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On the divisors of ak + bk

Pieter Moree*

Abstract

Let a and b be non-zero integers. Let G be the set of natural numbers n such
that n divides ak + bk for same k ;::: 1. We give a (weak) algebraic characteriza
tion of G and use it to derive an approximate expression for the number of the
elements not exceeding x that are in G.

Let a and b be two non-zero coprime integers that are fixed. Consider the sequence
{Uk}k::l' where uk = ak+ bk. We say n 2:: 1 is good if it divides Uk for some k 2: 1 and
bad otherwise. In this paper we will characterize the odd good integers (Theorem 1)
and use this to derive an asymptotic formula for G(x), the number of good integers
not exceeding x (Theorem 5). This result implies that almost all integers are bad.
Several authors have studied good primes, see e.g. [1, 15] and the references cited
there. Some authors studied trus problem in a different guise, see Section 2. In
contrast little seems to be known about good integers, which is the main focus of this
paper.

I like to thank Patrick Sole for asking a question that motivated this research
and his interest in my attempts to solve it. His question, to characterize nUlnbers
occurring as divisors of 2n + 1, arose in joint work with Vera Pless and Z. Qian on
Z4-linear codes [9]. Furthermore, I thank T. Kleinjung for some inspiring discussions.

, ..

2 Elementary observations

To avoid trivialities assllme 'tjJ := alb "# ±1. If n is good, it must be coprime with
a and b. Furthermore we have 'lj;c =-l(mod n) for some natural number c. Unless
stated otherwise we asSUlne in the sequel that n is coprime with 2ab and that p does
not divide 2ab. (The letter p always denotes a prime.) The restrietion to odd good
numbers is nlade to avoid unwieldy technical complications. Only in the proof of
Theoreln 5 we will consider even good numbers (which only exist in case ab is ocid).
If n is good, then all its divisors must be good. In particular if pe, e 2: 2, is good, then
p is good. This holds also in the other direction, since if 'lj;e _ -1 (mod p), then by
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induction and the binomial theorem we have 'l/Jepi -l(mod pl+j), for every j '2: O.
Thus we have proved:

Proposition 1 The number pe, e 2:: 2, is good iff p is good.

It follows that n is good Hf the squarefree kernel of n is good. We will use several
times that for p odd the only solutions of x2

_ l(mod pV) are x - ±l(mod pV) (this
can be proved using Hensel's lifting theoreln). Let pT be good. Not surprisinglYl the
smallest natural number e such that t/Je -1 (mod pT) is related to ordpr (t/J).

Proposition 2 I/ pT is good} then ordpr('ljJ) = 2e where e is the smallest natural
number such that 'ljJe =-l(mod pT).

P roof: Clearly. ordpr ('ljJ )12e. Now if ordpr (1jJ)Ie, then it would follow that 1jJc =
l(Inod pT). Thus ordpr(t/J) = 2c for some c dividing e. Since t/Jc is a solution of x 2

l(mod pT) and 1jJc ~ l(mod pT), we must have 1jJc _ -l(mod pT). It follows that c = e,
by the minimality of e. 0

.: ~ .~ ~.So jf.p:jS,..g99d".t_h~Il.:QT:d'PrlY;)·is,eyeJl.::;p.~.; the'/9th~r:_h~!1.qjf 9.r:...4p,,: (m)js,,~e~e!!l, then
'l/JOTdpr(1/J)/2 is a solution 1= l(mod pT) of x2= l(mod pT) and thus pT is good. Thus we
deduced:

Proposition 3 The prime power pT is good iff ordpr(1jJ) is even.

Thus studying primes that are good is equivalent to studying primes for which ordp(1jJ)
is even. Several authors studied the latter question. Sierpinski [10] seems to have
been the first. Hasse [4] improved on Brauer [2]' who improved on Sierpinski. Hasse,
using the arithmetic of Kummer extensions, proved a weaker version of Theorem 2
below; he showed that the set Co has a Dirichlet density and computed it.

It is an observation going at least back to Gauss that the g-adic period of 1/b
is equal to the order of 9 in the multiplicative group of invertible residue classes
modulo b, that is the g-adic period is equal to ordb(g). Krishnamurthy [5] conjectured
that asymptotically one-third of the primes p > 5 have odd decimal period. Since a
,set of primes that· has a Dirichlet- density, not always has a natural density, Hasse's
result is not strong enough to imply Krishnamurty's conjecture. Odoni [7] established
this conjecture in a much more general form. It turns out that the set of primes
under consideration is an union of an infinite number of Frobenian sets, that is sets
that differ finitely from some complete set of unraluified primes having prescribed
Frobenius conjugacy dass in some fixed Galois extension of rationals. To find a good
remainder term, one thus needs to find a uniform version 'of Chebotarev's theorem.
To this end Odoni used results obtained by Lagarias and Odlyzko. The error term
obtained by Odoni was improved by Wiertelak [11] and subsequently in [13], who
derived a uniform version of the Prime Ideal Theorem and used that result instead
of ChebotaJ'ev's theorem.

The next proposition relates ordpr to ordp.

Proposition 4 Let pT be an odd prime power. Then ordpr(1jJ) =ordp(1jJ)p1 for some
j ?= O.
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Proof: We have 'ljJordp{'l/J) _ 1(mod p) and 'ljJordp{'l/J)pr-l - 1(mod pr) (cf. proof of

Proposition 1). Thus ordpr('ljJ)lordp('ljJ)pr-l and so ordpr(W) = cpJ for some clordp('ljJ)
and j ~ O. Since 1 - 'ljJcpi 7j;C(mod p), c = ordp(7j;). 0

(It is not difficult to give an expression for j, however this is not needed for our
purposes.)

3 Characterization of odd good numbers

In this section a characterization result for odd good numbers will be proved. In the
proof we malm use of the following lemma:

Lemma 1 Let al, ... ,ak be natural numbers. The system S 0/ congruences

x - al(mod 2al)

has a solution x iff there exists e~ 0 such that 2e llai for 1 ~ i ~ k.

Proof: The system of congruences S has a solution iff there exists odd integers
Cl, ... ,Ck such that

alel = a2C2 = ... = akCk·

It is clearly necessary that the exact power of 2, say 2e , dividing al IUUst equal the
exact power of 2 dividing ai for 2 :s; i :s; k. Put a~ = ai/2e. Then the a~ are odd and
it remains to show that

I I Ia l Cl = a 2C2 = ... = akCk,

for certain odd integers CI, ... , Ck. The choice Ci = lcrn(a~, ... , a~) / a~, with 1 :s; i :s; k,
will do. 0

Theorem 1 An number neoprime to 2ab, is good ifJ there exists e ~ 1 such that
2e

11 ordp ('ljJ) for every prime dividing n.

Proof: '=>'. Let n be good and coprime to 2ab. Let PI,' .. ,Pk be its prime divisors.
Define ei by p~i 11 n. There exists c such that, for 1 ::; i ~ k, 'ljJc _ -1 (mod p~i). Now
using Proposition 2, it follows that ordpi(Ji (7j;) is even and

c - ordpi(Ji (7j;)/2 (mod ordpiei (7j;)) , 1 ~ i ::; k.

Lemma 1 with ai = ordpi Bi ('ljJ)/2, 1 ~ i :::; k, then yields the existence of an e ~ 1
such that 2e

1Iordp~i (w) for 1 :s; i ~ k. Using Proposition 4 the implication '::}' then
follows.
'{='. Hy assumption and Proposition 4 it follows there exists e 2:: 1 such that
2e 11or dpi(J, (w) for 1 :::; i :s; k. Hy Lemma 1 there exists an integer C satisfying c =
ordpiei (W)/2 (mod ordpi(Ji (W)) for 1 :::; i :::; k. Thus WC- -l(mod Piei ) for 1 :::; i ::; k.
Then, by the chinese remainder theorem, WC -1 (mod n). 0
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4 Counting good primes

In order to go beyond Theorem 1 one needs to study, for r 2:: 0, the sets Cr ;= {p :
2r

11 ordp ('l/J)}. Wiertelak [11] proved that Cr has a natural density and gave a remainder
term, that he subsequently improved in [13J. Let Li(x) denote the logarithmic integral.
Then it is well-known that 7r(x), the number of primes not exceeding x, satisfies
7r(x) = Li(x)+OCo;J:z)' Using this, [lI, TheoreIn 1] and [13, Theorem 2], one deduces
the following result.

Theorem 2 Let a and b be two non-zero integers. Put'l/J = alb. Assume that 'l/J =1= ±l.
Let ,,\ be the largest number such that I'l/JI = u 2

>', where u is a mtional number. Let
E = sign('l/J). Let Pa,b be the set of primes not dividing 2ab. Put, for r 2:: 0,

We have the estimate

where the implied constant may depend on a and b.
1f u =1= 2u~ and E = +1, then

00 2 1 1 1
{Dr } r=O = { I - 3" . 2'" 3" . 2"" ..}.

1f u =1= 2ui and E = -1, then

00 1 1 2 1 1 1
{Dr } r=O = {3" . 2'" 1 - 3" . 2'" 3" . 2"+1 ' ... } .

1fu = 2ui, E = +1, and A = 0, then

.00 7 7 8 1
{Dr } r=O = {24 1 24' 24 ' 24' ...}.

1fu = 2ur, E = +1, and A = 1, then

00 14 8 1
{Dr } r=O = {24' 24 ' 24' ...}.

1f u = 2uf, E = +1 and A 2:: 2, then

00 1 1 1 1
{Dr } r=O = {I - 3" . 2'" 3" . 2"+1'" .}.

1fu = 2ui, E = -1, and A = 0, then

00 7 7 8 1
{Dr } r=O = {24' 24 ' 24 ' 24 ' ...}.
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11 u = 2uI, E = -1, and A = 1, then

00 8 14 1
{Or }r=O = {24' 24' 24' ...}.

1fu = 2UI, E = -1, and A 2: 2, then

00 1 1 1 1 1 1
{Or}r=O = {3" . 2>.+1' 1 - 3" . 2>" 3" . 2>.+2' ...}.

The densities indicated by the dots are computed as follows; if Oj is the last density
given and one wants to compute Ok (k > j), then Ok = Oj ·2j - k .

Corollary 1 1f'ljJ is unequal to ±ui, ±2ui, where Ul is rational, then (1) holds with

00 = ~ andJ for r 2: 1, Dr = ~ . 21r '

5 Counting good integers

Let Godd denote the set of odd good integers and G the set of good integers. Then,
-,~ 'by 'The~orerf:f"l ~.... ~ .... _. ~ ~.-'_.... .... ......... ,..,. .......... . ,.. '~ ..... ,co· "~.', ..~..... • ~ .... ,- ~"'.. , ....... 4. ,_.', ••.,.,.. ... ., 1 •

Godd = U~IGr,

where G r is the set of natural nurnbers including 1, that are composed of primes in
er only. The sets Gr are cornpletely Inultiplicative; ab E Gr if and only if a, b E Gr,
where a and b are natural numbers. Thus the problem of estimating Godd(x), and, as
will be seen, that of estimating G(x), reduces to that of estimating Gr(x) for r 2: 1.

(If S is any set of natural numbers, then S(x) denotes the number of elements n in
S with 1 < n :::; x.) In order to estimate Gr(x), we use an estimate of the following
form:

Theorem 3 Let S be a completely multiplicative set such that

L 1 = TLi(x) + O( T~ ),
pES, p$x log x

where T > 0 and N > 3 are fixed. Then

S(x) = cx log7"-1 X + O(x log'T-2 x),

where c > 0 is a constant.

This result, wrnch is a particular case of Theorern 2 of [6, Chapter 4]' is tantalizing
elose to what we need in order to prove Theorem 5, namely:

Theorem 4 Let S be a completely multiplicative set such that

'""' _ L'() O(x log log9 x)
L...J I-TIX+ 3'

PES, p$x log x

where T > 0 and 9 ~ 0 are fixed. Then

S(x) = cx log'T-l X + O(x log log9+1
X log7"-2 x),

where c > 0 is a constant.

5
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Proof: The proof given in [6] of Theorem 3 can be easily transformed into a proof
of this assertion. Since the proof of Theorem 3 is rather lang and technical, we just
indicate the changes that have to be made. For convenience put l2(X) = loglog(x+16).
If in Lemma 3 we assurne that the error is Rc(x) = O(l2(X)9X log-3 x), then one easily
checks that the error in the conclusion of Theorem 3 now becomes 0 (l2 (X)9 / log x). We
can choose constants Co and Cl such that the quantity between absolute signs in the
second displayed formula on p. 93 is bounded by hc(x) := min(Co, C1l2(X)9 / logx) for
x > 1 and is a positive non-increasing function. It is no longer true that the integral
J100 hc(v)dv/v converges (p. 97). The equation (6) now becomes Jo13 hc(xZ)dz =
O(l2(X)9+1

/ log x). The statement at the top of p. 98 about the first term of the right
hand side, now becomes that it is of order l2(X)9+1 10gT- 1x. All the remaining error
terms on pp. 98-99 that inc1ude either logT-1 x or logT-2 x, have to be multiplied by
l2(X )9+1. 0

Next it will be shown how Theorems 1,2 and 4, can be used to deduce the following
estimate for G(x) :

Theorem 5 Let a and b be two non-zero coprime integers such that a :I ±b. Let G
,'.' ." ,... "'~ .- denot"e lhe' set'"'"öl';iiteijersrit> rfsüch"'~th(dmläk +"'b~förs'öm;e'+k~l~'04Lef'G (x) be "the

number of elements in G not exceeding x. Then there exist positive constants Co,' .. ,Ct

such that

G(x) = -1x (co log60 x + Cl log6! X + ... + Ct 10g6t x + O(1ogf x)), (3)
ogx

where t is the smallest number such that Os ~ € for every s > t, and 80 , ... ,8t are
given in Theorem 2. The implied constant and Co, ... ,Ct may depend on a and b.

Corollary 2 Let"\ and U1 be as in Theorem 2. We have G(x) rv ClogxQx' for some

constant C > 0, where in case u =1= 2uI, a = ~ . -i>: , in case u = 2uI, a = ~ if A = 0,
a = 1

5
2 if A = 1 and a = i .tx if A 2: 2.

Proof: There are no even good integers in case ab is even. Then, by Theorem 1,

00

G(x) = L Gr(x).
r=l

Next assume that ab is odd. Let m = 2/1 J-L, J-L odd, be a good divisor. In case J-L > 1,
J-L E Gr , r 2: 2, it follows that J-Llak + bk

, where k is even. Since ak + bk
- 2(mod 4),

v = 0 or v = 1. In case J-L E GI, J-Llak + bk, where k is odd. Since for arbitrary v :2: 0,
the only solution of x k

- -l(mod 2V
), is x =-l(mod 2V

), it follows that °~ v ~ 'W J

where 2w l1a + b. Prom this and Theorem 1 it is deduced that

We now use Theorem 4 to estimate Gr(x) for r :2: 1. By Theorem 2, (2) is satisfied
with T = or and 9 = 4. Applying Theorem 4 and using or ~ 1 yields

Gr(x) = rlrx log6r -1 X + O(xl2(x)5log6r~2 x) = drx log6r -1 X + O(x logf-l x), (4)
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for same positive dr. The result now follows, both if ab is even and otherwise, if we
show that

00

L Gr(x) = O(x log€-l x).
r=t+l

(5)

To that end, notice that the prirnes in Ct, t ~ s ~ 1, satisfy p =l(rnod 2S
). Thus

L 1.
n<::l:

pln=>p:' l(rnod 2")

The latter surn can be estirnated by Theorem 3, or of course its improvement Theorem
4, on using the estimate

1r(x;2',1):= L 1= 2LLi(X) +0(----;-),
p:S;x, p:::l(mod 2") log x

which follows from the Prime Number Theorem for arithmetic progressions. Thus by
.. 't .... ~.c ......',' .,'<.VJchoosing ~sJarge ..enQugh .'taking..2;::'~~.l;'€ ..w;ill~do.) ,...we.ca.ILensure..that'lbr>s,Gr- (x) -. .

O(x Iog€-l x). By the definition of t and (4) wo have -

L Gr(x) = O(x Iog€-l x).
t+lS"r$s

Thus (5) holds and the result folIows. 0

Remark. If (1) would be true with a sharper error term, this would, at least by the
approach followed here, not lead to an improvement in the error of (3).

6 An example

As an example let us consider the case where a = 2 and b = 1. (This is the most rele
vant for coding theory purposes, cf. [9].) Using special cases of quadratic, biquadratic
and octic reciprocity (cf. [2]), one deduces the following information on the sets Cr :

Theorem 6 Let p be an odd prime and 2r IIp - 1. Then

(i) P E Co if P - 7(mod 8) or r = 3 and p is represented by the form 65X2 +
256XY + 256y2;

(ii) P E Cl if P - 3(mod 8) or r = 3 and p is represented by the form x 2+ 256y2;

(iii) P E C2 if P - 5(mod 8);

(iv) p E Cr - 2 if p is represented by the form 65X2+ 256XY + 256y2 and r ~ 4;

(v) pE Cr - 1 ifp is represented by the form 17X2 + 64XY + 64y2 •
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By Theorem 5 it follows that if 0 < E < 2~ and t is the smallest integer such that
48 . 2t 2: 1/E, then there exist positive constants Cl, ... , Ct such that

X 1 7 t 1 1

G(x) = -1-(c1loga x + c2 1og2i X + L C3+k log3'~ X +o (logf x)). (6)
og x k=O

In order to prove this directly, a weaker version of Theorem 2 will do. On using [8,
Theorem 2] an error term of x log-5/3 x in Theorem 2 suffices, on using [3, Theorem
2] an error term of x log-3/2 x. Moreover, as trivially good numbers in this case are
odd, consideration of even good numbers is not necessary.

Notice that an integer n has a divisor m - 7(mod 8), if and only if either there
is a prime p 7(mod 8), or both a prime p - 3(mod 8) and a prime q - 5(mod 8)
dividing n. Using Theorem 6 Olle then deduces:

Lemma 2 11 n has a divisor m such that m - 7(mod 8), then n is bad.

The bad numbers n < 100 that are t: 7(mod 8) are 21, 35,45,49,51,69, 73, 75, 77,
_. ,. ,.,v· \<,' '.0/'-_" ..- ..... '85,...89'/ 91~~and"'93,:".cphe'''bad·numbers ~n"<~200 ..-that~have·-no'fdivisors'~=·yr(mod r8)"" are

51,73,85,89, 123,153 and 187. There are O(x log-1/2 x) integers ~ x that have no
divisors - 7(mod 8). By equation (6), O(x log-I/2 x) of these are bad.
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