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A weighted version of Zariski's hyperplane section theorem
and fundanlental groups of complements of plane curves

Ichiro Shimada

§o. Introduction

In this paper, we formulate and prove a weighted homogeneous version of Zariski's
hyperplane section theorem on the fundamental groups of the complements of hypersur­
faces in a complex projective space, and apply it to the study Of?Tl (pa \ C), where C c p2

is a projective plane curve. The main application is to prove a comparison theorelll as
follows. Let cp : p2 --+ 1P2 be the composition of the Veronese embedding p2 t......t IFN and
the restriction of a general projection r N

.. --+ p2. Dur comparison theorem enables us
to calculate ?T](1P2

\ cp-I(C)) from ?T](1P2
\ C). In [14] and [16], Zariski studied some p~o­

jective plane curves with interesting properties. An example is sextic curves with 6 cusps.
Zariski showed that the fundamental group of the complement depends on the placement
of the 6 cusps. Another example is the 3-cuspidal quartic curve, whose complement has
a non-abelian and finite fundamental group. This curve is the only known example with
this property. Using the comparison theorem, we derive infinite series of curves with these
interesting properties from thc classical examples of Zariski. As another application, we
shall discuss a relation between ?Tl (lP2

\ C) and ?Tl (1P2
\ (C U L oo )), where L oo is a line

intersecting C transversely.

Let Xl, ••. , X n be variables with weights

,deg X n == dn ,

and let F(xl, ... , x n ) be a non-zero weighted homogeneous polynomial of total degree
d > O. Suppose that n 2:: 2 and d i > 0 for i == 1, ... 1 n. In the affine space An with affine
coordinates (Xl, ... ,Xn ), the equation F = 0 defines a hypersurface ~ C An. We let the
multiplicative group Gm of non-zero complex numbcrs act on An by

for A E Gm. (0.1)

This action leaves the cornplement ATl \ ~ invariant, because F is weighted homogeneous.
Thus we have a natural homorllorphism

(0.2)

Note that the image of (0.2) is contained in the center of 7f] (A n \ ~), so that we have
the cokernel of this homomorphism. We fix a projective plane p2 with homogeneous
coordinates (~o : ~I : E2)' Let fi be horllogeneous polynomials of degree d i in (Eo, EI, E2) for
i = 1, ... ,n. We denote by I the n-tuple (/l" .. ,In)' The polynomial
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in the variables (~Olel,e2) is then homogeneous of degree d, and Ff(ea,el,ez) = 0 defines
a subseherne of IP2

, whieh we shall denote by Cf. Unless Ff is constantly zero on p2, Cf
is a projeetive plane curve of degree d.

TheorelTI 1. Suppose that L: is reduced. If 11, ... ,/n are general, tl1en 7T'1 (IPZ
\ Cf) is

isomorphie to the eokernel of the natural homomorphism (0.2).

Consider the case when d1 = ... = dn = 1 anel n > 2. Then F = 0 defines a
hypersurfaee ~ in the projeetive space jpn-l with homogeneous coordinates (Xl: ... : x n ).

In this case, the action (0.1) of Gm on An \ ~ is fixed-point free, ancl the quotient space
(An \ 'E)jG m is isomorphie to jpn-l \ ~. Hence the cokernel of the homomorphism (0.2) is
iSOlllOrphic to 7f1 (jpn-1 \ E). On the other hand, if /1, ... ,In are general linear forms, then
Cf is the puH-back of ~ by the linear el11bedding {, f : p2 Y IPn

-
1 defined by {, j Xi = /i.

Hence Theorem 1 is nothing but the classical hyperplane section theorem of Zariski [15] in
this case. This justifies us in calling Theorem 1 a weigllted Zariski 's l1yperplane scetion
theorem.

Let /0, /1, Iz be general hOlllogeneous polynomials of degree k in (eo, el, ez). We
consider the branched covering <p : nra -t r Z of degree kZ defined by

Suppose that we are given a reduced projective plane curve C C pZ of degree d. Using The­
orem 1, we shall show that, when /0,/1, Iz are general with respect to C, the fundamental
group 7f1 (Ipz \ <p-l (C)) can be computed from 7fl (p2 \ C) in a simple way.

We define the linking number map

as follows. It is weH known that BI (rfl \ c, Z) is naturally isomorphie to the cokernel of
the direct sum of the restrietion maps

(0.3)

where CI, ... ,Cs are the irreducible components of C (cf. [4, §8] ). Let ei E HZ( Ci, Z) f'oJ Z
be the positive generator, whieh is the Poincare dual of a point on Ci, llild let [L] E
H 2 (jpz, Z) ~ Z be the positive generator, which is the Poineare dual of a line. Since C
is reduced, we have Ti([L]) = (deg Cd . ei. Because d = deg Cl + ... + deg Cs, the Inaps
ei I--t 1 mod d induces a well-defined hOlnomorphism from the cokernel of (0.3) to Zj(d)j
i.e., H1 (jpz \ c, Z) -t Zj(d). The map e is then defined to be the composition of this
homomorphism with the Hurwicz n1ap 1rl (pz \ C) -+ H1 (pz \ C, Z).

We ean define I! in the following different way. Let [a] E 1rl (Ip2 \ C) be an elernent
represented by a loop 0:' : SI -t p2 \ C. Since 1rl (pz) = {1}, there exists a continuous
map ß : D -+ p2 from D := { z E C ; Izi ~ 1} to jpz such that aß = 0:'. By a small
deformation of ß hOIllotopically relative to the boundary, we may assurne that the iInage
of ß intersects the eurve C transversely. Let In1 ß . C be the interseetion nurnber. Since
the intersection nu111bel' of any elel11ent in H 2(jp2 , Z) wi th [C] E H 2(p2 , Z) is divisible by
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d, the number Im ß . C modulo d is independent of the choice of ß. We define e([a]) to
be Im ß . C Ill0d d E 7l / (d). From this defini tion, we can call 1: ([a]) the linking nUlllbel'
of the loop 0' around C. It is easy to see that this definition coincides with the previous
definition.

We define the extencIed linking number map by

Zj(d)

(v,[a]) M e([a]) - v mod d.

Theorem 2. Let C C p2 be a reduced curve of degree d. Suppose that Ja, /1 and J2
are general homogeneous po1ynolnials of degree k in (~o, ~1 , ~2). T1Jcn 7rl (f'2 \ ep -1 (C)) is
isomorphie to J<er l/((kd) x {I}).

Corollary 1. Suppose the SaIne assumptions as in Theorem 2.
(1) The fundamental group 7rl(IP2 \ ep-l(C)) is a eentral extension oE 7rl(p2 \ C) by

Z/(k). In particular, iE7rl(Ip2 \ C) is finite, then 7rl(f'2 \ ep-l(C)) is also finite oforder k
tünes tbe order oE 7rl (p2 \ C).

(2) Tbe fundamental group 1fl (p2 \ ep-l (C)) is abelian if anel on1y if so is 7r1 (f'2 \ C).

Remark that, when /0, Jl and f2 are general, the lllorphism ep : p2 --+ p2 is etale
over a Zariski open neighborhood of the singular points of C. Hence, for example, if the
singular loeus Sing C eonsists of J nodes and f'i, cusps, then the singular locus of ep-l (C)
consists of k 2J nodes and k2f'i, cusps.

Examp1es.

(1) Zariski pairs. A couple of reduced projective plane curves Cl and C2 is said to
make a Zariski pair if they satisfy the following conditions [1]; (i) deg Cl = deg C2 , (ii)
there exist tubular neighborhoods T( Ci) C f'2 of Ci for i = 1,2 such that (T( Cl), Cl)
and (T( C2 ), C2 ) are diffeoillorphic, and (iii) the pairs (1P2, Cl) and (p2, C2 ) are not home­
olllorphic. That is, the singularities of Cl and C2 are topologieally equivalent, but the
embeddings Cl Y. f'2 and C2 y f'2 are not topologieally equivalent.

The first example of Zariski pair was discovered and studied by Zariski. In [14] and
[16], he showed that there exist projeetive plane curves Cl and C2 of degree 6 such that
Sing Cl consists of 6 cusps lying on a come, while Sing C2 consists of 6 cusps not on any
conie, and that 7rl (IfIl2 \ Cl) is isoillorphic to the free product 7l/(2) *7l/(3) of eyclie groups
of order 2 and 3, while 7r} (p2 \ C2 ) is eyclic of order 6. Thus Cl and C2 lllake a Zariski
pair. (See also [8].) After this example, only few Zariski pairs have been constructed (cf.
[1], [12]).

Let Gfl (k) and C2 (k) be the pull-backs of the sextie curves Cl and C2 above by the
covering ep : p2 --+ p2 in Theorem 2. Both of thenl are of degree 6k, and each of their
singular loci consists of 6k 2 eusps. Combining Corollary 1 (2) with Zariski 's result, we see
that 1fl(p2 \ Cl (k)) is non-abelian, while 7rl (p2 \ C2(k)) is abelian. Thus \ve obtain an
infinite series of Zariski pairs Gfl (k) and C2(k).
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(2) Pull-baeks of the three euspidal quartie. Let Co C p2 be a eurve of degree 4 with
3 eusps and no other singularities; for eXaluple, the eurve defined by

In fact, it is known that any three cuspidal quartic curve Co is projeetively isomorphie to
the curve defined by this equation [2]. This curve was discovered ancl stuclied by Zaxiski
in [14]. (See also [3, Chapter 4, §4].) The remarkable property of Co is that ?Tl(IP2

\ Co) is
isomorphie to the binary dihedral group of order 12. Other than this three euspidal quartic,
there have been no examples of projective plane curves C C 1P2 such that ?Tl (p2 \ C) is
non-abelian and finite. .

Let Co (k) be the pull-back of Co by r.p : pZ -t p2 in Theorem 2. Then Co (k) is of degree
4k and Sing Co(k) consists of 3k2 cusps. By Corollary 1, ?Tl (1P2

\ Co(k)) is non-abelian and
finite of order 12k.

In the forthcoming paper [11], we will construct other examples of such eurves.

(3) The fundamental group ?Tl (p2 \ Cp,q,d. Let p and q be positive integers prilDe to
each other, and let fand 9 be general hOIDogeneous polynomials in (~o, el, ~2) of degree pk
and qk, respectively, with k 2:: 1. We define Cp,q,k to be the projeetive plane eurve of degree
pqk defined by fq +gP = 0 (cf. [5]). The fundamental group of U := A2

\ {x q+ yp = O} is
well-known (cf. [3, Chapter 4, §2]), and the homomorphislD from ?Tl (Gm) to ?Tl (U) induced
by the action of Gm on U wi th weights (pk, qk) on variables (x, y) ean be easily described.
Then, from Theorem 1, we see that ?Tl (p2 \ Cp,q,k) is isolllorphic to

( a,b,c I aq = bP =c, ck = 1 ).

SOlDe parts of this fact have been already provedj by Zariski [14] when p = 2, q = 3 and
k = 1, by Turpin [13J when p = 2, q = 3 and k > 1, allel by Oka [7] and NelDethi [6] when
p, q are arbitrary and k = 1.

As allother corollary of the proof of Theorem 2, we will show the following:

Corollary 2. Let C be a redueed projective plane curve of degree d, alld let L oo be a
genera1line. Then the fundELlnental group ?Tl (p2 \ (C U L oo )) of tbe afflne part of p2 \ C
is isomorphie to I(er e. In particular, ?Tl (p2 \ (C U L oo )) is abelian if and only if so is
?Tl (p2 \ C).

Oka raised the following probleIn:

Question. Let Cl and C2 be projective plane curves such that ?Tl (p2 \ Cd and 1rl (p2 \ C2 )

are isomorphie. Let L be a generalline. Then are the fundamental groups?T) (p2 \ (Cl UL))
and ?Tl (pZ \ (C2 U L)) isomorphie?

Suppose that Cl and C2 are reduced and irreducible. If the isomorphislD H) (p2 \ Cl, Z) ,....,
Hl (1P2 \ C2 , Z), induced from the given isomorphism ?Tl (IP2 \ Cr) ~ ?Tl (p2 \ C2 ) via the
Hurwicz homomorphism, maps the positive generator of Hl (IP2

\ Cl, Z) to the positive
generator of H I (p2 \ C2 , Z), then the answer is affirnlative because of Corollary 2.
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The n1ain tool of the proof of Theorem 1 is [10, Theorem 1]. A similar idea was used
to ealeulate 7rl (IFz \ Cp,q,d in [10, §4]. Theorem 2 is proved by applying Theorem 1 to
the ease when n = 3, d} = dz = d3 = k, and F is the homogeneous polynomial defining
Ce IF.

Independently from us, Oka [9] also eomposed examples of projeetive plane curves as
our exampIes (1) and (2) above. As our lnethod, his eonstruetion makes use of the eovering
of the plane, but not of the projeetive plane as ours, hut an affine part of it. The eurves
he eonstructed have singular"ity of different types from our examples. The method of proof
is also quite different.

Acknowledgment. The results of this paper have been obtajnecl in an effort to answer
various probleIns diseussed at the workshop on "Fundamental groups arId branehed eover­
iug" held at Tokyo Institute of Teehnology on December 1994. The author tharlks to the
Professor M. Oka for inviting me to this workshop, anel for stilnulating discllssions.

§1. Proof of the weighted Zariski's hyperplane section theorem

We consider p Z as the space of 1-climensionallinear subspaces in a 3-dimel1sionallinear
space V with linear coordinates ((0,6 l (z). Let

be the space of all n-tuples f = (11, ... l In)' Then we have a naturallnorphisln

VxA ---+

... ,

Let W C V x A be the puH-back of ~ c An by 'l1. Since F i8 weighted homogeneous, we
can make Gm act on the complement (11 x A) \ W by

The morphism
(V x A) \ W ---+ An \ ~,

which is the restri ction of W, i8 eqllivariant under the actions (0.1) anel (1.1) of Gm Oll
each side. Let W C p2 x A be the divisor definecl by

which is the universal family of the subschemes {Cf} fEA of r Z parameterized by A. The

action (1.1) of Gm on (V x A) \ W is fixecl-point free, arId the quotient space i8 nothing
but the complement (IPz x A) \ 1V. Hence we get a cOlnmutative diagram

7rl(Gm) ---+ 7rl((VxA)\vV) ---+ 7rl((rzxA)\W) ---+ {I}

11 4. cI>.

7r} (Gm) ---+ 7r} (An \ ~) ---+ the cokernel of (0.2) ---+ {I}
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On the other hand, the complement r 2
\ Cf is the fiber over I E A of the second projeetion

(p2 X A) \ W -t A. Hence Theorem 1 follows from the following two claims.

Claim 1. The homomorphism ep* : 7f1 ((V x A) \ vV) --+ 7f1 (A n \ ~) is an isomorpllism.

Claim 2. The inc1usion p2 \ Cf '-+ (r2 x A) \ W induces a11 isomorphism on the
fundamental groups w}len I E A is general enough.

Prool 01 Claim 1. Note that {ov} x A C V x A is contained in W, where Ov is the
origin of V. Using the homotopy exact sequence, we can verify Claim 1 by proving that
the restriction of W to (V \ {av }) X A gives (V \ {ov }) x A a strueture of the loeally trivial
fiber space over An with simply connected fibers. Note that the restrietion of W to {v} x A
is a surjeetive affine linear Inap froln {v} x A ~ A to An for any point v E V \ {av}. For
arbitrary points u E An anel v E V \ {ov}, the intersection ':V-I (u) n ({V} x A) is then
isomorphie, via the second projection, to an affine subspace of A of codimension n. Thus
every fiber of wl(v\{ov})xA: (V \ {ov}) x A -t An is a fiber bundle over V \ {ov} with
fibers isomorphie to an affine space of dilnension dirn A - n. 0

Praol 01 Claim 2. Let 3 nr C A be the locus of all f E A such that Cf is not a reduced
eurve; that is, f = (/1, ... ,In) belongs to 3 nr if and only if Ff(CO, Cl, C2) is constantly zero
on p2, 01' Ff (CO, 6 ,C2) = °clefines a 110n-reduced curvc. By [10, Theorem 1], the proof of
Claim 2 is reduced to the verification of the following:

Clainl 2'. T}le locus 3 nr C A is of codimension 2:: 2.

Before proving this claitn, we neeel two preparations.

Let ~l, ... , ~M be the irreducible components of ~ c An, and let (Sing ~)1, ... ,
(Sing E)MI be the irreducible components of Sing E of ditnension n - 2. We give them
the reduced structure as subschemes of An. For f E A, let ?jJf : V \ {Gv} -t An be the
restrietion of W : ,I X A --+ An to the subvariety (ll \ {ov }) x {I} ~ V \ {ov}.

Sub-clahn. Let I E A be generally chosen. Tllen, for i = 1, ... ,M and j = 1, ... ,M',
the following conditions (i) and (j') }lold.

(i) There exists a point Pi E V \ {OV } such tllat ?jJf( Pd is contained in Ei \ (Sing E),
and the pull-back of E by?jJf is non-singular and of codimension 1 locally around Pi.

(j') There exists a point PJ E 11 \ {ov} such that ?jJf(PJ) is contained in (Sing E)j,
and tbe pull-back oE (Sing E) j by?jJ f is non-singular and oE codimensioll 2 loca11y around

PJ.
Proof. The conditions (i) and (j') are open for the choice of f E A. Therefore, it is enough
to show that, for eaeh condition, there exists at least one f E A whieh satisfies it. This
cau be verified fronl the following fact. Let R be the point (1,0,0) on l! \ {ov}. For an
arbitrary point Q = (CI, ... ,en ) E An and arbitrary two tangent vectors

a a ( n)
U = UI- + ... + u n -- E TQ A ,

aXt BX n
and v = VI aß + ... + vna

a
E TQ(A n

)
Xl X n

of An at Q, there exists an elelnent I E A such that ?jJf (R) = Q, and the image of
the tangential map ?jJf. : TR(V \ {ov}) --+ TQ(A n

) contains both of u and v. Ineleed,
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if the coefficients of ~gj, ~gj-l~l and ~gi-l~2 in Ji are Gi, 1Li and Vi, respectively, then
I = (/1, ... ,In) satisfies the required condition. 0

Next we consider the action of the general linear transfornlation group GL(V) of V
on the space A. Note that HO(p2, 0(1)) can be identified with the dual space '1* :=
Hom (V, C). We let GL(V) act on V* from left by

(g(l))(v) = l(g-l (v)) for 9 E GL(V), l E V* and v E V.

This action can be extended in the natural way to the action on A = Sym d} V* x ... x
Sym d n V*. Thus GL(V) acts on (V \ {ov}) x A, and p2 XA. By definition, we have

w(g(P), g(/)) = w(P, J) (1.2)

for every P E V \ {ov }, I E A and 9 E GL(V). In particular, the divisor W C p2 x A is
invariant undel' the action of GL(1/ ), and Cg(f) = g(Cf) for every 9 E OLp/) and f E A.
It follows that 3 nr c A is also invariant uuder the action of GL(V).

Now we start the proof of Clairn 2'. For a line L C p2, we put

3(L) := { f E A; L n Cf does not consist of distinct d points}.

The 10cus 3 n r is contained in 3 (L) for every line L. We fix a line L o C p2, and let 3 (L o)1 ,

... , 3(Lo)N be the irl'educible components of 3(Lo). Note that 3(g(Lo)) = g(3(Lo)) for
evel'Y 9 E GL(V). Since the subgroup G(Lo) C GL(V) of a11 9 E GL(V) which leave L o
invariant is connected, the action of 9 E G(Lo) on 3(Lo) does not interchange irreducible
components of 3(Lo); that is, each irreducible component is invariant under the action of
G(Lo). Thus, for an arbitl'ary line L, we have a natural numbering 3(Lh, ... , 3(L)N of
the irreducible components of 3(L) such that g(3(L)d = 3(Lo)i for every 9 E OL(1/ ) with
g(L) = L o. We shall show the following:

Claim 2". For eac}l i = 1, ... ,N, 3(Lo)i C A is of codimension 2: 1, aJld 3(Lo )i \ 3 nr

is non-empty.

Since 3 nr is a Zariski closed subset of 3(Lo), this will prove Claim 2'. Roughly speaking,
thc idea of the proof of Claim 2" is to show that, if JO E A is general, then r rf. 3 nr ,

while there exist lirres Li (i = 1, ... ,lV) such that JO E 3(Ldi. Suppose that these are
proved. Let gi E GL(F) be a linear transformation such that gi(Ld = L o. Then, we have
gi(3(Ldi \ 3 nr ) = 3(Lo)i \ 3 nr , and this contains an element 9i(.fO), so that 3(Lo)i \ 3 nr

is non-empty.

To carry out this idea, we have to investigate the irreducible components of 3(L o)
more closely. Let P be a point on a line L. We put

3(L,P):={f EA the restrfictidon o>f F2f(t~Op' ~I, ~2) E HO (p2 , O(d)) to L has }.
a zero 0 01' er _ a

As before, we have
g(3(L, P)) = S(g(L),g(P))

7
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for every g E GL(V). We also have

3(Lo) = U 3(Lo, P) = U g(3(Lo, Po)),
PELo g(Lo}=Lo

where Po E Lo is a fixed point. FrOln these two, by thc same argument as above, it follows
that the set of irreducible components of 3(Lo, Po) corresponds bijectively aud in a natural
way to that of 3(Lo). Let 3(Lo,Poh, ... , 3(Lo, PO)N be the nurnbering of the irreducible
components of 3(Lo, Po) accordillg to that of 3(Lo); that is, we have 3(Lo, PO)i C 3(Lo)i
for i = 1, ... , N. Since dirn 3(Lo) ::; dirn 3(Lo, Po) + 1, it is enough to show that, for
i = 1, ... , N, the locus 3(Lo, PO)i c A is of codimension ~ 2 and 3(Lo, PO)i \ 3 ur is
non-empty.

Let Lo bc defined by ~2 = 0, and Po the point (1 : 0 : 0) on Lo. Let t = 6 / ~o be the
affine coordinate on Lo wi th the origin Po. We put

Then f is contained in 3(Lo, Po) if and only if

dGf
Gf(O) = dt(O) = 0 (1.4)

holds. Let ai be the coefficient of eg i in fi, and bi thc coefficient of egi-I el in fi. Then
(al, ... , an, bl , ... , bn ) form a subset of a linear coordinate systeru of A. Let An x An
be the affine spaee with affine coordinates (a 1 , ... , an, bl , ... , bn ). Thcre exists a natural
projeetion q :. A --+ An x An. The eondition (1.4) ean be writtcn as follows in terms of
(al,'" ,an,bl , ... ,bn ).

F(al , ... , an) = 0, and

8F BF-a(a1 , •.• ,an )·b1 +···+-a (al, ... ,an )·bn =O.
Xl Xn

We eonsicler An X An with the first projeetion An X An --+ An as the tangent bundle TA n

of the first fac tor An in whieh the zero section is giyen by P f-t (P, 0) (710 t by the diagonal
p ~ (P, P)) where 0 is the origin (bI, ... ,bn ) = (0, ... ,0) of the second factor. Under
this identification, the equations above define in An x An thc space

T~ '- { (P Q) E An X An . Q is contained in the Zariski tangent }
.-, , space Tp(:L) C Tp(A n) of ~ at P .

Thus 3(Lo, Po) ean be iclentified with q-l(T:L), whieh is isoruorphie to the product of T"E
with an affine spaee of dimension diln A - 2n. Sinee :L is redueecl by the assumption, T"E
is of dimension 2n - 2, anel henee 3(Lo, Po) C A is of codimension 2. Thus 3(Lo) c A is
of eodimension ~ 1, and hence so is 3 nr C A.
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Let p : TE --+ E be the projection induced by the natural projection TAn rv An X An --+
An. The fiber of p over P E E is a linear space of dilnension n - 1 (resp. n) if E is non­
singular (resp. singular) at P. Thus the irreducible components of TE are listed as follows;
the closure of p-l (Ei \ (Sing E)) for i = 1, ... , M, and p-l ((Sing E)j) for j = 1, ... , M'.
Hence we get N = M +M', and by changing the numbering, we have

3(Lo, PO)i

3(Lo, PO)M+j

- q-l( the closure of p-l(Ei \ (Sing E)) )

_ q-l(p-l((SingE)j))

for

for

i=l, ,M, anel

j = 1, ,M'

Let pci1) be the point (1,0,0) E 11 \ {O\l}, which is located over Po E IP2
• Note that

fE 3(Lo, Po) implies Po E Cf, and hence VJf(pci l
)) E E. We idcntify two affine spaces An

with coordinates (al, ... , an) anel An with coordinates (Xl,,'" Xn ) by putting ai = Xi for
i = 1, ... , n. Then, recalling the definitions of the morphisms VJj, q anel p, we can easily
check that

VJJ(pJ1}) = p(q(f)) for every f E 3(Lo, Po).

Note that VJj : V \ {ov} --+ Anis equivariant under the actions of Gm with weights (1,1,1)
on the left-hand siele anel with weights (dJ, ... , dn ) on the right-hand side. Moreover,
each of Ei c An and (Sing E)j C An are invariant under the action of Gm, because Gm
is connected. Therefore, given an elelnent f E 3(Lo, Po), we cau tell which irreducible
compouents of :=:(L o, Po) this f belongs to by looking at the point 7.jJ j (Po) E E where

Po E V \ {O\l} is an arbitrary point positioned over Po = (1 : 0 : 0) E IP2
.

Cri terian. If 7.jJ j ( Po) E E is a non-singular paint of Ei, then f belongs to :=:(La, Po) i . If

7.jJ j(Po) E E is contained in (Sing E)j, then f belongs to 3(Lo, PO)M+j.

Recall that we have already proved that 3 nr C A is of codimension 2: 1. By Sub­
claim, there exists Ja E A \ 3 nr such that the image of 7/J JO intersects Ei \ (Sing E) for

i = 1, ... ,11,1[, and (Sing E)j for j = 1, ... ,lvI'. Let Pi anel Pi be points on V \ {ov} such

that 'l/JJO (Pd E Ei \ (Sing E) and 'IjJJO (Pi) E (Sing E) j. We denote by Pi and Pi the points

on IP2 corresponding to Pi anel Pi, respectively. It is obvious that these points are on C JO.

There exists a line Li C p2 which intersects C JO at Pi with multiplicity 2: 2. This llleans
that r E 3(Li, Pd· Let 9i E GL(V) bc a linear transformation such that gi(Pd = Po and
9i(Ld = Lo. Then, by (1.3), we have 9i(fO) E 3(Lo, Po). By (1.2), we also have

Since 9i(Pd E V\ {O\l} is a point over 9i(Pd = Po, we see that 9i(JO) belongs to 3(Lo, PO)i
by the above criterion. From r ~ 3 m " we have 9i(fO) ~ 3 nr . Thus 3(Lo, PO)i \ 3 nr is
non-empty for i = 1, ... , M. Similarly, there exists a line Lj C IP2 which intersects C JO

at Pi with multiplicity 2: 2, which means JO E 3(Lj, Pi). We choose gj E GL(V) such

that 9j(Pi) = Po and gj(Lj) = La. Then (1.3) irnplies gj(r) E 3(Lo1 Po). Ey (1.2), we

have 7f;gj(JO)(gj(Pi)) = 1/;fO(/5}) E (SingE)j. This means gj(JO
) E 3(Lo,PO)M+j by the

criterion above. Thus 3(Lo, PO)M+j \ 3 nr is non-empty for j = 1, ... , M'. D
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§2. Proof of the comparison theorelTI

We shall prove Theorelll 2 and Corollaries in this seetion. In fact, IllOSt parts of
Corollaries cau be proved direetly without using Theorelll 2.

Suppose that C c r 2 is defined by the homogeneous equation F((o, (1, (2) = O. Let
~ C A3 be the hypcrsurface dcfined by F = 0 in the affine spacc A3 with affine coordinates
((0, (1, (2)' For a positive integer v, we denote by

the homomorphism induced by the action of Gm on A3
\ ~ with weights (v, v, v)j

(2.1)

The image of pv is contained in the center of 7f] (A3
\ ~). It is obvious that 7f] (p2 \ 0) is

isomorphie to the cokernel of PI. Since 0 is reduced by the assumption, ~ is also reduced.
Now, applying Theorem 1 with n = 3 and d1 = d2 = d3 = k, we see that ?Tl (p2 \ cp-l(C))
is isomorphic to the cokernel of Pk, beeause cp-1(0) is defined by F(/o, /1, /2) = O. Let

{J"v ?Tl (Gm) ---7 ?Tl (Gm)

be the homomorphism induced from the morphislll Gm --+ Gm given by AI-t AV
• Then we

get a commutative diagram

1r] (Gm) Pie
1r1 (A3

\ ~) ---7 1r1 (p2 \ 4' - 1 ( C)) ---7 {I} (exact)~

1Uk 11 (2.2)

1r] (Gm) Pt
1r] (A3

\~) ---7 1r1 (r2 \ C) {I} (exaet) .---t -t

From this diagram, we can naturally derive an exaet sequence

Goker {J"k ~ ?Tl (p2 \ cp-] (C)) -t ?Tl (Ip2 \ C) ---7 {I} (exact). (2.3)

The cokernel of (J"k is isolllorphic to 7l/(k). Hence (2.3) proves the implications

?Tl (IP2 \ C) is non-abelian
?Tl (p2 \ C) is finite

?Tl (p2 \ cp -1 (C)) is non-abelian,
?TI(p2 \ cp-1(C)) is finite.

and
(2.4)

Thus half of Corollary 1 is already proved.

Since the image of PI is contained in the center of Jr1 (A3
\ ~), the iU1age of J in (2.3) is

also contained in the center of Jr1 (r2 \ 4'-1 (C)). We shall show that J is injeetive, and the
central extension (2.3) is the sarlle as the one described in Theorenl 2. For this purpose,
we investigate the bottom exact sequence of (2.2) 1110re closely.

From now on, we denote by U the complement p2 \ C. For a positive integer m, let
J:. m --+ p2 be the Ene bundle corresponding to the invertible sheaf O(-m) on p2, and let

10



.c~ c .cm denote the complcment of the zero section. Let 0 be the origin of A3
, and let

A3
\ {O} -+ p2 be the natural projection; that is, the quotient map by the Gm-action (2.1)

with v = 1. There exists an isomorphism between ,c~ and A3 \ {O} over p2. Vve fix such
an isomorphism. From this, we get an isomorphism

over U, where .c~ IV is the restrietion of ,c~ -+ p2 to U C p2, ancl A3
\ ~ -+ U is the

quotient map by the Gm-action (2.1) with v = 1. Hence we havc an isomorphism between
the homotopy exact sequencesj

(exact)

II (2.5)

(exact) .

Here we denote the fiber of ,c~ --+ p2 over the base point of U by C X
•

Since the line bunclle ,C~d is isomorphie to 'cd, there exists amorphisIll

---+ (2.6)

over f'2 which induces (1 f----7 (d = (f on the fibers C X of ,c~ and.c; over the base point of U
with appropriatefiber coordinates (1 and (d. From this lllorphism, we get a homomorphism
between the homotopy exact sequences of .c~ Iv --+ U and L; Iv --+ U;

(exact)

(2.7)

(exact),

where p# is the lllultiplication by d on ?Tl (ir::: X
) ~ Z. Note again that the images of

il and id are contained in the centers of 7T"1 (L~ Iv) and 7T"1 (L; Iv), respectively. Since
Ld --+ p2 is a line bundle corresponding to the invertible sheaf CJ( -d) ~ CJ( -C), there
exists a meromorphic section s : p2 ... --+ Ld which has no zeros on p2 and is holomorphic
outside C. Rcstricting s to U, we get a holomorphic section s : U --+ L; Iv. Hence thc
homotopy exact sequence of L: Iv --+ U splits. In particular, the homomorphism id in
(2.7) is injective, and we have an isomorphisIll

(2.8)

Because f.l# is also injective, we see by cliagram chasing that il and f.l* are injective, too.
Since il is injective, PI in (2.5) is also injective and hence 0 in (2.3) is injective. Thus the
proof of Corollary 1 (1) is completed.
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We shall show that the image of the injective h01llomorphis1ll J.l* in (2.7) is anormal
subgroup of 71'"1 (.e: Iv). Let [al and [,] be arbitrary elements of 71'"1 cer Iv) and 71'"1 (.e: Iv),
respeetively, and we put [ß] := [,,]-1 . rl*([a]) . [,]. Let [,'] E 71'"1 (.er Iv) be an element such
that Tl ([,']) = Td(['])' vVe put [a'] := [,']-1 . [al . [,'] and [0] := [,]-1 . Il*([,,']). Then we
have f-l * ([0" J) = [0] -1 [ß] [0]. Since T d ([0]) = 1 by the definition, [0] is containeel in the image
of id, which is in the center of 1r1 ce; Iv). Henee we have [ß] = J.l*([a']).

Now we can derive the following eommutative diagrarn from the diagram (2.7);

{I}

1
{I}

1
{I} -+ 71'"1 (C X) ~ 7f1(.eflv) ~ 7f1(U) -t {I}

l lt
# 11t· 1I

{I} -+ 7f1(CX) ~ 7f1(.e;lv) ~ 7f1(U) -t {I}

(exact)

(exact) ,

1
Zj(d)

1
{I}

(exact)

ltP
Zj(d)

1
{I}

(exact) .

(2.9)

We write the definition of 'IjJ in this diagram explicitly. For [,] E 7f1 (.e: Iv), let [,'] E
71'"1 (.ef Iv) be an element sueh that Tl ([,']) = Td(['])' There exists a unique element [€] E
7f1 (C X) such that id([€]) = [,] .J.l*([,'])-I. Vve define

1/;([,]) [€] moel im J.l# E Zj(d).

The independence of 'lf([,]) on the choice of [,'] can be checked easily. It is in showing that
'ljJ is a group homomorphis1ll that we have to use the fact that the image of id is eontained in
the center. Let ['1] alld [,2] be two elements in 7fI (.e; Iv). Beeause [,2]' J.l*([,~])-I E im id,

we have

This implies 'ljJ([,I])'ljJ([,2]) = 'ljJ([,d['2]). Now the surjeetivity of 7/J and Ker 7/J = Im J.l*
ean be cheeked immediately.

The diagratll (2.9) shows that 7fl (A 3
\ E), which is isomorphie to 1r1 (.er Iv) by (2.5),

is isomorphie to the kernel of

7/J 7fl(.c:lu):: Z x 7fl(U) -t Zj(d).
by (2.8)

12



Because the image of "d 0 p,# is equal to (d) x {1} in 7rl (.c; lu) :: Z X 7rl (U), the image of
PI : 7rl (Gm) --+ 7rl (A3 \ E), which corresponds to the image of "1 : 7rI (eX) --+ 7rl (.c~ Iv) via
the isomorphism (2.5), is giyen by

(d) X {1} C I<er 'lj; ~ 7rI(A
3

\ ~).

By the diagram (2.2), the image of Pk: 7rl(Gm) --+ 7rl(A3 \ E) is given by

(kd) X {1} C Ker 'lj; ~ 7rl (A3
\ E).

Thus we obtain isomorphisms

Now we can conlplete the proof of Corollary 1. The only remaining part is the im­
plication that, if 7rl(p2 \ C) is abelian, thcn so is 7rI(p2 \ )O-I(C)). If 7rl(Ip2 \ C) = 7rl(U)
is abelian, then I<er 'lj; C Z X 7rl (U) is also abelian, and hence so is 7rl (Ip

2
\ )0-1 (C)) rv

I<er 'lj; / ((kd) X {1}). Note that we have also proved that 7r1 (A3
\ E) is abelian if anel only

if so is 7rl(Ip2 \ C).

In order to prove Theorem 2, it is enough to show that 'lj; coincides with -1 times
the extended linking number lllap l defined in Introduction, and this is equivalent to show
that the homomorphism

7rl(U) -+ Z/(d)

coincides with -e. It is obvious that 7/J 0 8. factors as follows;

s

7rl(U) ~ H1 (U,71):: Coker (H 2 (1P2 ,71) --+ ffiH2(Ci,71)) --+ 7l/(d),
i=]

where 't] is the Hurwicz lllap, and CI, ... , Cs are the irreducible components of C. By
the definition of e, it is enough to show that, if (a) E 7r] (U) is mapped to the i-th positive
generator

s

Ei := (0, ... ,0, ei, 0, ... ,0) moel H 2 (Ip2
, Z) E Coker (H 2(r2

, JE) --+ ffi H 2 (Ci, JE) )
i=1

by the Hurwicz map, then t/J 0 8.([a]) = -1 mod d. Here ei E H 2(Ci, Z) is the Poincare
dual of a point on Ci-

Before showing this, we remark a property of the Hurwicz map. The Hurwicz map
cloes not depend on the choice of the base point. Namely, if we connect two base points
b1 ancl b2 in U by a path, we get an isomorphism 7r} (U, b1 ) ~ 7r1 (U, b2 ), which depends on
the homotopy dass of the connecting path. But the diagram

1] ~
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is always cornmutative, whichever homotopy dass of paths we rnay have chosen.

Let L C p2 be a generalline, and let t be an affine coordinate on L such that t = 00

is not on the intersection L n C. Note that L m IL\ {oo} is a trivial bundle over L \ {(x)}
for any m. Let (1 and (d be the fiber coordinates of LIIL\{oo) and LdIL\{oo}, respectively,
such that the morphism J1. in (2.6) is given by (1 M (d = (f over L \ {oo}. Suppose that
t = Ul, U2, • .• ,ad are the intersection points of L and C. Then the section S : U --+ L: Iv,
restricted to L \ (C U {oo}), is given by, for example,

t (t, (d) = (t, f(t)) where
1

f (t) = -(t---a-d-'.-.-(t ---a-d)

Let us consider the section

SI L\{oo}

t

---+ L~IL\{oo}

(t,(d=(t,B) ,

where B is a non-zero constant. (Of course, this section SI cannot extend over the whole
L.) We fix a base point b of U. By the remark above, we mayassume that b is on L and
is elose enough to an intersection point t = alJ of Land an irreducible component Ci of
C. Let t = tb be the coordinatc of the base point. We choose the non-zero constant B in
such a way that f( tb) = B d ; that is, the in1ages of S and J1. 0 SI on the base point bEL
coincide. Let 0' be thc loop

[0,1]

()

---+ L\C

where e = tb - a IJ' It is easy to see that 1] ( [0']) is the i-th positive generator €i corresponding
to Ci. We calculate 'IjJ 0 S* ([a]) = 'IjJ([S 0 a]). It is obvious that [SI 0 a) E 'lr] (L~ lu, SI (b))
satisfies TI ([SI oa]) = [al. Hence 'IjJ([S 0 a]) is represented by [soa]· (J1.*([SI oa]))-l, which
is in the image of Ld. Recall that I:.~ --+ r 2 is trivial on L \ (C U {00 } ) j that is, we have an
isomorphism

L: IL \ (Cu {00 } ) ~ (L \ (C U {(x)} )) x C x

given by the coordinates (t, (d). Hence we have

(2.11 )

In this direct product, we have

[S 00'] = ([0'], [ß]) and J1.*([Sl 0 a]) = ([a], 0),

where ß is the loop on C x obtained from the loop S 0 a on 1:.: IL \ (Cu { 00 }) by the second

projection 1:.: IL\(CU{oo}) --+ C X in (2.11), which can be written explicitly as followsj

() I----t f( ay + ee2rri9
) E C X

•
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Their differenee [soa] . (J.t*([Sl oaD)-1 is then given by [ß] E 7r](C X
). Sinee leI = Itb -avl

is small enough, ß is homotopieally equivalent in C X to the loop

B t----t

whieh eorresponds to -1 E Z I'V 7rl (eX). Thus 7.jJ 0 s*([aD = -1 moel d, and Theorem 2 is
proved.

Now we shall prove Corollary 2. We have already shown that 7rl (A3 \~) is isomorphie
to Ker I, and it is abelian if and only if so is 7rl (IF2

\ C). Henee it is enough to show
that, when L is a generaliine, 7rl (p2 \ (C U L)) is isomorphie to 7rl (A3

\ ~). We consider
A3 as the compleluent of a hyperplane H in wJ. Let IF2 C ~ be a general plane. Then
p2 n(~U H) is isomorphie to cu L. By the dassical Zariski's hyperplane seetion theorem,
we have 7rl(p2 \ (C U L)) ~ 7rl(p3 \ (~U H)) ~ 7rl(A3 \ ~). D
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