That means we are able to apply the existence theorem of Donaldson and find a harmonic section $s: \Sigma \rightarrow \mathcal{F}$.
For the following computations consider the complex structure J of B as a section of $\Lambda^{2} T_{\mathbf{R}} B$. Then the value of the Kähler form on an element z of $\Lambda^{2} T_{\mathbf{R}} B$, is just (J, z), whereas the curvature form acts as $-R_{B}(z)=(z, z)+(J, z)^{2}$. For a section $s(x)$ denote $z(x)$ the unit vector in $\Lambda^{2} T_{s(x)} \mathcal{F}_{x}$, representing the tangent space of the correspondent (locally defined) surface in B. By Chern-Weyl we have

$$
c_{1}(F \mid J)=\int_{s} \frac{3}{2 \pi}(J, z)
$$

From the proof of C.2. we get

$$
4 \pi(g-1) \geq \int(z, z)+(J, z)^{2} \text { area }
$$

so

$$
\begin{aligned}
& \int(J, z) d \text { area } \leq \sqrt{\int(J, z)^{2} d \text { area } \cdot \operatorname{Area}(s)} \leq \\
& \leq \frac{1}{2} \int(J, z)^{2}+(z, z) d \text { area } \leq 2 \pi(g-1)
\end{aligned}
$$

and, finally

$$
\left|c_{1}\left(E_{-}\right)\right|=\frac{1}{2}\left|c_{1}(F \mid J)\right|=\frac{3}{4 \pi}\left|\int_{S}(J, s)\right| \leq \frac{3}{2}(g-1)
$$

E. Secondary Characteristic Classes For Representations in $\mathrm{SO}(1, n)$ And $S p(1, n)$

E.1. Let M be a compact manifold and let $\pi: \pi_{1}(M) \rightarrow \mathrm{SO}(1, n)$ be a representation. Denote by \mathcal{F} the correspondent flat \mathcal{H}^{n}-bundle over M. Let ω be the volume form of \mathcal{H}^{n}, lifted to \mathcal{F}, and let s be any section of \mathcal{F}.
Definition The volume class $\operatorname{vol}(\pi) \in H^{n}(M, \mathbf{R})$ is defined as

$$
\operatorname{Vol}(\pi)=s^{*} \omega
$$

E.2. Independence Since \mathcal{H}^{n} is a cell, all sections of \mathcal{F} are homotopic to each other, so $\operatorname{Vol}(\pi)$ is a well-defined invariant of π.
E.3. Even Dimension Let E be the flat vector bundle, associated to π and let E_{-}be any negative subbundle of E. If n is even, then

$$
\operatorname{Vol}(\pi)=\frac{\operatorname{Vol}\left(S^{n}\right)}{2} \chi\left(E_{-}\right)
$$

Proof: Following D.4., one realizes \mathcal{F} as a (hyperboloid) subfibration of E, and for the vertical bundle F one gets $F \mid S \approx E_{-}$. The formula then follows from the Gauss-BonnetWeyl formula for χ.
E.4. Vol (π) and "Differential Characters" The invariant $\operatorname{Vol}(\pi)$ can be looked at as a "hyperbolic version" of the secondary characteristic classes introduced by Cheeger and Simons in [2]. Their classes, called "differential characters" do not lie in the cohomology ring, basically because the fiber of the bundle, considered by Cheeger and Simons is a sphere, and so we do not have the independence property E.2.
E.5. Functoriality For a continuous way $f: M^{\prime} \rightarrow M$ and a representation $\pi: \pi_{1}(M) \rightarrow$ $\mathrm{SO}(1, n)$ one has $\operatorname{Vol}\left(\pi \circ f_{*}\right)=f^{*} \operatorname{Vol}(\pi)$. In particular, if $\operatorname{dim} M^{\prime}=\operatorname{dim} M=n$, then $\left(\operatorname{Vol}\left(\pi \circ f_{*}\right),\left[M^{\prime}\right]\right)=\operatorname{deg} f \cdot(\operatorname{Vol}(\pi),[M])$.
E.6. Stability Let $\operatorname{Rep}\left(\pi_{1}(M), \mathrm{SO}(1, n)\right)$ be the representation variety of the fundamental group of M. Then the map $\mathrm{Vol}: \operatorname{Rep}\left(\pi_{1}(M), \mathrm{SO}(1, n)\right) \rightarrow H^{n}(M, \mathbf{R})$ is locally constant, if n is even.
Proof: Use E.3. and the fact that the isomorphism class of E_{-}is stable when π ranges in a connected component of $\operatorname{Rep}\left(\pi_{1}(M), \mathrm{SO}(1, \mathrm{n})\right)$.
E.7. Example Let M be a hyperbolic manifold, and let $\pi: \pi_{1}(M) \rightarrow \operatorname{SO}(1, n)$ be the fundamental representation. Then

$$
(\operatorname{Vol}(\pi),[M])=\operatorname{Vol}(M)
$$

E.8. Corollary Let $M=M_{1} \# \cdots \# M_{k}$, where all M_{i} are hyperbolic manifolds of the same even dimension n, and $\operatorname{Vol}\left(M_{i}\right) \neq \operatorname{Vol}\left(M_{j}\right)$ for $i \neq j$. Then

$$
\operatorname{rank}_{\mathbf{Z}} H^{0}\left(\operatorname{Rep}\left(\pi_{1}(M), \mathrm{SO}(1, n)\right)\right) \geq k .
$$

Proof: Let $f_{i}: M \rightarrow M_{i}$ be a continuous map of degree 1. Let $\lambda_{i}: \pi_{1}\left(M_{i}\right) \rightarrow$ $\mathrm{SO}(1, n)$ be the fundamental representation. Put $\tilde{\lambda}_{i}=\lambda_{i} \circ f_{i}$. By E.5. and E.7.
we get $\left(\operatorname{Vol}\left(\tilde{\lambda}_{i}\right),[M]\right)=\operatorname{Vol}\left(M_{i}\right)$, so by E.6., all $\tilde{\lambda}_{i}$ lie in different components of $\operatorname{Rep}\left(\pi_{1}(M), \operatorname{SO}(1, n)\right)$.
Let \mathcal{K} be triangulation of M with precisely $d_{n} n$-dimensional simplices, where $n=$ $\operatorname{dim} M$.
E.9. Theorem For any representation $\pi: \pi_{1}(M) \rightarrow \mathrm{SO}(1, n)$ and any triangulation \mathcal{K},

$$
(\operatorname{Vol}(\pi),[M]) \leq \mu_{n} d_{n},
$$

where μ_{n} depends only on n.
Proof: The idea to prove E.9. and the more complicated case of variable curvature in E.11. below is to use a twisted version of the Thurston straightening process. We construct a special section s of \mathcal{F} as follows. First choose it arbitrarily over the 0 -skeleton. Given a 1 -simplex, say $\sigma^{1}=x y$ in k, trivialize the bundle $\mathcal{F} \mid \sigma^{1}$ to be $\sigma^{1} \times \mathcal{H}^{n}$ and join $s(x)$ and $s(y)$ by the unique shortest geodesic. This gives the extension of s to the 1 -skeleton. Next, given a 2-simplex $\sigma^{2}=x y z$, trivialize $\mathcal{F} \mid \sigma^{2} \approx \sigma^{2} \times \mathcal{H}^{n}$, so that $S \mid \partial \sigma^{2}$ becomes a geodesic triangle, and fill it in the totally geodesic plane \mathcal{H}^{2} spanned by $S \mid \partial \sigma^{2}$. We proceed in this way, and construct a section s, such that for any simplex $\sigma^{k}, S \mid \sigma^{k}$ maps σ^{k} to a geodesic simplex in $\mathcal{F} \mid \sigma^{k} \approx \sigma^{k} \times \mathcal{H}^{n}$. Then we see that $(\operatorname{Vol}(\pi),[M]) \leq \mu_{n} d_{n}$, where μ_{n} is the Milnor constant, i.e. the maximal volume of a n-simplex in \mathcal{H}^{n}.
E.10. Definition Let $\pi: \pi_{1}(M) \rightarrow S p(1, n)$ be a representation and let E be the correspondent flat quaternionic vector bundle of the rank $n+1$. Consider a negative subbundle E_{-}, with respect to the self-parallel quaternionic Hermitian form. Then the volume $\operatorname{Vol}(\pi)$ is defined as the Euler class $\chi\left(E_{-}\right)$.
E.11. Theorem For any triangulation k of M and a representation $\pi: \pi_{1}(M) \rightarrow S p(1, n)$ one has

$$
(\operatorname{Vol}(\pi),[M]) \leq C_{n} \cdot d_{n}
$$

where C_{n} depends only on n.
E.12. Lemma Let N^{n} be a simply connected complete Riemannian manifold of the negative curvature satisfying $-K \leq k(N) \leq-k$. Let $\pi: \pi_{1}(M) \rightarrow \operatorname{ISO}(N)$ be a representation and let \mathcal{F} be the associated flat N-bundle over M. Then there exists a section s of \mathcal{F} satisfying $\operatorname{Vol}(s) \leq c(n, k, K) \cdot d_{n}$.
E.13. Proof of the theorem E.11. Let N be the quaternionic hyperbolic space with the isometrical acrion of $\operatorname{Sp}(1, n)$, and let \mathcal{F} be the correspondent flat N-bundle. We consider a realization of \mathcal{F} out of the flat \mathbf{H}-vector bundle E with the self-parallel quaternionic Hermitian form of the signature $(1, n$,$) as follows. Let G$ be the subfibration of those vectors in E, whose length is equal 1 . The group S^{3} of unit quaternions acts on G and we put $\mathcal{F}=G / S^{3}$. Then the computation, analogous to D.4. shows that $F \mid S \approx E_{+}^{*} \bigotimes_{\mathrm{H}} E_{-}$ as real vector bundles over a section s. Here we identify $E_{ \pm}$with their lift on $S(M)$. Let $\mu \in H^{4}(M)$ be the Euler class of E_{+}.
E.14. Lemma $\chi(F)= \pm(n+1) \mu^{n}= \pm(n+1) \chi\left(E_{-}\right)$.

Proof: Fix $J \in S^{3}$ with $J^{2}=-1$ and consider all \mathbf{H}-vector bundles to be complex bundles with respect to J. Then $c_{1}\left(E_{+}\right)=0$ since $S^{3} \approx \operatorname{SU}(2)$, and $c_{2}\left(E_{+}\right)=$
μ. By the classifying space argument we may check $\chi^{2}(F)=(n+1)^{2} \mu^{2}$ instead of $\chi(F)=(n+1) \mu$. Passing to complexifications, we get $F_{\mathrm{C}} \approx E_{+}^{*} \bigotimes_{\mathrm{C}} E_{-}$, so $(\chi(F))^{2}=$ $c_{4 n}\left(F_{\mathrm{C}}\right)=c_{4 n}\left(E_{+}^{*} \otimes E_{-}\right)$. We may assume $E_{+}^{*}=L \oplus L^{*}$ for some line bundle L, using $c_{1}\left(E_{+}\right)=0$ and the splitting principle. Then $E_{+}^{*} \otimes E_{-}=L \otimes E_{-} \oplus L^{*} \otimes E_{-}$, so $c\left(E_{+}^{*} \otimes E_{-}\right)=\sum_{i=0}^{2 n} c_{i} \lambda^{2 n-i} \times \sum_{j=0}^{2 n}(-1)^{j} c_{j} \lambda^{2 n-j}=\sum_{\kappa=0}^{2 n} \sum_{i=0}^{\kappa} c_{i} c_{2 \kappa-i} \lambda^{4 n-2 \kappa}$, where $\lambda=c_{1}(L)$ and $c_{i}=c_{i}\left(E_{-}\right)$. But since E is flat, $1=c(E)=c\left(E_{+}\right) c\left(E_{-}\right)=(1-\mu) c\left(E_{-}\right)$so $c_{\mathrm{odd}}\left(E_{-}\right)=0$ and $c_{2 s}\left(E_{-}\right)=\mu^{s}$, so $c_{4 n}\left(E_{+}^{*} \bigotimes_{C} E_{-}\right)=(n+1)^{2} \mu^{2 n}$ and $\chi(F)=$ $\pm(n+1) \mu^{n}$.
So we can replace the estimate of $\chi\left(E_{-}\right)$to that of $\chi(F)$. But the quaternionic hyperbolic space N has negative curvature, so we can apply lemma E.12. to complete the proof of the theorem E.11.

Proof of the lemma E.12. We start with the choice of a section over the 0 -skeleton of k in an arbitrary way. Then, given a 1 -simplex, say $\sigma^{1}=x y$, we trivialize $\mathcal{F} \mid \sigma^{1}$ as in E. 9 and join $s(x)$ and $s(y)$ by the shortest geodesic in N. Next, given a 2 -simplex, $\sigma^{2}=x y z$, we trivialize $\mathcal{F} \mid \sigma^{2} \approx \sigma^{2} \times N$ so that $S \mid \partial \sigma^{2}$ becomes a geodesic triangle. We find a minimal bubble Δ spanning $S \mid \partial \sigma^{2}$ by the solution to Plateau problem. Since the curvature of N is negative, we have (comp. Gromov [7]) $k \operatorname{Area}(\Delta) \leq \pi-\varangle x-\varangle y-\varangle z<\pi$, so Area $(\Delta) \leq \frac{\pi}{k}$. We extend s to the interior of σ^{2} using Δ. So we get the extension to the second skeleton. Now, let σ^{3} be a three-simplex and let $p \in \operatorname{int} \sigma^{3}$. We assume $\mathcal{F} \mid \sigma^{3} \approx \sigma^{3} \times N$. Choose any point in N to stand for $s(p)$. Then we triangulate σ^{3} baricentrically from $s(p)$. For any 3 -simplex of the subdivision, say $p \sigma^{2}$, we put $s \mid p \sigma^{2}$ to be the geodesic cone over $S \mid \sigma^{2}$ from $s(p)$. The linear isoperimetrical inequality [7] then gives $\operatorname{vol}\left(s \mid \sigma^{3}\right) \leq \operatorname{const}(\kappa, K)$. We proceed inductively in this way and construct a section with $|(\operatorname{Vol}(s),[M])| \leq \operatorname{const}(n, \kappa, K) d_{n}$, proving E.12.
E.15. Remark One can use the Gromov's simplicial volume invariant [7] instead of d_{n} in the theorem E.11.

F. The Thurston Inequality And The Hyperbolic cohomology

F.1. Theorem Let M^{4} be a compact manifold of the negative curvature satisfying

$$
-K \leq K(M) \leq-k
$$

Let $\Sigma^{g_{1}}, \Sigma^{g_{2}}$ be two singular surfaces in M, i.e. two continuous maps from the surfaces of genera g_{1}, g_{2} respectively, to M. Then for the elements $\left[\Sigma^{g_{i}}\right] \in H_{2}(M, \mathbf{Z})$ one has $\left.\| \Sigma^{g_{1}}\right] \cap\left[\Sigma^{g_{2}}\right] \leq c\left(g_{1}, g_{2}, \kappa, K, \chi(M)\right)$ for some function C.

This result for hyperbolic M, not necessarily compact, is due to Kapovich [12]. Our proof is analytic, whereas Kapovich [12] uses geometrical arguments from Thurston theory to provide a "canonical form" for a surface in a hyperbolic M^{4}.
F.2. Lemma Let $\omega \in \Omega^{2}(M)$ be a harmonic form. Then $\|\omega\|_{L^{\infty}} \leq$ $\operatorname{const}(\kappa, K, \chi(M))\|\omega\|_{L^{2}}$.

Proof: By a theorem of P. Li [13] one has $\|\omega\|_{\infty} \leq c_{1}(\kappa, K, \operatorname{Vol}(M), \mu(M))\|\omega\|_{L^{2}}$, where $\mu(M)$ is the Sobolev constant. The result of Croke [4] shows $\mu(M) \geq$ $c_{2}(\operatorname{Vol}(M), \operatorname{diam}(M), \kappa, K)$.
By a theorem of Gromov [9], $\operatorname{diam}(M) \geq c_{3}(\operatorname{Vol}(M))$, and, finally, the Chern theorem gives $c_{4}(\kappa, K) \chi(M) \leq \operatorname{Vol}(M) \leq c_{3}(\kappa, K) \chi(M)$, which completes the proof.
Proof of the theorem F.1. First we find surfaces $\tilde{\Sigma}^{g_{1}}, \quad \tilde{\Sigma}^{g_{2}}$, homotopic to $\Sigma^{g_{1}}$, $\Sigma^{g_{3}}$ respectively and such that $\operatorname{Area}\left(\Sigma^{g_{i}}\right) \leq \frac{4 \pi\left(g_{i}-1\right)}{k}$ using C.2. Next, let $\omega_{1}, \cdots, \omega_{N}$ be the orthonormed basis of harmonic 2-forms on M. By F.2. we have ($\left.\omega_{i}, \Sigma^{g_{i}}\right) \leq c(\kappa, K, \chi(M))$. g_{i}. The Poincaré duality operator $D: H_{2}(M, \mathbf{R}) \rightarrow H^{2}(M, \mathbf{R})$ acts as follows: $D \Sigma^{g_{j}}=$ $\sum_{i}\left(\omega_{i}, \Sigma^{g_{j}}\right)\left[\omega_{i}\right]$. Hence $\left|\left[\Sigma^{g_{1}}\right] \cap\left[\Sigma^{g_{2}}\right]\right|=\left|D \Sigma^{g_{1}} \cup D \Sigma^{g_{2}},[M]\right|=\left|\sum_{i}\left(\omega_{i},\left[\Sigma^{g_{1}}\right]\right) \cdot\left(\omega_{i},\left[\Sigma^{g_{2}}\right]\right)\right| \leq$ $c(\kappa, K, \chi(M)) \cdot N \cdot g_{1} \cdot g_{2}$. Moreover, by the Gromov finitenes theorem [9], or by the Betti number estimate [7], $N=b_{2}(M)$ is bounded by $\chi(M)$, so $\left|\left[\Sigma^{y_{1}}\right] \cap\left[\Sigma^{g_{2}}\right]\right| \leq c(\kappa, K, \chi(M))$ as promised.
F.3. Corollary Suppose M is a surface fibration over a surface: $\Sigma^{g_{1}} \rightarrow M \rightarrow \Sigma^{g_{2}}$, posessing a section s. Let ν be the Euler number of the vertical bundle over s. If

$$
|\nu| \geq c\left(\kappa, K, g_{1}, g_{2}\right)
$$

then there does not exist a metric of negative curvature between κ and K, on M.
Remarks 1,2. For complete metrics on vector bundles over $\Sigma^{g_{2}}$ and zero section s, this becomes a conjecture of Kapovich [12]. See also Anderson [1] for positive results. For the case of holomorphic line bundles over Kählerian surfaces which admit complex hyperbolic structure, see [15].
The following result and the theorem A.7., first appeared in Gromov [8] with a proof sketched there. Further discussion see in Sela and Rips [18]. Notice that A.7. deals with the groups more general then a surface group.
F.4. Theorem Let M be a compact manifold of negative curvature and let $\pi_{1}\left(\Sigma^{g}\right)$ be the surface group. There exist no more than a finite number of embeddings $\mathcal{S}: \pi_{1}\left(\Sigma^{g}\right) \rightarrow \pi_{1}(M)$ up to conjugations by an element of $\pi_{1}(M)$.

Proof: Suppose $\varphi_{i}: \pi_{1}\left(\Sigma^{g}\right) \rightarrow \pi_{1}(M)$ is a sequence of mutually nonconjugate embeddings. Consider a sequence of continuous maps $f_{i}: \Sigma^{g} \rightarrow M$ with $f_{i}=\varphi_{i}$. By the existence theorem for harmonic maps, we can choose f_{i} to be harmonic with respect to some metric of curvature -1, say h, on Σ^{g}. Then by the theorem C.2. we have Area $\left(f_{i}\right) \leq$ const. Now choose a conformal structure, say \mathcal{G}_{i} on Σ, such that Energy $\mathcal{G}_{i}\left(f_{i}\right) \leq 2$ Area $\left(f_{i}\right) \leq$ const. Let h_{i} be the unique metric of the curvature -1 in \mathcal{G}_{i}. The argument of Schoen and Yau [16] shows that the class of h_{i} in the modular space $M_{6 g-6}$ is contained in some compact subset. So, twisting of necessary by a diffeomorphism of Σ, we can assume that Energy $_{n}\left(f_{i}\right) \leq$ const with respect to some fixed metric h of the curvature -1 . Let γ be a closed geodesic of h. Applying again the Schoen and Yau arguments, we get that length $f_{i}(\gamma)$ remains bounded as $i \rightarrow \infty$, which is a contradiction to the nonconjugacy of y_{i}, and the theorem follows.

References

1. M.T. Anderson, Metrics of negative curvature on vector bundles, Proceedings of AMS, 99 (1987).
2. J. Cheeger, J. Simons, Differential characters and geometric invariants, Geometry and Topology (College Park, Md, 1985/1984) 50-80, Lecture Notes in Math., 1167, Springer-Verlag, Berlin, 1985.
3. K. Corlette, Archimedean superrigidity and hyperbolic geometry, Annals of Math., 135 (1992), 165-182.
4. C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Scien. Éc. Norm. Super. 4 série, t. 13, 1980, 419-435.
5. S. Donaldson, Twisted harmonic maps and the self-duality equation, Proc. London Math. Loc. 55 (1987), 127-131.
6. Goldman, Representations of fundamental groups of surfaces, Geometry and Topology (ed. J. Alexander and J. Karer), Lect. Notes in Math., 1167 (Springer-Verlag, 1985), 95-117.
7. M. Gromov, Volume and bounded cohomology, Publ. Math. IHES, 56 (1982), 5-100.
8. M. Gromov, Hyperbolic groups, in Essays in group theory, ed. S.M. Gersten.
9. M. Gromov, Manifolds of negative curvature, J. Diff. Geom., 13 (1978), 223-231.
10. N.J. Hitchin, The self-duality equations on a Riemannian surface, Proc. London Math. Soc., 55 (1987), 59-126.
11. J. Jost, S.T. Yau, in preparation.
12. M. Kapovich, Intersection pairing on hyperbolic 4-manifolds, Preprint (June, 1992).
13. P. Li, On the Sobolev constant and the spectrum of a compact Riemannian manifold, Ann. Scient. Éc. Norm. Sup., 4 série, t. 13, 1980, 419-435.
14. J. Milnor, On the existence of a connection with curvature zero, Comm. Math. Helv., 32 (1958), 215-223.
15. A. Reznikov, Ball quotient structures on holomorphic line bundles over a Kählerian surface, in preparation.
16. R. Schoen, S.T. Yau, Existence of incomprecisible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Annals of Math. 110 (1979), 127-142.
17. R. Schoen, S.T. Yau, On univalent harmonic maps between surfaces, Inv. Math., 44 (1978), 265-278.
18. Z. Sela and E. Rips, Structure and rigidity in Hyperbolic groups I, preprint MPI 92-34.
19. D. Sullivan, A generalization of Milnor's inerquality concerning affine foliations and affine manifolds, Comm. Math. Helv. 51 (1976), 183-189.
20. W. Thurston, Geometry and topology of three-manifolds, Mimeographed notes, Princeton, 1979.
21. D. Toledo, Representations of surface group in complex hyperbolic space, J. Diff. Geom., 29 (1989), 125-133.
22. D. Toledo, Harmonic mappings of surace to certain Kähler manifolds, Math. Scand., 45 (1979), 13-26.

Department of Mathematics
Hebrew University
Giv'at Ram, Jerusalem
ISRAEL

Current address: Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

GERMANY

