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A. Preliminary Results

A.1. Theorem (Milnor [14J). Let 7r : 1ft (Bg) --+ SL2 (R) be a representation 0/ fhe sur/ace

group anti let E be the correspondent flat vector bundle 0/ rank two over 2:9 . Then the Euler

number (x(E), [~]) satisfies

I(X(E), [E])I ~ 9 - 1

A.2. Theorem (Goldman [6J). Let 1f : 1fl(Eg) --+ PSL2(R) be aIepresentation and let € be

the associated SI -bundle over E . Then Ix(~)1 ~ 2g - 2 and if the equality holds, then the
image 0/ 1f acts discontinuously anti cocompactly in the hyperbolic plane 7-{,2 .

A.3. Theorem (Thurston [20]). Let IvI be a compact hyperbolic manifoId. Then for any

continuous map f : z:9 --+ M there exists a smoofh map 1 , homotopic to f , such that

Area(7) ~ 4'][(g - 1) .

AA. Theorem (Sullivan [19J). Let Nln be a triangulated manifold with precisely dn Tl­

simplices, and let E be a flat vector bundle of rallk n over lVI. Then

A.5. Remark (Lustig, see Gromov [7]). For any compact manifold 1'1, and any real Lie
group C, there are 00 more than a finite number of fiat G -bundles over NI, nonisomorphie

as bundles (without connection).

A.6. Theorem (Kapovich [12J). Let 1\;]4 be a complete hyperbolic manifold and let E!71
l E92

be two singular sur/aces in J\1. Then

for some universal function C.

A.7. Theorem (Gromov [8J). Let At] be a compact manifold 0/ negative curvature, and

let 'Ir be a finitely presented group. Then there are at most finite number 0/ embeddings

f : 1r --+ 1fl (M) up to a conjugation by an element 0/ 7rl (M) .

B. Introduction

The celebrated Milnor inequality A.l. gives necessary aod sufficieot conditions for a plane
bundle over a surface to carry a fiat connection. Tbe reader will find a discussion of
various generalizations in spirit of the Sullivan 's theorem in the paper of Gromov [7]. In the

other direetion, Goldman [6] showed that a deep eonnection takes place between the Milnor

inequality and the hyperbolic geometry. He eorresponded to a representation of a surfaces

group 'lrl(E9) in PSL2(R) a jiat H 2 -bundle and then constructed a developping section
using a clever induction argument. Later Hitchin [10] showed that the Goldman 's theorem

may be approaehed from the study of self-duality equations on Eg . In the subsequent paper,

Donaldson [5], proved that these equations deseribe harmonic sections of the underlying fiat
H3 -bundle. Such seetions, also called twisted harmonie maps, were intensively used by
Corlette [3] and Jost-Yau [11] for proving rigidity results of Margulis type.

One of the objectives of this work is to give a new and very simple proof of the Goldman's

theorem A.2. and, therefore, also the Milnor inequality A.l., using the sharp version of the
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Thurston inequality A.3. in the case of harmonie sections. This version, given in C.!. below,

gives a sharp estimate for variable curvature of the ambient space (comp. Gromov [8]).

Moreover, we give a new proof of the Toledo inequality [21, 22] for the first Chern class of

a negative subbundle of a fiat SU(l, n) -bundle over E9 ,with a slightly weaker constant.

Dur method wodes for representations of ?TI(~9) is the isometry group of any Kählerian

manifold of negative curvature.

Next, we pass to a fiat SO(l, n) -bündle over a manifold lvI. For this object we introduce

a secondary characteristic dass in H*(A1, R) , which coincide with the Euler dass of

any negative subbundle if n is even. Dur secondary characteristic dass is a sort of

"hyperbolization" of the "differential characters" of Cheeger-Simons [2]. We use the Thurston

straightening teehnique to give effective estimates for its value on [M] when dirn M = n .

We give an application of our invariant to estimate from below the connectivity of the

representation variety Rep(?TI (,"1), SO(1, n)) .

We introduce then a secondary characteristie class for a fiat Sp( 1, n) -bundle over M. A

somewhat more sophistieated straightening technique allows us to give effective estimates of
it in terms of a given triangulation of N!.

Tbe last part of the paper deals with the application of the Thurston inequality and some

isoperimetrical results to "hyperbolie cohomology", i.e. to deriving restrietions on topology

of negatively curved manifolds. Those concerning the multiplicative strueture in eohomology

are especially interesting. A recent theorem of Kapovich, A.6., gives such restrietions for the

ease of constant negative curvature. We prove formally similar results for eompaet manifolds

of variable negative curvature below in F.l. Moreover, using the teehnique of Sehoen-Yau

[16], we prove the version of the finiteness theorem A.7. when ?T is the surface group

1r1 (~9) .

This paPer was written during my stay in Ruhr-Universität-Bochum and Max-Planck-Institut.

I am most grateful to the both organizations for the excellent working eonditions. The

deepest thanks are due to S. Wang, M. Lustig, J. Jost, Z. Sela and E. Rips for various helpful

diseussions.

c. Sharp Thurston Inequality

Let N be a complete Riemannian manifold with the eurvature satisfying -li::; I{(N) ::;
-k < 0 . Let ISO(N) be the isometry group of N. Consider a flat N -bundle N -+ E -+ E9
over a closed surface ~g , whose holonomy group lies in ISO(IV) . For a seetion 5 : 2:9 --+ E
one defines its area, Area(s) using Ioeal projections to fibers, i.e. considering (loeally) s as

a map from 2:9 to N. Suppose now that N is simply connected and the natural action
of the holonomy subgroup of ISO(lV) on the sphere at infinity Soo(N) is fixed-point-free.

Then we have a following result.

C.l. Theorem There exists a section, 5, satisfying

41r(g - 1)
Al'ea( 5) ::; k .

For trivial bundles and eompact N 1 the result is modified as follows.
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C.2. Theorem Let f : Eg --t M be a smooth map to a compact Riemannian manifold, whose

curvature satisjies -K :s; 1((1\11) ~ -k < 0 . Then there exists a smooth map f homotopic

to f, such that

A (
-1) 4n(g - 1)

rea ::; k .

C.3. Remark see Thurston [20] for the proof in the hyperbolie ease (k = 1<) .

We will first prove the theorem C.2. and then show how to modify the argument to deal with
the twisted conditions of C.l.

Proof of C.2. First we fix a metric, say hr, , on :E of the constant negative curvature, and

denote by h M the given metric of lvI. By the existence theorem of Alber-Ee11s-Sampson,

there exists a harmonic map 7:(E, hr,) --t (lvI, hM ) , homotopic to f. Consider the product

Kif = 1: x 1VJ with the metric Ehr, + hJy[ I C > 0 . Let rp : ~ --t M be the graph of 1 ,
i.e. cp = (id, 7) , so r.p is a harmonic embedding of E . We need a following lemma.

CA. Lemma Let cp : :E --t 1V be a harmonie immersion. For ;,: E :E , let Acp(x) be the
second quadratie form of 'P(:E) at rp (x) . Then

Proof of C.4. Let v(x) be any normal vector field to 'P , and let J.l( x) be any smooth

function. Consider a variation 'Pt(x) such that itlft(x) = p.(x)v(x) . By the first variation

formula we get 0 = -1t energy (cpt(x)) = 2 Jp,(X)TThE(Av 0 Dep) = 0 , and the result
follows.

Next, it follows from C.4. that det Acp(x) ~ 0 for a11 :1:, so by the Gauss-Bonnet we have

47r(g - 1) 2: - JK ü (TI'(x)<p(E)) d areakI .

z

We claim that the last integral majorates - [ !(Jy[ (T](x)7CEJ)) d areaA! ,asE --t 0, where
r:

f: ~ E consists of those points where D j has the maximal rank two. Indeed, -KM
is everywhere nonnegative and it is clear that locally in 1:, 1<AI (Ttp(x)'P(E)) goes to

1<]1.1 (T!(x)fCEJ)) as E --t 0 . Finally, we get

47r( <5 - 1) 2: JKM (TY(x)!(E)) 2: k . Area(1) ,

t
proving C.2.

Proof of C.!. We use the Donaldson existence theorem [5] instead of the Alber-Eells-Sampson
theorem, and find a harmonie section of :E . Tbe further computations are just the same as
in the proof of C.2.

We are now in position to prove the Goldman theorem A.2.

C.5. Proof of the theorem A.2. Consider the associated fiat 'H2 -bundle cover E . We can

assurne that the action of 71"1 (~8) on S1 does not have fixed points, otherwise X(~) == 0 ,
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so we can apply the theorem C.!. and find a section S of & with Area(s) ::; 41T(g - 1) .
We next consider over & the vertical bundle E (tangent to fibers). Fit together the Levi­
Civitta connection along the fibers and the flat connection of & to get a eonnection in E.
118 cUIVature form is just the inverse image of the area form on fibers under the locally

well-detined projeetions to fibers. So by the Chern-Weyl we have

27r x(Els) ~ Area(s)

for any section s. Now notice that since H2 is a cell, the left side is independent on sand is

always equal to 27rX(~) . So choosing s as above, we get l;d~)1 = Ix(Els)1 ::; ~Area(s) ::;
28 - 2 . If the equality holds, then the Jacobian of s (defined locally viewing s as a way

from E to H 2 ) does not change sign. Since s is harmonie, we can apply the argument of
Sehoen-Yau [17] whieh implies that actually rank Ds = 2 everywhere. Hence s induces a
hyperbolic strueture on E and it is clear that the correspondent representation of 7r1 (Eil) in

PSL2(R) is just the holonomy of t\ which is 7r . This proves A.2.

D. Toledo Inequality For Flat SU(l, n) -Bundles

D.1. Before we shall procede any further we give yet another reformulation of the Milnor

and Goldman theorems A.l., A.2., which emphasize the role of the structure group. Consider

a representation 1rl(Eg) -t 80(1,2) and the correspondent flat vector bündle of rank 3

with a self-parallel metric of the signature (1.2). Let E_ be a (unique up to equivalence)

negative subbundle of E,Le. a subbundle of E such that the restrietion of the metrie on it

is negatively determined. Then X(E-) is an invariant of the representation and the Milnor­
Goldman inequality says that

This fOfß1ulation suggests that, for structure groups others than 80( 1,2) , a similar result

may hold. This is so indeed for the pseudoorthogonal group 80(1, n) 1 as we will see in

E.9. below. For the pseudounitary structure group, 8U(1, n) 1 one has the following result,

[22], which we will prove with a weaker constant.

D.2. Theorem Let 7r : 1f1 CEb) -t 8U(1, n) be an irreducible representation in Cn+1 , and

let E be a correspondent jiat complex vector bUlldle with the selj-paralJel Hermitian metric

of signature (1, n) . Then for a negative subbundle E_ one has

D.3. Remark Sinee E is flat aJI cj(E) vanish. So for a positive line subbundle E+ one

has IdegE+1 == I C1(E_)1 .

DA. Proof of D.2. Consider the unit ball B n in Cn with the Bergman metric and 8U(1, n)
acting isometrically and construet a flat B n -bundle :F over ~ , associated to 1f . For a

section s of :F let FI S be the restriction of the vertical bundle F over :F I on s .

Lemma lc1(FIS)1 = 2Ic1(E_)1 .

Proof: Consider the subfibration of E 1 say G, consisting of those veetors in tibers, whose

length (with respect to the selfparallel Hermitian metric) is 1. Let E+ be the orthogonal



eomplement to E_ in E. We give a realization of :F as a quotient G/ SI under the aetion

of SI c C by multiplieation. For a loeal unit seetion z of E+ we ean write the equation
of G as

where Cl'Z + z_ E G, z_ E E_ . In G/ SI we ean always ehoose a representative sueh
that Cl' = 1 , henee identifying G/ SI with E_ . When z is changed to eißz , where ß is a

smooth real function, this identifieation will be twisted by eiß. Thus for a seetion S of G,

where [ : :F -t 1: is the bundle map. So cl(FIS) = cl(E_ls) - cl(E+ls) = 2Cl(E_) by

D.3. (we usually identify 1: and 8(1:) ). Now we extend the Bergman metrie of B n to al1
fibers of :F , using the flat eonnection. We claim the action of the holonomy group in the
sphere at infinity is fixed-point-free. Indeed, the spaee of geodesies of B n identified with
GISI is just the quotient of the spaee of a11 Lagrangian two-plains in cn+l , such that the
restrietion of the Hermitian form on them is not definite, under the natural action of SI .

Every such plane contains precisely two isotropie lines, so the sphere at infinity is K / c" 1

where !( is the isotropie cone of cn +1 . So if the action of the holonomy group were not

fixed-point-free, the initial representation 1r would be reducible. That means we are able to
apply the existence theorem of Donaldson and find a harmonie section 8 : 2: -t :F .

For the following computations consider the complex structure J of B as a section of

A2TRB . Then the value of the Kähler form on an element Z of A2TRB , is just (J, z) 1

whereas the curvature form acts as -RB(z) = (z,z) + (J,z)2. For a section s(x) denote

z(x) the unit vector in A2T...(x):Fx , representing the tangent space of the correspondent
(loca11y defined) surfaee in B. By Chem-Weyl we have

cl(FIJ) = J2-(J, z) .
21r

s

From the proof of C.2. we get

47l"(g - 1) ~ J(z, z) + (J, z)2area

so

J(J, z)d area::; J(J, z)2d area· Area(s) ::;

1J 2::;"2 (J, z) + (z, z)d area::; 21r(g - 1)

and, finally
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E. Secondary Characteristic Classes For Representations
in 80(1, n) And Sp(l, n)

E.l. Let A1 be a eompaet manifold and let 1r : 1rl(A1) ---7 80(1, n) be a representation.

Denote by :F the eorrespondeot fiat 1in -bundle over 1'1. Let w be the volume form of

1in , lifted to :F , and let s be any seetion of :F .

Definition The volume class val( 7r) E HH(lvl, R) is defined as

\Tol( 7r) = s*w .

E.2. Independence Sinee }{,1l is a eell, all sections of :F are homotopie to eaeh other, so

Vol(1r) is a well-defined invariant of 1r .

E.3. Even Dimension Let E be the fiat vector bundle, assoeiated to 1r and let E_ be any

negative subbundle of E. If n is even, then

Proof: Following 0.4., one realizes :F as a (hyperboloid) subfibration of E, and for the

vertieal bundle F one gels FIS:=::::: E_ . The formula then follows from the Gauss-Bonnet­

Weyl formula for X .

E.4. \Tol(1r) and "Differential Characters" The invariant \Tol( 7r) can be looked at as

a "hyperbolie version" of the seeondary eharaeteristic classes introduced by Cheeger and

Simons in [2]. Their classes, called "differential characters" do not lie in the cohomology

ring, basically because the fiber of the bundle, considered by Cheeger aod Simons is a sphere,

and so we do not have the independence property E.2.

E.5. Functoriality For a continuous way f : /\1' ---7 /\1 and a representation 7r : 7rl (M) ---7

SO( 1, n) one has \Tol( 7r 0 f.) = j*\Tol(1r) . In particular, if diu11\1' = diIn A1 = TI, , then

(Vol(1f 0 j*), [M'}) = deg f . (Vol( 7r), [M}) .

E.6. Stability Let Rep(1rl(.iVI) , SO(l, n)) be the representation variety of the fundamental

group of M. Theu the map Val: Rep(1rl(M), 80(1, n)) ---7 HH(Ai, R) is locally constant,

if n is even.

Proof: Use E.3. and the fact that the isomorphism class of E_ is stable when 7r ranges in

a connected component of Rep(7r1(1'1),S0(1,n)) .

E.7. Example Let Ai be a hyperbolic manifold, and let 7r : 7rl (lvI) ---7 SO(1, n) be the

fundamental representation. Then

E.8. Corollary Let lvI = 1\11# ... #lvIk , where aU lvIi are hyperbolic manifolds of the

same even dimension n, and Vol(Ali) i- Vol(Mj) for i i- j . Then

Proof: Let li : A1 ---7 A1i be a continuous map of degree 1. Let Ai : 1fl ( lvIi) ---7

SO(l, n) be the fundamental representation. Put Ai = Ai 0 Ii. . By E.5. and E.7.
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we get (\Tol (.xi)' [AIJ) = \!ol(ivIJ , SO by E.6., all ~i He in different eomponents of

Rep(7rl(.Al), 80(1,12)) .

Let Je be triangulation of /vI with precisely du 12 -dimensional simplices, where 12 =
dimAl .

E.9. Theorem For any represelltatioll 7r : 7rl(iVI) -+ 80(1, n) and any triangulation Je ,

(Vol(7r), [lvI]) ~ J.lndn ,

where {tn depends only on n.

Proof: The idea to prove E.9. and the more complieated case of variable curvature in

E.ll. below is to use a twisted version of the Thurston straightening process. We eonstruet
a special section s of F as follows. First choose it arbitrarily over the O-skeleton. Given
al-simplex, say a 1 = xy in k 1 trivialize the bundle FI (J"

1 to be a 1 x Hn and join s (~. )
and s(y) by the unique shortest geodesic. This gives the extension of s to the I-skeleton.

Next, given a 2-simplex a2 = xyz , trivialize Fla2 ::::: a 2 x rtn , so that Sl8a2 becomes a
geodesic triangle, and fill it in the totally geodesie plane rt2 spanned by Sl8a2 . We proceed

in this way, and construct a section 8, such that for any simplex ak , Slak maps ak to

a geodesie simplex in Flak::::: ak X rtU
• Then we see that (Vol( 1T"), [1vl]) ~ Pndn , where

J1n is the Milnor eonstant, i.e. the maximal volume of an-simplex in rtH
•

E.I0. Definition Let 7r : 7rl(1\1) -+ Sp(l,n) be a representation and let E be the
correspondent fiat quaternionie vector bundle ofthe rank n+l. Consider a negative subbundle
E_ , with respect to the self-parallel quaternionie Hermitian form. Then the volume Vol( 1T")

is defined as the Euler class x(E_) .

E.ll. Theorem For any triangulation k 01 Al alld a representation 1T" : 7rl(M) -+ Sp(1, n)

one has

where Cn depends only on TL

E.12. Lemma Let N n be a simply connected complete Riemannian manifold 01 the negative

curvature satisfying -f{ ~ k(lV) ~ -k . Let 7r : 1T"1(1\1) -+ ISO(lV) be a representation and

let F be the associated flat N -bundie over lVI. Then there exists a section S 01 F satisfying
Vol(s)::; c(n,k,l().dn .

E.13. Proof of the theorem E.ll. Let N be the quaternionie hyperbolie space with the
isometrical acrion of Sp(1, n) , and let F be the eorrespondent fiat N -bundle. We eonsider
a realization of F out of the fiat H -vector bundle E with the self-parallel quaternionie

Hermitian form of the signature (1, n,) as follows. Let G be the subfibration of those

vectors in E, whose length is equal 1. The group S3 of unit quaternions aets on G and

we put F = G/ S3 . Then the computation, analogous to D.4. shows that FIS ::::: E+. ® E_
H

as real vector bundles over a section 8. Here we identify E± with their lift on S( A1) . Let

J.L E H4(M) be the Euler class of E+ .

E.J4. Lemma X(F) = ±(n + 1)j.1n = ±(n + l)X(E_) .

Proof: Fix J E S3 with J2 = -1 and consider aU H -vector bundles to be eomplex
bundles with respect to J . Then cl(E+) = 0 since S3 ::::: SU(2) , and c2(E+) =
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p.. By the classifying space argument we may check X2(F) = (n + 1)2fl2 instead of

X(F) = (n + 1)f1 . Passing to complexifications, we get Fe ~ E+ ® E_ , so (x(F))2 =
e

c4n(Fc ) = C4n (E+ 0 E_) . We may assume E+ = L ffi L* for some line bundle L,

using Cl (E+) = 0 and the splitting prineiple. Then E.+ ® E_ = L 0 E_ EB L* C9 E_ I so
2n 2n. 2n K

c(E.+ ® E_) = l:: CiA2n-i X I: (-1))cj.x2n -
j = L: I: Ci C2K-; .x4n - 2K , where .x = cl(L)

;=0 j=O 1\;:;::0 i=O
and ci = ci(E_) . But since E is fiat, 1 = c(E) = c(E+)c(E_) = (1 - tl)c(E_) so

Codd(E_) = 0 and c2s(E_) = f.Ls , so qn(E+~E_) = (n+1)2,/2n and X(F) =

±(n+ l)f1n .

So we ean replace the estimate of x( E_) to that of X( F) . But the quaternionie hyperbolic

space f.l has negative curvature, so we can apply lemma E.12. to complete the proof of the

theorem E.ll.

Proof of the lemma E.12. We start with the choice of a section over the O-skeleton of k in
an arbitrary way. Then, given al-simplex, say 0-

1 = l:Y, we trivialize Fla1 as in E.9 and

join s(x) and s(y) by the shortest geodesic in lV. Next, given a 2-simplex, a2 = xyz , we

trivialize .1'1a2 ~ a2 X lV so that 518a2 becomes a geodesic triangle. We find a minimal

bubble .6. spanning Sl8a2 by the solution to Plateau problem. Since the curvature of f.l
is negative, we have (comp. Gromov [7]) k Area(.6.) ::; 7r - <tx - <ty - <tz < 7r , so

Area(~) ::; r . We extend s to the interior of 0-2 using L\ . So we get the extension

to the second skeleton. Now, let a3 be a three-simplex and let ]J Eint 0-3 . We assume

Fla3 ~ a3 x lV . Choose any point in lV to stand for s(p) . Then we triangulate a3

baricentrically from s(p) . For any 3-simplex of the subdivision, say pa2 , we put slpa2 to

be the geodesie cone over 510-2 from s(p) . The linear isoperimetrical inequality [7] then

gives vol (si ( 3) ::; const (K~, J{) . We proceed inductively in this way and construct a section

with I(Vol(s), [MDl ~ cOllst(n, K, K)dn , proving E.12.

E.15. Remark One can use the Gromov's simplicial volume invariant [7] instead of dn in

the theorem Eoll.

F. The Thurston Inequality And The Hyperbolic cohomology

F 01. Theorem Let 1'14 be a compact manifold 0/ the negative curvature satisfying

-1( ::; K (lvI) ::; - k .

Let 2:;91, E9) be two singular surfaces in lvI, i.e.!wo continuolls nwps from the surfaces

of genera g}, 92 respectively, to A1. Then for the elements [Egi] E H2(1'1, Z) one has

I[2:;g1] n [E9)] ::; c(gl, g2, /'l;, K, X( A1)) for some function C.

This result for hyperbolic !vI, not necessarily compact, is due to Kapovich [12]. Dur proof is

analytic, whereas Kapovieh [12] uses geometrical arguments from Thurston theory to provide

a "canonical form" for a surface in a hyperbolic M 4
0

F.2o Lemma Let w E n2(lVl) be a harmonie form. Then IlwlIL<X> <
const(r.:, 1(, x(M))llwIIL2 .
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Proof: By a theorem of P. Li [13] one has llwll oo ::; Cl(K, !(, VOl(1\1), tt(i\l))llwIIL~ ,
where J-l(lvI) is the Sobolev eonstant. Tbe result of Croke [4] shows j.L(NI) ~

C2 (Vol(1"vI), dian1(M),~, K) .

By a theorem of Gromov [9], dialn(M) ~ c3(Vol(M)) ,and, finally, the ehern theorem

gives C4(K, ]()X(A1) ::; \Tol(1\l) ::; C3(~, ]<)X(1\1) , whieh completes the proof.

Proof of tbe theorem F.1. First we find surfaces t 9l , t~, homotopic to E9l , E9J

respectively and such that Area( E9i) ::; 4~ (9k-1) using C.2. Next, let Wl,'" I wN be the

orthonormed basis ofhannonic 2-forms on 1\1. By F.2. we have (Wi, E9 i ) ::; C(I\'" !(,X(A1))·
gi . Tbe Poincar6 duality operator D : H2(A1, R) ~ H2(NI, R) acts as follows: Drßj =
1: (Wj, E9j )[w;) . Hence I[E9l]n[E9~] I = ID~91 UDE9~, [lVf] I = 11: (w;, [E9l]). (w;, [~9~])1 ::;
i i

C(K, ](, X(A1)) . N . gl . g2 . Moreover, by the Gromov finitenes theorem [9], or by the Betti

number estimate [7], lV = b2 (!vI) is bounded by x(1'1) , so HEgl] n [E92] I ~ c( K, ](, X( !vI) )
as promised.

F.3. Corollary Suppose Al is a surface fibration over a surfaee: Eilt ~ 1'1 ~ E~ ,

posessing a seetion s. Let v be the Euler number of the vertieal bundle over s. If

then there does not exist ametrie of negative eurvature between ~ and K, on !vI.

Remarks 1,2. For eomplete metrics on vector bundles over E~ and zero seetion s, this

becomes a eonjecture of Kapovieh [12]. See also Anderson [1] for positive results. For the

ease of holomorphic line bundles over Kählerian surfaees whieh admit complex hyperbolie

strueture, see [15].

Tbe following result and the theorem A.7., first appeared in Gromav [8] with a proof sketehed

there. Further diseussion see in Sela and Rips [18]. Notice that A.7. deals with the groups

more general then a surfaee group.

FA. Theorem Let lvI be a compact manijold of negative curvature and let 7ft (E9) be the

surface group. There exist no more than afinite number of embeddings S : 1rl(E9) ~ 1rl(A1)
up to conjugations by an element of 71"1(M) .

Proof: Suppose !.pi : 71"l(EY) ~ 71"1(.A1) is a sequence of mutually nonconjugate embeddings.

Consider a sequence of eontinuous maps fi : E9 ~ Al with fi. = !.pi . By the existence

theorem for harmonie maps, we can choose Ji to be harmonie with respect to some metric

of curvature -1, say h , on E9 . Tben by the theorem C.2. we have Area(Ji) ::; const. Now

choose a confonnal structure, say {!i on E , such that Energy 9i(fi) .:::; 2 Area(Ji) ::; const.

Let hi be the unique metric of the curvature -1 in {!i . Tbe argument of Schoen and

Yau [16] shows that the class of hi in the modular space 1V[6g-6 is eontained in some
compaet subset So, twisting of neeessary by a diffeomorphism of E , we can assurne that

Energ)'n (fi) .:::; cons t. with respect to same fixed metric h of the eurvature -1. Let f be

a closed geodesie of h. Applying again the Sehoen and Yau arguments, we get that length

Ji(/) remains bounded as i ~ 00 , whieh is a contradiction to the nonconjugacy of Yi I

and the theorem follows.
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