Bounds on degrees of projective schemes

Bernd Sturmfels *
Ngô Viêt Trung **
Wolfgang Vogel ***

*

Cornell University
Department of Mathematics
Ithaca, NY 14853
USA
**
Institute of Mathematics
P.O.Box 631

Bò Hô, Hanoi
Vietnam

Massey University
Department of Mathematics
Palmerston North
New Zealand

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany

BOUNDS ON DEGREES OF PROJECTIVE SCHEMES

Bernd Sturmfels
Cornell University, Dept. of Mathematics, Ithaca, NY 14853, U.S.A.
e-mail: bernd@math.cornell.edu
Ngô Viêt Trung
Institute of Mathematics, P.O. Box 631, Bò Hô, Hanoi, Vietnam
Wolfgang Vogel
Massey University, Department of Mathematics, Palmerston North, New Zealand e-mail: W.Vogel@massey.ac.nz

1. Introduction

Computational complexity issues in algebraic geometry necessitate two refinements in the notion of degree of a projective scheme, namely, the geometric degree and the arithmetic degree (cf. [Har], [B-M], [Kol]). Given a homogeneous ideal I in $S:=k\left[x_{1}, \ldots, x_{n}\right], k$ any field, a fundamental problem is to bound these refined degrees in terms of the generators of I.

The main results in this paper give bounds for the arithmetic degree of a monomial ideal (Theorem 3.1) and for the geometric degree of an arbitrary ideal (Theorem 4.3). One novelty of independent interest is a combinatorial construction (called standard pairs) for these degrees in the case of monomial ideals. In $\S 5$ we present applications to the effective division problem and to extensions of Bezout's Theorem. In $\S 2$ we discuss two theorems which relate the arithmetic degree to the Nullstellensatz and to Gröbner bases. These two are essentially due to Kollár [Kol] and Hartshorne [Har], while our contribution lies in providing new, self-contained proofs.

In this section we recall the basic definitions. Let $I=q_{0} \cap q_{1} \cap \ldots \cap q_{t}$ be a primary decomposition of I, with associated primes $p_{i}:=\sqrt{q_{i}}$, defining (irreducible) varieties $Z_{i}:=V\left(p_{i}\right)$ in P_{k}^{n-1} for $i \geq 0$, while $p_{0}=\left(x_{1}, \ldots, x_{n}\right)$ and thus $Z_{0}:=V\left(p_{0}\right)=\emptyset$. Suppose that q_{1}, \ldots, q_{s} are the isolated components of I, so that $V(I)=Z_{1} \cup \ldots \cup Z_{s}$ is set-theoretically the minimal decomposition of $V(I)$ into varieties. Let mult $\left(q_{i}\right)$ be the classical length-multiplicity (see, e.g. [Gro]), that is, mult $\left(q_{i}\right)$ is the length l of a maximal strictly increasing chain of p_{i}-primary ideals:

$$
q_{i}=J_{l} \subset J_{l-1} \subset \cdots \subset J_{1}=p_{i}
$$

Equivalently, mult $\left(q_{i}\right)$ is the length of the local ring $(S / I)_{p_{i}}$.
The usual geometric degree of Z_{i} is the cardinality of $Z_{i} \cap L$ for almost all linear subspaces L of complementary dimension. It is denoted by $\operatorname{deg} Z_{i}$. The degree of I is

$$
\operatorname{deg}(I):=\sum_{\substack{\text { is uch } \text { that } \\ d i m Z_{i}=d i m(I)}} \operatorname{mult}\left(q_{i}\right) \cdot \operatorname{deg} Z_{i} .
$$

This is also the normalized leading coefficient of the Hilbert polynomial of S / I. By contrast, the geometric degree of I is defined by taking the sum over all isolated components:

$$
g \operatorname{eom}-\operatorname{deg}(I):=\sum_{i=1}^{s} m u l t\left(q_{i}\right) \cdot \operatorname{deg} Z_{i}
$$

This degree is at the heart of the so-called refined Bezout's Theorem (see e.g. [Ful], [Vo]).
The two notions of degree defined so far ignore the embedded components $q_{i}, i \in$ $\{0, s+1, \ldots, t\}$. To measure their contributions to I, we need to recall the notion of length multiplicity relative to I (see e.g. [B-M, §3], [E-H, p. 61]). Given any homogeneous prime ideal p in S, we consider the ideal $J:=\cup_{j>0}\left(I: p^{j}\right)$. This is the intersection of the primary components of I with associated primes not containing p. We define mult $_{I}(p)$ to be the length ℓ of a maximal strictly increasing chain of ideals

$$
\begin{equation*}
I=J_{\ell} \subset J_{\ell-1} \subset \cdots \subset J_{2} \subset J_{1} \subset J \tag{1.1}
\end{equation*}
$$

where each J_{k} equals $q \cap J$ for some p-primary ideal q. Equivalent definitions are:
(1.2) mult $_{I}(p)$ is the length of the module $J S_{p} / I S_{p}$;
(1.3) mult $_{I}(p)$ is the length of the largest ideal of finite length in the ring $S_{p} / I S_{p}$.

We have mult $I_{I}(p)>0$ if and only if p is an associated prime of I. If q_{i} is an isolated component of I, then mult $f_{I}\left(p_{i}\right)=\operatorname{mult}\left(q_{i}\right)$. The arithmetic degree of I is now defined as

$$
\begin{equation*}
\operatorname{arith}-\operatorname{deg}(I):=\sum \operatorname{mult}_{I}(p) \cdot \operatorname{deg}(p) \tag{1.4}
\end{equation*}
$$

where p runs over all homogeneous primes in S. (Note: this includes the irrelevant ideal.)
The following simple example may serve as an illustration. Let $n=3$ and

$$
\begin{equation*}
I=\left(x^{2} y, x^{2} z, x y^{2}, x y z^{2}\right)=\left(x^{2}, y^{2}, z^{2}\right) \cap(x) \cap(y, z) \cap\left(x^{2}, y\right) \tag{1.5}
\end{equation*}
$$

Then $\operatorname{deg}(I)=1, \operatorname{geom}-\operatorname{deg}(I)=2$, and $\operatorname{arith}-\operatorname{deg}(I)=5$. The contributions of the two embedded components are mult $_{I}((x, y))=1$ and $\operatorname{mult}_{I}((x, y, z))=2$. That the irrelevant ideal (x, y, z) has multiplicity 2 in I can be seen from the maximal sequence

$$
J=\cup_{j}\left(I:(x, y, z)^{j}\right)=\left(x^{2} z, x y\right) \quad \supset \quad J \cap\left(x^{2}, y^{2}, z\right) \quad \supset \quad J \cap\left(x^{2}, y^{2}, z^{2}\right)=I .
$$

Acknowledgements. We are grateful to D. Brownawell, J. Kollár, and L. O'Carroll for helpful discussions, and to D. Eisenbud and A. Reeves for pointing us to Hartshorne's work [Har]. We acknowledge partial support for Bernd Sturmfels by NSF grants DMS-9201453 and DMS-9258547 (NYI), and a David and Lucile Packard Fellowship. Ngô Viêt Trung was partially supported by the Max-Planck Institute of Mathematics, Bonn, Germany, and the National Basic Research Program, Vietnam. Wolfgang Vogel was partially supported by the US Army Research Office through the Center of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University, contract DAAL03-91-C-0027.

2. On the arithmetic degree

The importance of the concept of arithmetic degree for computational problems in algebraic geometry is highlighted by the following version of the Nullstellensatz.
Theorem 2.1. Let I be a homogeneous ideal of S. Then $\sqrt{I}^{\text {arith-deg(I) }} \subseteq I$.
This theorem had been stated as a conjecture in an early draft of this paper. J. Kollár kindly informed us that a proof can be gotten from his approach describing mult $f_{I}(p)$ in [Kol, Remark 1.12]. Subsequently, we found the following direct proof. It starts out with an easy splitting property of the arithmetic degree.

Lemma 2.2. Let I be a homogeneous ideal of S and P a maximal associated prime of I. Let J be the intersection of the primary components of I with associated primes different from P, in any primary decomposition of I. Then

$$
\operatorname{arith}-\operatorname{deg}(I)=\quad \text { arrth }-\operatorname{deg}(J)+\text { mult }_{I}(P) \cdot \operatorname{deg}(P)
$$

Proof: In view of the maximality hypothesis, no associated prime of I or J strictly contains P. In other words, we have mult $I(p)=\operatorname{mult}_{J}(p)=0$ for any homogeneous prime ideal p in S which strictly contains P. Since $P^{r} J \subseteq I \subseteq J$ for sufficiently large integers $r>0$, we have $I S_{p}=J S_{p}$ for any prime p not containing P. By (1.3), this implies mult $_{I}(p)=$ mult $_{J}(p)$ for any prime p other than P. Finally, since P is not an associated prime of J, we have mult $J(P)=0$. Evaluating the sum (1.4) for both I and J, we obtain the desired result.

We note that Lemma 2.2 is false if P is not a maximal associated prime of I. (In this case the ideal J and its arithmetic degree depend on the chosen primary decomposition.) For instance, taking $P=(x, y)$ in (1.5), we find $\operatorname{arith}-\operatorname{deg}(J)=\operatorname{arith}-\operatorname{deg}(I)=5$, where

$$
\begin{equation*}
J=\left(x^{2}, y^{2}, z^{2}\right) \cap(x) \cap(y, z)=\left(x^{2} y, x^{2} z, x y^{2}, x z^{2}\right) \tag{2.1}
\end{equation*}
$$

Proof of Theorem 2.1: Let P and J be as in Lemma 2.2. Then we may split

$$
\begin{aligned}
\sqrt{I}^{\operatorname{arith-deg}(I)} & =\sqrt{I}^{\text {arith-deg }(J)} \cdot \sqrt{I}^{\text {mult }(P) \operatorname{deg}(P)} \\
& \subseteq \sqrt{J}^{\operatorname{arith-deg}(J)} \cdot P^{m u l t_{I}(P)}
\end{aligned}
$$

By induction on the number of the associated primes we may assume that

$$
\sqrt{J}^{\operatorname{arith-\operatorname {deg}(J)} \subseteq J}
$$

It remains to show that $J P^{\text {mult }_{I}(P)} \subseteq I$. This can be done locally at every associated prime p of I. For $p \neq P$, the inclusion is immediate because $J S_{p}=I S_{p}$. For $p=P$ we assume, on the contrary, that $J P^{\text {mult }_{I}(P)} S_{P} \neq I S_{P}$. Then $\left(J P^{j}+I\right) S_{P} \neq\left(J P^{j+1}+I\right) S_{P}$ for $j=0, \ldots$, mult $_{I}(P)$. For, otherwise we would have

$$
J P^{m u l t_{I}(P)} S_{P} \subseteq\left(J P^{j}+I\right) S_{P}=\bigcap_{r \geq j}\left(J P^{r}+I\right) S_{P}=I S_{P}
$$

by Krull's Intersection Theorem. We get a strictly increasing chain of mult ${ }_{I}(P)+2$ ideals

$$
I S_{P} \subset\left(J P^{m u l t_{I}(P)}+I\right) S_{P} \subset \ldots \subset\left(J P^{2}+I\right) S_{P} \subset(J P+I) S_{P} \subset J S_{P}
$$

which gives a contradiction to the definition (1.2) of mult $_{I}(P)$.
We next establish a connection to Gröbner bases theory by showing that the arithmetic degree of a homogeneous ideal is bounded above by that of any initial ideal, and, moreover this inequality holds for the contributions in each dimension. Theorem 2.3 is a special case of a more general result due to R. Hartshorne. Indeed, in [Har, Theorem 2.10] it is shown that arith-deg $g_{r}(\cdot)$ is upper-semicontinuous with respect to flat families of projective schemes, and a well-known result of Gröbner basis theory states that, for any term order, the initial ideal $\operatorname{in}(I)$ is a flat deformation of I (see e.g. [B-M], [Eis]). We write arith-deg $g_{r}(I)$ for the subsum over all terms in (1.4) where p has (affine) dimension r, for $r=0,1, \ldots, n$.

Theorem 2.3. Fix any term order on S, and let $I \subset S$ be any homogeneous ideal. Then

$$
{\operatorname{arith}-d e g_{r}}_{(I)} \leq \operatorname{arith}^{-d e g_{r}}(\operatorname{in}(I)) \quad \text { for all } r=0,1, \ldots, n
$$

The following self-contained proof uses a different characterization of the arithmetic degree, which is purely enumerative and, in fact, serves as the definition in [Har]. Let I be a homogeneous ideal in S. For each integer $r=0,1, \ldots, n$ we consider

$$
\begin{equation*}
I_{\geq r}:=\{f \in S: \operatorname{dim}(I: f)<r\} . \tag{2.2}
\end{equation*}
$$

Using elementary properties of ideal quotients (as in e.g. [Gro]), it can be verified that the set $I_{\geq r}$ is an ideal in S, containing I, and that it equals the intersection of all primary components of dimension $\geq r$ in any primary decomposition of I. We also find that the Hilbert polynomial of the graded S-module $I_{\geq r} / I$ has the form

$$
\begin{equation*}
h_{I_{\geq r} / I}(d)=\frac{\text { arith }-d e g_{\tau}(I)}{(r-1)!} \cdot d^{r-1}+O\left(d^{r-2}\right) \tag{2.3}
\end{equation*}
$$

Proof of Theorem 2.3: We claim the following inclusion of monomial ideals:

$$
\begin{equation*}
i n\left(I_{\geq r}\right) \subseteq(i n(I))_{\geq r} . \tag{2.4}
\end{equation*}
$$

Indeed, suppose $m \in \operatorname{in}\left(I_{\geq r}\right)$. Then $m=\operatorname{in}(f)$ for some $f \in I_{\geq r}$, and therefore $r>$ $\operatorname{dim}(I: f) \doteq \operatorname{dim} \operatorname{in}(I: f)$. Since $\operatorname{in}(I: f)$ is contained in $(\operatorname{in}(I): \operatorname{in}(f))=(\operatorname{in}(I): m)$, we conclude $\operatorname{dim}(\operatorname{in}(I): m)<r$, and therefore $m \in(i n(I))_{\geq r}$.

Whenever we have an inclusion of homogeneous ideals $I \subseteq I^{\prime}$ in S, then their quotient I^{\prime} / I is isomorphic as a graded vector space to $\operatorname{in}\left(I^{\prime}\right) / \operatorname{in}(I)$. To see this, it suffices to note that the canonical monomial basis for $i n\left(I^{\prime}\right) / i n(I)$ lifts to a basis for I^{\prime} / I. Applying this observation to $I^{\prime}=I_{\geq r}$, and using (2.4), we obtain the inclusion of graded vector spaces:

$$
\begin{equation*}
I_{\geq r} / I \simeq \operatorname{in}\left(I_{\geq r}\right) / i n(I) \quad \hookrightarrow \quad(\operatorname{in}(I))_{\geq r} / \operatorname{in}(I) . \tag{2.5}
\end{equation*}
$$

The leading term of the Hilbert polynomial of the right hand side in (2.5) exceeds that of the left hand side. By (2.3), this proves Theorem 2.3.

Theorem 2.3 shows that in bounding the arithmetic degree it makes sense to concentrate on the case of a monomial ideal. This is what we will do in the next section.

Example 2.4. Let $n=4$ and let I be the prime ideal of the monomial curve given parametrically by $\left(s^{7}: s^{5} t^{2}: s^{2} t^{5}: t^{7}\right)$. Clearly, $\operatorname{deg}(I)=\operatorname{geom}-\operatorname{deg}(I)=\operatorname{arith}-\operatorname{deg}(I)=7$. Using the methods in [Tho, §3], we find that I has the universal Gröbner basis

$$
\begin{aligned}
& \left\{x_{1}^{5} x_{4}^{2}-x_{2}^{7}, x_{1}^{4} x_{3} x_{4}-x_{2}^{6}, x_{1}^{3} x_{3}^{2}-x_{2}^{5}, x_{1}^{2} x_{4}^{5}-x_{3}^{7}, x_{1} x_{2} x_{4}^{4}-x_{3}^{6},\right. \\
& \left.x_{1} x_{4}-x_{2} x_{3}, x_{1}^{2} x_{3}^{3}-x_{2}^{4} x_{4}, x_{1} x_{3}^{4}-x_{2}^{3} x_{4}^{2}, x_{2}^{2} x_{4}^{3}-x_{3}^{5}\right\},
\end{aligned}
$$

and that there are precisely 14 distinct initial ideals. All of them fail to be square-free, which implies that the inequalities arith- $\operatorname{deg}(\operatorname{in}(I))>7$ are strict. The gap can vary widely: the arithmetic degrees of the 14 initial monomial ideals are between 9 and 18 .

3. The arithmetic degree of a monomial ideal

The objective of this section is to prove the following lower and upper bounds.
Theorem 3.1. Let I be a proper monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$ with minimal set of monomial generators $\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$, and let $e:=\operatorname{dim}(I)+s-n$. Then

$$
\max \left\{\operatorname{deg}\left(m_{i}\right): i=1, \ldots, s\right\} \leq \operatorname{arith}-\operatorname{deg}(I) \leq \prod_{i=1}^{s} \operatorname{deg}\left(m_{i}\right)-e .
$$

The upper bound in Theorem 3.1 is false for a general homogeneous ideal which is not generated by monomials, even if we delete the excess dimension term e. We do not know whether the lower bound generalizes to arbitrary homogeneous ideals.
Example 3.2. (see also [Kol, p. 966]) Let I be the ideal generated by the forms

$$
f:=x_{1} x_{4}-x_{2} x_{3}, g:=x_{1}^{b-a} x_{3}^{a}-x_{2}^{b}, h:=x_{3}^{b}-x_{2}^{a} x_{4}^{b-a},
$$

for any integers $b>a>0$. It follows from [S-V, p. 171 and Prop. 1.9, p. 162] that

$$
\operatorname{geom}-\operatorname{deg}(I)=\operatorname{deg}(I)=a+b \quad \text { and } \quad \text { arith }-\operatorname{deg}(I)=a+b+\binom{b-a+1}{3} .
$$

For $b \gg a$, the arithmetic degree of I exceeds $\operatorname{deg}(f) \cdot \operatorname{deg}(g) \cdot \operatorname{deg}(h)=2 b^{2}$.
The key idea in proving Theorem 3.1 is to give a combinatorial rule for the lengthmultiplicity mult (\cdot) of a monomial ideal I. Each associated prime of I has the form $P_{Z}:=\left(x_{i}: x_{i} \in X \backslash Z\right)$, where Z is a subset of $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Let \mathcal{M} denote the set of all monomials in $k[X]$. There is a natural map $\mathcal{M} \rightarrow 2^{X}, m \mapsto \operatorname{supp}(m)$, which takes each monomial to its set of variables. A pair (m, Z) in $\mathcal{M} \times 2^{X}$ is called admissible if $Z \cap \operatorname{supp}(m)=\emptyset$. We define a partial order " \leq " on the set of all admissible pairs by

$$
\begin{equation*}
(m, Z) \leq\left(m^{\prime}, Z^{\prime}\right) \Longleftrightarrow m \text { divides } m^{\prime} \text { and } \operatorname{supp}\left(m^{\prime} / m\right) \cup Z^{\prime} \subseteq Z \tag{3.1}
\end{equation*}
$$

The condition (3.1) is equivalent to the inclusion of graded vector spaces $m^{\prime} \cdot k\left[Z^{\prime}\right] \subseteq$ $m \cdot k[Z]$. An admissible pair (m, Z) is called standard (with respect to the monomial ideal I) if $m \cdot k[Z] \cap I=\emptyset$, and (m, Z) is minimal with this property in the partial order (3.1). Let $\operatorname{std}(I)$ denote the number of all standard pairs of a monomial ideal I.

Lemma 3.3. Every monomial ideal I in S satisfies arith $-\operatorname{deg}(I)=$ std (I). More precisely, for fixed $Z \in 2^{X}$, mult $I_{I}\left(P_{Z}\right)$ equals the number of standard pairs of the form (\cdot, Z).

Proof: Our monomial ideal has the following decomposition into irreducible ideals:

$$
\begin{equation*}
I=\bigcap\left(x_{i}^{d e g_{x_{i}}(m)+1}: x_{i} \in X \backslash Z\right) \tag{3.2}
\end{equation*}
$$

where the intersection is over all standard pairs (m, Z). Split this intersection with respect to the different sets Z and apply the definition of $\operatorname{mult}_{I}(\cdot)$ given in the introduction.

Note that any monomial ideal can be recovered from its standard pairs using (3.2). For an example consider the ideal I in (1.5). Its standard pairs are

$$
\begin{equation*}
(x y,\{ \}),(x y z,\{ \}),(1,\{y, z\}),(1,\{x\}),(x,\{z\}) \tag{3.3}
\end{equation*}
$$

If we replace $(x,\{z\})$ by $(x z,\{ \})$ in (3.3) then we get precisely the standard pairs of the ideal J in (2.1). We need three more lemmas for the proof of Theorem 3.1.

Lemma 3.4.

(a) For a principal monomial ideal $I=(m)$, we have $\operatorname{std}(I)=\operatorname{deg}(m)$.
(b) For any two monomial ideals I_{1} and I_{2}, we have $\operatorname{std}\left(I_{1}+I_{2}\right) \leq \operatorname{std}\left(I_{1}\right) \cdot \operatorname{std}\left(I_{2}\right)$.

Proof:
(a): The standard pairs are $\left(x^{i}, X \backslash\{x\}\right)$ where $x \in \operatorname{supp}(m)$ and $0 \leq i<\operatorname{deg}_{x}(m)$.
(b): For each standard pair $\left(m_{1}, Z_{1}\right)$ of I_{1} and each standard pair (m_{2}, Z_{2}) of I_{2}, determine their supremum in the partial order (3.1). In the resulting poset of $\leq \operatorname{std}\left(I_{1}\right) \cdot \operatorname{std}\left(I_{2}\right)$ pairs select the minimal elements. They are precisely the standard pairs for $I_{1}+I_{2}$.

Lemma 3.5. Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be any monomial ideal, and $P=\left(x_{1}, \ldots, x_{d}\right)$. Then P is an isolated prime of I if and only if $\left(1,\left\{x_{d+1}, \ldots, x_{n}\right\}\right)$ is a standard pair of I.

Proof: The inclusion $I \subseteq P$ is equivalent to the condition $k\left[x_{d+1}, \ldots, x_{n}\right] \cap I=\{0\}$. This means there exists a standard pair (m, Z) smaller or equal to $\left(1,\left\{x_{d+1}, \ldots, x_{n}\right\}\right)$ in the partial order " \leq ". In this case we must have $m=1$ and $\left\{x_{d+1}, \ldots, x_{n}\right\} \subseteq Z$.

We conclude that I is contained in P if and only if there exists a subset Z of variables such that $(1, Z)$ is standard and $\left\{x_{d+1}, \ldots, x_{n}\right\} \subseteq Z$. If this inclusion is proper, then the ideal ($x_{i}: x_{i} \in X \backslash Z$) contains I and is properly contained in P, so that P is not a minimal prime of I. On the other hand, if $\left\{x_{d+1}, \ldots, x_{n}\right\}=Z$ then no other ideal of the form $\left(x_{i}: x_{i} \in X \backslash Z^{\prime}\right), Z^{\prime} \supset Z$, contains I.

Lemma 3.5 implies that the geometric degree geom-deg (I) equals the number of standard pairs (m, Z) for which ($1, Z$) is also standard.

Lemma 3.6. Let I be a monomial ideal, let m be a monomial of degree at least 2 and suppose that $\operatorname{dim}(I)=\operatorname{dim}(I+(m))$. Then $\operatorname{std}(I+(m)) \leq \operatorname{std}(I) \cdot \operatorname{deg}(m)-1$.

Proof: Since $\operatorname{dim}(I)=\operatorname{dim}(I+(m))$, the monomial m is contained in a minimal prime P of I. We may assume $P=\left(x_{1}, \ldots, x_{d}\right), m=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$, and $i_{1} \geq 1$. By Lemma 3.5, $\Pi:=\left(1,\left\{x_{d+1}, \ldots, x_{n}\right\}\right)$ is a standard pair of I. We need to show that two of the crosswise suprema formed in the proof of Lemma 3.4 (b) are comparable in the poset (3.1), which means one of them is discarded when passing to minimal elements.

Case 1: $d_{1} \geq 2$. Then ($1,\left\{x_{2}, \ldots, x_{n}\right\}$) and ($x_{1},\left\{x_{2}, \ldots, x_{n}\right\}$) are standard pairs of (m), giving the same supremum:

$$
\Pi \vee\left(1,\left\{x_{2}, \ldots, x_{n}\right\}\right)=\Pi \vee\left(x_{1},\left\{x_{2}, \ldots, x_{n}\right\}\right)=\left(1,\left\{x_{d+1}, \ldots, x_{n}\right\}\right)
$$

Case 2: $d_{1}=1$ and $d_{2} \geq 1$. Then $\left(1,\left\{x_{2}, \ldots, x_{n}\right\}\right)$ and $\left(1,\left\{x_{1}, x_{3}, \ldots, x_{n}\right\}\right)$ are standard pairs of (m), giving comparable suprema:
$\Pi \vee\left(1,\left\{x_{2}, \ldots, x_{n}\right\}\right)>\left(1,\left\{x_{\max \{3, d+1\}}, \ldots, x_{n}\right\}\right)=\Pi \vee\left(1,\left\{x_{1}, x_{3}, \ldots, x_{n}\right\}\right)$.
Case 3: $d_{1}=1$ and $d_{n} \geq 1$. Then $\left(1,\left\{x_{2}, \ldots, x_{n}\right\}\right)$ and $\left(1,\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}\right)$ are standard pairs of (m), giving comparable suprema:

$$
\Pi \vee\left(1,\left\{x_{2}, \ldots, x_{n}\right\}\right)>\Pi \vee\left(1,\left\{x_{1}, \ldots, x_{n-1}\right\}\right)=\left(1,\left\{x_{d+1}, \ldots, x_{n-1}\right\}\right)
$$

This exhausts all cases up to relabeling.
Proof of Theorem 3.1. We first remove all variables which appear in the set $\left\{m_{1}, \ldots, m_{s}\right\}$. This does not alter any of the three expressions in the two claimed inequalities. So, we may assume $\operatorname{deg}\left(m_{i}\right) \geq 2$ for $i=1, \ldots, s$. Starting with Lemma 3.4 (a), we apply Lemma 3.4 (b) and Lemma 3.6 iteratively to $I=\left(m_{1}, \ldots, m_{i-1}\right)$ and $m=m_{i}$, for $i=2, \ldots, s$. The excess dimension e equals the number of indices i for which the dimension hypothesis of Lemma 3.6 is satisfied. This proves the asserted upper bound for arith-deg(I).

For the lower bound we may assume that $\operatorname{deg}\left(m_{1}\right) \geq \operatorname{deg}\left(m_{i}\right)$ for all i, and $m_{1}=$ $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}}$, where $0<r \leq n$ and $a_{1}, \ldots, a_{r}>0$. Consider the following sequence of $\operatorname{deg}\left(m_{1}\right)=\sum a_{j}$ standard monomials (i.e. monomials not in I), arranged in r groups:

$$
\begin{align*}
& x_{1}^{i_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}}, i_{1}=0,1, \ldots, a_{1}-1, \quad x_{1}^{a_{1}} x_{2}^{i_{2}} \cdots x_{r}^{a_{r}}, i_{2}=0,1, \ldots, a_{2}-1, \\
& \quad \ldots \quad \ldots, \quad x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{r-1}^{a_{r-1}} x_{r}^{i_{r}}, i_{r}=0,1, \ldots, a_{r}-1 \tag{3.4}
\end{align*}
$$

For each monomial m^{\prime} in (3.4) there exists a standard pair (m, Z) which is a cover of m^{\prime} in the sense that $m^{\prime} \in m \cdot K[Z]$, or, equivalently, m divides m^{\prime} and $\operatorname{supp}\left(m^{\prime} / m\right) \subseteq Z$.

In view of Lemma 3.3, it suffices to show that the covers (m, Z) of any two monomials in the list (3.4) are distinct. We proceed by contradiction and assume there exist two standard monomials $m^{\prime}, m^{\prime \prime}$ in (3.4) which have the same cover (m, Z).
Case 1: $\quad m^{\prime}$ and $m^{\prime \prime}$ are from the same group, say $m^{\prime}=x_{1}^{i_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}}$ and $m^{\prime \prime}=$ $x_{1}^{j_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}}, i_{1}<j_{1}$. Then $\left\{x_{1}\right\}=\operatorname{supp}\left(m^{\prime \prime} / m^{\prime}\right) \subseteq \operatorname{supp}\left(m^{\prime \prime} / m\right) \subseteq Z$. Writing $U:=\left\{x_{2}, \ldots, x_{r}\right\} \backslash Z$, this implies $m=\prod_{i \in U} x_{i}^{a_{i}}$. Therefore $m_{1} \in m \cdot k[Z]$, which is a contradiction to the fact that $m_{1}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}}$ lies in I.
Case 2: $\quad m^{\prime}$ and $m^{\prime \prime}$ are from different groups, say $m^{\prime}=x_{1}^{i_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}}$ and $m^{\prime \prime}=$ $x_{1}^{a_{1}} x_{2}^{i_{2}} \cdots x_{r}^{a_{r}}$. Then

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\} & =\operatorname{supp}\left(m^{\prime \prime} / g c d\left(m^{\prime}, m^{\prime \prime}\right)\right) \cup \operatorname{supp}\left(m^{\prime} / g c d\left(m^{\prime}, m^{\prime \prime}\right)\right) \\
& \subseteq \operatorname{supp}\left(m^{\prime \prime} / m\right) \cup \operatorname{supp}\left(m^{\prime} / m\right) \subseteq Z
\end{aligned}
$$

Writing $U:=\left\{x_{3}, \ldots, x_{r}\right\} \backslash Z$, this implies $m=\prod_{i \in U} x_{i}^{a_{i}}$, and hence $m_{1} \in m \cdot k[Z]$, in contradiction to $m_{1}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{r}^{a_{r}} \in I$. This completes the proof of Theorem 3.1.

4. On the geometric degree

The geometric degree behaves quite differently from the arithmetic degree. For instance, while the arithmetic degree goes up under Gröbner basis computations (Theorem 2.3), it turns out that the geometric degree goes in the opposite direction.

Proposition 4.1. Let I be a homogeneous ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{in}(I)$ its initial ideal with respect to any term order. Then

$$
\begin{equation*}
\operatorname{geom}-\operatorname{deg}(I) \geq \text { geom-deg }(i n(I)) \tag{4.1}
\end{equation*}
$$

Proof: First suppose that I is pure d-dimensional, that is, each isolated prime of I has dimension d. Then $i n(I)$ is pure d-dimensional as well (see e.g. [K-S]). Since the degree is preserved under taking initial ideals, and since degree and geometric degree coincide for pure ideals, we have $\operatorname{geom}-\operatorname{deg}(I)=\operatorname{deg}(I)=\operatorname{deg}(\operatorname{in}(I))=\operatorname{geom}-\operatorname{deg}(\operatorname{in}(I))$.

Suppose now that I has dimension d but is not pure. Write $I=J \cap K$, where J is pure d-dimensional and each isolated prime of K has dimension $\leq d-1$ and is isolated in I as well. We have $\operatorname{deg}(I)=\operatorname{deg}(J)$ and $\operatorname{geom}-\operatorname{deg}(I)=\operatorname{deg}(J)+g e o m-\operatorname{deg}(K)$. If $\operatorname{in}(I)$ is pure, then we are done since $\operatorname{geom}-\operatorname{deg}(\operatorname{in}(I))=\operatorname{deg}(\operatorname{in}(I))=\operatorname{deg}(I) \leq g e o m-\operatorname{deg}(I)$. If $\operatorname{in}(I)$ is not pure, then write $\operatorname{in}(I)=J^{\prime} \cap K^{\prime}$ where J^{\prime} is a pure d-dimensional monomial
ideal and each isolated prime of K^{\prime} has dimension $\leq d-1$ and is isolated in in (I). By induction on the dimension we have $\operatorname{geom}-\operatorname{deg}(i n(K)) \leq \operatorname{geom}-\operatorname{deg}(K)$, and therefore it suffices to show geom-deg $\left(K^{\prime}\right) \leq \operatorname{geom}-\operatorname{deg}(i n(K))$. This follows from our construction because each isolated prime of K^{\prime} is isolated and of the same multiplicity in in $\left(K^{\prime}\right)$.

Example 4.2. Let I^{\prime} be any ideal which has an isolated component of dimension less than $\operatorname{dim}\left(I^{\prime}\right)$, and let I be obtained from I^{\prime} by a generic linear change of coordinates. For the lexicographic term order (coordinate projection) we get the sharp inequality in (4.1):

$$
\begin{equation*}
\operatorname{geom}-\operatorname{deg}(\operatorname{in}(I))=\operatorname{deg}(\operatorname{in}(I))=\operatorname{deg}(I)<\operatorname{geom}-\operatorname{deg}(I) \tag{4.2}
\end{equation*}
$$

The main goal of this section, however, is to prove the following Bezout-type result.
Theorem 4.3. Let $I \subset J$ be homogeneous ideals in $S=k\left[x_{1}, \ldots, x_{n}\right]$ such that $S_{p} / I S_{p}$ is Cohen-Macaulay for every isolated prime P of J. Let f_{1}, \ldots, f_{m} be forms in J such that $J=I+\left(f_{1}, \ldots, f_{m}\right)$. Set $d_{i}:=\operatorname{deg}\left(f_{i}\right)$ and suppose that $d_{1} \geq d_{2} \geq \cdots \geq d_{m}$. Then

$$
\begin{equation*}
\operatorname{geom}-\operatorname{deg}(J) \leq d_{1} d_{2} \cdots d_{t} \cdot \text { geom }-\operatorname{deg}(I) \tag{4.3}
\end{equation*}
$$

where $t:=\max \{h t(P / I) \mid P$ is an isolated prime of $J\}$.
Remarks: (a) The inequality (4.3) fails to hold if the degrees of the generators are not sorted decreasingly: For instance, if $I=(0), J=\left(x^{2} y, x y^{2}, x^{m}, y^{m}\right)$ then $\operatorname{deg}(J)=2 m>$ $\operatorname{deg}\left(x^{2} y\right) \cdot \operatorname{deg}\left(x y^{2}\right)=9$, which leads to a violation of (4.3) for $m \geq 5$.
(b) Example 3.2 shows that Theorem 4.3 does not hold for the arithmetic degree.
(c) The case where S / I is a Cohen-Macaulay ring was already considered by P. Philipon [Ph, Prop. 3.3] and D. Brownawell [Br 2$]$. They proved that $\operatorname{geom}-\operatorname{deg}(J) \leq d_{1}^{t} \cdot \operatorname{deg}(I)$.

Before embarking on the proof of Theorem 4.3 we derive two lemmas.
Lemma 4.4. Let I be a homogeneous ideal and f a form in S such that $S_{P} / I S_{P}$ is Cohen-Macaulay for all isolated associated prime ideals P of (I, f). Then

$$
\operatorname{geom}-\operatorname{deg}(I, f) \leq \operatorname{deg}(f) \cdot \operatorname{geom}-\operatorname{deg}(I) .
$$

Proof: Let I_{1} resp. I_{2} denote the intersection of all isolated primary components of I whose associated prime ideals contain resp. do not contain f. Then

$$
\operatorname{geom} \cdot \operatorname{deg}(I)=\text { geom }-\operatorname{deg}\left(I_{1}\right)+\text { geom }-\operatorname{deg}\left(I_{2}\right) .
$$

Similarly, let J_{1} and J_{2} be the intersection of all isolated primary components of (I, f) whose associated prime ideals are resp. are not associated isolated prime ideals of I. Then

$$
\operatorname{geom}-\operatorname{deg}(I, f)=\operatorname{geom}-\operatorname{deg}\left(J_{1}\right)+\operatorname{geom}-\operatorname{deg}\left(J_{2}\right)
$$

It suffices to prove the two inequalities $\operatorname{geom}-\operatorname{deg}\left(J_{\nu}\right) \leq \operatorname{deg}(f) \cdot \operatorname{geom}-\operatorname{deg}\left(I_{\nu}\right)$ for $\nu=1,2$. The set of isolated prime ideals P of I which contain f is exactly the set of prime ideals P which are isolated prime ideals of both I and (I, f). Hence

$$
\begin{aligned}
\operatorname{geom}-\operatorname{deg}\left(I_{1}\right) & =\sum \ell\left(S_{P} / I S_{P}\right) \cdot \operatorname{deg}(P) \\
& \geq \sum \ell\left(S_{P} /(I, f) S_{P}\right) \cdot \operatorname{deg}(P)=\operatorname{geom}-\operatorname{deg}\left(J_{1}\right) .
\end{aligned}
$$

Let U_{i} denote the intersection of all i-dimensional isolated primary components of I_{2} ($U_{i}=S$ in the absence of such components). Then geom-deg $\left(I_{2}\right)=\sum_{i} \operatorname{deg}\left(U_{i}\right)$. Since U_{i} is an unmixed ideal and f is relatively prime to U_{i}, all isolated primes of $\left(U_{i}, f\right)$ have the same dimension and geom- $\operatorname{deg}\left(U_{i}, f\right)=\operatorname{deg}\left(U_{i}, f\right)=\operatorname{deg}(f) \cdot \operatorname{deg}\left(U_{i}\right)$. Therefore,

$$
\sum_{i} g e o m-\operatorname{deg}\left(U_{i}, f\right)=\operatorname{deg}(f) \cdot \operatorname{geom}-\operatorname{deg}\left(I_{2}\right) .
$$

The proof will be completed if we can show that

$$
\operatorname{geom-deg}\left(J_{2}\right) \leq \sum_{i} \operatorname{deg}\left(U_{i}, f\right)
$$

For this we only need to show that every isolated primary component U of J_{2} is also an isolated primary component of some ideal $\left(U_{i}, f\right)$. Let P be the radical of U. By the definition of J_{2}, the prime P is not an isolated prime of I. Hence any isolated prime ideal of I contained in P does not contain f. Since $S_{P} / I S_{P}$ is a Cohen-Macaulay ring, $I S_{P}$ is an unmixed ideal. Hence all associated prime ideals of $I S_{P}$ come from isolated prime ideals of I which have the same dimension $\operatorname{dim} S / P+1$ and which do not contain f. So we can conclude that $I S_{P}=U_{i} S_{P}$ for $i=\operatorname{dimS} / P+1$. Since $U S_{P}=(I, f) S_{P}=\left(U_{i}, f\right) S_{P}$, the ideal U must be an isolated primary component of (U_{i}, f), as required.

The Cohen-Macaulay condition of Lemma 4.4 cannot be replaced by the condition that $f \notin P$ for any minimal prime P of I. For example, let $I=\left(x_{1}^{2}, x_{1} x_{2}\right)$ and $f=x_{2}$. Then $(I, f)=\left(x_{1}^{2}, x_{2}\right)$ and $\operatorname{geom}-\operatorname{deg}(I, f)=\operatorname{deg}(I, f)=2>1=\operatorname{geom}-\operatorname{deg}(I)$.

For the proof of Theorem 4.3 we also need the following lemma which shows that J can be approximated by a sequence of extensions as in Lemma 4.4.

Lemma 4.5. Let I and $J=\left(I, f_{1}, \ldots, f_{m}\right)$ and the integer t be as in Theorem 4.3. Suppose that k is an infinite field and that f_{1}, \ldots, f_{m} define a minimal k-basis for J / I. Then there exist forms g_{1}, \ldots, g_{t} in J with $\operatorname{deg}\left(g_{i}\right)=d_{i}=\operatorname{deg}\left(f_{i}\right)$ which satisfy:
(i) The ring $S_{P} /\left(I, g_{1}, \ldots, g_{i-1}\right) S_{P}$ is Cohen-Macaulay for any isolated prime ideal P of $\left(I, g_{1}, \ldots, g_{i}\right), i=1, \ldots, t$.
(ii) Every isolated prime ideal of J is also an isolated prime ideal of $\left(I, g_{1}, \ldots, g_{t}\right)$.

Proof: We may assume that $t>0$. For any integer $d>0$ let J_{d} denote the ideal generated by I and the homogeneous elements of degree d of J. Put $d=d_{1}$. Since any homogeneous minimal basis for J / I contains at least an element of degree d, J_{d} is not contained in the ideal $I+M J$, where M denotes the irrelevant ideal $\left(x_{1}, \ldots, x_{n}\right)$. Moreover, since J_{d} has the same radical as J, any prime $Q \nsupseteq J$ of S does not contain J_{d}. Thus, $(I+M J) \cap J_{d}$ and $Q \cap J_{d}$ are proper subideals of J_{d}. Since k is infinite, we can find a form $g_{1} \in J_{d}$, $g_{1} \notin I+M J$, with $\operatorname{deg}\left(g_{1}\right)=d$ such that $g_{1} \notin Q$ for any associated prime $Q \nsupseteq J$ of I.

We will show that $S_{P} / I S_{P}$ is Cohen-Macaulay for any isolated prime P of $\left(I, g_{1}\right)$. If P is also an isolated prime of I, then $\operatorname{dim} S_{P} / I S_{P}=0$ and we are done. If P is not an isolated prime of I, we may assume that $P \nsupseteq J$. For, if $P \supseteq J$, then P must be an isolated prime of J because $\left(I, g_{1}\right) \subseteq J$, and in this case, $S_{P} / I S_{P}$ is Cohen-Macaulay by the assumption of Theorem 4.3. If $P \nsupseteq J$, by the choice of g_{1}, the form g_{1} does not belong to any associated prime of I contained in P. Hence g_{1} is a non-zero-divisor of $S_{P} / I S_{P}$. Since $\operatorname{dim} S_{P} / I S_{P}=1, S_{P} / I S_{P}$ is a Cohen-Macaulay ring.

For $t=1$, we have just proved (i). To see (ii) let P now be an arbitrary isolated prime of J. If $h t(P / I)=0$, then P is an isolated prime of I. Since $I \subset\left(I, g_{1}\right) \subseteq J, P$ must be an isolated prime of $\left(I, g_{1}\right)$. If $h t(P / I)=1$, any isolated prime of I contained in P does not contain J. The form g_{1} does not belong to any such prime ideal. Hence $h t\left(P^{\prime} / I\right)=1$ for any isolated prime P^{\prime} of $\left(I, g_{1}\right)$ contained in P. Now, if P is not an isolated prime of $\left(I, g_{1}\right)$, there exists an isolated ideal P^{\prime} of $\left(I, g_{1}\right)$ properly contained in P. This would imply $h t(P / I)>h t\left(P^{\prime} / I\right)=1$, a contradiction.

If $t \geq 2$, we can show similarly as above that $S_{P} /\left(I, g_{1}\right) S_{P}$ is Cohen-Macaulay for any isolated prime P of J. It is easily seen that $J /\left(I, g_{1}\right)$ can be minimally generated by $m-1$ homogeneous elements of degree $d_{2} \geq \cdots \geq d_{m}$ and

$$
t-1=\max \left\{h t\left(P /\left(I, g_{1}\right)\right) \mid P \text { is an isolated prime of } J\right\}
$$

Therefore, using induction, we may assume that there exist forms g_{1}, \ldots, g_{s} with $\operatorname{deg}\left(g_{i}\right)=$ d_{i} which together with g_{1} satisfy the conditions (i) and (ii). The proof of Lemma 4.5 is now complete.

Proof of Theorem 4.3: Clearly, the geometric degree is preserved under base field extension. So we may replace k by a field of rational functions $k(u)$ in order to get an infinite base field. Now we can apply Lemma 4.5 to find homogeneous polynomials g_{1}, \ldots, g_{t} in J satisfying the conditions (i) and (ii). Using (ii) of Lemma 4.5 we get

$$
\operatorname{geom-deg}(J) \leq \operatorname{geom-deg}\left(I, g_{1}, \ldots, g_{t}\right)
$$

By successively applying Lemma 4.4 we obtain from (i) of Lemma 4.5 our desired bound: $\operatorname{geom}-\operatorname{deg}\left(I, g_{1}, \ldots, g_{t}\right) \leq d_{1} \cdots d_{t} \cdot \operatorname{geom}-\operatorname{deg}(I)$.

We close with a variant of Theorem 4.3 for the case when I is a prime ideal. In that case we may choose g_{1} with $\operatorname{deg}\left(g_{1}\right)=\min \operatorname{deg}\left(f_{i}\right)$. Applying Lemma 4.5 we then find the other elements g_{2}, \ldots, g_{t}. Notice the change in the ordering of the degrees of $f_{1}, f_{2}, \ldots, f_{m}$.

Corollary 4.6. Let I be a homogeneous prime ideal and $J \supset I$ a homogeneous ideal in S such that $S_{P} / I S_{P}$ is Cohen-Macaulay for any minimal prime P of J. Let f_{1}, \ldots, f_{m} be forms in J such that $J=\left(I, f_{1}, \ldots, f_{m}\right)$. We set $d_{i}:=\operatorname{deg}\left(f_{i}\right)$ and suppose that $d_{2} \geq d_{3} \geq \cdots \geq d_{m} \geq d_{1}$. Let $t=\max \{h t(P / I) \mid P$ is a minimal prime ideal of $J\}$. Then

$$
\operatorname{geom} \cdot \operatorname{deg}(J) \leq d_{1} d_{2} \cdots d_{t} \cdot \operatorname{deg}(I)
$$

5. On the division problem and extensions of Bezout's Theorem.

In computational algebra there is great interest in the effective Nullstellensatz and the effective division problem. For the history and the general state of the art of these problems we refer to the literature, which includes [Br1], [C-G-H], [Kol], [Amo], [B-Y], [Sch]. Our contribution in this section is an application of the results on the geometric degree in $\S 4$.

Theorem 5.1. Let f, f_{1}, \ldots, f_{m} be polynomials in $S:=k\left[x_{1}, \ldots, x_{n}\right]$ such that $f \in$ $\left(f_{1}, \ldots, f_{m}\right)$ and the homogenized ideal $I:=\left({ }^{h} f_{1}, \ldots,{ }^{h} f_{m}\right)$ in $R:=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ has no embedded components containing x_{0}. Put $d_{i}=\operatorname{deg}\left(f_{i}\right)$ and suppose $d_{2} \geq \ldots \geq d_{m} \geq d_{1}$. Then there exist $g_{1}, \ldots, g_{m} \in S$ such that $f=g_{1} f_{1}+\ldots+g_{m} f_{m}$ with
(i) $\operatorname{deg}\left(g_{i} f_{i}\right) \leq \max \left\{d_{1}+\ldots+d_{n+1}, \operatorname{deg}(f)\right\}$ if $\operatorname{dim}(R / I)=0$.
(ii) $\operatorname{deg}\left(g_{i} f_{i}\right) \leq d_{1} d_{2} \cdots d_{t}-\operatorname{geom}-\operatorname{deg}(\bar{I})+\operatorname{deg}(f)$ if $\operatorname{dim}(R / I)>0$, where t is the maximal height of an isolated prime of I and \bar{I} is the intersection of all primary components of I whose associated primes do not contain x_{0}.

Here the homogenization of a polynomial f is defined in the usual way as

$$
{ }^{h^{h}} f:=x_{0}^{\operatorname{deg}(f)} \cdot f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)
$$

Part (i) of Theorem 5.1 is an easy consequence of a classical result of Macaulay, see e.g. [Sch, Proposition 1]. Part (ii) was proved by Schiffmann [Sch] in the special case where I is a complete intersection. Here is the more general situation.

Proof of part (ii): Suppose $\operatorname{dim}(R / I)>0$. We have geom- $\operatorname{deg}(I) \leq d_{1} d_{2} \cdots d_{t}$ by Corollary 4.6. Let I_{0} be the intersection of all isolated primary components of I which contain x_{0}. Note that $\operatorname{arith}-\operatorname{deg}\left(I_{0}\right)=\operatorname{geom}-\operatorname{deg}\left(I_{0}\right)$, and hence $x_{0}^{g e o m-d e g\left(I_{0}\right)} \in I$ by Theorem 2.1. Then

$$
\operatorname{geom}-\operatorname{deg}\left(I_{0}\right)=\operatorname{geom}-\operatorname{deg}(I)-\operatorname{geom}-\operatorname{deg}(\bar{I}) .
$$

Hence we have $x_{0}^{d_{1} \cdots d_{t}-\text { geom-deg }(\bar{I})} \cdot{ }^{h} f \in I$, and the conclusion follows.
For the Bezout version of the Nullstellensatz we obtain the following corollary.
Corollary 5.2. Let f_{1}, \ldots, f_{m} be polynomials in S which have no common zeros. Set $d_{i}=$ $\operatorname{deg}\left(f_{i}\right)$ and suppose $d_{2} \geq \ldots \geq d_{m} \geq d_{1} \geq 2$. If the homogenized ideal $I:=\left({ }^{h} f_{1}, \ldots,{ }^{h} f_{m}\right)$ has no embedded primes which contain x_{0}, then there exist g_{1}, \ldots, g_{m} in S such that

$$
1=g_{1} f_{1}+\cdots+g_{m} f_{m}
$$

with $\operatorname{deg}\left(g_{i} f_{i}\right) \leq d_{1} \cdots d_{\mu}$, where $\mu=\min \{m, n\}$.
Proof: Let t be the maximal height of any isolated prime ideal of I. If $t=n+1$, then $\operatorname{dim}(R / I)=0$, and we can apply Theorem 5.1 (i) in order to obtain $\operatorname{deg}\left(g_{i} f_{i}\right) \leq d_{1} \cdots d_{n}$ (cf. [Sch]). Note that $m \geq n$ in this case. If $t<n+1$, then $t \leq \min \{m, n\}$. In this case the conclusion follows from Theorem 5.1 (ii) with $f=1$.

Our second application concerns Bezout's theorem. The intersection theory developed in [Ful] and [Vo] provides the following refined version: Let I_{1}, \ldots, I_{r} be equidimensional homogeneous ideals without embedded components in $S=k\left[x_{1}, \ldots, x_{n}\right]$ such that $S_{P} / I_{i} S_{P}$ is Cohen-Macaulay for all minimal primes P of $I_{1}+\cdots+I_{r}$, and $i=1, \ldots, r$. Then

$$
\begin{equation*}
\operatorname{geom}-\operatorname{deg}\left(I_{1}+\cdots+I_{r}\right) \leq \prod_{i=1}^{r} \operatorname{deg}\left(I_{i}\right) \tag{5.1}
\end{equation*}
$$

Using Theorem 5.1 we will prove a variant without the equidimensionality hypothesis:
Theorem 5.3. Let I_{1}, \ldots, I_{r} be homogeneous ideals in S such that $S_{P} / I_{i} S_{P}$ is CohenMacaulay for all isolated primes P of $I_{1}+\cdots+I_{r}$ and $i=1, \ldots, r$. Then

$$
\operatorname{geom-deg}\left(I_{1}+\cdots+I_{r}\right) \leq \prod_{i=1}^{r} g e o m-\operatorname{deg}\left(I_{i}\right)
$$

Proof: We shall prove only the case $r=2$ since the other cases are similar. Let I_{2}^{\prime} be the image of I_{2} under the substitutions $x_{i} \mapsto y_{i}$, where y_{1}, \ldots, y_{n} are new indeterminates. We denote by I the extension ideal of $I_{1}+I_{2}^{\prime}$ in $R=k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$. Setting $f_{i}=x_{i}-y_{i}$ for $i=1, \ldots, n$, we have $R /\left(I, f_{1}, \ldots, f_{n}\right) \cong S /\left(I_{1}+I_{2}\right)$, and hence

$$
\operatorname{geom}-\operatorname{deg}\left(I_{1}+I_{2}\right)=\operatorname{geom}-\operatorname{deg}\left(I, f_{1}, \ldots, f_{n}\right)
$$

Lemma 3 of [A-H-V] implies that $R_{P} / I R_{P}$ is Cohen-Macaulay for all minimal primes P of $\left(I, f_{1}, \ldots, f_{n}\right)$. Hence we can apply Theorem 5.1 to get:

$$
\operatorname{geom-deg}\left(I, f_{1}, \ldots, f_{n}\right) \leq \operatorname{geom-deg}(I) .
$$

To complete the proof of Theorem 5.3, it suffices to show that the geometric degree is multiplicative with respect to taking joins of projective schemes:

$$
\begin{equation*}
\operatorname{geom}-\operatorname{deg}(I)=\operatorname{geom}-\operatorname{deg}\left(I_{1}\right) \cdot \operatorname{geom}-\operatorname{deg}\left(I_{2}\right) \tag{5.2}
\end{equation*}
$$

Indeed, by [Vo, Lemma 2.3], every pair (Q_{1}, Q_{2}) of minimal primary components of I_{1} and I_{2} yields a minimal primary component $Q_{1}+Q_{2}^{\prime}$ of I in R with $\operatorname{deg}\left(Q_{1}+Q_{2}^{\prime}\right)=$ $\operatorname{deg}\left(Q_{1}\right) \cdot \operatorname{deg}\left(Q_{2}\right)$, and, moreover, every minimal primary ideal of I arises in this way.

Corollary 5.4. Let X, Y be locally Cohen-Macaulay subschemes of projective n-space such that $\operatorname{dim}(X)+\operatorname{dim}(Y)>n$. Then geom-deg $(X \cap Y) \leq \operatorname{geom}-\operatorname{deg}(X) \cdot \operatorname{geom}-\operatorname{deg}(Y)$.

Theorem 5.3 and Corollary 5.4 are not true in general without the Cohen-Macaulay condition. Let X, Y be reduced and irreducible subvarieties of P^{n} meeting properly. If there is an irreducible component C of $X \cap Y$ such that $\mathcal{O}_{X, C}$ is not Cohen-Macaulay, then it follows from Bezout's Theorem (see e.g. [Vo]) that $\operatorname{deg}(X) \cdot \operatorname{deg}(Y)<\operatorname{deg}(X \cap Y)$. In view of the results in $[\mathrm{F}-\mathrm{V}]$, it would be nice to improve Theorem 5.3 as follows.

Problem 5.5. Let I, J be homogeneous ideals in S. We set $e:=\operatorname{dim}(I+J)+n-$ $(\operatorname{dim} I+\operatorname{dim} J) \geq 0$. Assume that S / I and S / J are Cohen-Macaulay k-algebras and $I \cap J$ contains no linear forms. Is then $\operatorname{deg}(I) \cdot \operatorname{deg}(J) \geq g e o m-\operatorname{deg}(I+J)+e ?$

All inequalities for the geometric degree which we derive in this section are generally false for the arithmetic degree (cf. Example 3.2). One promising option in getting Bezouttype theorem for the arithmetic degree is to use Gröbner bases instead of ideal generators.

Corollary 5.6. Let I be any homogeneous ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$, let $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ a Gröbner basis for I with respect to any term order, and let $e:=\operatorname{dim}(I)+s-n$. Then

$$
\operatorname{arith}-\operatorname{deg}(I) \leq \quad \operatorname{deg}\left(g_{1}\right) \cdot \operatorname{deg}\left(g_{2}\right) \cdots \cdots \operatorname{deg}\left(g_{s}\right)-e
$$

Proof: This was proved for monomial ideals in Theorem 3.1. Using Theorem 2.3, and $\operatorname{dim}(I)=\operatorname{dim}(\operatorname{in}(I)), \operatorname{deg}\left(g_{i}\right)=\operatorname{deg}\left(\operatorname{in}\left(g_{i}\right)\right)$, it follows for arbitrary homogeneous ideals.

References

[A-H-V] Achilles, R., C. Hunecke and W. Vogel: A criterion for intersection multiplicity one. Nagoya Math. J. 100, 49-63, (1985)
[Amo] Amoroso, F.: Test d'appartenance d'après un théorèm de Kollár. C. R. Acad. Sci. Paris 309, 691-69 (1989)
[B-M] Bayer, D. and Mumford, D.: What can be computed in algebraic geometry ? In: Eisenbud, D. and L. Robbiano, L. (eds.): "Computational Algebraic Geometry and Commutative Algebra", Proceedings Cortona (June 1991), Cambridge University Press, to appear
[B-Y] Berenstein, C.A. and Yger, A.: Bounds for the degrees in the division problem. Michigan Math. J. 126, 25-43 (1990)
[Br 1$]$ Brownawell, D.: Bounds for the degrees in the Nullstellensatz. Annals of Math. 126, 577-592 (1987)
[Br2] Brownawell, D.: Note on a paper of P. Philipon. Michigan Math. J. 34, 461-464 (1987)
[C-G-H] Caniglia, L., Galligo, A. and Heintz, J.: Borne simple exponentielle pour les degrés dans le théorèm des zeros sur un corps de characteristique quelconque. C. R. Acad. Sci. Paris 307, 255-258 (1988)
[Eis] Eisenbud D.: Commutative Algebra with a View Towards Algebraic Geometry, to appear.
[E-H] Eisenbud, D. and Harris, J.: Schemes: The Language of Modern Algebraic Geometry. Belmont, Wadsworth: 1992.
[F-V] Flenner, H. and Vogel, W.: On multiplicities of local rings. Manuscripta math. 78, 85-97 (1993)
[Ful] Fulton, W.: Intersection Theory. Berlin Heidelberg New York, Springer: 1984
[Gro] Gröbner, W.: Moderne Algebraische Geometrie. Wien, Springer Verlag: 1949.
[Har] Hartshorne, R.: Connectedness of the Hilbert scheme. Publicat. I.H.E.S. 29, 261-304 (1966)
[K-S] Kalkbrener, M. and Sturmfels, B.: Initial complexes of prime ideals. Advances in Mathematics, to appear.
[Kol] Kollár, J.: Sharp effective Nullstellensatz. Journal A.M.S. 1., 963-975 (1988)
[Ph] Phillipon, P.: Lemmes de zéros dans les groupes algébraiques commutatifs. Bull. Soc. Math. France 114, 335-383 (1986)
[R-V] Renschuch, B. and Vogel, W.: Perfektheit und die Umkehrung des Bezoutschen Satzes. Math. Nachrichten 148, 313-323 (1990)
[Sch] Schiffman, B.: Degree bounds for the division problem in polynomial ideals. Michigan Math. J. 36, 163-171 (1989)
[S-V] Stückrad, J. and Vogel, W.: Buchsbaum Rings and Applications. Berlin Heidelberg New York, Springer: 1986
[Stu] Sturmfels, B.: Gröbner bases of toric varieties. Tohoku Math. J. 43, 249-261 (1991)
[Tho] Thomas, R.: A geometric Buchberger algorithm for integer programming. Manuscript, Cornell University: 1993
[Vo] Vogel, W.: Lectures on results on Bezout's Theorem. (Lecture Notes, Tata Institute of Fundamental Research, Bombay, No. 74) Berlin Heidelberg New York, Springer: 1984

