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Bubbling out of Einstein Manifolds

Shigetoshi Bando

-- in memory of late Dr. Osamu Tezuka

In [1], [8], and [4] the following compactness theorem of the space of
Einstein metries is obtained in the spirit of Gromov theory.

TheoreITl A. Let (Xi, gi) be a sequence of n-dimensional (n > 4) smooth
manifolds and Einstein metries on them with unifonnly bounded Einstein
constants {ei} satisfying

diam(Xi , gi) < D, vol(Xi , gi) > V and f IRgi In /
2 dV; < R

lXi
for some positive eonstants D, V and R, where we denote eurvature tensor of
a metne g by R g • Then there exist a subsequence {j} c {i} and a eompact
Einstein orbifold (Xoo , goo) with a finite singular set S = {Xl, X2, ..• ,xs} C
X oo (possibly empty) for which the following statement holds:

1) (X}, gj) converges to (Xoo , goo) in the Hausdorf distance.
2) There exists an into diffeomorphism F} : X oo\S --+ X} for each j such

that Flg j eonverges to goo in the COO-topology on X oo \S.
3) For every Xa E S (a = 1,2, ... ,s) and j, there exist Xa,j E X j and a

positve numher rj such that
3.a) B(xa,j; 8) converges to B(xaj 8) in the Hausdorff distanee for all

8> O.
3. b) limj--+oo r j = (x).

3.c) ((Xj , rjgj), Xa,j) converges to ((Ma , ha ), xa,oo) in the pointed Haus­
dorff distanee, where (Ma , ha ) is a complete, non-compact, Ricci­
Bat, non-Bat n-manifold which is ALE of order n - 1 in general, of
order n if (Ma , ha ) is [(ähler or n = 4.

3.d) There exists an into diffeomorphism Gj : M a --+ Xj such that
Gj(rjgj) eonverges to ha in the COO-topology on M a .

4) It holds

lim f IRgj In/2 dVj > f IRg", r
n/ 2 dV<x> + l:= f IRh .ln/2 dVh •.

J--+ooJx. Jx JMJ 00 a (1

Moreover if(Xi , gi) are [(ähler, then (Xoo , goo) and (Ma, ha) are also Kähler.

Here we call a smooth n-dimensional complete Riemannian orbifold
(X, g) asymtotically locally Euclidean (ALE) of order T > 0, if there exists a
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compact subset K C X such that X\K has coordinates at infunity; namely
there are R > 0, 0 < a < 1, a finite subgroup r c D(n) acting freely on
Rn\B(O; R), and a Coo-diffeomorphism Z : X\K -+ (Rn\B(O; R))jr such
that r.p = Z-l 0 proj satisfies (where proj is the natural projection of Rn to
Rnjr)

(r.p*g)ij(Z) = 8ij + O(lz[-T), 8k(r.p*g)ij(Z) = O(lzl- T
-

1
),

lak(<p*9 )ij(IZ ) - ai(<p* 9 )ij(W )1 = O(min{lzl, Iwl}-r-l-o!)

z-w Ci

for z, w E Rn\B(O; R).

(For simplicity we assumed that (X, g) has only aue end. So is our case.)

Kronheimer classified all ALE hyper-Kähler surfaces of order 4 in his
thesis [6], he calls such manifolds ALE gravitational instantons. In particular
he proved the following;

Theorem B. An ALE gravitational instanton is diffeomorpfic to a minimal
resolution of C2 jr, where r is a finite subgroup of SU(2).

We remark that a simply connected Ricci-flat I(ähler surface is hyper­
I(ähler. Thus in Einstein-I(ähler surfaces case we have rather good under­
standing on the nature of degeneration. Only missing point is the knowledge
ofthe neck B(xa,j; 8)\B(x a ,j; rj), i.e. how an instanton is glued to a singular
point on X oo . The purpos of this paper is to clarify it, namely we get the
following theorem stated in terms of the above notations.

Theorem. Assume that the sequence (Xi, gi) consists of Einstein-Kähler
surfaces. If we fix a sufficiently smalJ constant 8 > 0, then for sufficiently
large j, the geodesie ball B(x a,j; 8) in X j is diffeomorphic to a cyclic quotient
.Qf ALE gravitational instanton.

Reluark. In 4-dimensional case, for a compact Einstein manifold X the
curvature integral Ix IRI2 = const x(X) is a topological invariant.

The author would like to express his thanks to Prof. M. T. Anderson.
He got the idea of the proof in the enlightening discussion with rum. And he
would like to thank Prof. Furushima and Prof. Ohnita for helpful discussions.
He also would like to acknowledge his gratitude for the hospitality of Max­
Planck-Institut für Mathematik. This work is done during his stay there.
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1. Preparatian fram Analysis

Let M be a complete n-dimensinal (n > 3) Riemannian manifold with a
fixed point 0 E M. For 0 < Tl < T2 we denote B(o; 1"2)\B(o; 1"1) by D(Tl,r2).
We assume that there is a domain D = D(ro,roo ) in M with 0 < ro < r ee

which satisfies the following conformally invariant conditions:

for all v E C~(D),

with some positive constants S, V and I = n/(n - 2). Let u be a non­
negative function defined on D which satisfies

6u > -fu on D

with a non-negative function f. Then we have following lemmas. Proofs
are essentially same as those of corresponding lernrna~ in [4; §4], so we omit
them.

Lemma 1. Suppose f E L n
/ 2 , and u E V for same P E [PO,PI] where

Po > 1. Then u E Lq for a11 q > p, and there exists EI = El(S, V,PO,Pl) > 0
such that if

1 f n/2 < E_ 1

D(r,8r)

then we have

{
[ U P1 }lh< C

1
r- 2 j u P

} D(2r,4r) - D(r,8r) '

where Cl = el(S, V,po). Moreover ifro = 0 and

j f n/2 < E_ 1

B(oj2r)

then it holds that
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Lemma 2. Suppose j E Ln/2, and u E V for same P E [PO,PI] where
Po > /. Then there exists t2 == t2 (S, V, Po, PI) > 0 such that if

then it holds that for ro < rl < 2rl < r2 < 2r2 < r oo

lNhere C2 = C2 (S, V,po), t3 == t3(S, V,Pa) > O.

Lelnma 3. H j E Lq for same q > n/2, u E LP for same p > 1, and it holds
tbat for any r such tbat ra < r < Sr < r00

r jq < Ar-(2q-n)
} D(r,8r)

witb same constant A, tben we have

wbere C3 = C3 ( A, S, V, p, q). Moreover if Ta == 0 and

r jq < Ar-(2q-n),

} B(oj2r)

Tben it bolds thai

Let (M, g) be an n-dimensinal Einstein manifold, then applying the
Weitzenböck formula we get

Moreover we have the following inequality using Yau's trick. For the proof
see [2], [4]' [9].
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Lemma 4. There exist positive constants 8 == 8(n) and Cs == Cs(n) such
that

61R11
-

6 > -Cs IRI 2
-

8
.

Hn == 4 or (M,g) is !(ähler we can take 8 == 4/(n + 2).

One can show the following lemma via L 2-Hodge theory.

Lemma 5. Let (X, g) be an n-dimensional (n > 4), complete, non-compact,
Ricci-Bat, ALE orbifold. Then its first cohomology group H 1 (X; R) van­
isbes.

Here we recall the existence theorem of Ricci-flat I(ähler metries on
open I(ähler orbifolds in [3], which is stated in the case of manifolds but its
praof equally works for orbifolds.

Definition. A complete n-dimensional Riemannian orbifald (X,g) is called
of Ck,O-asymptotically Hat geometry if for eaeh point p E X with distance
from a fixed point 0 in X, there exists a quasi-coordinate map tP : B n

-t X
centered at p from the unit ball B n in the Euelidian space (i.e. tP gives
a loeal uniformization and </>(0) = p), such that with respeet to the stan­
dard coordinates x = (Xl, x 2 , . •. ,xn ) of the Euclidian space it satisfies the
following conditions:

(i) If we write </>*9 = ~ 9ij(X) dx i dx j , then the matrix (r 2 + 1)-1 (9ij) is
bounded from below by a constant positive matrix independent of p.

(ii) The Ck,o-norms of (r 2 + l)-lgij, as functions in x, are uniformly
bounded.

On such a orbifold we can define the Banach spaee C:,o of weighted

Ck,G'-bounded functions: The notm of a function u E C;,G' is given by the
supremum of the Ck,o-norms of (r2+ 1)8/2u with respect to the coordinates
x.

Theorem C. Let (X, w) be an n-dimensional (n > 2) complete open I(ähler
orbifold of C k ,G'-asymptotical1y Bat geometry with k > 2, 0 < a < 1. As­
sume that the singuralities sit in a compact set and tbere exists a barrier
function p. If X admits a llicci-Bat volume form V such that w n == efV

l,vith f E C:+~ and 8 > 0, then X admits a complete Ricci-Bat Kähler metric
asymptotically equal to w.

Here a barrier function p means that outside a compact set p satisfies
the following conditions:
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(i) p is compatible to the distance function d from 0; there exists a positive
constant Cl such that Cl d < P < cl l d.

(ii) The function p-6 belongs to C;+2,a.
(iii) There exists a positive constant C2 such that

O -0 < -2-0p _ -C2P .

(iv) There exists a positive constant C3 such that for any positive number
K and sufficiently large d

(w + Raa](p-O)n < (1- C3!(p-2-6)w n,

(w + Raä - ](p-o)n > (1 + C3!(p-2- 0 )wn.
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2. Einstein Manifolds

Let (Xi, gi) be a sequence of Einstein manifolds which enjoyes the prop­
erties stated in Theorem A. Then by [5] we have the Sobolev inequality on
(Xj , gj) with uniform Sobolev constants, and the following proposition holds.
For the proof see [1], [8].

Proposition 1. There exist constants p, C6 and f4 such that if

1 IR ·ln/2 < fgJ - 4
B(xj2r)

with 2r < p, then we have that

Now we take a positive constant r oo < p sufficiently small, so that we
can assume that for a1l a

and

sup IRgj 1
2 = lRgj 12(x a ,i) --+ 00

B(xa,jjroo )

1 IR In/2 < .:.
goo - 2

B(x a ,roo )

as J ---t 00

•
with a positve number f < f4/2 to be deterrnined later. From now on we
fix an arbitrary singular point X a and look at the blowing up process. Since
(Xj,gi) converges to (XOCJ,gOCJ) in COO-topology exept at the singular points,
for sufficiently large j we can find a positive number ro = rO,i such that

where we denote a subset B(X a ,j;T2)\B(xa ,j;rl) in Xi by D(rl,r2)' Then
we get that

rO ---t 0 as J ---t (X).

Proposition 2. There is a subsequence {k} C {j} such that the sequence
of pointed Einstein manifolds ((Xk, rö2gk), Xa,k) converges to ((Y, h), Yoo)
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in the pointed Hausdorrf distance, where (Y, h) is a complete, non-compact,
Ricci-Bat, non-Bat n-orbifold only with finitely many isolated singular points.
(Y, h) is ALE of order n - 1 in general, of order n if n == 4 or (Y, h) is I(ähler.
The convergence is actua1ly in COO-topology except at the singular points.

The praof is same as that of Theorem A. We refer ta [1], [8] and [4].
Thus we know that for large 1 < ]<1 < K 2 two subsets D(]<l r O' ](2rO)

and D(!<2"l roo , !<:;l roo ) in X k are very elose to portions offlat cones Rn/ro
and Rn/foo , respectively. To show that r o == f oo and D(K1ro,K:;lroo)
is also elose to a portin of the flat eone, we need the following curvature
estimate.

Proposition 3. Tere exist positive constants C7 and €5 such that for 4ro <
r < 4r < r 00 it holds that

Proof. First apply Lemma 1 to the equation ~IRI > -C4 1R1 2 on R == Rgj ,

assuming C:/2
€ < €3' Then we get that for 2ro < r < 2r < r 00

r iRln/2 < Ar-(2q-n)

JD(r,2r)

\vith a eonstant A and q == 7n/2. Next we apply Lemma 2 and Lemma
3 to the equation ~IRI1-6 > -C5 IRI 2-

6 with p == (1 - 8)-ln/2 > 7. If

C;/2€ < €2, we get that for 4ro < r < 4r < r oo

with E5 == 2€3/n. We ehoose E by € = min{€3C;n/2,€2C;n/2,€4/2}, then
the proof is eomplete.

Onee we get the eurvature estimate, we ean eonstruet coordinates as
in the praof of the existenee theorem of eoordinats at infinity [4]. We need
only minor ehanges, so we omit the proof of the following proposition.
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Proposition 4. If one take 1 < K I < K 2 sufficiently large, then the subset
D(KITO' K:;lr(X)) is close to a portion of a Bat cone RnIr for large j.

Thus if (Y, h) has no singularity, then the ball B(Xa,k; r oo ) is diffeomor­
phie to the smooth manifold Y which bubbles out of X k .

If (Y, h) has a singular point Yß, then we choose a sufficiently small
number r~ and the corresponding point Xs,k in X k such that

Choose T~ = T~ k such that,

f IR In/2 - €Die -,
D' (ra r~ ,ra r:x, )

with D'(TI, T2) = B(Xs,k; T2)\B(x ß ,k; Tl), and consider a sequence of pointed
Einstein manifolds «Xk , (ror~)-2gk), Xß,k)' Then we have the same situation
as before, and we get a complete, non-compact, Ricci-flat, non-flat, ALE n­

orbifold (Y', h') only with finitely many isolated singular points. By the
same way we can show the neck is diffeomorphic to a flat cone. If (Y', h')
again has a singular point, we repeat the argument. And also we apply the
same process at every singular point which appears at each repeated step.
Since each singular point contributes at least € to the curvature integral
J IRln/2, the process terminates at finite steps. In this way we get a picture
of the small ball B(xa,j; T(X)).

Theorem 1. The small ball B(xa,j; T(X)) in X j corresponding to a singular
point Xa of the limit orbifold X(X) is deffeormorphic to a connected sum of
:6.nite number of complete, non-compact, Ricci-Bat, non-Bat, ALE n-orbifolds
only with :6.nitely many isolated singular points, whose singular points are
glued to the in:6.nities.

Remark. We may also use the following gap theorem to show the process
terminates at finite steps.

Theorem 2. Let (X,g) be an n-dimensional (n > 4), complete, non­
compact, Ricci-Bat Riemannian orbifold, which satis:6.es

for all v E C~(X)
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with a constant S > Q. There exists a constant E6 = E6(n, S) > 0 such that
the inequality

1,Rln/2 < €6

implies that (X, g) is the Euclidian space.

Proof. Apply Lemma 1.
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3. Einstein KäWer Surfaces

In this section we assume that all manifolds (Xj, gj) are Einstein-Kähler
surfaces. Since the limit space Xoo is an orbifold, there is a neiborhood U of
the singular point X a which is biholomorphic to a quotient B /r of the unit
ball B C C 2 with a finite subgroup r c U(2) acting freely on C 2 \{O}. Let
det : U(2) ~ 51 be a group homomorphism defined by the determinant.
Then the image det(r) is a finite cyclic group, say, Zm. Then U has a
branched Zm-covering: Ü~ U with a branched point X a such that Ü has.
trivial canonical line bundle K ü ' Namely, set r = kerdet n r c 5U(2).
Then we have a natural projection U == B /r ~ U and a non-vanishing
holomorphic 2-form w == dz 1 1\ dz2 descends to f), where (z 1 , z2) is the
standard coordinates in C 2

• We have the corresponding result on Xa,j E X j

for large j.

Proposition 5. Tbere exists a positive constant 8 such that for large j
there is a smooth Zm-covering: Uj ~ Uj ::> B(xa,j; 8), where Uj bas
topologically trivial canonicalline bundle !(ü.'

J

Proof. We may assume the domain U C X oo has smooth boundary 8U.
Then there exists a sequence of neiborhoods Uj C X j of Xa,j which have
smooth boundaries 8Uj == Fj (8U). We take 8 so small that B(xa,j; 8) C Uj.
Then it is sufficient to show that for large j there are sections (Jj of I<3.m on

J

Uj such that

and

with positive constants Cs , Cg •

Define operator 0 == Dj acting on the space of sections of I{~:n by
J

o == -a*a== tr \1'\1" ,

where we decompose the covariant defferentiation \1 == \1' + \1" into (1,0)­
and (0,1 )-parts. Let 'ljJ be the local holomorphic uniformization 'ljJ : B ----+

B /r ~ U and 1] be a radial cut-off function on B such that 1] == 0 on
B(O; 1/3) and 1] == 1 on B\B(O; 2/3). Using'ljJ the section 1]W®m of K~m
defines a section of K3m

, which we still denote by 1]w®m. For large j we
define sections Bo == (Jo,j of !(~; on Uj by (Jo,j == proj (Fj-

1
)*1]W®m, where

proj == projj is the projection map of tensors to !(~~. (Note that the maps
J .
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F)" : X oo\5 ----+ Xi need not to be holomorphic, but become closer and
closer to be holomorphic as j tends to 00.) We solve the following equation
on a section 8 = 8i of I{~~ on Ui

J

Then 8 satisfy

00=0 and 8[ = 80 I .au" au"J J

~o = tr \1\70 = -2meiO.

Set 0' = () - ()o. Then 0' has vanishing boundary value and satisf1es

with ( = Ci on which we have good control. We have that

with the first eigenvalue A = Ai of the Laplacian acting on functions on Ui
with the Dirichlet condition. If we choose U, hence Ui' sufficiently small
such that A > 2mleil + 1, we get L 2-estimates of 0', \78' and those of O. We
apply Lemma 3 to the inequality 6.181 > -2mleiI181, and get CO-estimate
on 8.

For C1-estimate we differentiate the equation on 8 and get the following
equations

6.1\7'81 2 = 21\7'\7'81 2 + 2ejl'\7'91 2
,

6.1'\7" 01 2 = 21\7\7"81 2 + 2( -4m + 1)ei 1\7" ()12,

61\701 2 > 21\7\781 2
- 2(4m -1)leill\781 2

,

.61\791 > -(4m - 1)leill\l81.

Then again applying Lemma 3, we get C1-estimate away from boundaries.
As to near boundaries, we have good control on the smoothness of the bound­
aries, the boundary values and the equations and also we have CO-estimate
of 8. So there is no trouble to get Coo-estimate on U\B(xa,i; r) for any fixed
r > O.
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Now consider the sequence {proj 'ljJ* Fj*6j } on B\{O} which has uniform
COO-estimate away from the origin O. So it has a convergent subsequence
with limit, say, Bdefined on B\{O}. 6 satisfies the equation 09 == 0 and
has C1 -estimate, so it extends to a smooth solution of the equation across
the origin. It must coincide with the unique solution w®m. So the sequence
{proj 'ljJ* Fj*Oj} itself converges to w®m, and there is a positive constant C10

such that for fixed r > 0 we have that for large j > j(r)

IBjl > G10 on Uj\B(xa,j; r).
By Theorem 1 there exists a constant G11 such that every point in B(xa,j; r)
can be connected to the boundary aBCXa,j; r) with a curve of length at most
C11 r. Thus for j > j(r) with r == Clo/(2C9C11) we have that 16jl > C10 /2
on Uj.

Remark. One can also show that ]<3.m is complex analytically trivial for
J

large j.

Hereafter we work on the covering space Uj, and denote it simply by
Uj . Then we have m == 1. We made a trivialization f) of !<Uj with uniform
C 1 -estimate. Thus if we conformally change it, the triviality is preserved
in the process of bubbling out of complete, Ricci-flat, ALE, orbifold Kähler
surfaces. So the IDeal fundamental groups of the singular points and the
fundamental groups at the infinities are contained in SU(2).

Proposition 6. Let (X, g) be a complete, Ricci-Bat, ALE, orbifold I(ähler
surface. Hits canonica11ine bundle K x is topologically trivial, then (X, g)
is hyper-Kähler.

Proof. By the assumption ](x is flat and defines an element in H 1(X; SI).
The exact sequence

H 1 (X; R) ----t H 1(X; SI) ----t H 2 (X; Z)

and Lemma 5 imply that the topologically trivial ](x has trivial connection.

Thus our bubbles are all hyper-Kähler. Hence if there is only one bubble
coming out, the proof of the main theorem is done.

Theorem 3. If we take 8 > 0 sufliciently sma11, then for sufflciently large
j, the geodesie ball B(xa,j; 8) in X j is diffeomorphic to a cyclic quotient of
ALE gravitational instanton.

Remark. We conjeeture that B(xa,ji 8) is biholomorphic to a domain of a
cyclic quotient of ALE gravitational instanton.

The proof of Theorem 3 is to apply the following theorem inductively.
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Theorem 4. Let (X,g) be a complete, hyper-Kähler, ALE, orbifold surface
which has a singular point 0 with loeal fundamental group r c SU(2), and
(Y, h) be an ALE gravitational instanton whieh is biholomorphie to the
rrunimal resolution of C 2 /r. The;n we ean glue the innnity of Y to the
singular point 0 of X such that the obtained space X~Y is again a eomplete,
hyper-I(ähler, ALE, orbifold surfaee.

Praaf. First fix a Kähler strueture (X,W1) on X, where W1 is its !(ähler
form. We ean take a holomorphie loeal"uniformization 7./J1 : B(O; 8) C C 2~
U 3 0 such that

Let 7./J2 : C 2 \B(O; K) --t Y be the holomorphic loeal uniformization of Y at
the infinity. Then by I{ronheimer [6] the Kähler form W2 of (Y, h) satisfies
the following properties. (e.f. [3])

7./Ji W 2 = Raa<P2, rP2 = Iz l2 + O(!zl-2),
7./J;w~ = 2(Rdz1 1\ dE l

)(Rdz2 1\ dz2).

For suffieiently small positive numbers 81 , 82 , by the map 7./J(z) = z/(8182)
\ve identify two subsets 7./J1(D(81 ,481)) C X, 7./J2(D(8:;I ,48:;1)) C Y, and get
an orbifold suface Z = X~Y. In this eonstruction the parallel holomorphic
2-forms on X and Y are glued to give a holomorphie 2-form on Z. We define
a I(ähler metric w on Z as follows.

WI, on X\~1(B(O;481));

W= Paä{7]46t <PI + (1-7]46 t )(8182)27./J*rP2}' on ~I(D(81,481));

(8182)2w2 , on Y\7./J2(C2\B(O; 8:;1)),

where 7]6(Z) = 7](z/8) is a cut-offfunction. Since rPl _]zI2 and (81 82 )27./J*<P2­
Izl2 are small on 7./J1(D(81 ,482)), it is easy to see that w actually defines a
I{ähler metrie on Z.

By the assumption there is a coordinate 7./J00 : R 4 \B(O; !() ~ X at
the infinity of X such that
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Then it is easy to see that p = Ix I makes a barrier function on X, hence
on Z. Thus (Z,w) satisfys the assumption of Theorem C. That means Z
admits a complete, Ricci-flat, ALE, orbifold Kähler metric. It is easy to see
that the holomorphic 2-form on Z is parallel, so Z is hyper-I(ähler.

Now we prove Theorem 3. Assume the blowing up process of orbifold
singular point terminates at I-th steps. Then the bubbles coming out in the
I-th steps are all smooth ALE gravitational instantons. So they are diffeo­
morphic to the minimal resolutions of c 2 Ir, r c SU(2). We replace their
structrues by those comming from minimal resolutions. Then by Theorem
4 we can glue them to the bubbles of (1 - l)-th steps, and get smooth ALE
gravitational instantons. Repeating this arguement we finally get a smooth
ALE gravitational instanton which is given by glueing all bubbles. This
implies Theorem 3.

For examples of bubbling out of ALE gravitational instantons we refer
[7] ..
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