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On the group of homotopy equivalences

of simply connected five manifolds

Hans Joachim Baues and Joachim Buth

The group £(X) of homotopy equivalences of a space X is the set of homotopy classes of ho-
motopy equivalences X — X. The group structure is induced by map-composition. The group
E(X), 1.e. the group of automorphisms of the homotopy type of X, can be regarded as the ho-
motopy symmetry group of the space X. In the literature there has been a lot of interest in the
computation of such groups, compare for example the excellent survey article of M.Arkowitz [1].
For a differential manifold A the group £(M) is comparable with the group mo Diff (M) of isotopy
classes of diffeomorphisms of M. In fact, via the J-homomorphism there is a striking similarity
between these groups as is shown in Baues [5] §10.

In this paper we study the group £(M) where A is a simply connected closed 5-manifold, or
more generally a simply connected Poincaré complex of dimension 5. Such manifolds and Poincaré
complexes are classified by Barden [2] and Stocker [16] respectively.

Let M = M— & be the complement of a small open cell € in M and let £(M|1'l:1) be the subgroup
of £(M) which can be represented by an orientation preserving map M — M which is the identity

on M. In Baues [5] it is shown that £(M|AM) is a finite abelian group for any simply connected
Poincaré complex M and-that one has the ”fundamental extension” of groups

(*) 0—E(M|M) > E(M) —>> E(M, £f)—0

Here f : e — M is the inclusion of the boundary of ¢ and S(A:I, +f) is the subgroup of elements
in £(A) compatible with f up to sign.

Recently Cochran-Ilabegger [11] computed the fundamental extension for dim{M) = 4, see also
Baues [6]. We here compute for dim(Af) = 5 the abelian group S(ﬂ:fli\:f) as an E(ﬂ.'[,:tf)-module
and we compute g(ﬁ:f,:lzf) so that £(M) is determined via (%) up to an exiension problem; for
special cases we are able to solve the extension problem too. We now describe explicitely some of
the results of this paper.

The classification of Barden yields the following simply counected (differential) 5-manifolds M,
and Xy which are indecomposable with respect to connected sums §. For a prime power ¢ = P,
p > 2, the indecomposable manifold M, is characterized by the second Stiefel-Whitney class and
the second homology:

wa(My) = 0 and HolMy) = Z,04Z,.
Moreover My, = 5% x $? is a product of spheres. The indecomposable manifold X is characterized
by

] X Zo for g = —1
wa(Ng) #0 and Ha(Xy) {

Z,dZy forg=2">4



Let Xo be the nontrivial 3-sphere bundle over the 2-sphere. The manifold X_; is the Wu manifold
and we set Xo = X_1fX_1. Now let M = {M,;|q = coor ¢ = p' a prime power } and X' =
{X,lg = cocorg = 28 > 20r¢g = —1} be the corresponding sets of manifolds. Any simply
cotinected 5-manifold M has the normal form

M = M.  iM withM,, ... M._1eM

and either M, € M, r > 0, for wo(A) =0or M, € X', r > 1, for wa(M) # 0; here we set. M = S°
for » = 0. Compare (10.1) in [16].

Theorem (A):  For the manifolds M = X,, M, the abelian group E(MMTI) is given

by
’ & g=—1,00
S(/\’ql/\’q) = ZQ 4] ZQ qg= 4,2

Zo®Za®Zy ¢=2">8

VASCA §=2,00
o Loy BZy® L& L q=2i24
E(M,IM,) = Py g
0 g=p",p#23

The next resull gives an explicit computation of the abelian group £(M|M) for any simply
connected 5-manifold Af. Let A x B be the torsion product of abelian groups A, B.

Theorem (B): For wy(N) = 0 and HaN = B we have an isomorphism of abelian
groups

ENINY = Bo® (B/(B*Z2))®@Z2 with
Be = (B*Z) @ (B«Za) @ (B/TorB)® %,
For wy(M) # 0 we can choose N as above such that M = N} X, for appropiate ¢q. Then

we get

E(MIM) = By @ B, ® £(X,|N,)

with By as above and

(B/(BxZ2))@#, forg=ccorq=2">8,
B, = (B/(B*xZ8))@Z4s forg=—-1lorqg=2,
(Bf(B+xZg))@Zy forq=4.

Let £y (M) be the subgroup of elements in £(A) which induce the identity in Homology. The
group Ex (M) is part of the exact sequence of groups

0—Ep (M)—E(M)E2 1, E(M)—0

where H.E(M) is the group of automorphisms of H.(Af) which are realizable by maps M — M.

Theorem (C): For a simply connected 5-dimensional Poincaré complex M one has
an isomorphism of groups

H.E(M) = Aut(A,tbw,e)



Here the right hand side denotes the group of automorphisms of A = oM compatible with the
invariants +b,w,e of M given by the linking forin & of M, the Stiefel-Whitney class w = wa(M)
and the exotic characteristic class ¢ = e(Af). The class e(A) vanishes if and only if A has the
homotopy type of a manifold, see §3. We point out that the methods of Stocker [16] are not suitable
for a proof of theorem (C).

We introduce the ”torus construction”
i:E&u(M) —Te(A)

where [g(A) for A = HoM is defined by the frec commutative ring with divided powers generated
by A. For the homotopy group llsM, which we compute explicitely below, let

SHsA =  image(S : IsM — NsSM)
be the image of the suspension homomorphism. The group Eﬂsﬂ:[ depends only on the homology
group A = HoM.

Theorem (D): Forwy(Af) = 0 one has the following commutative diagram with exact
rows.

0 — SlsM — E(MIM) — AxZy — 0
|| n n

0 — SHsM — Ey(M) — TsAd — AN A@Zs) — O

For example any simply connected 5-dimensional Brieskorn manifold M saiisfies wo(AM ) = 0.
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§1 Homotopy groups of Moore spaces and homology groups

of Eilenberg-Mac Lane spaces.

We here describe the homotopy groups 11, M (A, 2) of a Moore space M (A, 2) and the homology
H,K(A,2)of an Eilenberg-Mac Lane space K (A, 2) for low degrees n. For this we have to introduce
some purely algebraic functors from abelian groups to abelian groups. These functors are classical,
but we describe various properties which are new.

For each abelian group A we have the free ring I'. (4) with divided powers, this is the commutative
graded ring which is generated by the elements v,(z) for each z € A and each non-negative integer
t, of degree 2t, subject to the relations

Y(z)=1, m(rz)=riy(z) forreZ
(1.1) Tz +y) = Z 7i(2)7 (y)

i+j=t
Ta(@) () = (°T') voe(2)

Compare §18 [14]. We set y;(z) = z so that TzA = A, moreover y2: A — I'yd = 4 is
J.H.C.Whitehecad’s universal quadratic map. The natural homomorphisms

(1.2) Aoa B o4 2 agz,

are defined by [1,1[{(z®@y) = y2(2 + y) — y2& — y2y = [&,y] and by oy2(z) =2 @ | where 1 € Z is
the generator, z,y € A.

The group TsA is generated by the elements v2(z) - ¥ and ¥3(y). Let {yad) C TsA be the
subgroup generated by all elements y3(z), € A. We introduce the functor T'3 by

(1.3) r3A) = (MA)eZdT(A)@A)/~
where the relations are given by

{ T2(x)®zc ~ 0
[.4]@ 1+ (122) @y + [y,2]@z ~ 0
Next let L{A, 1), be the group of Lie elements of degree n in the graded tensoralgebra T'(A)

where A is concentrated in degree 1. The Lie bracket is given by [z,y] = zy — (=1)/#i¥lyz. For
example we have

(1.4) (A Ds = Im{[[1,1],1]: A% = 4®3)



where [[1, 1], 1] carries tyz =z Q@ y ® z to
{z.90,2] = (2y+yn)z—z2(zy+ye)
= Zzyzr+tyrc-—zzy-—zyr € A®3
There is a natural isomorphism ( sec [8] )

(1.5) T2(A) = LA Dz INA)®Z,

which carries y2(z) @ y to —[[y, =], 2]+ [z, y] ® | and which carries y2(2) ® 1 to v2(2) @ 1. Next we
have the exact sequence

(1.6) rA4) 2 A4 - A%4) — 0

where H(y22) = z ®@ 2 and w(z @ y) = z Ay for the exterior square A%(A). Let Ax Z, =
{z € A, nz = 0} be the n-torsion of A. One has the following commutative diagram of natural
homomorphisms in which all rows are exact and in which all columns are short exact sequences,

see [10].

(134)  — [(A)® A P L(A, )3 © AKA @ Z,)
(1.7) Is(A) X TARASIN(A)QZy r2A
ANA® Zy) S4 M(A)® Zs AN A® Zy

Here one has an isomorphism A * Zs = kernel{yy), unnaturally. The map ¢ is the quotient map
and y is defined by

(1)

{ X(1az) = 7(z)o=z
x(2(0)y) = 7@)Qut+(y2l®x+[xy !l

We define o' by 0/v3(z) = 0 and o/(y2(2)y) = (2@ DA(y®1) and we set. [1, 1](z@1Ay®1) = [z, y]® L.
The inclusion ¢ is defined by (1.5) and (1.1). All the other arrows in the diagram are the obvious
maps. In particular we obtain W by

(2) W(r(z)@y) = —[mz]z]l+(o)A(y®1)

see (1.5). Now exactness, in particular, yields the short exact sequence
(1.8) Lemma: A* Z3>—> (y34) —» kernel(W) .

Let Ab be the category of abelian groups and let /: Ab — Ab be a functor which needs not to
be additive. Then the left derived functors

(1.9) L.F: Ab — b

are defined, see [12]. For example for F' = I' the left derived functor L' = I'T: Ab — Ab is the
[-torsion considered in [11.2.1 of [6].



An Eilenberg-Mac Lane space K(A,n) is a CW-space with homotopy groups 1, K(A,n) = A
and M; A (A,n) =0 for j # n. A Moore space M{A,n), n > 2, is a simply connected C'W-space
with homology groups H,M(A,n) = A and I-}jM(A, n) = 0for j # n. Using the work of Eilenberg-
Mac Lane we have the natural isomorphisms

A i=2
0 i=3
(1.10) H;K(A,2) = rEA)y i=4
rr4) i=5
I's(4) i=6

which we use as identifications. Using (1.10) we can identify the coordinates {1, y2) = x with
x2 = [1,1]¢’ in {1.7) with the following natural operations. Let Sqo: Hp(X) — H,,_2(X, Z3) be
the integral Steenrod square and let k4N be the cap product with the canonical element ks €
H?(K(A,2),A). Then we have

(1.11) {“’ TeA = HeN(A2) 20 Hy(K(4,2),4) = [A)eA
' x2: Tsd = Hsl'\'(A,‘Z) &; H4(1\"(A,2),'/A2) = 1(A)Q Z,

The homotopy groups [, M(A,2) of the Moore space M(A,2) are more complicated than the
homology groups of an Eilenberg-Mac Lanc space K({A,2). We have the following connection
between these groups. The first &-invariant of M(A,2) is a natural map k: M(A4,2) — K(A,2) in
the homotopy category inducing the isomorphism

(1.12) ko TaM(A,2) = MaK(A4,2) = A

which we use as an identification. For a simply connected C'W-complex X' we have Whitehead’s
cerlain exact sequence

(1.13) i Hpt X 2o T X = Iy X 2 oy X =Pl X —

where h is the Hurewicz map and ', X = Im{Il, X"~} — T1,X"}. Since this sequence is natural
in X we obtain the natural homomorphism (n > 3)

(1.14) Q = bR ML MA2) —  HapK(4,2)

induced by & above. Now one has natural isomorphisms

) Q
(1.15) [(A) = TaM(A,2) = HK(A,2)

where 1" carries y2(X) to the composition x5, where 1, is the Hopf map, z € 4 = My M (4, 2),
compare {18] and [14]. Moreover we have the natural short exact sequence

(1.16) 0—[2(A)—= 114 M (4, 2)2TT(A)—0

compare (I11.2.4) in [6]. Here @ is given by (1.14) and (1.10). Moreover the injective homomorphism
iin (1.16) carries 72(z) @ y € ['(A) ® A to the Whitehead product [z7, y] and carries y2(z) ® 1 to
the composition 2213, 13 = £12. For n = 5 the homomorphism @ in (1.14) is not surjective, but
we have by [10]

(1.17) QUsM(A,2) = AxZs C [led



Using the spectral sequence of Dreckmann [13] for TL. M (A, 2) one also obtains the exact sequence

LaT3(A) 2 13(4) — NsM(A,2) — LiT2A) — 0

(1.18) with [3A) = LA 4o [iA)® %,

which is useful for the computation of ITsM(A,2). The sequences (1.16) and (1.18) can also
be derived from the EHP scquence for homotopy groups of mapping cones in [7], see [9). The
homomorphism dy in (1.18) is a diflerential in the spectral sequence of Dreckimann which in general
is not, trivial. The image D of the differential d> is the subgroup of I'(A) ® Z2 C I'3(A) given by
the image of the natural map qT(A),

(1.19) D = Im{l(AxZy) "N rae#z,) - I(A)e Z)

Here ¢ is the quotient map and M Ax Z2 C A —»A@ Zaisgiven by A(z) =z Q1,1 € Zs.



§2 The fundamental extension and the torus construction

Let A be a simply connected Poincaré complex of dimension m. Then M = M Uy ™ is the
mapping cone of a map f: S™~! — M which for m =5 is of the form

(2.1) fi08Y — M = M(A2)VM(B,3)

where A = HoM and ' = HaM = A/TorA. As in [5] §1 we have the fundamental extension of
groups

(2.2) 0 — EM|M) — EM) = EM,Ef) — 0

Here 8(M|1‘L.4) is the subgroup of £({M) consisting of all elements which can be represented by
orientation presernng maps M — M which restrict to the identity of M or equnalenth which are
maps under M. Moreover let S(M +f) be the group of all pairs x = (:L €) € é.(M) x {+1,—-1}
for which z.: II;— 1M g | 1M satisfies 2. f = ¢f. Here f € N,,,_ 1M’ 1s the homotopy class of
the attaching map. We also write £ = degz, clearly degz is determined by x € E(ﬁ:f) ifF2f # 0.
The group 8(1\1|1\"1) is finite abelian and endowed with a surjective homomorphism of groups

(1) F (M) —>  E(M|M)

defined by 1*(a) = las + i, see [5). The map i: M < M is the inclusion and + is given
by the coaction Af — M Vv S%. Morecover the structure of S(MM:I) as a left, E(ﬂ:[ +f)- module
in the extension can be described by the following formula where ¢ = 1+ («) € E(M|M ) and
v € E(M, %),

(2) z-a = 1%(deg(z) z.(a))

The fundamental extension leads to three problems for the computation of £(M): First one has

to compute the group £(M,xf), then one has to compute I1,, M and the kernel of 11, and finally
one has 1o solve the extension problem for (2.2).

Now let £x(AM) be the subgroup of elements in £(A) which induce the identity on homology
groups H, M and let H.E(M) be the group of those automorphisms of the homology H.Af which
are realizable by maps M — M. Then we get the following commutative diagram in which the
rows are short exact sequences of groups

0 — E(M|M) — EM) —~ EWM,£f) — 0
(2.3) n H It

0 — Eu(M) — &) 2= HEwm)y — 0

Here H. is given by the homology functor and the surjective homomorphism / is induced by #,.
By (2.3) we obtain the extension of groups

(2.4) 0 — EMIM) — Eg(M) - kernel(h) — 0

which is a subextension of (2.2). We shall see that kernel(h) is actually an abelian group in case
dim(M) = 5. We can study the group £ (M) by the torus_construction which is a homomorphism

(2.5) t: Eg(M) — HpnuKN(A,2) with A = Ho(M).



For this let u: M — M be a map which represents an element in £ (M) and let k: M — RK(A,?2)
be the first k-invariant of M. Then the diagram

M
(1) J'u >t N(A4,2)
M

homotopy commutes since {u} € Ey(M). Let Gy: k~ku be a homotopy. Then we have the
following push out diagram of spaces, I = [1,0] C IR,

IxM = ToM 2~ K4,
(2) T(ﬁ:l-h) push I Sk

Mund L g

Here the push out T, Af is the mapping torus of u and the map gy is induced by (k,Gy). The
mapping torus T, A is again a Poincaré complex with fundamental class I x [M] € Hyppt (Tu M)
given by the fundamental class [Af] of 3. Now we define the function ¢ in (2.5) by

(3) Hu) = (gu)a({ x [M])

where (gy)e: Hmp{TuM) — Hpmpr (A, 2) is induced by the map g, in (2).
(2.6) Lemma: The torus construction { is a well defined homomorphism between groups.

Proof: We have g, € H*(T, M. 4) = Hom(H,T, M, A) since H|T,M = Z. Here HoM —
HsT, M is an isomorphism so that g, is well defined up to homotopy. Next we see that ¢ is a
homomorphism by the following sketches, u, v € Eg M.

which describes a bordism between T, A + T, M and T, M. /l/
(2.7) Theorem: Let Af be a simply connected Poincaré complex with A = HaM and let
g: M(A,2) — M be a map which induces the identity on HaAf. Then the composition

M M(A,2) 25 (M) 2 &M <= HppK(A,2)

coincides with the homomorphism @ in (1.14).

Proof: Let u = ly +i.a: M — M be a map under AT[ which represents 1*a. We consider



the following commutative diagram with ri = id.

MU+ M @)
M
Ir push IF N\ k

S™ ML MUS'xMUM - (TuaM)™ 25 k(4,2

Ti push T /S I

MU« M @y A N4,2)
M

Here r is given by the projection §! x M — M and w is given by the attaching map wy of the
top cell in / x M, see 11.8.11 in [3]. Since u is a map under M we sec that the m-skeleton of Ty M
is a push out as indicated in the diagram. Now g, can be choosen such that g,¢|S! x M is the

projection. Hence ¢, = k7. Moreover it is easy to see that
{(Lu)rw = i«

so that {ki.a} € [ K(A,2) = Hpge1 K(A, 2) represents {(). This completes the proof of (2.7).
In fact we proved the

Addendwuin(2.8) : The following diagram commutes

MM — T MES TLK(4,2)

L E

E(M|M) LN Humsr (4, 2)

Here t is the restriction of the torus construction and 1% is the homomorphismin (2.2)(1).

- 10 -



83 On the groups H,E(M) and £(M. & f).

The homotopy type of a simply connected 5-dimensional Poincaré complex M is determined by

its Stocker invariant (A, b,w,e). We here describe the groups H.E(M) and S(r\jl,if) of section
(§2) in terms of this invariant.

(3.1) Definition: A Stocker invariant is a tuple (A,b,w,é) consisting of a finitely generated
abelian group A, a nonsingular skew-symmetric bilinear form &: TorA x Tord — @/Z, a homo-
morphism w: A — Z», and an element e € A ® Z2. These data satisfly w(z) = b(z,z), 2 € TorA4,
with Zq C @/ Z generated by 1 and (w @ id)(e) = 0.

It is the main result of Stocker in [16] that there is a 1-1 correspondence between homotopy
types of simply connected 5-dimensional Poincaré complexes A and isomorphism classes of Stocker
invariants. The correspondence carries M to (A, b,w,e) with A = HaM | here b is the linking form
of M, and w = wo{M) is the Stiefel-Whitney class and e = ¢(M) the exotic characteristic class
which vanishes if and only if A/ has the homotopy type of a manifold.

(3.2) Definition:  Let Aut{A4) be the group of automorphisms of the abelian group A and
{+1,=1} = Aut(Z). Then Aut(A, b ,w,e) is the subgroup of Aut(A) x {+1,—1} consisting of
all pairs (u,€) for which b(ux, uy) = eb(x,y) for z,y € Tor(A) and w(uz) = w(z) for z € A and
(u® 1)e = e. We denote this group by Aut(Ad, b w) if e =0, then Aut(A,b,w) s the subgroup of
all (u,e) withe = 1.

One has a homomorphism of groups
Hy: E(M) —  Aut(A, b w,e)

which carries an element 7 € £(A) to the induced automorphism Ho(W) of A = HaM.

i 33 Theoren: For a simply connected 5-dimensional Poincaré-complex A one has an
sLileorem: P}
iSOlllOl‘phiSlI‘l of groups

Ho: H.E(M) = Aut(A +b,w,e)

Compare the definition of H.E(M) in (2.3). For the proof of (3.3) we show that each element
(u,€) in Aut(A, £b,w,e) is realizable by a homotopy equivalence @ € £(M) with Ho% = u and
. [M] = e[M].

The explicit construction of @ is fairly intricate and relies on a complete knowledge of certain

generators and composition laws computed in (8], see (§6) below.

(3.4) Remark: Let M be a simply connected, closed, smooth 5-manifold and let ToDiff . (A1)
be the group of isotopy classes of orientation preserving diffeomorphisms of A7. Then it is a result
of Barden [2] that

Ha: TlgDilf (M) —  Aut(4,bw)

is surjective. Therefore theorem (3.3) can be deduced from Barden’s resuit if ¢ = 0. Since we also
deal with the more general case of Poincaré-complexes we give an independent new proof of (3.3)
also in the case of manifolds.

Next we consider the group 5(11:1', +/) in (2.3). For this we need the cancnical homomorphisms

(3.5) { w’ CT(A) @A —  L(A, 1)

W'+ T(A)Qw : TA) @A — T(A)® Z,

- 11 -



with W (y2(2) ® ¥) = —[[y, 2], 2] and W’ (v2(z) ® y) = [z, ¥] ® I. The homomorphisms W' and
W correspond to the coordinates of W in (1.7). Morcover I'(A) ® w is given by the identity of
I'(4) and by the Stiefel-Whitney class w = ws: A — Z,.

(3.6) Theorem: For a simply connected 5-dimensional Poincaré complex A one has a short,
exact sequence (see(2.3))

0 — ~KNw) — S(ﬂ:!,:tf) — Aul(A,xbw,e) — 0
with K(w) = kernel(W')Nnkernel(W"” + '(A)Q@w) = kernelh

Here K(w) C I'{A)® A is an Aut{A, £b,w, e)-module by (i, )z = e(T(1)Qu)(z) for z €
K(w). Forw =0 we have K(0) = kernel{W")Nkernel(W"} = kernel(W) = (yaA)/Ax Z3,
see (1.8).

(3.7) Proof: Let

(1) c % CceD — A

be a short free resolution of A where D = A/TorA and where C>—(C —s»TorA is a resolution.
Then the cellular chain complex of M = M(A,2) v M(D',3)is

M = coD “Y ceD = M
with C,-f\:l = 0 otherwise. Moreover we have the cofiber sequence

(2) MC®D?2) — M  MCeoD,3)

where the left hand side is the 2-skeleton of A7 and where ¢ 1s the quotient map. Now we have the
short exakt sequence of groups

) 0 — B3, TA) Loen) Hu Aw(A) x Au(D) — 0
. with Hs(ﬁ:f,l‘f‘!) = Ext(A,T'A) & Hom(D', ' A)

Here H. is given by the homology functors Hs and Hz. An element o € Ext(A,T'A) is represented
by a homomorphism @ € Hom(C,TA). Then a and b € Hom([',TA) yield a homomorphism
c=(a,b): Cd D' — I'A and hence by (1.15) a map

(4) " e=(ab): MC®D,3) — MA2CM

The homomorphism 17 in (2.2)(1) carries (o, b) to the sum 1 -+ cg. Here | is the identity of the

space M which is a suspension and g is the quotient map in (2). For v € Aut(A) and v € Aut(D’)
the module structure in the extension (3) is given by

(5) (w,0) - (e,8) = (M(w)a(u"') (a), P(w)bv™1)

We point out that the extension (3} in general is not split.

Since M is a Poincaré complex with fundamental class [M] we have the duality isomorphism

N[A]:

(6) Ext(A,TA) @ Hom(D',TA) = HPM,TA) = HyMT4) = A4

- 12 -



We denote the inverse of this isomorphism by Dy = (N[M])~1. Let

_ q' FTA® A
(@) " ,
g TA® Z,

MaM(A,2) @ NaM(A,2) L) mM(A4,2) C [igAf

13

NaM(A,2) @ Zs 2 TLM(A,2) C LM

be given by the Whitehead product and the Hopf map 53 respectively. Then (¢’,¢"') = ig where i is
the inclusion in (1.16) and where ¢ is the quotient map in (1.7}, Recall that f = far € TI4 M denotes

the attaching map for M, see (2.1). Then we have for {c} € Hs(ft:!, FA)and 1+cqg = 11{c} € E(M)
the formula

(8) (L+cq)far = far =g ({cIN[M]) +¢"{w, {c} N [M])

Herc w € H*(M; Z+4) is the Stiefel Whitney class and {¢}N[AM] € Ha(M,'A) by (6). The formula
is a consequence of (7.11)(a) and (6.4) in [16]. By definition of £(Af,xf) and & in (2.3) we have

(9) 1+eqgekemel(h) <= (l4eq)ufar = Ffu
(10) = 0=q({c}n[M])+¢"{w, {c}N[M])
(11) <= z={c}N[M]E€TA® A satisfies 2 € K'(w)

Here (10) is a consequence of (8) and (11) follows since 7 in (1.16) is injective. Thus we get-the
following commutative diagram with short exact rows

(12) .
0 —  AKw) — E(M,+f) 2, H.E(M) — 0

Jov | !

0 — HYM,TA) 2 EAM) x {+1,-1) —  Aut(4) x Aut(D') x {+1,-1) — 0

Here i and j are the inclusions and Dy is given by (6). The bottom row in (12) is the product
H. x {4+1,—=1} with H. in (3). Now we use theorem (3.3) for H.E(M) and we get by (12) the
exact sequence in (3.6).

We now consider the structure of K(w) in (12) as an H.E(M)-module. Let w € £(AM) be a
realization of (u,€) € Aut(A, £b,w,e) and 2 € K(w). Then we get by (5)

(v,€)-z = Dy
D

= P e} N [M))
(13) = Iww({cn@h.[M])
= elM(w)u.({cIn[M]) = e(l'(u)®u)(2)

For (13) see page 254 in [15]. This completes the proof of (3.6). /1]

Next we consider the torus constructlion ¢ for a 1-connected 5-dimensional Poincaré complex Af.
We obtain the following diagram of homomorphisis between groups where the left hand side is
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given by the extension in theorem (3.6)

E(M|M) L kernel(x)
(38) ! s
K(w) > Ps(A)/kernel(x)
N nx

(1.0(A)@ws)

T(A)® A TA)® A& (A Zs

Here ¢’ is the restriction of ¢ which we obtain by (1.17) and (2.7). Hence also the quotient map ¢

is defined by t. The injection y in the diagram is induced by x in the exact sequence (1.7).

(3.9) Lemma:  Diagram (3.8) commutes, in particular y#” coincides on A(w) with the map
(i, '{A) ® w) where { is the inclusion of T(A) ® A. This implies that ¢ is injective.

We also have the lollowing commutative diagram, in which the columns are exact.

"
i

K(w) > [g{A)}/kernel(x)
M ny
(3.10) [(A) © A GHASY 1Ay @ A @ N(A)® Zs
(W W4T (A)Qw) lwu
L{A,1)a & INA)® Za = LA Ns® T(A)® Z»

Here we set Wy(z@y) = W (z)® (W' (z)+y) forz € N(A)® A and y € [ A)® Z 3. The exactness
of the left hand side 1s given by definition of K{w) in (3.6). Exactness of the right hand side follows
from (1.7) and (1.5). One readily checks that tlie bottom sequence of the diagram commutes. We
derive from (3.9) and (3.8) the exact sequence of groups

(3.11) 0 — kernel(t) — En(M) — Ts(d) — Coker(t") — 0

For w = 0 we compute Coker(t”) as follows
(3.12) Lemma: Forw = 0 one has an issomorphism
Coker(t") = AQ(A ® Z2)
and the map Ts{A) —s>Coker(t”) = A%(A ® 7Z») given by (3.11) coincides with ¢’ in

(1.7).

Proof of (3.12) : For w = 0 the map (W', W") on the left hand side corresponds via (1.5)
to iW in (1.7). Hence K(0) = (v3A)/KNer(y). Moreover the map Wy corresponds via (1.5) to g in
(1.7). Now (1.7) shows that the cokernel of

(rad) — xTs(A)

is A°(A® Z»). /1!
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(3.13) Theorem: Let M be a simply connected 5 dimensional Poincaré complex and assume
the 3-torsion of HaM is non trivial. Then the fundamental extension for £(A) is non
split.

Proof: For A * Z3 # 0 we show that the extension

0 — EM|M) — Eg(M) — Kw) — 0

is not split. In fact if Z, is a direct summand of A generated by = with n = 3* > 3, then yaz
generates a direct summand Zz, in g(A). Moreover Z, x Z4 C 7, 1s then a direct summand of
kernel(x) generated by §1xz_ and the inclusion i: kernel(x) — [e{A) takes 51z to 2nyaz. This
can be seen via the computation of the left derived functor Ly L{A, 1}, see [10]. We observe that
1a(2) @2 € K (w). Thercfore the proposition follows from the commutativily of the diagram (3.8).

/11

(3.14) Proof of (3.9):  Let x1, vz be given by the coordinates of x in (1.7)(1). Then (1.7)
and (1.11) show that x2 corresponds to Sgg, that is

(1) X2 To(A) = HeK(A,2) B HoK(A2),Z:) = (A %y

Now let {c} € HS(J‘..'I, I"A) and consider v: M — M withv =1+ cg as in the proof of (3.6) and let
wu: M — M be an extension of v. The extension u exists by (3.6) if and only if

a = {cIn[M]ekK(w) C lNA)QA
We have to show
(2) x2t'(a) = (T(A)@w)(a)

We now have the commutative diagram

7
HeM &= HeT M Sxe, HeK(A,2)

15% 1509 lqu

(3) Ha(M,Zs) = Hy(TuM,Z:) 25 Hy(K(A,2), Zs)
I| | e
* 'P .
Ha(l"l,Zg) = Hq(Tvﬂ’,,ZQ)

Here T[,A:! and g, are defined in the same way as in (2.5)(2). Clearly g, is a restriction of g, in
(2.5)(2). The isomorphisms # in the diagram are induced by the quotient maps 7, M — XM and
Ty M — Ez’l:[ respectively and by the suspension isomorphisin of homology. We now consider M
as a mapping cone as in {3.6)(2) so that 1+ cq = v is given by the coaction on M as well. We can
apply similar arguments as in the proof of (2.7} for the computation of g,,, this yields the formula,

x € H3(M, Z5),

(4) go.¥(z) = ({c}z) € T(A)©Z:
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Therefore the commutativity of the diagram shows

xa2t(a) = Sqgu.P[M]
= guP(Sq2[M])
= ({c}, Sqz[M])
= (5¢°{c},[M))
(5) = {wU{c},[M])
= (w,{c}n[M])
(

= {w,a) =

I'(4) ® w)(a)

In (5) we use the Wu formula w U u = Sq¢?u, sce 5.3 in [16]. Hence the proof of (3) is complete.
We now deal with the first coordinate y; which can be identified with k,N as in (1.11). Hence we
have the commutative diagram, ' = grk4,

HeT M 25 HeK(A,2)

1‘:’“ lk,qﬁ

Hy(TuM, A) 225 Hy(K(A,2), A)
)

Ha(M,A) £ mma,4) 25 rA)eA

As in (4) we see that g, 4 carries = € H;,(A.'[, A) to the element

(6) gu.p(x) = {{c},z} € TA®A

We now observe that for k € H2(M, A) and for i: M C T,(M) we have i*k' =k € H*(M, A) and
) pkN[M]) = KMn(lx[M)])

If u is the identity of A this follows from the multiplicativity formula for the cap product since
in this case / x [M] = [S'] x [}, the formula holds also in general since we can assume that
induces the identity on cellular chains. Now we get for a in (2) the formulas

xit’(@) = xulgue)e I x [M]
= kan(o). I [M]
Gu k' N T % [M]
Gu. YENT x [M]
= ge. PENT x [M]
= (o) k(M)
{({e} Uk, [M])
= T{kU{c},[M]), T'TA@A=AQTA
= Tk, {c}N[M])
= Tika) = a

This completes the proof of (3.9). /1
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84 On the group E(M|M).

In this section we describe results on the group £(M|M) where M is an (n — 1)-connected m-

dimensional Poincaré complex, n > 2, m < 3n. In this case M = T A is a suspension so that
M =YXAU;e™. Wesay that M is E-reducible if ©f~0.

We use the following notation. Let [U, X] be the set of homotopy classes of basepoint preserving
maps U — X. Then [SU, X] is a group, this is the homotopy group 11, X if U = ™! is a sphere.
For u € [SU, X], v € [EV, X] we have the Whitehead product [u,v] € [EUAV, X] where UAV is
the smash product. We also need the James-Hopf-invariants v, 2 € [EU, S8™] for 8 € [SU, £ B].
Here B is the n-fold smash product BA...AB and the James-Hopf-invariant v, 3 is defined with
respect to the lexicographical ordering from the left, see [4]. Moreover we use for the one point
union I/ vV V the partial suspension , m > 2,

E . ﬂ,n_l(U \% V)g —_— I]m(.\:U \% V)g

Here I (U V V)2 denotes the kernel of r.: [, (U V V) — (V) where r = (0,1): UVV — Vis
the retraction. Using the cone CU of U and the pinch map ng: CU — CUJU = EU we obtain E
by the composition

Mo (UV V) = N, (CUVV,UVYV)

l(ruvl).

Mu(SUVV,V) = N (SUVV),

compare (11.11.8)[3]. Let i} resp. 72 be the inclusion of U, resp. V, into U V V. We define the
diflerence operator

Villao1(SA) — o (SAVEA), by
V() = —fl)+[f(ia+1)

The next theorem is based on results in the book algebraic homotopy (3], see [5].

(4.1) Theorem: Let Af be a l-connected Poincaré complex with M = TA and let fi8m 1 —
Y A be the attaching map. Then 17 in (2.2)(1) induces an isomorphism

E(M|M) = 1n(SA)/J  where
T=Iu=ImV(,f)+Imf.

Here f.: [,,(5™~1) — 1,,(SA) is induced by f and (1, f) is the homomorphism
V1, f): [E2A, 4] —  11,,(EA)
which is defined by the formulas

V{1, ()

(EV) (1)

= Eo(8f) + [§(Evf) + [0 1U(Ewsf) +
Here 1 = 1x4 is the identity of ©A and the sum is taken over all summandswyo(Ey, f), n 2> 1,
with wy = € and wy, = [wy-1, 1] for n > 2.

Clearly wy, o (v, f) is trivial if n is sulliciently large since ¥ A is l-connected.

For the delicate dimension m = 3n — | we need the following condition ().



(4.2) Definition: ~ We say that f: S™~! — T A satisfies condition (%) if the cquation
(*) Ker[,1l.+ KerE+Imugy = H,aNAAA

holds. Here we use the homomorphisms {1, 1].: [, SAAA — 1,54, E: 11, EAAA — N1 S2AAA,
Toa: 24, SA] — L, SANA, Tal€) = (EA14) 0 (S92f).

4.3 Theorem: Let M =X AU;e™ be an (n— 1)-connected Poincaré-complex of dimension
f ]
m=2n+k < 3n, n > 2 If Mis S-reducible and if for m = 3n — 1 condition (*) is
satisfied for f then one has an isomorphism

E(MIM) = [ (SA)/W .

Here W is the subgroup generated by all compositions $™ —-NA¥ X84 2 < ¢ < 4,

where w' is any t-fold Whitehead-product of the identity ly 4.

This result is proved in (3.7) [5]. Next we consider the connected sum of Poincaré-complexes. Let
My =XAUye™ and M; = EB U, e™ be both (n — 1)-connected Poincaré-complexes of dimension
m < 3n. Then the connecled sum is given by

M = My#M, = (SAVEB) Ui, ping ™ .

[lere ia (resp. ig) is the inclusion of £A (resp. £8) into EA V X8, With these notations we get

(4.4) Theorem: Assume M is S-reducible and m < 3n — 2, then one has an isomorphism
E(MIM) = E(Mo|810)/V @ E(M|M)
Here V is the image of the homomorphisin
(S29)": D[£2B,84) — S(,L4) = E(Mo|My)

which carries an element £€ to the composition (£€) o (¥2g).

This theorem is a consequence of the following more intricate result in which we also deal with
the delicate dimensions m = 3n — 2 and m = 3n - 1.

(4.5) Theorem: Let m < 3n and let Adg be ¥-reducible. Moreover assume that the attaching
map [ of My satisfies condition (%) in (4.2). Then one has an isormorphism

E(MIM) = (E(Mo|Mo)® W(A, B))/V @ E(M|M,) .

Here W(A, B) is the direct sum of homotopy groups
W(A,B) = Y(M,.EAAB) @ I, SAABADB @ I, EAABABAD
and V is the subgroup generated by the following clements where we identify
(ILaSA)W = E(Mo|My)

as in (4.3):

(a) STh(E)AA) o B¥ya[ + Tara(126i AA) 0 Evaf

(8) &110Sg+ (&1 AB) o Sy,

(¢) S 0L+ (E5,AB)o Syag + (€5 ABAB) 0 Lyag
(d) {€oXg} + S(ELAB) o S2yag + (E§ABAB) 0 X3y .
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Here the curly bracket denotes the coset modulo W and £ € [£24,¥B], €&} € [E*B, 4],
£}, €[E°B,LAAB], &, € [E°B,SAABABI.

We shall use this result for the computation of S(MM.I) in case M is a simply-connected 5-
dimensional manifold. The proof of (4.4) and (4.5) is based on similar idears as the proof of (4.3)
in (3.7) [5]). Moreover we shall use notation and facts from the proof of (3.7) {5] in the following
proofs.

Proof of (4.4): Since m < 3n—2 we sce that all triple products in (4.5) vanish and W(A, B) =
El,,EAAB. Moreover V in (4.5) is generated by the following elements.

(a) ETu(E8AA) 0 Sy f
(c) E&,oX%g

(d) {€doSg}+ S(EAAB) o vy

As in diagram (3.7)(1) [5] we can identify ux and Tgy so that by (a) cach element of W(A, B) is
in V. This implies by (d) that

(::(MOWO) o W(A, 13)) IV = E(Mo|Mo)/(S29) T[S2B, £A4]

/1]

Proof of {4.5): We use the computation of S(;\JM.{) in (2.2) [5]). For this we can decompose
I,,(£A vV £B) by the Hilton-Milnor-formula. This leads to the following direct, smmands, which
are embedded by iterated Whitehead-products as indicated in the notation.

N (EAVEB) = (ia).NnEA @ (ip).11,EB (n)
@® [ia,ipl. N, SAAB (2)
@ (4, ip),ipl I, SAABAD (3)
® (lia,iB],1a)allnSAABAA (4)
& [[[ia.i8],78],iB)« I SAABABAB (5)
@ [llia,in) ip),ial-InEAABABAA (6)
& [[[fa,iB]iial,ia]l-ImEAABAAAA  (T)

The retractions r4 and rp of £2(AV B) onto 24 and £2 B respectively induce the isomorphism
(rfh T'B)‘

(8) [S2(AVB),L(AVB)] = [S°A4,5(A4VE)]®[L*B,S(AV B)

The right hand side has the following direct sum decomposition, where weset € = 0incase X = A
and € = 1 in case X = B.

[N, S(AV B)] = (ig).[S%X,24] 36 (9)
(ip)«[S2X,SB) 3¢ (10)
fi4,i5).[D2X, SAAB] 266 (1)

[{iA,iy],‘iB].[sz\’, BA/\B/\B] 965“ (12)
[[iA,iij],iA].[Ez \',EA/\B/\A] EX3I (13)

D D D D
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Thus we have 10 direcl. summands of (8). These yield the following 10 equations which describe
the subgroup ImV(is f +ipg) of J. In the notation on the right hand side we refer to the direct
summands in (1)...(7) and here we omit the embeddings given by iterated Whitehead-products.

V(iabsra) = 16Ty € (1) (14)
+ (EgAB)Ly2g €(2)
+ Tiaa(71265 AB)E72g €(4)
+ (&ABAB)Evag €(3)
V(ig€irg) = ip€iZTy € (1) (15)
+ [l 1)(E]AB)Ly2g €(1)
+ ip[[1, 1], 1)T132(v2€1 A B)Evay e (1)
+ ip[[1,1], NEIABAB)Syag e (1)
V{([ia.iB)é0iB) = &, 5¢ €(2) (16)
+ (E1AB)Ey2g9 €(3)
+ (£01ABAB)Zysg € (5)
V{{[ia, i) iBlé61iB) = €511 59 €(3) (17)
+ (&1 AB)EY2g € (5)
V([[ia,ip) iadesior) = &51089¢ € (4) (18)
+ (s, 1san]T3a12(6510A B)E729) € (2)
+  Ti243(910A B) 5729 € (6)
V(iabfra) = iall, 1)(E3AA)EYa S el (19)
+ ia[[1, 1], JTas( 7260 AA)E Y S € (1)
+ iallL 1], 1(EBAAAA)Eys f € (1)
V(ip€ira) = (=Tu({{AA)Sy2)) €(2) (20)
+  (—Ta12(726) AAYSy2f) € (3)
+  (~T2s(EAAANA)EysS) € (4)
V([ia,iBl€GiTa) = (EHAA)EYS € (4) (21)
4+ (EHQNANA)EysS e(n)
V(l{ia. i), iBlEQLTa) = (S0 AA)EY2S € (6) (22)
Vllia,in)ial&810ma) = (E810AA)EY2S € (7) (23)

The equations (14)...(23) are obtained by computing the left hand side via the formula for V(£)
in (4.1) where we set V = V(1,i4f + 7pg). For this we use the distributivity laws for Whitehead-
products as in (3.7) [6]. Moreover in (18) we use the Jacobi identity and in (20) we use the
antisymmetry of Whitehead-products,

The subgroup Im(isf + igg). of 7 is generated by

(i,«‘.f + iBg)nxT]'m-l = ??Af’fm—l + iBg’fm—l S (1) (24)

Thus the subgroup 7 is generated by all elements (14)...(24).
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The proposition in {4.5) is equivalent to the equation

J = iadm,+indu, C (1)
. v c Moo o) -
+ v C (2)
+ (@)+(6)+(7)

Here the right hand side denotes a sum of subgroups of I1,,,(£A VEB) in (1). We set
V' = kernel {E: 1, (SAAB) — Mg (S2AA B)}

and the group V' is generated by all elements (), (), (¢), (d) in (4.5) where we omit the curly
brackets for the left hand term of (d).

We first. consider the inclusion C for the equation in (25). For this we observe that (14) corre-
sponds to (d) so that (14) € V' + i, W + V" + (4) where W = Ty, see (3.7)[5] with condition
(¥) for f. Moreover (15) € igJas, by definition of Jar,. Now (16) corresponds to (c) so that
(16) € V/+V". The element (17) corresponds to (b} so that (17) € V'. Clearly (18) € (4)+V"+(6).
Next (19) € i47as, by definition of Jaz, since Ef~0. The element (20) corresponds to (a) in V' so
that (20) € V' + V" + (4). Clearly (20),(21),(23) € ()& (6) & (7). Finally (24) € ia T, +inT,
by definition of Jar, and Jay,.

The proof of the inclusion D for (25) is more complicated. Using duality as in (3.7)[5] we see
that (6) C J and (7) C J by (22) and (23) respectively. Now (21) shows {4) C J again by a
duality argument. Since the elements (18)(2) generate V' we see by (18) that also V¥ C 7. Since
W = ImV(1, f) by (3.7)[5} and condition (*) for f we see by (19) that isTar, = iaW C J. Next
we see by (24) and (14) that igJsy, C J. llere we observe that the first summand of (24) is an
clement in 14747, which we have seen to be a subgroup of J. By (14),(16),(17) and (20) we see
V' c J. For this we use the inclusions (4) C J and V" C J which we already have seen to be

true. ///
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83 The normal form of a simply connected
5-dimensional Poincaré complex.

For our explicit computations below we need the normal form of a 1-connected 5-dimensional
Poincaré complex as described by Stocker in §10 of [16]. We use the following notation. For a
natural number n let P, = S U, e? be the pseudo-projective plane. Then pitl = pa-lp =
M(Z,,d) is a Moore space of the cyclic group Z, = Z/nZZ. For n = oo we set Zo, = Z and
Py =.5" so that £91 P, = M(Z,d) = S% is a spherc. We write C' = (Z,)2 = Zn2 if C is
a cyclic group of order n with generator £ € C. If the abelian group A is a direct sum of cyclic
groups (ny,...,n, < o)

(5.1) { A = (Zy))x1 & ... ®(Za )z, ,then

Py = P V...VP,,
is the corresponding one point union of pseudo projective planes. Then the (d — 1)-fold suspension
(1) M(Ad) = T¥lp,

is the "normal form” of the Moore space M (A, d). The generator z; of A yields the corresponding
inclusion of Moore spaces

(2) riw M(Z,.,d) = £'p.. c TPy = M(A,d)
We denote the inclusion of a bottom sphere by 7 and a pinch map by ¢. [n particular we have

| = o P — s
and for a smash product P, AP, we use
(4) i = iﬂ'll = E(iu Aim): Sa C EPHAPTH

As introduced by Toda {17] we have the Hopf maps 1, = £°7Zpy € [1,415", n > 2, and the
iterated Hopf maps 5t with 5\ = », and 95 = pt=ln 1. Moreover i, € 1,5 is given hy
the identity of S”. We have 1135 F, = Z(na 2n)in2 where (n,m) is the greatest common divisor.
Moreover we describe in (§6) elements &, and &, such that for finite n, m:

-2 (Z4) &2 (262 = ind) forn=2
N4(EP) = A Z2)€ & () in for n=2">1
0 for n odd
(Z4)En (2800 = ingg) forn=m=2
Na(SPaAPR) = R (Zn* Zr)bnm ® (H2)ing forn=2 m=2 i+j>2
(Zn % i )nm for n or m odd

Using the elements &, £,y we describe in the following list all basic 1-connected 5-dimensional
Poincaré complexes M. They are all indecomposable exept Xz with Xo = N_1#N_. The

generators y, i of HaM @ HzM denote also the corresponding inclusions of Moore spaces into M,
see (5.1)(2). Let far = f be the attaching map of M = M Uy €.
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(5.3)

M M fa HoM HaM
Moo Sty s v, v') Zy Zy
Neo S5*v§? [, /] + ¥/ Zy . &Y
M, Sy g3 (v, /] + yn3 Zy Zy
X AL 73] Zry,y=y 0

q=p', M, P, VIP, W v'€qq Zy®Zy 0
¢=2' X, LR VEPR (v, ¥')€qq + ¥4 Zey® Z gy 0
1=, X/ SP,VEP, [0, 7'1€0e + W(E, + 112) Ty ® Aoy 0
g=2 M] TP, VIP, v, ¥1Eqe + yini Zy® Zgy 0

Here p is a prime. By the classification theorem of Stocker [16] the following is a complete hist of
homotopy types of simply connected 5-dimensional Poncaré complexes M. Let ¢ = 2° and t = %
be powers of 2 or oo,

n P

() X_\#P

(111 XNo#P for2< ¢ <00
(5.4) (IV) Mo#P for2< ¢ <o

(V) No1#M#P for2<¢ <o

(V1) Ne#M#P for2<¢,t < o0

(VIIy  X#P for2< ¢ <o

Here P = Meo# .. #M#My # .. #M, (s times M) with prime powers py,...,p, and
7,5 >0 (Gfr=s =0, then P = §%). We call (5.4) the normal form of Af. According to (5.4)
the manifold M is of the form M = My#M)# ... # My where we have Moy = X.. in case
(I11), (V) and Mgy = S® otherwise. Morcover My, ..., M) are basic Poincaré complexes as
described in (5.3). The homology H2M & HaM has the basis zg, 21, ..., &g in case (/1), (V) and
xy,..., 2o otherwise. Here yo = yy = o is a basis of HyMgy and {yi = 291, ¥ = 224} s a
basis of HaMy @ HaMyy for i > 1. As abovée the basis elements y;, y as well denote inclusions
of Moore spaces. The attaching map

(5.5) f=fa: S — M(H.M2) v M(HsM,3) = M

for M = M Uy €5 is by (5.3) of the form

k
fmy = SM-}-Z[Ui,yﬁ]E(y.’)

i=1

Here we set £ = 14 if the order of y is infinite and we set §) = €44 if the order of y is ¢ < co.
Moreover we have by (5.3) and (5.4) the following values of 1
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(1) 0

(1) yola

(11  néy for ¢ < o0 Y13 for ¢ = 0o
(1V)  wpin

(V) yoba+ying

(VI)  wé;+yind forg<oco Yins +y2in? forq =00
(Vi) (& +in3)

The Stocker invariant (A, b,w,e) of M in (5.4) is given as follows. Clearly 4 = HoM is the
abelian group with generators =z € {o,..., T2} with {z| = 2 as above. Moreover the only non
trivial values of b on generators are b{y;, yi) = 1/q where ¢ < oo is the order of y;. The only non
trivial value of w: A — 77, on generators is w(yo) = 1 for (II), (V) and w(y;) = 1| for (JI]),
(VI) and (VII}) and moreover for (/17), (VI) w(y]) = 1if ¢ = co. Finally we get e € A @ Z 4
by e = y1 ®1 for (IV), (V), (VII) and e = ya ® 1 for (VI), moreover ¢ = 0 otherwise. Thus e
corresponds exactly to the summand #Z in (1),...,(V11). Hence we have e(M) = 0 and wo(M) =0
if and only if Af = P. This shows

(5.6) Lemma: A l-connected 5-dimensional Poincaré complex Af is E-reducible if and only
if e(M) =0 and wo(AM) = 0.
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§6 Realizability of homology isomorphisms.

Let again M be a simply connected 5-dimensional Poincaré complex and M its 3 skeleton.
Moreover let A = HaM and D' = A/TorA. We will now construct the isomorphism Ho: H, E(M) 2
Aut(A, £b,w, e) stated in theorem (3.3). For this we consider the following commutative diagram
of groups.
(6.1)

x

EM, 1) H.E(M) 2 Aut(A, b,w,e)

1.‘ IJ' A
H3(M,TA) A EM) x AwZ 5> Aut(4) x Aut(D') x AutZ

We obtain this diagram from (3.7)(12) if we can show the commutativity of the triangle. Every
element in H.E(M) is given by a triple of isomorphisms (uz, us, us), v; € Aul(H; M), for which we
have ug = (u2|D’')" is the adjoint automorphism of u; restricted to D'. We may define (u,£) =
(u, (1| D")*,€) and get ¥ o Hy = j. This also shows the injectivity of /{5 since j is injective. We
remark that the map #’ is surjective and the bottom row is exact.

To prove surjectivity of /2 we will choose a splitting o for 7 in (6.1} and obatin elements

op(u,g). Now we are free to choose an element § = é(u,e) € HS(A.fl, I'A) to construct (u, &) =
((17)(8))-o4(u,€) for which we also have 7(¥, &) = ¥(u, €). If we can do this choice in a way that
U, far = £fas holds for the attaching map fas of A, then (%, ¢) is in the image of i and hence we
obtain an element mapping to (u,e) by Hanm'.

In order to make these choices and computations explicit we will use the basis of A and the

normal form of Af defined in (5.4) and (5.5).

(6.2) The choice of generators in the fourth homotopy group of Moore spaces.
We fix the generators in the fourth homotopy group. For this we need the canonical splitting
function

(6.3) B Hom(Zn,Z,) —— [EP,,EP]

defined in [8] (4.4) which maps each homomorphism ¢ to the suspension of a principal map which
induces » in homology. This way we obtain for the canonical generators 7' € Hom(Z,, Z,) the
suspensions A" = Ba(x]') € [EP,, 2.

. . . in
For £P, we have the inclusions of the bottom sphere and the pinch map, such that §? <
q .
TP,— 5% is a cofiber sequence.

(6.4)  Definition: Let n3 € 114S% and 53 € 1145? be the (iterated resp. suspended) Hopf
maps. We set

(1) e = inla 4P,
(2) €nm = (in#im)ys € M4EP, AP, Moreover we choose a generator
(3) & € [ PRI EN = 74 and define
& = (V)& By use of the James-Hopf invariant let
(4) &2 = 72(€2)
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and we require for a generator £, € 4P, AP,

(5) (AT#AX)lnm = 0 for(n,m)#(2,2)
h('fnm) = Enm

Here h: N4 X P APy — H4X Py APy, i1s the Hurewigz map and E,,m € Xy ¥ Ly 1s the
canonical generator. '

(6.5) Definition: Let A = Z,(z) and B = Z,,(y) be cyclic groups with fixed generators
z and y respectively and let ¢ € Hom(A, B). We choose a number N(p) which satisfies
@(z) = N(p)y and let N(p) be the unique number with 0 < N(p) < m and p(z) =
N(p)y. Moreover we define M(p) by nN(p) = mM(p). For example Z,, Zy ® Zm,
L * Zm = Hom(Z,,, Z,,) are cyclic groups with canonically fixed generators.

(6.6) With these coefficients we can write the following rules for ¢} € Hom(Z,,Z,), ¢7* €
Hom(Zm, Z,).

(1) Y2(€n) = €nn
72(§n) = %Enn
(2) To1€nm = €mn
T916nm = Emn
(3) [1, 1]enn =0
(1, Jénn = 0
(4) Ba(¢))en = N(pmem
B (o )én = Mg )M(ep)em
(5) (o + B)én = aby+ o — [0, 8)36nn + [0, 8], B % innn, @, 8 € [EP,, U]

(6) (Bz(@7)# B2t ))enm = N{(TIN (47 )er,
(Balpr)# B2 (W7 Nenm = N(o] # 97 )rs

(7) [, 51 + B2)énm = [, Bilénm + [@, Bo)bnm + tam, « € [EP, U], B1, B2 € [EPy, U]
o { e, B1), Balinmm n=m=2
S else
[0’1 + a’z,ﬁ]fnm = [a’lsﬂ]fnm + [‘Iz,ﬁlfnm “+ L:nn: ey, 0 € [EPm U],,B € [EPms U]
g { Blla1, 8], aslinmn n=m= 92
nm 0 else

The map T2, denotes the suspended interchange map Ty = ¥74,: ZAAB — TBAA. Moreover
for maps f: ©A — TA’, g: B — Y B’ between suspensions we define their smash product f#g to
be the composition
IAB
i

Ts T3y
= -ty

SAAB LA'AB EBAA »a, B AA CA'AB

Let A = €P; Za,(zi) and B = @j Zs;(y;) be finitely generated abelian groups with basis
{z1,-.,zp}and {y1,...,y-} and let p = ((p; )i,j € Hom(A, B) be a homomorphism. Then we may
use the mapping By in (6.3) to construct a map sp between Moore spaces in ”normal form” (cf.

(5.1)(1)).
sp: M(A2) = V,SP, — M(B,2) = VTP,

6.7 i
(6.7 where (sp)(z;}) = Ef ¥ Ba(¥})
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is the ordered sum, this is, the order of the summands is taken according to the increasing j. Here
z; is the inclusion z;: BP,; — M{A,2) and y;: Py, — M(B,2}. This way s is a splitting for H3

in [M(A4,2),M(B,2)] LN Hom(A, B), the function s however is no homomorphism.
s

Observe that for free groups [, E’ there is a canonical isomorphism s’
[M(D,3), M(E",3)] = Hom(D', E')
l’f

Now we can define the function o in (6.1) to be

o Aut(A) x Aut(D) x Aut(Z) — 8(1";1') x Anl(7Z)

(6.8) o(u,v,6) = ((su)V(s'v),¢)

Remember that we have S(M) C [M(A,2)v M(D',3), M(A,2) v M(DY,3)], see (3.7) (1),(3).

Let u € Aut(A) be an automorphism of A and (su) € E(M) its realization. For the generators
of the fourth homotopy group l14M(A,2) arising in the attaching map fas of M defined in (5.5)
we obtain the following laws of composition.

(6.9)(1) (swawing = Y N(@yni + Y NN, ol
i r<s
(2) (su)eyibn, = Z M (ui)M (ud)yeE,,
> S (N (), o)
+o(ni=2) > N(uh)N ()N (wd)[vs, vel, yeles
agit<k
(su), {yi; yi‘]eu.',n.' = Z ((N(u: * “i') - j-v-("i * u::'l)) [yr; ya]fn,.n,)
r<a
(3) +o(n =2 3 NN ()l va), wdes
rat
+ o(ni = 2°) ; 5 NN N () e, ), s

Here we used the mapping p from the set of logical expressions to {0,1} C Z, which is defined to
be 1 iff the expression is true, to simphfy notation.

Next we describe the composition laws necessary to compute ((11)(8)).. From (3.8)(3) we
obtain (17)(6) = (14 6¢) where 6 = 5.6 € (M(Ca D', 3), M(A,2)]=(CO®D)® II3M(A 2) and
M—»M((’ ® D', 3) is the pinch map (3.8)(2). Since ¢ pinches the 2-skeleton of M toa point,
ev.ery map which can be retracted to the 2-skeleton becomes trivial when composed with ¢. The
analogous result is true if we deal with smash products of 147 and q. Hence (14 8g)eer = o for

every generator a of I'Im.l other than in the following list. .
(6.10)(1) (1+8¢)eyins = wims+ i

(2) (L+6q)[ti pir)ea = [miyilat [ye, 6- Jta

(3) (1 + 5‘1)—‘!!:‘&..— = thn. + 6 N3 + [yné ]‘4

(4) (l +6Q)-[yi:y8"]£n.~n; = [yi:yi’]fnm.' + [611.}': ]L‘! + [yi;‘si’]fdi
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For a list of generators see (§5), for these composition laws see [8].

(6.11) We are now ready to prove theorem (3.3).

By (6.1) we have to find au element (u, &) = (1 + 8(x,€)).op(u,e) for which W far = efar is
true. By now we have choosen a splitting o, see {6.8), we will now choose a suitable §(u,€) in the
following computations.

We only deal with the case that M is a manifold with trivial Stiefel-Whitney class and finite
HaM = A; the other cases can be treated in a similar way giving an explicit choice of §(u,¢). By
(5.5) the attaching map far is of the form

(1) Ju = Z[ys,y-"]ﬁn.»n.-

Using (6.9}(3) we get an expression for (su). far. By assumption u € Aut(A) preserves the linking
form b up to the sigh €. Since this linking form is induced by fas we can conclude that

Z z N(u * u‘ )— N ( ‘ * ur ))[yl‘rJa]fn,-n. = ¢ Z ’\‘.(“)[yia Ui']‘fnm.‘,

i r<s

with a suitable sign A*(u) € {+1,—1} C Z. This sign may be —1 only if n; = ny» = 2 since this is
the only case where the Hurewigz map A in (6.4)(5) has no splitting. Then the order of &y, is 4
while the order |z;| = jzi/| = 2. We define

(2) §(ue) = {%WW—WhWM'WAUU=—
0 else
With this §(xu,£) we get in case A (u) = —1 using (6.10)(4)
(L+ 68 (e fviwioléon = [y, wirl€on + [yine, wird = [, [wi, )]

(i, yirléaz — [we, waoloms — (lwer, )y i) + Lwirs i), )
—[vi, yir)€22 , with 2890 = iaan3, see (5.2)

Hence we have the suitable sign.

Now regard the summands with generator [[y-, y.], ¢] we obtained from (6.9)(3). Since they have
the order ged(n,, n,,n;) they are at most nontrivial with these coellicients if we have n, = n, =
n, = n; and then Z[[y., v,], ye] has order 2. We define

i n; ; i’ i . ok
A( ' t)ho = S NENGONW) = n = =n=2

and zero otherwtse. Let

N

3) 5,{'3"(11) 71 ) (@) [yr, yslqe ifs<it, r#s

t

D
TN
o ™

Brole) = A(i

™

;)umhwhy itr<t, r#s

and zero otherwise and let

8(u, ) 26' (u,€) + Z 5“ ) + Z 6” 1)

r.e<t s.r<id
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With this 6(u, ) we get
(4) (I+é(ue))tfyy = efm
Here the & defined in (3) compensate for the arising generators [[y, y,], #:] sec (6.10)(4), and we

can assure the sign € via the choice of é in (2). This completes the proof of theorem (3.3) in our
case, the other cases can be computed similarly. 1774
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87 Computation of £(M|M).

In this section we compute explicit results on the groups 5(114]1\71) where A is a simply connected
5-dimensional Poincaré complex. The results arc achieved using the theorems of (§4) and rely
heavily on the complete knowledge of the fifth homotopy group of Moore spaces in degree 2 and
on certain homotopy groups of maps between Moore spaces. Moreover we will need the generators
and their composition laws in a certain range of dimensions.

Let P, = S' U, €2, 0 < n < 00, be the pseudo projective plane, see (§5). With the notation of
(§6) we obtain

(7.1) Theorem:

NP, =
R (Z2)E®(Z2)7 & (Z2)C (e=0) yforn =12
( (Z2)EB (Z2)yD (Zn)C B (Za)e Jorn =2 >4
(Z3n)C (€=y=c=0) ,forn=3>3
(Zn)¢ (E=y=e=0) ,forn=p" pprime #2,3

Here € = ennq = innd, € = &nna, v = [1, 1](in#&n) and ¢ = (, is an element choosen with

ggt(3,n) ¢ = [[1, 1], 1(in#nn)-

Let n > m:

HsXP AP, =

@ (ZNEB(Za)y (e=0) , for (n,m):('Z,.'Z)
(ZEo )y (v=e) or (mm) = (2 >4,2)
(Z2)EDR(Z2)y D (sa)e for (n,m) = (28 > 4,2 > 4)
0 (E=v=¢=0) ,fornormodd

Here ¢ = Enmila = ('in#im)ng: E = En#imy 7= i"#gm‘

Let n > m > r and let g = ged(n,m, ).

s EPAPRAP, =

(Z)EB(Z2)y ,(e=0) [ for(n,m,»)=1(2,2,2)
(3) (Z)E B (Za)y A2y =¢) for (n,m,r) = (20 >4,2,2)
(ZNEB(Z )y (Z2)E Jor (n,m,r) = (28 > 4,2 > 4,2F > 2)
(Zg)ED () {e=0) ,fornormorrodd

Here € = (in#im#ir)’]lh € =Enm#ir, v = in#tnr.
Moreover we have the relations

n m

(4) 0 = &imm+t (in#ém) + (Em#tin) + o(m =n=4)eamm

ged(n, m) ged(n,m)
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(5) 0 = H(rn,m)(Eam#ir) — Hin, v, m)(in#bme) + H(im, n, ) a2(Enr #im)

n-ged(n,m,r)

ith H =
with (n) m, r) gcd(ﬂ, ,n) . .(’C(l(ﬂ, 7')

Proof: These homotopy groups can be computed using the ENP-Sequence in its extended
form, see [7]. The generators are constructed using the generators of the fourth homotopy groups

fixed in (§6). /1!

Let again P, be a psendo projective plane, let 2%27 2! be finite numbers. Then we have

(7.2) Theorem:

(Z2) D (Za)y (e =0) Jfor (k,n)=1(2,2)
(Ze @ (Z)EB(Z )y Jfor (k,n) = (20 > 2,27 > 4)
(1) [P, SR = (ZOE® Ty (e=2%)  for (k)= (2 24,2)
(Z2)e (E=v=0) ,for (k,n)=(2">2,0c0)
(%) (E=c=0) el

Here Z, = Hom(Zy,'Z,) and the generators are ¢ = e,¢ = inysq, £ = &uq and v = ¥X
defined in [8]. Again g is the pinch map in the cofiber sequence §tlnwp, .83 The group (1)
is embeded in the exact sequence

Ext(Z, 4 Pp) »— [EQF‘k,SPn] —» Hom(Z, TZ,)

(2)
[E2P, EP AP, =
(Z2)E® (Z2)y (e =0) ,(kymym) =(2,2,2)
(Z2)ED (Za)y (e =29) ,(kynym) = (2,28 > 4,2),(2,2,27 > 4)
(Z4)e® (Z2)y (e = 26) Jkynym) = (20 >4,2,2)
(Z2)e D (Z)ED(Za)y Jkyn,m)=(202>2,20> 2,9 >2)
at. most one index equal 2
(Z2Ded(Za)y (€=0) Sk n,m)= (292> 2,20 > 2,00) or (28 > 2,00,% > 2)
at most one index equal 2
(Z9)e E=n=0) ,(k,n,m) = (2" > 2,00,00)
(Z4)y (E=0,e=2n) ,(kn,m)=(2,2 ),(2 00,2)
~ (Z D (Za)y (e=0) , else

Here Z. = Ext(Zy, Zn* #m), Zg=Hom(Zy, Zn ® Z ) and the generators are € = gamg =
(in#tim)naq, € = Enmyq and = nﬁm. We set

3) g s it ged(nm)
nm _(, 121)‘7)::’1" lf m __/: ng(Tl,'ITI)
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where the X% are defined in (6.3).

(7.3) Lemma: The generator v € [E2P,,EPR,], k < oo defined in [8] has the James-Hopf
mvariant

72(7!&) = :ﬂm ;‘;n - Eﬂ"q y §= ng(nzaznyk)'
We get for k < 0

(1 ‘7‘,’2 oY, = i,,?%qz
(@) FoSE = E(L1)Entkin)
(3) (711/\1 )° S = %(in#fk) + AniEnkNa

L (k) =(4,2),(4,4),(4,8)
with Aye. =< 0,1, (n, k) =(2
0 , else
In case k = oo we define y* = i,12, this is the generator of (2P, £/7,] = [S%, SR,
Then we have

,4) unknown

(1) 'yﬁ o Xy = into
Observe that 27" =1 for n even, [inite.

Proof: The composition laws can be proved using [8] as done in [9]. 11/

We are now ready to prove theorems on 5(1‘\‘!|1\.J).

(7.4) Theorem: Let A be a X-reducible 1-connected 5-dimensional Poincaré complex and
let B = HaAM. Then

EWMIN) = (B+Z)® (B+Zs) @ ((B/TorB)@ Z:) & ((B/B « Z2)® )

As a quotient 8(1\4’|A.1) = ﬂg,}'\tl/J is generated by equivalence classes of the elements
Yi€nna, ¥iCn, Yin3 and yii,73. Here we use the generators defined in (7.1)(1) and the
inclusions y;: P, — M, yb: $2 — M of (5.3).

Proof: By (5.6) and (5.5) we have a normal form for M = M Uy e® where M = M* is a
one point union of suspended pseudo projective spaces and of spheres. Hence we may use the
Hilton-Milnor theorem to decompose lIs M into a direct sum of groups. It is

H5AT! o @(y;).nsEP,,,. ® @(y:-).ﬂsSa @ ... higher order terms
{67 lEjO

in the notation of (7.6)(1) helow. Supposed we can show condition (*) in (4.2) then we get. the result
from theorem (4.3). This is since all higher order terms contain Whitchead products. Moreover
observe that the generators [, 1(Zn#tEn), ([1,1], 1)(in#ténn) as given in (7.1)(1) of a summand
(). IsEP,, C |15M also contain Whitchead products and hence vanish in S(MM/I) Therefore
only the generators of type .74, inn3, i3 and ¢, with n = 3' > 3 remain as representatives of
nontrivial equivalence classes. Observe that B/TorB 2 HaM and that (B/BxZ4)® Z+ is in the
cokernel of dy in (1.18). We will show condition (*) in the succeding lemma. /]
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(7.5) Lemma: For the attaching map f: $* — XA of an 1-connected 5-dimensional Poincaré
complex M = A Uy e® condition (x) of (4.2) holds.

Proof: Let J = kernel[l, 1], + kernelE + linTyg 1 with the maps defined in (4.2). We have to
show that [1sXAAA C J holds. By the proof of (3.7)[5] we get for any connected finite CW-complex
A a comumutative diagram

[Z2A,EX] =23 I15TNAA

> ¥
(1) (T4A, 23X ML X ALA

{SA, X} =5 {S°,XALA)

Here Tisx(€) = (EAla) o (Ev2f) and ux is its stabilization. Since f is the attaching map of a
Poincaré complex ux is an isomorphism, see (2.4) [5]. Moreover il X is simply connected then
Uy x is an isomorphism. From the normal form (5.5) we know that we can take £A4 as an one point
union of Moore spaces of cyclic groups in dimension 2 and 3. Hence we may decompose 1IsEAAA
using the Hilton-Milnor theorem, and obtain

(2) MsXAAA = (D (ni#y)-MsEPu APy @ (P (wi#tyy ) IsEPa AS?
ijeT e,
& B (wdty)LES* AP, & B (verdty;)1sS°
€0 ijeETO
1€T

@ higher order terms

in the notation of (7.6}(1) below. Since the higher order terms of the decomposition lie in the kernel
of L. IsZAAA — [IgEAAZA they are contained in J. If we take EX to be a Moore space in
dimension 3 then X is simply connected and hence Ty x is surjective, thus we have [I;ENAA C J.
Since any element SuAv € 1l S AAA is equivalent to YvAu modulo the kernel of [1,1].: s ¥AAA —
NsEA we may conclude that also IlsZTAA XN C 1zEAAA is contained in J. The remaining
generators of lls£AA A we have not found to be in J yet are of the form (yi#ty;)(in, #in,; )03,
(it y;) En, #in, ), (Uidty; )in #En,), see (7.1)(2). TFrom these (yi#y;)(En,#in;) is equivalent to
{yj #yi)(in;#€n;) modulo the kernel of [1, 1].. Hence let ¢ be the subgroup of IIs£AAA generated
by (yi#ty; ) in #in, 03, (idty; ) Eni#tin,), i,7 € T, then 1IGEAAA C J + G by the arguments
above.

We may decompose [C2A, ¥ A] using the Hilton-Milnor theorem. Let H be the subgroup
@iey[EQA,EP,,..]C[EQA,EA] generated by the elements yidn, 3¢5, vinigrs, i € J, j € J,
where r; is the projection to a component of X A. Since the elements in /{ and G are stable
under suspension and since these groups are finite Uy 4|H — ¢ is an isomorphism by (1). Hence

G C Imug,y CJ and we have shown MsEAANA C J. 11/
(7.6) Theorem: Let M be a non E-reducible l-connected manifold of dimension 5. Then

M has the normal form M = X # P wher P is X-reducible and X, has nontrivial Stiefel-
Whitney class. Let B = Ho/P, then

EMIND) = (B x Za)(yinin) ® (B * Z3)(idn;) © ((B/TorB) @ Zs) (ywinf)

& B, ® E(NN,)
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(B/B+Z2)® Z2 ([Yu, ¥il€2n:74) forg=ocoorg=2">8
with By = (B/B* Z4)® Z4 ([yo, yi](€2#n,)) forg=~1,2
(B/B*Z3s)® Z2 ([, ile2n,na)  forg=4

The elements we gave in the brackets determine the type of elements representing the equivalence
classes which generate E(M|M) = lTgM /J. The notation is defined in the proof.

Proof: From (5.4) we obtain the normal form M = N,#P. Let P = TA U; e® and X, =
Y B U, e We define, using the notation of (5.4), the index sets

JO = {l,...s}x{0} c J

(1) Jt = A{s+1,...,s+r}x {0} Cc T
Jt = {{edliegt)
7 = Jugtugt

which are subsets of 7 = {0,...,s+7} x {0,1}. For i = (¢,v) € J define i = (¢, 1 — »v). Moreover
we identify (¢,0) € J\ {0, v} with 20— 1 € {1,...,2k} and (¢, 1} € J with 2. € {0,...,2k},
k=s5+r,and (0,v) with 0 € {0,...,2k} which are the index sets of a basis of HaA & HaM, see
{5.4). We then obtain with n; equal p; of (5.4) for 7 € Jru j"' and n; =0 forie J0

HoP = P Zn)w, HP = P (Zn)yir

€T i€go

For the attaching map f of P we get

(2) f = z [yiryi']f'd + Z [yi)yi']&'n.‘n;
N A iegt
A = \/($'vS®) v\ (EP,VER)
ieJge iegt

We will write y; for y» and n for n; if the index is understood. The second James-Hopf invariant
of f may be computed using methods of {4], giving

(3) vof =3 (v — (U#tv))
i€Je
+ Z ((Ui#yz)fnn - (y:#yl)fnn)
e T+

We will now restrict our computations to the case X, = X_;. The remaining cases can be con-
puted analogous to what follows, but the arising groups are bigger and more complex.

We have X_; = SBU, €¢® with B = £P5, ¢ = y,&2 and P = SA U % Therefore we get
g i g
(4) Y9 = YywoLl, 720 = (YuHyw)lan and y39 = 0

compare (6.6).
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We will use Theorem (4.5) to get our result. llere we are in the night range of dimensions and
by Lemma (7.5) condition (x) holds for P. The following tables list the groups arising from (4.5)
in our case. Solet G = IEEA/W @ ENsCAAB @I EAABAB @ NIsEAABABAB. We have

(5) NsSAABABAB = ED(ui#tw#vuttyu) s SPaAPIAP2AP,
i€7
;EAABAB = (P(vi#vu#ye)TIsEPAPAP,
i€
® P (iHywHty).NsZP2AP:
iege
EMSAAB = (D S(wi#ve). S SPAP,
ied
® P S(yi#mw)EN: 53 P,
igJgo
MgEA/W = @(yl-)*ﬂsgpn/w'ea @(ys)'nss:s
i€ ieJo

Here W denotes the subgroup of elements containing Whitehead products. The groups on the
right hand side, as far as they are not listed in (7.1), are as follows ((n,2) = ged(n, 2)).

Hg,EPnAPgA PQ/\P'_! = (Z(,,'2))(i,;#i2#ig#f2)t5
“5.‘:3P2AP2 =3 (%2)23(1‘3#1:2)1.5
11553 P, o (Z;»)Egizm
553 = (Z2)n3
Moreover we have
(6) [S2B,SAABAB] = ED(ui#vu#u)s(ru) [S P, SPaA Py A PY]
ie7
[£?B,SAAB] = P(ti#yw)(rw) [E° P, SPAAP]
€T
& P wi#tm).(ru) [E P2, 52 P))
i€do
(£2B,24] = P(w)(r) [£2P, P
€T
& P W) () (E2P, S
ie e
224,58] = P). () [S P, £
K
& P (u)u(ri)’[S*,£P)
"JE:?O

Here r; is the retraction to the component ¢ such that r;y; = id. The groups on the right hand
side are listed in (7.2), resp. are as follows

[S2Py, SPaAP2AP] = (Z(n))intizdtiz)a

[£2P;, £3Py] = (Z1)(S%i2)g
[£2P,, 5% > (Za)nay
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The next step is to cvaluate the elements given in (4.5)(a)—(d) in our case. For this we will need
the composition laws given in (7.3), (6.6) and the following

(7) goXf, = 14
(q/\ NoXlnm = 5
(ghiAl)ows = 0

compare {6.10).
The subgroup V C G defined in (4.5) is in our case generated by the elements

(8)  TwiFtuw)S(in#iz)n3 + (vi#yw #yw)(in#izFiz)ng
(9)  E(yi#tyw)S(in#2) + (i Yo #Hyw M inF#E22)

(10) (1) n=2 —(yi# ywH#yw ) (i2#620)
(2) n=4 LY # v ) E(EaFtia) + Sy #yw) A2a S(ia#tiz)n}
Hyi# v Fyw) (Ean#iz) — (Vi#yo # v )3(ia#E20)
(3) n=8 E(yi# yw ) E(Es# i)

+(i #yw #yw ) (Ee2#ia) — (YiFyw#yu)2(is#E22)
(1) n=2"216 I(y#yw)S(Enttiz) + (Vi Hvuttve N En#tiz)
(5) n=oo0 Sy # v (P #ia)na + (Ui H#H e Fye ) (PH#iodti)is
(11)  (wi#tyu#yu )Endtiattiz)n + (v # v tyo #Fyw Y in iz # iadia)es
(12) E(yi#yw)v(in#ﬁ)’?g (Ui#yw#th)(in#iZ#i‘l)Uct
(13) Sty )S(B(in#E) + Eattiz) + Vit vo #Yw ) (Ena#tia)
(14)  S(yi#ye)S(En#E2) + (vidt o #yu ) (6 #E22)
(15) E(‘/L#yw) ( 3#‘?)’74 + (M#yw#yw)(fa#iz#ia)ts
(16)  {(w )Tﬂrb} + Sy # Y )N # )’?3
(17) {(zi)enna} + Slui#yw ) (En#ia)
(18)  {(vh)P®n3} + S(e#yw ) S(P#i2)04

with i € 7 and k € 7% These clements are obtained from (4.5) by setting &) equal yyianigr!,
Ywé2qrl, Yuysri for (8),(9) and (10). Morcover &), = (vi#tywHyw)EnFizttiz)gry for (11), &,
equal (4 #yw)(in#in)mere, (Uit )en2qru, (Ui#Ye N2 2w, (Vi F# v )(P#i2)gre for (12)- (15) and
£} equal y;inr)gqr'w, Yi€ngrew, ypnaqre for (16)-(18). The element obtained from (4. 5)(d) with
&5 = yivirw is trivial. For the necessary computations we used the relations (7.1)(4),(5), the
composition laws in (7.3) and those of (§6).

By use of these elements (8)—(18) the theorem can be shown easily (still in the case Xy = X_y).
The following computations are carried out in the group

(19) GIV = (n5 SA/W @ SIsSAAB @ 1IsSAABAB & []BEAABABAB)/V

where we write o = # il @ and 8 are equivalent modulo V. Observe that the clements (8) = (12),

(9) = (14) and (10)(5) = (15). We have
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(20) S(yidye) St = 25(vi#ve)S(ia#E2) with (7.1)(2)

(21)  (ri#ve#yoFtye ) H#aFati)e =  (H#veFoe)(Enfizdio)mn with (11)
= Dy )S(n#i2)03 with (12)
= 25(yi#ve)S(in#E2) with (20)
(22) (Ui#ye#yw)inHioftia)ne = 25(yi#yw)S(ia#E2) with (12), (20)
(23) (U #vo By )(PHia#i)s = S(y#ve)S(P#i)n with (15)
= {y.y2 with (18)
(24) S #)S(@#i)ns = {3} with (18)
(25) (B#veBye)(in#ln) = —D(ui#ye)S(in#E2) with (14)
(26) (vi#vw#yw)(Enattia) =  S(yidtye)S(3( n#Ez )+ Ea#tiz)  with (13)
= Sy )S(F(In#E) + {vilnna))  with (17)
(27) Syi#yw)S(En#in) = A{yilnma} with (17)
(28) {winnd} = 250ty )S(in#s) with (16), (20)

From (10) we derive in the different cases

(29) (1) n=2 0 = —(UiHywHye)(f29E22)
= E(yi#tyw)E(i2#€2) with (25)
2) n=+4 0 = A{yifama} + A Z(¥# v ) Siattia) g with (27)
+  D{yi#yw)25(ia#62) + {yi€ana) with (26)
+ (¥ #yw)3E(1a#E2) with (25)
= AoaD(yi#ve ) S(a#ia)ng + S(yi#ye ) D(ia#E)
T E(yi#yw ) E(1a#E2) with (20)
(3) n=28 0 =  Z(yi#yw)T2(isHé) with (25),(26), (27)

(4) n=2">16 trivial by use of (23)

We now derive our conclusion. Let J C G be the subgroup generated by the elements {yi€.14},
(v }, {4 Pm3), S(vi#tyw ) E(in#Es) where i e JTYU Tt ke T, n=2">2,r= 3% > 3. Hence

J X (H*Zy)® (H * Z3) & (H)Torll) @ Za) & (H @ Z4)

Let V' C J be the subgroup generated by the elements

{ E(yf‘-#:.‘;V'l.l.r)‘-‘(in:#E ) = 2,4
25 (yi#yw)S(in#E2) ,n=28

then J/V' = (HxZ)®(H*Z3)®(H/TorHY® Z ) ®((H/(H * Z4))® Z 4). Now the equations
(20) ...(28) define a retraction 3 : G—J C G, p|J = id by assigning to the generators on the left
the generators on the right hand side. The kernel of this map is generated by (8),(9),(11),...,(18)
and (7.1)(2). For the image ¥(V) C J we have ¢(V) = V', which is clear by inspection of the
relations (29) which are given by the image of the subgroup of V generated by (10). Hence passing
to the quotients we get a map

WGV
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which is an isomorphism. This is the result in case X', = N_j. /1]

We complete the computation of £(M|A) for l-connected 5-dimensional Poincaré complexes by
citing some theorems. These theorems are proved using (4.1) and (4.5) and the material in this

paragraph but they are still more complex. The complete prove can be found in [9].

(7.7)

Theorem: For the manifolds Xy defined in (5.3) the abelian group S(J\'qL\.'q) is given

by
o g=-1,00
ENN) = { Z.oz, g=2,4

Zo®Za®My qg=2"2>8

The generators are equivalence classes of the elements

Yul*3 forg=o00
Yuw [, 1)(E29tiz) for g = -1
Yull, 1)(E#iq), YyEqma forg=2">2
(v, Yol (g #ig )3 forg=2">8

given in the notation of (7.6).

Theorem (7.7) is a corollary of the more general

(7.8)

Theorem: Let N be asimply connected 5-dimensional Poincaré complex in the normal
form of (5.4) with P = 5°. Then we get for N of type [-VII of (5.4)

(0 ({)y (UV)g=o0; (VIl)g=t=00

Zy (I1); ({I)g=o00

2Z, (1)g=2,4; (IV)}g=2; (V}g=oco; (VI)t=o00Aq24);
(VI ¢gy=2vq¢>8

ENINY = 3%y (I)g>28 (IV)g>4; (Vig=2,4; (VI)i=ooAg=2);

(7.9)

(VIilg =1
A4Zy (VDHt 292 v =20 =) V(1 =2,4nqg=2)V (1 2 2Aq = )
5Z> (V)¢28 (VI)t<qg>8
(62, (V) (12 8Ag=2)

Here we have g = 2° ¢ = 27 finite unless otherwise stated and A, V denote logical operators.

Theorem: Let M = N }§ P be a simply connected 5-dimensional Poincaré complex in
the normal form of (5.4) where P is the E-reducible part and where N is as in theorem
(7.8). Let B = H,P, then

EM|M) = E(PIPy® B*(M) @ B(M) ® E(NIN)

with
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E(PIP) = (BxZ:)® (Bx#s) C  &P|P)

B(M) = { 0 (IV)g=00; (V)g=o0; (VI)t=c0
(B/TorB)® Zo  else
( 0 (IV)g=c0; (VD){t2¢24)V(t=00Ng24)V (t=g=00)

(B/BxZ)®Z> (I); (UIDg=o0ovqg28 (UV)y=2, (VIi)g=2,4,00
(B/B+Za)®@Zs (I1); (I11)g=2

B(M) = { (B/B+Z)®@Z2> (V); (VI)g=2

(B/B*Z3)®Zy (IV)g > 4

(B/DB+ Za) @ %y (IIDq=14, (VII)g>8

\ (B/B+Z)®Zy (VIg>1t; (V> 2Aq=00)

Here again ¢ = 2', ¢ = 27 finite unless otherwise stated. The cases concern the types of
M in the normal form of (5.4).

(7.10) Corollary: Let A be a simply connected Poincaré complex of dimension § with free
homology. Then we have

(HsM @ Z3) & kernel{w2(M)® 1) if M is a manilold

0 else

E(M|M) = {

Here we use the homomorphism wo(M)® |: HoM @ Zy — Z2 @ Zy with wa(M) €
H*(M; Z2) = Hom(HaM, Z ) beeing the second Stiefel-Whitney class. The complex M
is a manifold exactly if its exotic characteristic class e(Af) is trivial, see (5.5).
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