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Bubbling out of Einstein Manifolds
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in memory of late Dr. Osamu Tezuka

In [1], [8], and [4] the following compactness theorem of the space of
Einstein metrics is obtained in the spirit of Gromov theory.

Theorem A. Let (X;,¢;) be a sequence of n-dimensional (n > 4) smooth
manifolds and Einstein metrics on them with uniformly bounded Einstein
constants {e;} satisfying

diam(X;,9:) < D, vol(X;,9:) 2V and] IR, |"?dV; < R
Xi

for some positive constants D, V and R, where we denote curvature tensor of
a metric g by R, . Then there exist a subsequence {j} C {i} and a compact
Einstein orbifold (X o, goo) With a finite singular set S = {z1,22,...,2,} C
Xoo (possibly empty) for which the following statement holds:
1) (Xj,¢;) converges to (Xoo, goo) in the Hausdorf distance.
2) There exists an into diffeomorphism Fj : Xoo\S — X for each j such
that F}g; converges to goo in the C*°-topology on Xo,\S.
3) For every z, € S (a = 1,2,...,s) and j, there exist z, ; € X; and a
positve number r; such that

3.a) B(z,,;;6) converges to B(z,;6) in the Hausdorff distance for all
6> 0.

3.b) im ;oo 7j = 0.

3.c) ((X;,7;9;),2a,;) converges to ((My, hy), Ta,c0) in the pointed Haus-
dorff distance, where (M,, h,) is a complete, non-compact, Ricci-
flat, non-flat n-manifold which is ALE of order n — 1 in general, of
order n if (M,,h,) is Kihler or n = 4.

3.d) There exists an into diffeomorphism G; : M, — X; such that
G3(rjg;j) converges to h, in the C*°-topology on M,.

4) It holds

lim |jo In/2 d‘/J 2 / |Rgoo ln/2 dVOO + Zf tha In/2 tha'
X; Xeo a M,

j—oo
27
Moreover if (X, g;) are Kahler, then (X oo, §oo ) and (Mg, h,) are also Kahler.

Here we call a smooth n-dimensional complete Riemannian orbifold
(X, g) asymtotically locally Euclidean (ALE) of order 7 > 0, if there exists a
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compact subset K C X such that X\ K has coordinates at infimity; namely
there are R > 0, 0 < a < 1, a finite subgroup I' C O(n) acting freely on
R™\B(0; R), and a C'*°-diffeomorphism Z : X\ K —— (R™"\B(0; R))/T" such
that ¢ = Z~1 o proj satisfies (where proj is the natural projection of R" to
R™/T)

(0"9)ij(2) = & + O(z]77),  Ok(¥*9)ij(2) = O(l2|7"77),
|ak(§0*g)ij(z) — ak(‘io*g)ij(wﬂ — O(Irnn{|z| |w|}—r—1—a)
|z —w|® ’

for z,w € R"\B(0; R).

(For simplicity we assumed that (X, ¢) has only one end. So is our case.)

Kronheimer classified all ALE hyper-Kahler surfaces of order 4 in his
thesis [6], he calls such manifolds ALE gravitational instantons. In particular
he proved the following;

Theorem B. An ALFE gravitational instanton is diffeomorpfic to a minimal
resolution of C* /T, where T is a finite subgroup of SU(2).

We remark that a simply connected Ricci-flat Kahler surface is hyper-
Kahler. Thus in Einstein-K&hler surfaces case we have rather good under-
standing on the nature of degeneration. Only missing point is the knowledge
of the neck B(z,,j; 6)\B(z4j;7;),i.e. how an instanton is glued to a singular
point on X,. The purpos of this paper is to clarify it, namely we get the
following theorem stated in terms of the above notations.

Theorem. Assume that the sequence (X, g;) consists of Einstein-K&hler
surfaces. If we fix a sufficiently small constant é > 0, then for sufficiently
large j, the geodesic ball B(z,,;;6) in X; is diffeomorphic to a cyclic quotient
.of ALE gravitational instanton.

Remark. In 4-dimensional case, for a compact Einstein manifold X the
curvature integral [, |R|? = const x(X) is a topological invariant.

The author would like to express his thanks to Prof. M. T. Anderson.
He got the idea of the proof in the enlightening discussion with him. And he
would like to thank Prof. Furushima and Prof. Ohnita for helpful discussions.
He also would like to acknowledge his gratitude for the hospitality of Max-
Planck-Institut fir Mathematik. This work is done during his stay there.



1. Preparation from Analysis

Let M be a complete n-dimensinal (n > 3) Riemannian manifold with a
fixed point 0 € M. For 0 < r1 < ry we denote B(o;r2)\B(0;71) by D(ry,r2).
We assume that there is a domain D = D(rg,re) in M with 0 < 1y < re
which satisfies the following conformally invariant conditions:

1/~
{] v27} < S/ |[Vov|*  for all v € CL(D),
D D

vol(D(ry,72)) S Vry  forall ro <rmi <ry <re

with some positive constants S, V and ¥ = n/(n — 2). Let u be a non-
negative function defined on D which satisfies

Au > —fu on D

with a non-negative function f. Then we have following lemmas. Proofs
are essentially same as those of corresponding lemmas in [4; §4], so we omit
them.

Lemma 1. Suppose f € L™?, and u € L? for some p € [po,p1] where
po > 1. Then u € L? for all ¢ > p, and there exists e; = €;(S,V,po,p1) > 0
such that if

f 2 < ¢ with 79 <r < 8r < re.,
D(r,87)

1/~
/ uP? < Clr_zf uP,
D(2r,4r) D(r,8r)

where Cy = C1(S,V,po). Moreover if ro = 0 and

then we have

] M <e;  with 2r < re,
B(o;27)

then it holds that

1/~
{ / } con [
B(o;r) B(o;2r)
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Lemma 2. Suppose f € L™?, and u € L? for some p € [po,p1] where
po > . Then there exists ea = €(S,V,po,p1) > 0 such that if

() <o

then it holds that forrgo < r; < 2r1 < ro9 < 2r9 < ree

/ u? S Cg/ up,
D(2T1,1‘2) D(T1,2T1)UD(‘P2,21’2)

[z (G 2V}

where Cy = CQ(S V,po), €3 = 63(5 V,p()) > 0.

Lemma 3. If f € L7 for some ¢ > n/2, u € LP for some p > 1, and it ho]ds
that for any r such that ro <r < 8r <71

f £1 < Ap—(21=n)
D(r,87) o

with some constant A, then we have

sup uf < C3r_n/ uf,
D(2rdr) D(r,87)

where C3 = C3( A, S,V,p,q). Moreover if ro =0 and

/ 1< Ar—(e—m),
B(o0;27)

Then it holds that
sup u?f < Cgr—"] u?,
B(o;r) B(o;2r)

Let (M,g) be an n-dimensinal Einstein manifold, then applying the
Weitzenbock formula we get

A|R| > —C4|R}?.

Moreover we have the following inequality using Yau’s trick. For the proof

see [2], [4], [9].



Lemma 4. There exist positive constants § = é(n) and Cs = Cs(n) such
that
A[R['™* = ~C5|R|*°.

Ifn =4 or (M,g) is Kihler we can take § =4/(n + 2).

One can show the following lemma via L?-Hodge theory.

Lemma 5. Let (X, g) be an n-dimensional (n > 4), complete, non-compact,
Ricci-flat, ALE orbifold. Then its first cohomology group H'(X;R) van-
ishes.

Here we recall the existence theorem of Ricci-flat KK&hler metrics on
open Kéahler orbifolds in [3], which is stated in the case of manifolds but its
proof equally works for orbifolds.

Definition. A complete n-dimensional Riemannian orbifold (X, g) is called
of C*%-asymptotically flat geometry if for each point p € X with distance
from a fixed point o in X, there exists a quasi-coordinate map ¢ : B — X
centered at p from the unit ball B™ in the Euclidian space (i.e. ¢ gives
a local uniformization and ¢(0) = p), such that with respect to the stan-
dard coordinates z = (z',z%,...,z™) of the Euclidian space it satisfies the
following conditions:

(i) If we write ¢*g = 3 g;j(z) da® dz’, then the matrix (r? 4+ 1)7(gi;) is

bounded from below by a constant positive matrix independent of p.

(i) The C**-norms of (r? + 1)7'g;;, as functions in z, are uniformly

bounded.

On such a orbifold we can define the Banach space Cy*® of weighted

C**-bounded functions: The norm of a function u € Cf’a is given by the
supremum of the C**-norms of (% 41)%/2u with respect to the coordinates
z.

Theorem C. Let (X,w) be an n-dimensional (n > 2) complete open Kahler
orbifold of C**-asymptotically flat geometry with k > 2, 0 < & < 1. As-
sume that the singuralities sit in a compact set and there exists a barrier
function p. If X admits a Ricci-flat volume form V such that w® = e/V
with f € C;C_]_O_f,_ and § > 0, then X admits a complete Ricci-flat Kahler metric
asymptotically equal to w.

Here a barrier function p means that outside a compact set p satisfies
the following conditions:



(i) pis compatible to the distance function d from o; there exists a positive
constant ¢; such that ¢;d < p L el 4.

(i) The function p~% belongs to Cy 12,
(iii) There exists a positive constant ¢z such that

(iv) There exists a positive constant ¢z such that for any positive number
K and sufficiently large d

(w ++/—180 Kp_'s)f1 <(1- 63Kp_2_6)wn,
(w+v—-100 — Kp""s)n > (1+ esKp™ 2 )w™.



2. Einstein Manifolds

Let (X}, g;) be a sequence of Einstein manifolds which enjoyes the prop-
erties stated in Theorem A. Then by [5] we have the Sobolev inequality on
(X, g;) with uniform Sobolev constants, and the following proposition holds.
For the proof see [1], [8].

Proposition 1. There exist constants p, Cg and e4 such that if

[ Rz
B(z;2r)

with 2r < p, then we have that

sup |Ry; | < Csr_2/ IR, ™%
B(z;r) B(z;2r)

Now we take a positive constant r., < p sufficiently small, so that we
can assume that for all a

sup  |Ry, |* = |Ry; [*(za;) — 00 as j— o0
B(z,,jiTeo

and
€

[ R s
B(za,70) 2

with a positve number € < ¢,/2 to be determined later. From now on we
fix an arbitrary singular point z, and look at the blowing up process. Since
(X, g;) converges to (X oo, goo) in C'°-topology exept at the singular points,
for sufficiently large 7 we can find a positive number ry = rg ; such that

/ IRg,' |n/2 =€,
D(f‘o,f‘w)

where we denote a subset B(z, j;72)\B(Z4,j;71) in X; by D(rq,r2). Then
we get that

ro — 0 as 7 — 00.

Proposition 2. There is a subsequence {k} C {j} such that the sequence
of pointed Einstein manifolds ((Xy,rg2gx),za ) converges to ((Y,h),Yoo)
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in the pointed Hausdorrf distance, where (Y, h) is a complete, non-compact,
Ricci-flat, non-flat n-orbifold only with finitely many isolated singular points.
(Y,h) is ALE of order n—1 in general, of order n if n = 4 or (Y, h) is Kihler.
The convergence is actually in C®°-topology except at the singular points.

The proof is same as that of Theorem A. We refer to [1], [8] and [4].

Thus we know that for large 1 < I; < K, two subsets D(Kyry, Karp)
and D(K; oo, Kj 'Too ) in X}, are very close to portions of flat cones R™ /T
and R" /T, respectively. To show that Ty = I'o, and D(Klro,Kz_lroo)
is also close to a portin of the flat cone, we need the following curvature
estimate.

Proposition 3. Tere exist positive constants C7 and €5 such that for 4ry <
r < dr < ro, 1t holds that

iRy | < Crmax{ (2), (Z)°}

Proof. First apply Lemma 1 to the equation A|R| > —C4|R|* on R = Ry,
assuming C’Z/ze < e3. Then we get that for 2ro <r < 2r < ry

f lR|ﬂ/2 < Ar—(29—n)
D(r,2r)

with a constant A and ¢ = yn/2. Next we apply Lemma 2 and Lemma
3 to the equation A|R*% > ~Cs|R|>"® withp = (1 —8)"'n/2 > v. If
C;lze < €3, we get that for drg <r < 4r < rq

2/n
IR, | < 03/“{ / |R|"/2}
D(r/2,4r)

< e (2) (2)°)

T T oo

with €5 = 2¢3/n. We choose € by € = m1n{63C4 6205—"/2,64/2}, then
the proof is complete.

Once we get the curvature estimate, we can construct coordinates as
in the proof of the existence theorem of coordinats at infinity [4]. We need
only minor changes, so we omit the proof of the following proposition.
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Proposition 4. If one take 1 < K; < K> sufficiently large, then the subset
D(K;ry, K{l Teo) 18 close to a portion of a flat cone R™ /T for large j.

Thus if (Y, k) has no singularity, then the ball Bz, &;reo) is diffeomor-
phic to the smooth manifold ¥ which bubbles out of Xj.

If (Y,h) has a singular point y,, then we choose a sufficiently small
number r__ and the corresponding point z,; in X} such that

/ |R|™? < €
B(y-,’”éo) 2

sup le.& |2 = 1ng|2($8,k) —* O0.
B(z,,kir07h,)

Choose ry = rg . such that

R 11/2=E
[ R
D' (rory,rorss)

with D'(rq,r2) = B(2, k;72)\B(%4x; 1), and consider a sequence of pointed
Einstein manifolds (X, (rorh) " 2gr ), Zs,x). Then we have the same situation
as before, and we get a complete, non-compact, Ricci-flat, non-flat, ALE n-
orbifold (Y',h') only with finitely many isolated singular points. By the
same way we can show the neck is diffeomorphic to a flat cone. If (Y, A')
again has a singular point, we repeat the argument. And also we apply the
same process at every singular point which appears at each repeated step.
Since each singular point contributes at least e to the curvature integral

[ |R|™?, the process terminates at finite steps. In this way we get a picture
of the small ball Bz, j; 7e0)-

Theorem 1. The small ball Bz, j;Te0) In X; corresponding to a singular
point xz, of the limit orbifold X, is deffeormorphic to a connected sum of
finite number of complete, non-compact, Ricci-flat, non-flat, ALE n-orbifolds
only with finitely many isolated singular points, whose singular points are
glued to the infinities.

Remark. We may also use the following gap theorem to show the process
terminates at finite steps.

Theorem 2. Let (X,g) be an n-dimensional (n > 4), complete, non-
compact, Ricci-flat Riemannian orbifold, which satisfies

1/~
{/vz"’} < Sf Vo[> for all v € CL(X)
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with a constant § > 0. There exists a constant eg = €g(n,S) > 0 such that
the inequality
f |R|"/? < e
X

implies that (X, g) is the Euclidian space.
Proof. Apply Lemma 1.
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3. Einstein Kahler Surfaces

In this section we assume that all manifolds (X}, ¢;) are Einstein-K&hler
surfaces. Since the limit space X, is an orbifold, there is a neiborhood U of
the singular point z, which is biholomorphic to a quotient B/T" of the unit
ball B C C? with a finite subgroup I' C U(2) acting freely on C*\{0}. Let
det : U(2) — S* be a group homomorphism defined by the determinant.
Then the image det(F) is a finite cyclic group, say, Z,,. Then U has a
branched Z,,-covering: U — U with a branched point z, such that U has
trivial canonical line bundle K. Namely, set I' = kerdet N T C SU(2).
Then we have a natural projection U = B/T — U and a non-vanishing
holomorphic 2-form w = dz! A dz? descends to ﬁ, where (z!,2?) is the
standard coordinates in C2. We have the corresponding result on z, ; € X;
for large 5.

Proposition 5. There exists a positive constant § such that for large j
there is a smooth Zm,-covering: U; — U; D B(z,;;§), where U; has
topologically trivial canonical line bund]e Ky ;-

Proof. We may assume the domain U C X, has smooth boundary OU.
Then there exists a sequence of neiborhoods U; C X of z,; which have
smooth boundaries OU; = F;(0U). We take é so small that B(zq4,j; 5) C U
Then it is sufficient to show that for large 5 there are sections 8; of I

U; such that

Cs' < 85| < Cs, and  |V8;| < Cy

with positive constants Cg, Cy.
Define operator O = [J; acting on the space of sections of Kg?;" by

O=-0*0=tr V'V",

where we decompose the covariant defferentiation V = V' + V" into (1, 0)-
and (0, 1)-parts. Let ¢ be the local holomorphic uniformization 3 : B —

B/T' =5 U and 7 be a radial cut-off function on B such that n = 0 on
B(0;1/3) and n = 1 on B\B(0;2/3). Using 1 the section nw®™ of K&™
defines a section of K ®m, which we still denote by nw®™. For large j we
define sections 6y = 6 ; of I’®m on Uj by 6p,; = proj (F; Y pw®™ where

proj = proj; is the projection map of tensors to K%n. (Note that the maps
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F; : Xoo\S — X need not to be holomorphic, but become closer and
closer to be holomorphic as 7 tends to co.) We solve the following equation

on a section § = 6; of K?}Tn on Uj
b

d6=0 and =6,

glaU,- |8U_,-'

Then 8 satisfy
Af =tr VVO = —2me;8.

Set 8’ = 8 — 6. Then 8" has vanishing boundary value and satisfies
NG = —2mej0' + ¢

with ¢ = (; on which we have good control. We have that

s Jip < [iviee < [ivep
—- [@,00)=2me; [ 101~ [(0,0)
<2me; [P+ [ |6'|2)1/2 (/ mz)m

with the first eigenvalue A = A; of the Laplacian acting on functions on U;
with the Dirichlet condition. If we choose U, hence Uj, sufficiently small
such that A > 2mle;| + 1, we get L2-estimates of §', V6’ and those of §. We
apply Lemma 3 to the inequality Alf| > —2m|e;||6], and get C°-estimate
on 6.
For C1-estimate we differentiate the equation on 6 and get the following

equations

A|V'82 = 2|VV'8|* + 2¢;|V')?,

AIV"0)? = 2|VV"0)? + 2(—4m + 1)e;|V"6)?,

A|VOP? > 2|VV|? — 2(4m — 1)e;||VE|?,

AI90] 2 —(4m — 1)|e;|| V8]

Then again applying Lemma 3, we get Cl-estimate away from boundaries.
As to near boundaries, we have good control on the smoothness of the bound-
aries, the boundary values and the equations and also we have C°-estimate
of §. So there is no trouble to get C'**-estimate on U\B(z, j; r) for any fixed
r > 0.
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Now consider the sequence {proj*F}6;} on B\{0} which has uniform
C°-estimate away from the origin 0. So it has a convergent subsequence
with limit, say, § defined on B\{0}. @ satisfies the equation 08 = 0 and
has C'-estimate, so it extends to a smooth solution of the equation across
the origin. It must coincide with the unique solution w®™. So the sequence
{proj*F}6;} itself converges to w®™ and there is a positive constant Cjg
such that for fixed r > 0 we have that for large j > j(r)

18] > Cho on U;\B(z4,;;7)
By Theorem 1 there exists a constant Cq; such that every point in B(z, j;r)
can be connected to the boundary 0B(z, ;;r) with a curve of length at most
Cll'r- Thus for ] 2 ](T‘) with r = ClO/(ZCQCII) we have that |9J| Z 010/2
on Uj.
Remark. One can also show that K ’®m is complex analytically trivial for
large ;.

Hereafter we work on the covering space ﬁj, and denote it simply by
U;. Then we have m = 1. We made a trivialization 8 of Ky, with uniform
C'-estimate. Thus if we conformally change it, the triviality is preserved
in the process of bubbling out of complete, Ricci-flat, ALE, orbifold Kéhler
surfaces. So the local fundamental groups of the singular points and the
fundamental groups at the infinities are contained in SU(2).

Proposition 6. Let (X,g) be a complete, Ricci-flat, ALE, orbifold Kahler
surface. If its canonical line bundle Kx is topologically trivial, then (X, g)
is hyper-Kahler.

Proof. By the assumption Kx is flat and defines an element in H'(X; $%).
The exact sequence

H'(X;R) — H'Y(X; 8"y — H*(X;2)
and Lemma 5 imply that the topologically trivial X x has trivial connection.

Thus our bubbles are all hyper-Kahler. Hence if there is only one bubble
coming out, the proof of the main theorem is done.

Theorem 3. If we take 6 > 0 sufficiently small, then for sufficiently large
J, the geodesic ball B(z, j;6) in X; is diffeomorphic to a cyclic quotient of
ALE gravitational instanton.

Remark. We conjecture that B(z, ;;8) is biholomorphic to a domain of a
cyclic quotient of ALE gravitational instanton.

The proof of Theorem 3 is to apply the following theorem inductively.
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Theorem 4. Let (X,g) be a complete, hyper-Kéahler, ALE, orbifold surface
which has a singular point o with local fundamental group I' C SU(2), and
(Y,h) be an ALE gravitational instanton which is biholomorphic to the
minimal resolution of C?/T'. Then we can glue the infinity of Y to the

singular point o of X such that the obtained space XY is again a complete,
hyper-Kahler, ALE, orbifold surface.

Proof. First fix a K&hler structure (X,w;) on X, where w, is its Kahler
form. We can take a holomorphic local uniformization v, : B(0;6) C C? —
U 3 o such that

'¢';w1 =V _185‘?51) ¢1 = |Z|2 + O(|Z|3),
wiw? = 2(v/—1dz' A dz')(V—1d2* A dZ%).

Let 15 : C2\B(0; K) — Y be the holomorphic local uniformization of ¥ at
the infinity. Then by Kronheimer [6] the Kahler form w, of (Y, k) satisfies
the following properties. (c.f. [3])

Yiwp = V=10062, 2 = |2|* + O(I2|7?),
biw? = 2(v/=1dz' A dz*)(v/=1d2% A d7?).

For sufficiently small positive numbers &,, 82, by the map ¥(z) = z/(é182)
we identify two subsets 1(D(6;1,461)) C X, 2(D(8;1,4651)) C Y, and get
an orbifold suface Z = X{Y. In this construction the parallel holomorphic
2-forms on X and Y are glued to give a holomorphic 2-form on Z. We define
a Kahler metric w on Z as follows.

(w1, on X \tp1(B(0;461));
w = { \/—_135{774.51 ¢ + (1 — 77461)(5152)2115*‘152}; on ¢1(D(513451))5
| (8162)%w2, on Y\¢p2(C*\B(0; 6;)),

where 715(2) = n(z/6) is a cut-off function. Since ¢; — |z|? and (6182)%p*do —
|2]* are small on ¥1(D(6;,462)), it is easy to see that w actually defines a
Kahler metric on Z.

By the assumption there is a coordinate 1o : R*\B(0; ) — X at
the infinity of X such that

sogii = 6ij + O(|z|™*).
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Then it is easy to see that p = |z| makes a barrier function on X, hence
on Z. Thus (Z,w) satisfys the assumption of Theorem C. That means Z
admits a complete, Ricci-flat, ALE, orbifold Kahler metric. It is easy to see
that the holomorphic 2-form on Z is parallel, so Z is hyper-Kahler.

Now we prove Theorem 3. Assume the blowing up process of orbifold
singular point terminates at I-th steps. Then the bubbles coming out in the
[-th steps are all smooth ALE gravitational instantons. So they are diffeo-
morphic to the minimal resolutions of C?/T", T' C SU(2). We replace their
structrues by those comming from minimal resolutions. Then by Theorem
4 we can glue them to the bubbles of (I — 1)-th steps, and get smooth ALE
gravitational instantons. Repeating this arguement we finally get a smooth
ALE gravitational instanton which is given by glueing all bubbles. This
implies Theorem 3.

For examples of bubbling out of ALE gravitational instantons we refer

[7].-
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