On the set of complex points of a 2 -sphere

Nikolay Shcherbina

Department of Mathematics, University of Wuppertal, 42119 Wuppertal, Germany
(e-mail: shcherbina@math.uni-wuppertal.de)

1. Introduction

Let M be a 2 -dimensional C^{1}-smooth manifold in \mathbb{C}^{2}. A point p on M is called a complex point if the tangent plane $T_{p} M$ to M at p is a complex line. Denote by \mathcal{E} the set of all complex points on M. If M is smooth enough and in a general position, then the set \mathcal{E} consists of isolated points. In this case the topology of M can be described in terms of the local behaviour of M near the points of \mathcal{E} (see [L]). The structure of the set M near the points in \mathcal{E} plays a key roll in different questions of complex analysis (see, for example, $[\mathrm{B}],[\mathrm{BK}],[\mathrm{K}],[\mathrm{N}]$, [Wi] and $[J])$. In this paper we study the structure of the set \mathcal{E} in the case when M is a 2-dimensional sphere, denoted by S in what follows, embedded into the boundary ∂G of a C^{∞}-smooth strictly pseudoconvex domain G in \mathbb{C}^{2} (this case is important for applications as was shown in $[\mathrm{El}]$ and $[\mathrm{Er}])$. Our goal here is to describe the set \mathcal{E} depending on the smoothness of S. Recall, that a manifold is said to be of class C^{2-} if it can be represented locally as the graph of a function that belongs to the class $\operatorname{Lip}^{1, \alpha}$ for each positive $\alpha<1$. Our main result can now be formulated as follows.

Theorem. Let G be a strictly pseudoconvex domain in \mathbb{C}^{2} with C^{∞}-smooth boundary ∂G. Let S be a 2-dimensional sphere embedded into ∂G. Then, depending on the smoothness of S, the following holds:

1) If S is of class C^{2}, then the set \mathcal{E} of complex points of S is contained in a C^{1}-smooth nonclosed curve $\gamma \subset S$.
2) There exists a 2-dimensional sphere $S \subset \partial G$ of class C^{2-} such that the set \mathcal{E} contains a Jordan curve of positive 2-dimensional measure.

Acknowledgements. Part of this work was done while the author was a visitor at the Max Planck Institute of Mathematics (Bonn) and at the Scuola Normale Superiore (Pisa). It is my pleasure to thank these institutions for their hospitality and excellent working conditions.

2. Proof of the first part of the theorem

We start with an argument which goes back to Bishop [B] (see also [J]). Namely, if p is a point of \mathcal{E}, then after a polynomial change of coordinates that moves p to the origin we can locally represent S as the disc

$$
D=\left\{(z, f(z)) \in \mathbb{C}^{2}: z \in \triangle\right\}
$$

with \triangle being a small disc centred at the origin and f being a complex valued C^{2}-smooth function. Moreover, after this change of coordinates the function f will have the special form

$$
f(z)=\frac{1}{2}|z|^{2}-\beta \operatorname{Re} z^{2}+o\left(|z|^{2}\right), \quad \beta \geq 0
$$

near zero. Recall, that zero is called an elliptic point if $0 \leq \beta<\frac{1}{2}$, a hyperbolic point if $\beta>\frac{1}{2}$ and a parabolic point if $\beta=\frac{1}{2}$. Elliptic and hyperbolic points are always isolated in \mathcal{E}. In the case of a parabolic point we can use the real coordinates $z=x+i y$ and represent f as $f(z)=y^{2}+o\left(|z|^{2}\right)$. Hence $\partial_{\bar{z}} f(z)=i y+o(|z|)$ and then, by the implicit function theorem, we obtain that $\sigma=\left\{z \in \Delta: \operatorname{Im} \partial_{\bar{z}} f(z)=0\right\}$ is a C^{1}-smooth curve and locally $\mathcal{E}=\left\{(z, f(z)): z \in \sigma\right.$ and $\left.\operatorname{Re} \partial_{\bar{z}} f(z)=0\right\}$. Therefore, locally the set \mathcal{E} is a closed subset of a C^{1}-smooth curve.

Since the set \mathcal{E} is compact, the only obstruction for \mathcal{E} to be a subset of a nonclosed C^{1}-smooth curve $\gamma \subset S$ is that there is a closed C^{1}-smooth curve $\Gamma \subset \mathcal{E}$.

Assume, to get a contradiction, that such a closed C^{1}-smooth curve $\Gamma \subset \mathcal{E}$ exists. Let Γ^{\prime} be a complex tangential C^{∞}-smooth closed curve in ∂G (complex tangential here means that for each point $p \in \Gamma^{\prime}$ the tangent line $T_{p} \Gamma^{\prime}$ to Γ^{\prime} at p is contained in the complex tangent plane $T_{p}^{\mathbb{C}}(\partial G)$ to ∂G at $\left.p\right)$ close enough to Γ in the C^{1}-metric. Then there is a small C^{1}-perturbation S^{\prime} of S in ∂G such that $\Gamma^{\prime} \subset S^{\prime}$ and each point in Γ^{\prime} is a complex point on S^{\prime}. Moreover, one can choose S^{\prime} to be C^{∞}-smooth in a neighbourhood of Γ^{\prime}. For each point $p \in \Gamma^{\prime}$, consider the unit vector $\vec{u}(p)$ tangent to Γ^{\prime}, the vector $i \vec{u}(p) \in T_{p}^{\mathbb{C}}(\partial G)$ and the unit vector $\vec{n}(p) \in T_{p}(\partial G)$ orthogonal to $T_{p}^{\mathbb{C}}(\partial G)$ and such that the vectors $(\vec{u}(p), i \vec{u}(p), \vec{n}(p))$ define the positive orientation of ∂G at the point p. Let $O(p)$ be the rotation of $T_{p}(\partial G)$ around the direction $\vec{u}(p)$ that transforms the vector $i \vec{u}(p)$ into the vector $\vec{n}(p)$. Using the tubular neighbourhood theorem (see, for example, Theorem 1.4 in $[\mathrm{H}]$) we can change S^{\prime} in a neighbourhood of Γ^{\prime} to get a new 2-sphere, $S^{\prime \prime} \subset \partial G$, C^{∞}-smooth near Γ^{\prime} such that $\Gamma^{\prime} \subset S^{\prime \prime}$ and $\vec{n}(p) \in T_{p}\left(S^{\prime \prime}\right)$ for each point $p \in \Gamma^{\prime}$. It is easy to see that $S^{\prime \prime}$ is totally real near Γ^{\prime}. Then we can perturb $S^{\prime \prime}$ slightly outside a small neighbourhood of Γ^{\prime} to get a C^{∞}-smooth 2-sphere $\tilde{S} \subset \partial G$ in general position. To finish the proof of the first part of our theorem we use an argument
of Gromov (see [G], p. 342). Namely, by the result of Bedford-Klingenberg [BK] and Kružilin $[\mathrm{K}]$, there is a smooth 3 -ball \mathcal{B} which is the disjoint union of holomorphic discs $\left\{D_{\alpha}\right\}$, such that $\partial \mathcal{B}=\tilde{S}$. By Chirka's theorem [C] we know that discs D_{α} are C^{∞}-smooth to the boundary ∂D_{α} near the totally real part of \tilde{S} (i. e. outside of finitely many complex points of \tilde{S}) and, moreover, the boundary ∂D_{α} of each disc D_{α} is C^{∞}-smooth at this part of \tilde{S} and transversal there to the distribution $\left\{T_{p}^{\mathbb{C}}(\partial G)\right\}$ of complex tangencies to ∂G. Consider a disc $D_{\alpha_{0}}$ from the family $\left\{D_{\alpha}\right\}$ such that its boundary $\partial D_{\alpha_{0}}$ "touches" the curve Γ^{\prime} "for the first time" and let p be a point of $\partial D_{\alpha_{0}} \cap \Gamma^{\prime}$. More precisely, let $D_{\alpha_{0}} \subset \mathcal{B}$ be a holomorphic disc with the property that $\partial D_{\alpha_{0}} \cap \Gamma^{\prime} \neq \emptyset$ and such that for some connected component of the set $\mathcal{B} \backslash D_{\alpha_{0}}$, each holomorphic disc D_{α}, which is contained in this component, satisfies $\partial D_{\alpha} \cap \Gamma^{\prime}=\emptyset$. Now we can see that, on the one hand, since the curves $\partial D_{\alpha_{0}}$ and Γ^{\prime} are tangent to each other at the point p, and since the curve Γ^{\prime} was chosen to be complex tangential, the curve $\partial D_{\alpha_{0}}$ is complex tangential at p. On the other hand, since the point p is contained in the totally real part of \tilde{S}, the curve $\partial D_{\alpha_{0}}$ has to be transversal to $T_{p}^{\mathbb{C}}(\partial G)$. This gives the desired contradiction and completes the proof of the first part of the theorem.

3. Proof of the second part of the theorem

We prove the second part of the theorem in several steps. First, we construct a special arc $E \subset \mathbb{R}_{x, y}^{2}$ of positive 2-dimensional measure. Then we define a function G on E such that $G \in C^{2-}(E)$ with the functions $G_{x}^{\prime}(x, y)=y$ and $G_{y}^{\prime}(x, y)=0$ chosen to be the first derivatives of G on E. Next, following an idea of H . Whitney (see [Wh]), we contruct a nonconstant function $H \in C^{2-}(E)$ with $H_{x}^{\prime}(x, y)=0$ and $H_{y}^{\prime}(x, y)=0$. Using G and H we define a function $F \in C^{2-}(E)$ with $F_{x}^{\prime}(x, y)=y$ and $F_{y}^{\prime}(x, y)=0$ which is zero at both endpoints of E. Then, using E, we contruct a Jordan curve $\tilde{E} \subset \mathbb{R}_{x, y}^{2}$ of positive 2-dimensional measure and, using F, we define a function \tilde{F} on \tilde{E} of class $C^{2-}(\tilde{E})$ with derivatives $\tilde{F}_{x}^{\prime}(x, y)=y$ and $\tilde{F}_{y}^{\prime}(x, y)=0$. Next, applying Whitney's extension theorem to the function \tilde{F}, we contruct a 2 -sphere $S^{2} \subset \mathbb{R}_{x, y, z}^{3}$ which contains a Jordan curve of positive 2-dimensional measure such that at each point of this curve the tangent plane to S^{2} coincides with the corresponding plane of the standard contact distribution in $\mathbb{R}_{x, y, z}^{3}$ and finally, using the Darboux theorem, we embed this sphere into the boundary $b G$ of the given strictly pseudoconvex domain G.

1. Construction of the arc E. First, we define for each $\alpha \in(0,1)$ an auxiliary set

$$
\mathbb{E}^{\alpha}=\left(\left[0, \frac{1-\alpha}{2}\right] \cup\left[\frac{1+\alpha}{2}, 1\right]\right) \times\left(\left[0, \frac{1-\alpha}{2}\right] \cup\left[\frac{1+\alpha}{2}, 1\right]\right) \cup
$$

$$
(\{0\} \times[0,1]) \cup\left([0,1] \times\left\{\frac{1+\alpha}{2}\right\}\right) \cup(\{1\} \times[0,1])
$$

We denote $A=(0,0), B=(1,0), Q_{0}=\left[0, \frac{1-\alpha}{2}\right] \times\left[0, \frac{1-\alpha}{2}\right], Q_{1}=\left[0, \frac{1-\alpha}{2}\right] \times$ $\left[\frac{1+\alpha}{2}, 1\right], Q_{2}=\left[\frac{1+\alpha}{2}, 1\right] \times\left[\frac{1+\alpha}{2}, 1\right]$ and $Q_{3}=\left[\frac{1+\alpha}{2}, 1\right] \times\left[0, \frac{1-\alpha}{2}\right]$. Further, we denote $A_{0}=A=(0,0), B_{0}=\left(0, \frac{1-\alpha}{2}\right), A_{1}=\left(0, \frac{1+\alpha}{2}\right), B_{1}=\left(\frac{1-\alpha}{2}, \frac{1+\alpha}{2}\right), A_{2}=$ $\left(\frac{1+\alpha}{2}, \frac{1+\alpha}{2}\right), B_{2}=\left(1, \frac{1+\alpha}{2}\right), A_{3}=\left(1, \frac{1-\alpha}{2}\right)$ and $B_{3}=B=(1,0)$ (see the set \mathbb{E}^{α} on Fig. 1).

Figure 1: The set \mathbb{E}^{α}

To define the set E we consider the sequence $\alpha_{n}=\frac{1}{(n+1)^{2}}, n=1,2, \ldots$ We construct the set E as the intersection of a decreasing sequence of compact sets E_{n} which will be defined inductively. We set $E_{1}=\mathbb{E}^{\alpha_{1}}$. To define the set E_{2} we consider the image $\tilde{\mathbb{E}}^{\alpha_{2}}$ of the set $\mathbb{E}^{\alpha_{2}}$ under the homothety with coefficient $\frac{1-\alpha_{1}}{2}$. Then for each $i=0,1,2,3$ we consider the set \mathbb{E}_{i} obtained from the set $\tilde{\mathbb{E}}^{\alpha_{2}}$ by an orthogonal transformation (if necessary) and translation in such a way that the image of the points A and B will coincide with the points A_{i} and B_{i}, respectively. It is easy to see that we need an orthogonal transformation only for $i=0,3$. The set E_{2} is obtained from the set E_{1} by substituting for each $i=0,1,2,3$ the square Q_{i} by the corresponding set \mathbb{E}_{i}. For each $j=0,1,2,3$ we denote by $Q_{i j}, A_{i j}$ and
$B_{i j}$ the images of the square Q_{j} and the points A_{j}, B_{j} in the corresponding set \mathbb{E}_{i}, respectively (the set E_{2} is shown on Fig. 2).

Figure 2: The set E_{2}

To describe the inductive step of our construction we assume that the set E_{n} is already constructed and define the set E_{n+1}. Consider the image $\tilde{\mathbb{E}}^{\alpha_{n+1}}$ of the set $\mathbb{E}^{\alpha_{n+1}}$ under the homothety with coefficient $\prod_{i=1}^{n}\left(\frac{1-\alpha_{i}}{2}\right)$. Then for each multiindex $\left(i_{1}, i_{2}, \ldots, i_{n}\right), i_{j}=0,1,2,3, j=1,2, \ldots, n$, consider the set $\mathbb{E}_{i_{1} \ldots i_{n}}$ obtained from the set $\tilde{\mathbb{E}}^{\alpha_{n+1}}$ by an orthogonal transformation (if necessary) and translation in such a way that the image of the points A and B will coincide with the points $A_{i_{1} \ldots i_{n}}$ and $B_{i_{1} \ldots i_{n}}$, respectively. The set E_{n+1} is obtained from the set E_{n} by substituting each square $Q_{i_{1} \ldots i_{n}}$ by the corresponding set $\mathbb{E}_{i_{1} \ldots i_{n}}$. For each $i_{j}=0,1,2,3, j=1,2, \ldots, n+1$, we denote by $Q_{i_{1} \ldots i_{n+1}}, A_{i_{1} \ldots i_{n+1}}$ and $B_{i_{1} \ldots i_{n+1}}$ the images of the square $Q_{i_{n+1}}$ and the points $A_{i_{n+1}}, B_{i_{n+1}}$ in the corresponding set $\mathbb{E}_{i_{1} \ldots i_{n}}$, respectively. Note, that for each multiindex $\left(i_{1}, \ldots, i_{n}\right)$ one has $A_{i_{1} \ldots i_{n} 0}=$ $A_{i_{1} \ldots i_{n}}$ and $B_{i_{1} \ldots i_{n} 3}=B_{i_{1} \ldots i_{n}}$.

Since $\left\{E_{n}\right\}$ is a decreasing sequence of compact sets, $E=\bigcap_{n=1}^{\infty} E_{n}$ is a nonempty compact subset of $\mathbb{R}_{x, y}^{2}$. It is easy to see that it is an arc (see the set E on Fig. $3)$.

Figure 3: The set E

To estimate the area of the set E we observe that

$$
\text { Area } \begin{aligned}
\left(E_{n}\right)=\left(1-\alpha_{n}\right)^{2} \text { Area }\left(E_{n-1}\right) & =\prod_{k=1}^{n}\left(1-\alpha_{k}\right)^{2}=\prod_{k=1}^{n}\left(1-\frac{1}{(k+1)^{2}}\right)^{2} \\
& =\left(\frac{1}{2}\left(1+\frac{1}{n+1}\right)\right)^{2}>\frac{1}{4}
\end{aligned}
$$

for every $n=1,2, \ldots$. Hence, the set E has a positive 2-dimensional measure (and, moreover, Area $(E)=\frac{1}{4}$).
2. Definition and properties of the function G. For each $n=1,2, \ldots$ let Ω_{n} be the connected component of the set $(0,1) \times(-1,1) \backslash E_{n}$ containing the square $(0,1) \times(-1,0)$ and let $J_{n}=\partial \Omega_{n} \cap([0,1] \times[0,1])$. On each curve J_{n} we define a function G_{n} in the following way. For a point $p \in J_{n}$ we denote by J_{n}^{p} a part of J_{n} with initial point A and endpoint p and then we set $G_{n}(p)=\int_{J_{n}^{p}} y d x$.

Now we define the function G on the $\operatorname{arc} E$. Let p be a point of E. Consider a sequence of points $p_{n} \in J_{n}, n=1,2, \ldots$, such that $p_{n} \rightarrow p$, as $n \rightarrow \infty$ and set $G(p)=\lim _{n \rightarrow \infty} G_{n}\left(p_{n}\right)$. Since, by Green's theorem, for a piece-wise smooth Jordan curve γ the integral $\int y d x$ represents the area of the domain bounded by γ, and
since for each $k \geq 0$ one has Area $\left(\Omega_{n+k} \backslash \bar{\Omega}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, closing up the curve $J_{n+k}^{p_{n+k}}-J_{n}^{p_{n}}$ by the segment $\left[p_{n+k}, p_{n}\right]$ we see that for each $k \geq 0$:

$$
G_{n+k}\left(p_{n+k}\right)-G_{n}\left(p_{n}\right)-\int_{\left[p_{n}, p_{n+k}\right]} y d x \rightarrow 0, \text { as } n \rightarrow \infty
$$

and therefore, by smoothness of the form $y d x$, we conclude that for each $k \geq 0$ we have $G_{n+k}\left(p_{n+k}\right)-G_{n}\left(p_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$. This means that the function G is well defined on the $\operatorname{arc} E$.

Next, we prove that $G \in C^{2-}(E)$ with $G_{x}^{\prime}(x, y)=y$ and $G_{y}^{\prime}(x, y)=0$ chosen to be the first derivatives of G at each point $(x, y) \in E$. To do this rigorously we recall the definition of a function belonging to the class $C^{2-}(E)$ (this definition is due to H . Whitney. Further details can be found, for example, in $[\mathrm{S}]$).

Definition. Let E be a compact subset of $\mathbb{R}_{x, y}^{2}$ and let f be a function defined on E. We say that f belongs to the class $C^{2-}(E)$ if there exist bounded functions f_{x}^{\prime} and f_{y}^{\prime} defined on E with the property that for each $\varepsilon>0$ there is a constant M such that

$$
\begin{equation*}
\left|f(x+\Delta x, y+\Delta y)-f(x, y)-f_{x}^{\prime}(x, y) \Delta x-f_{y}^{\prime}(x, y) \Delta y\right| \leq M(|\Delta x|+|\Delta y|)^{2-\varepsilon} \tag{1}
\end{equation*}
$$

for all $(x, y),(x+\Delta x, y+\Delta y) \in E$.
To prove that $G \in C^{2-}(E)$ we consider two points $p, p+\Delta p \in E$. Since the function G obviously is smooth on each of the segments $\left[B_{i_{1} \ldots i_{n}}, A_{i_{1} \ldots\left(i_{n}+1\right)}\right], i_{n}=$ $0,1,2$, and satisfies condition (1) with $G_{x}^{\prime}(x, y)=y$ and $G_{y}^{\prime}(x, y)=0$ there, it is enough to verify that the condition (1) holds true for points p and $p+\Delta p$ of the Cantor set $\mathbb{Q} \stackrel{\text { def }}{=} \bigcap_{n=1}^{\infty} \bigcup_{\left(i_{1}, \ldots, i_{n}\right)} Q_{i_{1} \ldots i_{n}}$. Consider a number m such that $p, p+\Delta p$ belong to a square $Q_{i_{1} \ldots i_{m}}$ for some indexes $\left(i_{1}, \ldots, i_{m}\right)$, but not to a smaller square $Q_{i_{1}, \ldots i_{m} i_{m+1}}, i_{m+1}=0,1,2,3$. Since p and $p+\Delta p$ belong to different squares $Q_{i_{1} \ldots i_{m} i_{m+1}}$ and $Q_{i_{1} \ldots i_{m i} i_{m+1}^{\prime}}$, it follows that the distance between these points is not less than the minimal distance between $Q_{i_{1} \ldots i_{m} i_{m+1}}$ and $Q_{i_{1} \ldots i_{m} i_{m+1}^{\prime}}$, that is,

$$
\begin{align*}
|\Delta p| \geq \alpha_{m+1}\left(\frac{1-\alpha_{1}}{2}\right) \ldots\left(\frac{1-\alpha_{m}}{2}\right) & =\frac{1}{(m+2)^{2}} \cdot \frac{1}{2^{m}} \prod_{k=1}^{m}\left(1-\frac{1}{(k+1)^{2}}\right) \\
& =\frac{1}{2^{m+1}} \frac{1}{(m+1)(m+2)} \tag{2}
\end{align*}
$$

Now we estimate the left hand side of the condition (1) for our function G

$$
\mathcal{L}_{G}(p, p+\Delta p) \stackrel{\text { def }}{=} G(p+\Delta p)-G(p)-G_{x}^{\prime}(p) \Delta x-G_{y}^{\prime}(p) \Delta y=G(p+\Delta p)-G(p)-y \Delta x
$$

where $p=(x, y)$ and $\Delta p=(\Delta x, \Delta y)$. It is easy to see that

$$
\int_{[p, p+\Delta p]} y d x=y \Delta x+\frac{1}{2} \Delta x \Delta y
$$

hence

$$
\begin{equation*}
\left|\mathcal{L}_{G}(p, p+\Delta p)\right| \leq\left|G(p+\Delta p)-G(p)-\int_{[p, p+\Delta p]} y d x\right|+\frac{1}{2}|\Delta x||\Delta y| \tag{3}
\end{equation*}
$$

It follows from the definition of function G and Green's theorem that $G(p+$ $\Delta p)-G(p)-\int_{[p, p+\Delta p]} y d x$ represents the sum (with signes) of the areas of domains bounded by the part of the arc E from the point p to the point $p+\Delta p$ and by the segment $[p, p+\Delta p]$. Since all these domains are contained in the square $Q_{i_{1} \ldots i_{m}}$, we conclude that

$$
\begin{align*}
& \left|G(p+\Delta p)-G(p)-\int_{[p, p+\Delta p]} y d x\right| \leq \operatorname{Area}\left(Q_{i_{1} \ldots i_{m}}\right) \\
& \quad=\left(\frac{1-\alpha_{1}}{2}\right)^{2} \ldots\left(\frac{1-\alpha_{m}}{2}\right)^{2}=\frac{1}{2^{2 m+2}}\left(\frac{m+2}{m+1}\right)^{2} \tag{4}
\end{align*}
$$

Since $p, p+\Delta p \in Q_{i_{1} \ldots i_{m}}$, it follows that $|\Delta x|$ and $|\Delta y|$ can be estimated from above by the length of the side of $Q_{i_{1} \ldots i_{m}}$, that is, by $\frac{1}{2^{m+1}}\left(\frac{m+2}{m+1}\right)$. Therefore, we have by (3) and (4) that

$$
\begin{equation*}
\left|\mathcal{L}_{G}(p, p+\Delta p)\right| \leq \frac{3}{2} \frac{1}{2^{2 m+2}}\left(\frac{m+2}{m+1}\right)^{2} \tag{5}
\end{equation*}
$$

Finally, we conclude from the estimates (2) and (5) that to prove that G satisfies condition (1) we only need to verify that for each $\varepsilon>0$ there is a constant M such that

$$
\frac{3}{2} \frac{1}{2^{2 m+2}}\left(\frac{m+2}{m+1}\right)^{2} \leq M\left(\frac{1}{2^{m+1}} \cdot \frac{1}{(m+1)(m+2)}\right)^{2-\varepsilon} \quad \text { as } m \rightarrow \infty
$$

which is equivalent to the inequality

$$
\frac{1}{\left(2^{\varepsilon}\right)^{m+1}} \leq M \frac{2}{3}\left(\frac{1}{(m+1)(m+2)}\right)^{2-\varepsilon}\left(\frac{m+1}{m+2}\right)^{2} \text { as } m \rightarrow \infty
$$

The last inequality is obviously satisfied, since the left hand side tends to zero much faster than the right hand side, as $m \rightarrow \infty$. This proves that the function G belongs to the class $C^{2-}(E)$.
3. Definition and properties of the functions \mathbf{H} and \mathbf{F}. First, we define the function H on the Cantor set \mathbb{Q}. Each point p in this set is uniquely determined as the intersection of the decreasing sequence $Q_{i_{1}} \supset Q_{i_{1} i_{2}} \supset Q_{i_{1} i_{2} i_{3}} \supset \ldots$ of the squares $Q_{i_{1} \ldots i_{n}}$. Then, we define the value of H at the point p as $H(p)=\sum_{n=1}^{\infty} \frac{i_{n}}{4^{n}}$. It is easy to see that for each $i_{n}=0,1,2$ one has $H\left(A_{i_{1} \ldots i_{n-1}\left(i_{n}+1\right)}\right)=\sum_{k=1}^{n} \frac{i_{k}}{4^{k}}+\frac{1}{4^{n}}$ and $H\left(B_{i_{1} \ldots i_{n-1} i_{n}}\right)=\sum_{k=1}^{n} \frac{i_{k}}{4^{k}}+\sum_{k=n+1}^{\infty} \frac{3}{4^{k}}=\sum_{k=1}^{n} \frac{i_{k}}{4^{k}}+\frac{1}{4^{n}}$, therefore, we can extend the function H as a constant to each segment $\left[B_{i_{1} \ldots i_{n-1} i_{n}}, A_{i_{1} \ldots i_{n-1}\left(i_{n}+1\right)}\right], i_{n}=0,1,2$, with the value $\sum_{k=1}^{n} \frac{i_{k}}{4^{k}}+\frac{1}{4^{n}}$ there. This defines the function H on the whole set E.

Now we show that $H \in C^{2-}(E)$ with the functions $H_{x}^{\prime}(x, y)=0$ and $H_{y}^{\prime}(x, y)=$ 0 chosen to be the first derivatives of H on E. We proceed in the same way as in the case of the function G, namely, we consider two points $p, p+\Delta p \in E$. Since, by definition, H is a constant on each of the intervals constituting the set $E \backslash \mathbb{Q}$, we only need to verify that the function H satisfies condition (1) for points $p, p+\Delta p \in \mathbb{Q}$. Let, as above, m be a number such that $p, p+\Delta p \in Q_{i_{1} \ldots i_{m}}$, but $p, p+\Delta p \notin Q_{i_{1} \ldots i_{m} i_{m+1}}$ for any $i_{m+1}=0,1,2,3$. Then the definition of H gives us that $|H(p+\Delta p)-H(p)| \leq \frac{1}{4^{m}}$. Hence, by estimate (2), it is enough to show that for each $\varepsilon>0$ there is M such that

$$
\frac{1}{4^{m}} \leq M\left(\frac{1}{2^{m+1}} \cdot \frac{1}{(m+1)(m+2)}\right)^{2-\varepsilon} \quad \text { as } m \rightarrow \infty
$$

which is obviously true with the same argument as above for the function G.
To define the function F on the set E we first note that by definition of H one has $H(A)=0$ and $H(B)=1$. Then, since by definition of G we have $G(A)=0$, there is a constant C such that for the function $F=G+C H$ one has $F(A)=0$ and $F(B)=0$. Finally, we observe that since $G \in C^{2-}(E)$ with $G_{x}^{\prime}(x, y)=y$ and $G_{y}^{\prime}(x, y)=0$, and since $H \in C^{2-}(E)$ with $H_{x}^{\prime}(x, y)=0$ and $H_{y}^{\prime}(x, y)=0$, it follows that $F \in C^{2-}(E)$ with $F_{x}^{\prime}(x, y)=y$ and $F_{y}^{\prime}(x, y)=0$ at each point $(x, y) \in E$.
4. Construction of the sphere $\mathbf{S} \subset \partial \mathbf{G}$. Let \mathbb{A} be the linear transformation of $\mathbb{R}_{x, y}^{2}$ represented by the matrix $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Consider the sets $E^{1}=E+\vec{e}_{y}, E^{2}=$ $-\mathbb{A} E+\vec{e}_{x}+\vec{e}_{y}, E^{3}=-E+\vec{e}_{x}$ and $E^{4}=\mathbb{A} E$, where \vec{e}_{x} and \vec{e}_{y} are the unit vectors in the coordinate directions x and y, respectively, and then define the set \tilde{E} as
$\tilde{E}=\bigcup_{i=1}^{4} E^{i}$ (the set \tilde{E} is shown in Fig. 4). It is easy to see that \tilde{E} is a Jordan

Figure 4: The set \tilde{E}
curve of positive 2-dimensional measure in $\mathbb{R}_{x, y}^{2}$. Applying to each of the sets $E^{i}, i=1,2,3,4$, a construction similar to the one that we had above for the function F on the set E, we will get functions F^{i} defined on the corresponding sets E^{i} with the properties:

1) $F^{i} \in C^{2-}\left(E^{i}\right)$,
2) $\frac{\partial F^{i}}{\partial x}(x, y)=y$ and $\frac{\partial F^{i}}{\partial y}(x, y)=0$ for each $(x, y) \in E^{i}$,
3) F^{i} has zero values at the endpoints of the arc E^{i}.

Hence, we can define a function \tilde{F} on the set \tilde{E} as $\tilde{F}(p)=F^{i}(p)$ for $p \in$ $E^{i}, i=1,2,3,4$, and for this function we will obviously have that $\tilde{F} \in C^{2-}(\tilde{E})$ with $\frac{\partial \tilde{F}}{\partial x}(x, y)=y$ and $\frac{\partial \tilde{F}}{\partial y}(x, y)=0$ at each point $(x, y) \in \tilde{E}$. Then, by the classical extension theorem of Whitney (see, for example, Theorem 4 on p. 177 in $[\mathrm{S}])$, there is a function $\widetilde{\tilde{F}} \in C^{2-}\left(\mathbb{R}_{x, y}^{2}\right)$ such that $\tilde{\widetilde{F}} \in C^{\infty}\left(\mathbb{R}_{x, y}^{2} \backslash \tilde{E}\right)$ and $\widetilde{F}(p)=\tilde{F}(p)$ for each $p \in \tilde{E}$. If we restrict the function $\widetilde{\widetilde{F}}$ to a disc $\mathbb{D} \subset \mathbb{R}_{x, y}^{2}$ such that $\tilde{E} \subset \mathbb{D}$ and consider a smooth extension of the graph of this restriction to a 2-dimensional sphere S^{2} embedded into $\mathbb{R}_{x, y, z}^{3}$, then the set $\widetilde{F}(\tilde{E})$ will be a Jordan curve in S^{2} of positive 2-dimensional measure and at each point of this curve the tangent plane to S^{2} will coincide with the corresponding plane of the standard contact distribution $\{d z-y d x=0\}$.

Now let G be a given strictly pseudoconvex domain in \mathbb{C}^{2} with C^{∞}-smooth boundary and let q be a point of ∂G. Then, by the theorem of Darboux, there is a neighbourhood U of q in ∂G and a C^{∞}-smooth diffeomorphism Φ of U onto a neighbourhood V of the origin in $\mathbb{R}_{x, y, z}^{3}$ such that the distribution of complex tangencies $\left\{T_{p}^{\mathbb{C}}(\partial G)\right\}$ will be transformed by Φ to the standard contact distribution in $\mathbb{R}_{x, y, z}^{3}$. We can assume without loss of generality that $S^{2} \subset V$ (if not, we consider a linear transformation $x \rightarrow c x, y \rightarrow c y, z \rightarrow c^{2} z$ of $\mathbb{R}_{x, y, z}^{3}$ which preserves the standard contact structure and use the image of S^{2} under this transformation with $c>0$ sufficiently small instead of $\left.S^{2}\right)$. Then $S=\Phi^{-1}\left(S^{2}\right)$ will be a 2-dimensional sphere in ∂G of class C^{2-} and the set $\mathcal{E}=\Phi^{-1}(\tilde{\widetilde{F}}(\tilde{E})) \subset S$ will be a Jordan curve of positive 2 -dimensional measure such that at each point $p \in \mathcal{E}$ the tangent plane $T_{p} S$ to S is a complex line. This proves the second part of the theorem.

References

[B] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1 - 21.
[BK] E. Bedford and W. Klingenberg, On the envelope of holomorphy of a 2sphere in \mathbb{C}^{2}, J. Amer. Math. Soc. 4 (1991), 623-643.
[C] E. M. Chirka, Regularity of the boundaries of analytic sets, Mat. Sb. 117 (1982), 291 - 336; English transl. in Sb. Math 45 (1983), 291 - 335.
[El] Ya. Eliashberg, Filling by holomorphic discs and its application, London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge 1990, p. 45-67.
[Er] O. G. Eroshkin, On a topological property of the boundary of an analytic subset of a strictly pseudoconvex domain in \mathbb{C}^{2}, Mat. Zametki 49 (1991), 149-151; English transl. in Math. Notes 49 (1991), 546-547.
[G] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[H] M. W. Hirsch, Differential Topology, Grad. Texts in Math. 33, SpringerVerlag, New York, 1976.
[J] B. Jöricke, Local polynomial hulls of discs near isolated parabolic points, Indiana Univ. Math. J. 46 (1997), 789 - 826.
[K] N. G. Kružilin, Two-dimensional spheres on the boundaries of pseudoconvex domains in \mathbb{C}^{2}, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 1194 - 1237; English transl. in Math. USSR Izv. 39 (1992), 1151 - 1187.
[L] H. F. Lai, Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172 (1972), 1-33.
[N] S. Nemirovski, Complex analysis and differential topology on complex surfaces, Uspekhi Mat. Nauk 54 (1999), 47 - 74; English transl. in Russian Math. Surveys 54 (1999), 729-752.
[S] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[Wh] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517.
[Wi] J. Wiegerinck, Local polynomially convex hulls at degenerated CR singularities of surfaces in \mathbb{C}^{2}, Indiana Univ. Math. J. 44 (1995), 897-915.

