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A . Introduction .

In this chapter ve discuss some generalizations of Einstein metrics,

that is, a few classes of Riemannian manifolds characterized by tensorial
conditions, vhich are consequences of the Einstein metric equation. Among
such generalizations, we restrict our consideration to those which have
been studied in the differential geometric literature and can be illustrat-
ed by interesting examples.

Since the Einstein condition is an alpebraic linear equation on r ,
it is to some extent natural that we first consider linear differential
equations generalizing it. The simplest one is Dr = O , providing a local
characterization of products of Einstein manifolds. Its most immediate con-

sequences consist in turn in imposing on Dr the natural linear conditionms,

vhich correspond to vanishing of certain irreducible components of Dr

under the action of the orthogonal group. The bundle where Dr takes values
splits into 3 irreducible invariant subbundles, giving rise, besides Dr =0 ,
to 6 conditions of this type, presented (in dimensions n > 3) by the fol-

loving table :

known examples of compact manifolds of this

condition type, other than Einstein or locally pro-
duct ones
dr = 0, i.e., 1) Compact conformally flat manifolds with

r is a Codazzi tensor. constant scalar curvature '

Dr takes values in the in- 2) Compact quotients of (IR =M™ , dt2 +
variant subbundle denoted by S.| + fh/ B(¢).g) , vhere (M,g) is Einstein
Equivalent conditions : with scalar curvature u >0 and f is a
1) &R = 0 (harmonic curvature) positive solution of
2) Ifn2b: 6W=0 and con- a?t/at? - n(n-)7 a0 o o

stant scalar curvature with a constant ¢ < O

2(n-1)(n+2)D[r - (2n-2)-‘ug] - Compact quotients of (/R x M , dt2 +
= (n-2)au®¢g . + f.e(t)-z) , where (M,g) is Einstein
Dr is a section of the in- with scalar curvature u <O and f is a
variant subbundle denoted by Q.| positive solution -f




(This implies &W = Q)

alr/at? - 2(n-1)°'(n—2)"-§r3 = of
with a constant ¢ > 0O

(Dyr)(X,X) = O for all vectors X.
Dr
subbundle denoted by A. (This im
plies constant scalar curvature)

is a section of the invariant

1) Compact quotients of naturally reductive
‘homogeneous Riemannian manifolds
2) Nilmanifolds covered by the generalized
Heisenberg groups of A. Kaplan

afr - (2n-2)"'ug] = 0, i.e.,
r - (2n-2)-1ug is a Codazzi
tensor.
prec(QPs) .
Equivalent condition (if n 3 b):
W =0
(harmonic Weyl tensor)

1) Compact conformally flat manifolds

?) Compact manifolds locally isometric to
(H1 x M, , f‘(s1 x 82)) , where dim M =
=n 21, (Mi,gi) has scalar curvature
u,
i
a) (M1,51) of constant curvature, (Mz,g2

and either

Finstein with n1(n1‘1 )u2 + nz(n2-1 )\11 =
(e.p., n, = 1), and £ is an arbitrary
positive function on M or
®) n,
of constant curvature,

£ = j2u) + nyn-1)u, 12320 5 o

1 b ]
=2 (Ma,ga) tvo~dimensional or

§r = O
(constant scalar curvature)
Dr € C(S®A) .

Every compact manifold admits such
a metriec.

et
For details, see Chapter F .

(0, [r - 2(n+2)”'ug] )(X,X) = 0
for each vector X .

Dr € CT(QE@A)

See the examples for Dr € C (Q)

and Dr € C (A) .

In Sections D through G we are concerned with four of these conditions,

’ ] ‘
except for Dr € C*(S@A) , dealt with by Chapter F , and Dr € C™(Q @A) ,

since very little is known about it.

Section C is devoted to Codazzi tensors, discussed separately for

reasons explained in 1V,.6. Finally, in Section H we study oriented Riemannia

- 3 k3 + 1] Ll kd o »
four-manifolds satisfying 6W = 0 , which is a natural linear condition on

Dr relative to the special orthogonal group.



B . Natural linear conditions on Dr .

XYf. 1 . In order to discuss the irreducible components of Dr under the
orthogonal group action, let us first recall that, for any Riemannian mani-
fold (M,g) , Dr is a 3-tensor field having two additional algebraic pro-
perties, the one coming from the symmetry of r and the latter from the
Bianchi identity Gr‘ = - % du (see I.50). Thus, Dr is a section of the
vector bundle H = H(M,g)C T*M @ S2M € @3T*™M the fibre of which, at any
point x €M , consists of all 3-linear maps £ of TxM into /R such

that E(X,Y,2) = £(X,Z,Y) .and i21]:5(7ci,1ci,)() - 3 &x,x,.x)] = 0 for

any X,Y,Z e'rxu and any orthonormal basis x,,....,xn of TM, n= dim M .

A discussion of the irreducible comvonents of Dr can also he

tound in A. Gray’s article [Gr3].

XVl. 2 . Given a Riemannian manifold (M,g) , dimM =n > 3 , one has the
following natural vector bundle homomorphisms associated with @3T*M : the
contraction vy :@3T*M + T*M , the partial alternation a :@3T*M + A2M ® T*M ,

the partial symmetrization o :@3™M + ®3T*M and the mappine ¢ :T*M +

+ H(M,g) , given by

(v(g))X = ii £(X, X, X)

(ale))(x,¥,2) = 3[a(x,1,2) - e(v,x,2)] ,

(s(£))(X,Y,2) = §[6(xX,¥,2) + £(Y,2,X) + E(2,X,Y)] .

(4(5))(X,¥,2) = (X,¥)+c(2) + (X,2)-5(¥) + 2n(n-2)""(¥,2)-5(X) ,
for £ e®3'r;u » X,Y,2Z€TM, CE€TM and any orthonormal basis X,,...
ceesX of TM, x€M. Since (n-2)y © ¢ = (n-1)(n+2)Id,, and
(n=2)(#(g),€) = (Tn-6)(v(£),L) for amy ¢ € T*M and £ € H(M,g) , it fol-
lows that the n-dimensional invariant subbundle Q = Q(M,g) = Im ¢ of H =
= H(M,g) coincides with the orthogonal complement of ENKer y in H .
The subbundles S = S(M,g) * Hn Ker aCKer v and A = A(M,g) = HNn Ker 0 C
CKer vy of H are mutually orthoronal. It is now easy to verify that

HaeQ ®S DA

is an orthogonal decomposition of H into a direct sum of invariant (i.e., natu-



rally defined) subbundles (explicitly, any € € K has the components EQ =
= (@-2)(a-D)"Hw2) e(r(8)) , & = 0(&-Ey)). - Using standard arguments of i
theory one can prove (cf. [Grﬂ, I.72 ) that this is the unique irreducit
orthogonal decomnosition of H . 'oreover, the pairwise direct sums of the
subbundles Q, S, A are easily seen to admit the following characteriza-
tions : for any EE€ H ,

(i) EE€S®A if and only if y(E) = 0.

(ii) €€Q@®S5 if and only if afe - (=) 'v(£)@&]=0.

(iii) £€Q®A if and only if off - b(m2) '¥(6)@g] =0 .

XVi. 3. Let (M,g) be an n-dimensional Riemannian manifold, n > 3 . For
a tensor field TE C.(®k+1T‘M) ,» we define its diverpence 4T € C‘(@k'l“'M]
(6T)X, e eeuX) = = tr [(¥,2) = (OTH(ZX 000 )]
Thus, the divergences R and W of R and W are sections of T*M @ Al
and, using an obvious switch of the arpuments, we may view them as sections
of A2M @ T*M . Under this identification, the second Bianchi identity gives
R =-ar , sw= -3 4f - (2n—2)"ug] R
n-2
_ where, for any symmetric 2-tensor field b , db denotes the exterior deriv

tive of b (viewed as a T*M-valued i-form), i.e., 4ab = 2a(Db) . We shall

say that (M,g) has harmonic curvature (resp., harmonic Weyl temsor) if

SR = 0 (resp., if &W = 0). A symmetric 2-tensor field b on (M,g) will
be called a Codazzi tensor if db =0 , i.e., if b satisfies the Codazzi

equation (Dxb)(Y,z) = (an)(x,z) for arbitrary tanpent vectors X,Y,Z .

XYl. 4 . For a Riemannian manifold (M,g) , dim M =n > 3 , the natural 1i
near conditions that can be imposed on Dr can be characterized, in view
of XVI.2 and XVI.3 , as follows :

. - . . -1 1 -1 -1
(i) Dr € C (Q) if and only if D[r - (2n-2) ug] = 3(n-2)(n+2) (n-1) ¢
(ii) Dr € CT(8) is equivalent to each of the following conditions :

a) a(Dr) =0 ;
b) d&r =0, i.e., r is a Codazzi tensor ;

¢c) SR=0, i.e,, (M,g) has harmonic curvature ;



Y,Z , so that it is zero.

le. 9 . Theorem (M. Berger, ct. [BE ], [Ry 1, (Sif], W ], [Bo2], [Gr3]).

Every Codazzi tensor b with constant trace on a compact Riemannian manifold

(M,g) with non-negative sectional curvature K is parallel. If, moreover,
K > 0 at some point, then b is a constant multiple of g .
Proof. For any Codazzi tensor b , the WeitzenbSck formula I. can be re-
written as

(X¥1.9) 6Db + Da(trb) = R(v) - b o r .
For any x € M and some orthonormal basis xl,...,xn of TxM (n = dim M),
we have bx(xi,xj) = lisij and, at x , (b, ﬁ(b) -b0pr)=

= - i::j R(X; XX ,xj)(:\i—:\j)2 £ 0 . On the other hand, In(b,GDb)vg =

=f IDb!zv‘ 2 0, so that our assertion follows from formulas (XVI.9).
M

XVI. 10 . Let b be any symmetric 2-tensor field on a Riemannian manifold
(M,g) . Given x €M and an eipenvalue A of bx » We shall denote by

vx(x) C TxM the corresponding eigenspace. In every connected component of the
open dense subset "’b of M , consisting of points at which the number of
distinct eipenvalues of b is locally constant, the eipenvalues of b

form mutually distinct smooth eirenvalue functions and, for such a function

A , the assipnment x -+ v (x)(x) defines a smooth eipenspace distribution
‘lA of b.If XA and y are such eipenvalue functions, then, for any vec-
tor fields X,Y,2 with X € c"(vx) , Y€ c"(vu) , the Leibniz rule yields

(XVi.10) (Dzb)(X,Y) a (X,Y)e2Z) + (x-u)(nz_x,!) .

XYi. 11 . Proposition (ef. ﬁkﬂ , [HR]). Given a Codazzi tensor b on a

Riemannian manifold (M,g) and an eigenvalue function 2 of b , defined
in a component of M, , ve have

(1)  The eigenspace distribution V, is integrsble.

(ii) Each intepral manifold N of V, is umbilical in (M,g) . More pre-
cisely, for any eim' value function u #¥ A and any sections X,Z of v, oo
Y of V, . the Y-component nY of the second fundamental form h of W
is given by h'(Z,X) = = (D,X,Y) = (4-3)"'(X,2)-12 .



(iii) If dimV, > 1, then ) is constant along v, -

Proof. For u,X,Y,Z2 as in (ii), (X,Y) = (2,Y) = O and hence (XV!.10) im
plies (a-u)([z,x],Y) = (D b)(X,Y) - (Dd)(Z,Y) and (A-u)(D,X,Y) - (X,Z)-Y2
= (D,b)(X,Y) - (Dyb)(X.2) , so that (i) and (ii) follow from the Codazzi
equation. If dim v.,>1 and X €4C.(VA) , we can find, locally, a non-zero
Y€ CcT(v,) with (X,Y) =0 . Applying (X¥1.10) with 1 = u , we obtain

[X]2-%x2 = (Dxb)(Y,Y) = (DY’b)(X,Y) = 0 , wvhich completes the proof.

XVi. 12 . As an application of XV!.11, we shall now derive a local classifica

tion of Codazzi tensors b having exactly two distinct eipenvalue functions

A, u (with dim V, g dim vu). For simplicity, we assume in addition that

A
argument works without this hypothesis. Let dim M =n > 3.

dimV, > 1 or ter is constant (ef. Dei] for the latter case) ; a similar

By XVL1t1, v, (resp., vu) is integrable and has umbilical leaves with
mean curvature vector H, = (u-x)"(m)u (resp., Hu = (x—-u)-"(Du)x), the
subscript convention being that X = X

x+x“evxovu-m.

(i) 1If Aim Yx > 1 (more generally, if A is constant along Vx , ef.
XV!.11.iii)) , we have (I.)A)x = (l)u)‘l =0 and so H, =- (D log'x-ul)u ’
B, =- (D logv_:ll--u“A . For the conformally related metric g = (A-u)g , it

is now easy to verify that V. and Vu are totally peodesic in (M,g) , 1.e.

A
they are E—parallel alonr each other and along themselves, and so the split-
ting ™ = vx e Vu comes from a local Riemannian product decomposition of
(M,g) . Therefore, we have locally

MM x My, g= -2, xK,), b= (w208, + ug,) ,
where 2\ :M2 +R , v M, + /R have disjoint ranpes. Conversely, for
Riemannian manifolds (Mi,-g'i) » i=1,2 , and functions A, § with these pro—-
perties, the above formula defines a Riemannian manifold (M,g) with a
Codazzi tensor b satisfying our conditions.
(ii) Let b have constant trace and assume that b is not parallel. By (i),
dim v,y =1 (since, in (i), )2 and u depend on separate variables). In viev
of XYl.11.iii),ii), u and A are constant along vu and the integral curve

of Vx are geodesics, i.e., for a fixed local unit section X of \Vx . Dxx



= 0 . Each leaf of V“ has mean curvature n = (X.Hu) = (x-u)"xu , which

is constant along the leaf. In fact, for any Y € C.(Vu) s, In= (x-—u)-1YXu
end Yxu = [Y.X[u , white ([Y.X],X) = - (D,¥,X) = (Y,D.X) = 0 , 50 that
[x,x] € C-(Vu) and YXw = O =Y¥n . For x€EM we can find (cf. XV, 11.1))
local coordinates 1;,3r1,...,3rn_1 at x with at = 3/3t € VX . ai = a/ayi €
€V, , 12i<n. Since [ai,at] =0, XY1.11.ii) yields ailatlz =

= 2(u—l)°1lat|23ix =0, i.e., making a substitution in t , we may assume
that 3, = X . Similarly, at(ai,aj)z-a(naiaj,at) = an-(ai,aj) . Since 3.n =
= 0 , wve obtain (ai,aj) = ez,-zij with ai, =0 and d¥/dt = n = (X—u)-1atu .
and atzij = 0 . This, together with the fact that trgb = (:o is constant,
gives, locally,

M=IxM, g=dt2 + eZV(t).E , b= 2dt2 + ueZY(t)_E ,

A= co/n + (1_n)ce"n1‘(t) R Co/n . cc-n!(t) ,

(Xw.13)
where 1 is an interval, (i,E) an (n-1)-dimensional Riemannian manifold,
and C a real constant. Conversely, for any such data, and for an arbitrary
function ¥ om I , (XVL13) defines a Riemannian manifold (M,g) with s

Codazzi tensor b of the type discussed above.

XVl. 1% . Theorem (A. Derdzifiski and C.-L. Shen, [DS]). Let B be a Codazzi

tensor of tyve (1,1) on a Riemannian manifold (M,g), x & point of M, A

and u eigenvalues of Bx . Then the subspace Vx(x) A Vu(x) c AszM .

spanned by all exterior products of elements of V,(x) and Vu(x) , is

invariant under the curvature overator R € End Az'l'xM .

fl .15.Proof. Adding a constant multiple of Id to B , we may assume that B is
non-degenerate in a neighborhood M of x . The automorphism B of T™
transforms g and D into the metric G = B*g and the connection V=
=B'D on M (so that G(X,Y) = g(BX,BY) , B(V,Y) = D,(BY) ). Clearly,
VG = 0 and the curvature tensor R of V satisfies R = B*R , i.e.,
G(R(X,Y)2,U) = g(R(X,Y)BZ,BU) . As observed by N. Hicks [Hi ], the Codazzi
equation for B means that V is torsion-free. Thus, the Riemannian con-
nection DG‘ of G and its curvature b-tensor RG are given by DG =9V and

(XYL 16) nc(x,!,z.u) = R(X,Y,BZ,BU) .



Let X € VX(X), Y €Vu(X), Z€ Vv(x), U GVE(X) . Using abbreviated no-

. . ’ c
tations like R,/ = R(X,Y,Z,U) , wve have, by (XYI[.16), VERy vy = Ryyoyy =
= RgUXY = XuRnZU and, similarly, (uE—A\!)RxmY = (uv—lE)RxUYz = 0, wvhile
the Bianchi identity for RG yielc}s 0= VERXIZU + umm + WRXU!Z . Com

bining these equalities, we obtain the matrix equation

A E v R(X,Y,2,U)
3 : ¥l rx,zu) | =0
11 R(X,U,Y,Z)

Ir RXYZU # 0 , the coefficient matrix satisfies the cofactor relations
(A=E)(A+E-p=v) = (v=A)(v+r=u=E) = (A-u)(A+p=v=E) = O , vhich easily imply
that A 1is equal to one of u,v,E . Therefore, evaluating Rx on four
eigenvectors of Bx -yields zero if more than two eisenspaces are involved.
Hence RXYZ =0 if‘ A,u,v are mutually distinet. On the other hand, if
A=udv, (X7i16) gives O =B (RF 2 + RV X + RO ¥) = Ryy(B2) + Ry (BX) +

+ RZX(BY) = (v—l)RXYZ » wvhich completes the proof.

XY1l. 17 . Corollary (J. P. Rourguirnon, [Be3]). Let b be a Codazzi tensor

on & Riemannian manifold (M,g) . Then

(i) b commutes with r , ﬁ(b) and with Dd(trs’b) + 8Db .

(ii) The endomorphisms R , g@r and W of A2TM commute wvith g@b .

Proof. By XYL 14, r(X,Y) = R(b)(X,Y) = O for eimenvectors X,Y of b cor-
responding to distinct eipenvalues, so that r and Iot(b) commite with b .

Hence (i) follows from formula ( XV.9) (which also directly implies that

r and b commute). Since AszM is spanned by the subspaces V,(x) A Vu(x)
and (g@b)x restricted to such a subspace is A+py .  times the identity,

(ii) is immediate from XYL 1k,

XYl. 18 . An orthonormal basis x,,...,xn of a Euclidean space B is said
to diagonalize an algebraic curvature tensor R € € (E) if all exterior pro-
ducts Xi A )(.i y 1 <j , are eigenvectors of R (viewed as an endomorphism
of AZE), i.e., if R(X; X)X = 0 whenever i,j,k are mutually distinct.

Folloving H. “millot ([Mai], (MaZ]) we shall cail R€ € (E) pure if it is

diagonalized by some orthonormal basis of E . A Riemannian manifold (M,g)



11

will be said to have pure curvature operator (resp., pure Weyl tensor) if

for any x €M, R (resp., Wx) is pure. If n=dimE = 2 , every ortho-
normal basis of E diagonalizes any R€ & (E) , while, for n 2 3, such
a basis diagonalizes R - if and only if it diagonalizes W(R) and ¢(R)
(c£. I.74). Thus, each of the following conditions implies that the Riemann-
ian manifold (M,g) has pure curvature operator :

(i) @aimM=2 ,0r W=20 (e.g., dimnM =3, cr. LF8),

(ii) (M,g) 1is a hypersurface in a space of constant curvature (cf. the
Gauss equation).

(iii) (M,g) is a Riemannian product of manifolds with pure curvature
operator.

Moreover, it is obvious that

(iv) The property of having pure Weyl tensor is conformally invariant.

XVi. 19 . If RE L(E) has pure Weyl component W = W(R) (e.g., if R is
pure), then all the Pontryagin forms Pi(R) € AhiE* » 12 1, are zero (see
[Ma1]). In fact, it is easy to see (cf. [Gre]) that P,(R) = P, (W) and the
subalgebra P(R) = P(W) of AE* penerated by the Pi(w) has another sys-
ten of generators ni € AME* . ﬂi being obtained by alternating the map
(Xy5eee,Xy ) + tr [w(\r1 AYy) 0o w(Yy. (A Yhi)] . However, if an or-
thonormal basis x1,...,xn diagonalizes W , then W(}(i A Xj) o W(xk A xl) =

= 0 for mutually distinet i,j,k,1 , which implies P(W) = AOE* = [R .

YVI. 20 . lemma . Let E be an oriented L-dimensional Fuclidean space and let

WwEW(F) be pure. Then W' and W, viewed as endomorphisms of A'E and

- . . + - + -
A E, respectively, have equal spectra, i.e., (W | = |[W | and det W = get W .

Proof. Since W is pure, we have w(xi A xj) = Aijxi A Xj for some ortho-
normal basis X;5.++,X, of F and real numbers xij I {i,i,k,1) =

= {1,2,3,4} , then -(xi A xj) =+ X AX ,eandso xij =X o since W
and * commute by 1.89. Flements of the form xi A }('j * Xk A xl give now

. + - s s -
rise to bases of A E and A E , realizing equal spectra for W+ and W



XVl. 21 . Theorem (cf. [DS], [Bo3]). Let b Dbe a Codazzi tensor om a
Riemannian manifold (M,g) , dimM=n .

(i) If b has n distinct eizenvalues at all points of a dense subset o
then, for any x €M, R is diasgonalized by some orthonormal basis of '

diagonalizing b . The Pontryagin forms of (M,g) and the real Pontryagi

classes of M are all z2ero.

(ii) If n=4 and b - (trgb)g/h # 0 in a dense subset of M , then, a

each x€M, W is diaponalized by some orthonormal basis of T M , dia

nalizing b . The Pontryagin form P, of (M,g) vanishes identically an

p,(M,R) =0 . At each x €M, W and ‘W have equal spectra.

XYl 22 . Proof. (i) is obvious from XYL1k and XV!.19 topether with a co
nuity argument. By XY/.19 and XY1.20, (ii) will follow if we show that w
is diagonalized by an orthonormal eipenbasis of bx , for any x € M.b . In
a neighbourhood M of x, b has m distinct eigenvalue functions A(
cossA{m) , 2 £mgh , their miltiplicities being Kyseoosk with k, =
-‘-km .. Four cases are possible : I. m = 2 ,k1 sk, =2 ; II.m=2,

2

'3 =1,k2-3; III. m =3 , k_=k_=1, k_=2; IV.m=L4 , In case

1 1 2 3
XYl .12.i) implies that near x , g is conformal to a product of surface
metrics, compatibly with the b-eipgenspace decomposition of T , and our .
sertion on Wx follows from XY1.18.i),iii),iv). Assume now case II (resp.

S. L ]
case III). Since Vx“)_/\ Vx(z) (resp., Vx“) A V“z) and VX“)A Vx(3
are invariant, by AVi.1h and A¥1.17.i), under the self-adjoint endomorphi~
W of A2TM, we can choose an orthonormal bx-eigenvector basis X1,...,X1
of T M with w(x1/\ xi) = u,X, A X, for some u, , 2<i <& h . The fac
that W commutes with * for any orientation (cf. 1.89) implies that all

xi A Xj are eipenvectors of wx » 88 required. Finally, in case IV our

assertion is immediate from (i) and XY/.18, which completes the proof.
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D. The case Dr ¢ cT(Qa@s)

Riemannian manifolds with harmonic Weyl temsor .

XY|. 23 . The n-dimensional Riemannian manifolds (M,g) for which Dr
is a section of Q®S , i.e., r - (2n-2)~1u3 is a Codazzi tensor, can
also be characterized by the condition éW =0 (when n > k4), or by con-
formal flatness (Qhen n=3; see XYI.h.v)). In this section, we discuss
these manifolds, always assuming that n > 4 . They are then said to have
harmonic Weyl tensor. This terminology is justified by the fact that §&W =
= 0 implies the "Bianchi identity” dW = O , so that W , viewed as a
A2M-valued 2-form, is both closed and co-closed (see YVI.#2 for details).
After describing various examples of manifolds with harmonic Weyl
tensor, we pive some peneral theorems on the structure of their curvature

operator ( XVl. 28, XYl. 31) and a local classification result (XY1.32).

XVYl. 24 . The simplest examples of manifolds with harmonic Weyl tensor :
(i) Manifolds with Dr = 0 , locally isometric to products of Einstein
manifolds. |

(ii) Conformally flat manifolds (W = 0). This class contains many compact
examples, apart from spaces of constant curvature : the conformal inversion
map X » IXI-ZX in the model space R n immediately gives rise to a con-
nected sum operation for such manifolds (B(u ]) . Note that a Riemannian
product is conformally flat if and only if both factors have constant sec-
tional curvatures and either one of them is 1-dimensional, or the sum of
their curvatures is zero.

(iii) The condition DW = O gives no new examples of manifolds with &W =
= 0 : by a result of W. Roter (cf. [DR]), it implies that DR =0 or W =
=0 (see also [Mi ] and, for n =4 ,XYL75.iii)). Moreover, the

class of manifolds with 6W = 0 is not closed under taking Riemannian

products, unless both factors have constant scalar curvatures.

X¥l. 25 .  Other examples of manifolds with &W = O can be obtained by
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conformal deformations. Under a conformal change g = e““g of metric in

dimension n , &W transforms like

(XYI.25) 68'"8' = &W - (n=3)W(Df,,*,¢)
(ef. I. 4),4) ). Thus, we can proceed by taking a Riemannian manifold

with Dr = O and finding on it a function £ with W(Df,+,-,*) =0 .
An easy computation gives the following

Lemma . Let (M,g) be a Riemannian product of two Einstein manifolds

(M.,g.) . For a non-zero vector X tanpent to M we have W(X,+,*,) =

e

1
= 0 if and only if n,(n,-1)u, + n (n,-1)u, =0 and W (X,;,*,*,*) =0,

i=1,2 , vwhere n, = aim Mo 21, is the scalar curvature of & >

X, denotes the M, ~component of X and W, is the Weyl temsor of 8;

< 3.

—_—— ===
XY!. 26 . The following constructions of examples are immediate from XYl.25 .
(i) PFor an Einstein manifold (ﬁ,;) , a 1-dimensional manifold (I,at?)
and a positive function F on I , the metric g = dt2 + F2(t).g =
a o2 108 I"(t)[l?’a(t)cn-.z x g ] on the product manifold M =TI x N
gsatisfies 6éW = O . Suppose now that M is compact, I = R, r is
periodic, with period T , and let ¢ be an isometry oi’ '(ﬁ,}) .
Clearly, the mapping (t,y) + (t + T, ¢(y)) of R x M is an isometry
of (M,g) , penerating a properly discontinuous Z actionon M.
The quotient manifold (M,g)/Z (cf. [KN ], p. 4b and 3’40) , With
the "twisted" warped product metric determined by g , is then an example

of a compact Riemannian manifold with harmonic Weyl tensor, diffeomorphic

to a bundle with fibre M over the circle. Tn general, it is neither
- XY

conformally flat (unless g is of constant curvature, cf%.ii)). nor

does it have parallel Ricci tensor (non-constant functions F for which

this happens cannot be periodic and positive everywhere on ,R ).

(ii) Let (M1,g1) be a svace of constant sectional curvature K, »

(M2’52) an Einstein manifold with scalar curvature u, = - nz(na-I )K‘ .

vhere n, = dim Mz . For an arbitrary positive function ¥ on M
2log P
& "(s,

1 the

*g) o My xM,

¥arped product metric @ = Pig, + !'232 =
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has harmonic Weyl tensor. As in (i), g 1is, in peneral, not of type

XYi.24.i) or ii). Choosing (M1,g1) to be a sphere and (Me,gz) a sim-

ply connected compact comnlex manifold having ¢, < O , endowed with a

3
w ey 8 _W0
Kahler-Einstein metric (cf. KE # ) KE18), ve obtain here examples of

comnact simply connected manifolds satisfying 6W = O and neither W=10,

nor Dr=0.

XVi. 27 . Further examples obtained by conformal deformations. Let a

Riemannian manifold (M,g) have recurrent conformal curvature (AM])

in the sense that 2|Ww|2.-DW = a(|W|2) ® W . By XV1.25, the metric g° =

= lWIQ/B-n)-g , defined wherever W # 0 (n = dim M > b4), satisfies
58,w8, = 0 . As shown by W. Rote‘x.‘ ([Ro 1), locally, in dimensions n > 5 ,
the only analytic manifolds with recurrent conformal curvature are those
with W=0, or DR = 0 , or products of surfaces with spaces of constant
curvature. In dimension 4 there are more such examples, e.g., all Riemann-
ian products of surfaces. Thus, for (M,g) = (M .g,) x (Hz,sz) » Where
dim M, =2 and g, is of constant curvature or dimMZ-Z » the metric
g’ defined above has harmonic Weyl tensor. Since, for such g , [W| is
proportional to |I(1 + Kzl » vhere K. is the Gaussian (resp., constant

sectional) curvature of g. , this construction gives many examples of

compact manifolds with harmonic Weyl tensor, including simply connected

ones. In fact, if M1 and M2 are compact and Kz # O everyvhere, ve

may rescale g, to obtain lwg "32' >0, so that g° is defined every-
1

vhere on M .

XVi. 28 . As an immediate consequence of XYl h.v), XY1.21 and XVI.18,

wve obtain the following

Theorem . Let (M,g) be a Riemannian manifold with harmonic Weyl tensor,

dimM=n2>bk.

(i) If r has n distinct eigenvalues at all points of a dense subset of
M, then (M,g) has pure curvature operator and p,(M,R) =0 for i 21.
(ii) If n=4 and r - ug/h #0 in a dense subset of M, then (M,g)

bas pure curvature operstor, p,(M,R) =0 and, at each point x €M,
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w: and w; have equal spectra.

XVI. 29 . Corollary (cf. [PS], [Pe3], [BoF]). Let an oriented Riemannian
four-manifold (M,g) satisfy W = 0 and have harmonic Weyl tensor. Then
W& (r - ug/k) = 0 everyvhere in M , so that, if (M,g) is analytic, it
must be conformally flat or Finstein.

In fact, by XYI.28.ii), lw*| = |[W| =0 wherever r - ug/b ¥ 0 .

XYl. 30 . Provosition (cf. [Mat], [Tra], [Gr3]). Let a KAhler manifold
(M,J,g) of real dimension n > 4 have harmonic Weyl tensor. Then its

Ricei tensor is parallel.

In fact, since r commtes with J (cf.'K..M.), our assertion is imme-
diate from XVI.L.v) and XVI.8. Note that in this case (M,J,g) is, locally,
a product of KAhler—-Einstein manifolds. Using XVl.2h.ii), one can now ea-
sily conclude that a conformally flat Kihler manifold which is not flat
must be L-dimensional and locally isometric to a product of surfaces with

mutually opposite constant curvatures (cf. [YM] and I n.

XYl. 31 . Theorem (D. DeTurck and H. Goldschmidt, [PTG]). Let (M,g) be
a Riemannian manifold with harmonic Weyl tensor, dim M =n > h . Suppose
that, at some point x €M, Wx = 0 and r_ has n distinct eigenvalues.

Then W =0 in a neighborhood of x . Consequently, if (M,g) is an ie,

Proof. In a neighborhood of x , we can find an orthonormal frame field

)(1,...,1(n diagonalizing r . By XYLL.v), XVi.1h and XVI.17.i), it also
diagonalizes W , so that the essential components of W are wﬁ ] 'ji }s
= w(xi,xj,xi ,Xj), i#Jj . Condition 6W = 0 and its consequence dW = 0O
(ef. X¥].23, XVI 42 ) now easily give

)rk. , 14k,

D .
JJ

v, = z (w., - w
k 1k j#ik ik

Deviy = (g5 - "kj)r];i + vy - wki)r],;j vididkdi,

ij

vhere Di 18 the directional derivative along xi and i = (Dxix ,&) .
Thus, the w, i satisfy a first order linear system of equations solved

for the derivatives. Since vs j(*) = 0 by hypothesis, our assertion follovs.
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XVI. 32 . In dimension four, we can state the following local classifi-
cation result. For the proof, see XVI.T0.

Proposition . let (M,g) be an oriented Riemannian four-manifold with

harmonic Weyl tensor. Suppose that W+ » Yiewed as an endomorphism of
A*M » has less than three distinct eigenvalues at any point. In a neigh-

borhood of each point x€ M at which W#0 and r #ug/b, g is

obtained by a conformal deformation of & product of surface metrics as

in XVI.2T7. In terms of g , that product metric equals |W|2/3-g .

———
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E . Condition Dr € C™(S) :

Riemannian manifolds with harmonic curvature .

XYl. 33 . The study of Riemannian manifolds for which Dr € C (S) (i.e.,
r is a Codazzi tensor, which is also equivalent to &R =0 , ef. XVl L ii))
is additionally motivated by their relationship with the Yang~Mills con-
nections (see XY/.35). In view of the second Bianchi identity dR = O
(formula I.19.b)), it is natural to call them manifolds with harmonic cur-
vature. |
XV1.34 By a recent result of D. DeTurck and H. Goldschmiat [DTG], all ma-
nifolds with 6R = O are analytic in suitable local coordinates. On the
other hand, in dimensions n 2 4 , these manifolds are characterized by
having harmonic Weyl tensor and constant scalar curvature. Thus, all argu-
ments of Section D remain valid for manifolds with harmonic curvature.
Therefore ve have, for such manifolds, Bourguimoq’s theorems XV].28.ii)
and XVI.29 ([803] ), the Matsushima-Tanno theorem XY1.30, theorem Y¥I.31
due to DeTurck and Goldschmidt , as well as XVI,28.i)
and XY1.32, with the obvious simplifications : in XYI.28 we may replace
the "dense subset” by "a point", while, in XV1.20 and XYl.31, the analy-
ticity hypotheses become superfluous.
In this section we describe the known examples of cc;mpa.ct Riemannian
manifolds with harmonic curvature and give two further results ( XV1.37T,
YVI1.39) on such manifolds, including a classification theorem. Finally,
ve state a few open problems and discuss the harmonicity of arbdbitrary al-

gebraic curvature tensor fields.

XYl. 35 . Condition &R = 0 also appears in the following context. Given
a vector bundle E over a compact Riemannian manifold (M,g) and a fidbre
metric g in E , one assiems to any connection V in E , compatible
vith g, , the Yang-Mills intesral YM(V) = J'M|1=lv|2-v8 , R’ being the

curvature of V . A connection V is a critical point of this Yang-Mills
functional if and only it 6'R" =0 (cf. (Pa] and Fo ). For E= M
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and Bp =R » this is just condition &R = O .

Xvl. 36 . Exammles . Accordinz to XYIL.3L, many (usually non-compact) ma-
nifolds with harmonic curvature can be constructed by imposine on the exam—
ples described in XYL2k, XVI.26 and XV1,27 the additional condition that

their scalar curvature be constant. This pives the following compact mani-

folds with harmonie curvature :

(i) Compact manifolds with Dr = O .

(ii) Compact conformally flat manifolds with constant scalar curvature.

N
If the Yamabe conjecture is true in the conformally flat case (cf. F. )
it will, thus, yield a metric with éR = 0 on every compact conformally
flat manifold. As observed by J. Lafontaine [La.f] » the fact that every con-

formal class contains a metric whose scalar curvature is either non-posi-

tive and constant, or positive everywhere (see [Au ]) immediately implies

the existence of metrics with harmonic curvature on all compact conformally

flat manifolds admitting no metric with W=0 and u >0 (e.r., on connect-
ed sums of conformally flat manifolds with tori, cf. XYL2L.ii) and "T. ).

(iii) Comnact manifolds locally isometric to products of manifolds

with éR =0 .

(iv) Given a compact Finstein manifold (M,g) with scalar curvature u > O ,
dimM=n - 122, a non-constant positive periodic function F on /R
and an isometry 4 of (ﬁ,;) , it is easy to verify that the manifold
(M,g)/Z , defined as in XVI.26.i), has constant scalar curvature if and
only if we have, for f = Fn/? and a constant Co R

(XV1.36.iv) azefat? - § n(a-1)" g et M/ L B cf .
Choosing f to be a non-constant positive periodic solution of this equa-~
tion (for its existence, see XYI,38), we obtain from our construction ex—

amples of compact Riemannian manifolds with harmonic curvature, namely,

bundles with fibre M over S! endoved with twisted warped product met-

rics (ef. [f)eZ] ). These manifolds never satisfy Dr = 0 and are not con-

formally flat unless g has constant sectional curvature (cf. XYI26.i)).
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XYl. 37 . Theorem (M. Berper, ef. BE 1. [sit1, [BeZ], [Gr3]). Every com~

pact Riemannian manifold with harmonic curvature and non-negative sectio-

nal curvature K satisfies Dr = O . If, moreover, K > O at some point,

then the manifold is Einstein.

In fact, this is immediate from XVIih.ii) and XVl.9.

XVl. 38 . Lemma . Given a C2 function v on a closed interval I

and f1 . r2€ I , the following conditions are equivalent :

(i) The equation

(Xv1.38.1) a2e/at2 = § v (£)
has a non-constant periodic €2 solution f on /R with range tf1 ,fz]_ .
(ii) r, < f, > v(f1) = v(fa) s v’(f1)-v’(f2) $0, and v(ro) > v(f,)

for all f_€ (f1,1’2) .
Proof. For non-constant f , equation (XVI.38.i) is equivalent to
(ar/at)2 = v(f) - ¢ with C €/R . Given such an f , weakly monotone in
an interval [to,t] » We have v(fo) 2C for all f  in the closed inter—
val Io joining f(to) and f(t) , and
t-t = c (v(£)-C) ar , e=31 .
r(t )
o

Since v is C? , finiteness of this intepral pives v’(fo) ¥ 0 whenever
f €I and v(f)=C; thus, v2C in I  implies v>C inInt I .
Moreover, f is a Morse function (othervise, by the uniqueness of solu~
tions of (XV1.33.i), it would be constant) and, since |df/dt| is a func-
tion of f , all critical points of f are absolute maxima or minima.
Therefore (i) implies (ii). Conversely, assuming (ii), we can define the -
assignment t -+ £(t) implicitly by the above integral formula with e = 1 ,
t, =0, f(t)=r andfor t€ [0,7/2] with T such that f£(T/2) =
=1, . The extension of f to /R , characterized by £(Tet) = £(T-t) =
= f(t) , is C! and satisfies (¥YL38.i) outside a discrete set, so that

it is C2 . This gives (i), and completes the proof.



21

X¥!. 39 . Theorem (A. Derdzifiski, [De2]) . Let (M,g) be a commact

Riemannian manifold with harmonic curvature, dim M =n > 3 . If its Ricei

tensor is not narallel and has, at each point, less than three distinct

eigenvalues, then (M,g) is isometrically covered by one of the compact

manifolds constructed in XYl.3f.iv). Conversely, each of those manifolds

has the stated proverties.

XYl. b0 . Proof . Fix x €M ﬁth r # u(x)gx/n and (Dr)x # 0. By
XVY1.4.ii) ana XYL 12.ii), near x , g 1is riven by (XVI.13) with some
(n-1)-dimensional Riemannian manifold (M,g) , a function ¥ on an inter-
val I and with b =r . Computing, in (X¥l.13), r from g and compar-

ing it with b , we see that (M,g) is Einstein and f = eﬂw2

satisfies
equation (XVI.3f.iv), where u is the scalar curvature of g . The elemen-
tary symmetric functions of the eigenvalues of r are analytic on M
(cr. XY1.34) and, by (XV].13), one of them is non-constant, since (Dr)x #
$ O . A suitable repular level of such a function gives an extension of
(i,;) to a compact Einstein manifold, whose universal covering space we
denote by (ﬁ,;) .

In terms of (XV1.13), one easily verifies that the curves ID t +
+c(t) = (t,y) € I x MC M are geodesics and satisfy
( X¥1.bo) a2e2/M jar2 = (1-n)"'r(2,0)22/0 |
Since (M,g) is complete and analytic (cf. XVI.34), this linear differen-

/n

tial equation implies that f2 has an analytic extension to R . This

extension is non-zero everywhere. In fact, if it vanished at to eR .

2/n , would imply that u > O (since

equation ( XYl.36.iv), rewritten for ¢
dt2 /n/dt #0 at t = t, by the uniqueness of solutions of (XY}.L0)) and
would determine, up to a sipn, the power series expansion of 1’2/!1 at to
Hence 1’2 /n would be one of the "obvious" solutions (linear, trigonomet-
ric or hyperbolic) of the rewritten equation, which would give Dr = 0
near x , contradicting our hypothesis. Therefore f can be extended to a
positive analytic function on R » again denoted by f .

b/n

The varped product manifold (M ,g") = (/R x ﬁ. a2 + ¢ (t)-;) is
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analytic, complete (see [BON]. P. 23) and has an open subset isometric to
a subset of (M,g) . The universal covering space of (M,g) is tﬁerefore
isometric to (M ,g") (cf. [KN], p. 252) and so (M,g) = (M ,g°)/T , T
being a discrete group of isometries. Clearly, T preserves the product
foliations of M = R x M (tangent to the eirenspace distributions of
r) and, passing to a finite covering space, we may assume that I pre-
serves the orientation in the /R —direction. Using equation (X¥1.36.iv)
with (Dr)x # 0 , one easily concludes that all e.}ements of T operate
on /R x h} as product maps of a translation of /P » keeping £ invar—
iant, with an isometry of (l;,;)-.?or some element T x & of I , the
translation TE€ /P must be non—-zero, for otherwise the projection

M + /R would define an unbounded function on M . Thus, f is perio-
"dic, and, by XVI.38, u > 0 and c, < 0. Te Z actionon M gene~
‘rated by T x @ defines a finite covering s'na.cé (M’,s’)/z of (M,g) ,

XY/
which is of the type described 111\/36 iv). This completes the proof.

XY!. 41 . Some open problems .

(i) Does there exist a compact simply connected Riemannian manifold
with harmonic curvature and non-parallel Ricci tensor ? (cf. [Bo#]).
(ii) Does there exist a compact b-dimensional Riemannian manifold with
harmonic curvature which satisfies neither Dr = 0 nor W =0 and is

not locally isometric to a Riemennian product ? (cf. [Bo3|, Remarque

“n
2

{:7.2.i) ; also, note that XVI.27 and XVI.L.ii)d) easily yield non-compact
examples of this sort).

(iii) Are there new compact manifolds with harmonic curvature (that is,
with constant scalar curvature) among the examples descrided in XVI.26.ii)
and XVI.2T ? (See the footnote)

(iv) Do there exist locally homogeneous Riemannian manifolds vith SR =
=0 and Dr # 0?7 (note that, for locally homogeneous manifolds, confor—
mal flatness implies Dr = 0 ; see [AK ]).

Notfe. The construction of XVI.26.ii) actually gives some new examples of compact
manifolds with harmonic curvature. See A. Derdzifiski, "An easy construction of
nev compact Riemannian manifolds with harmonic curvature” (preliminary report).
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Xyl 42 . Let R be an algebraic curvature tensor field on a Riemannian
manifold (M,g) , dimM=n >4 . We say that R is closed (as a A2M-va-
lued 2-form) if it satisfies the "second Bianchi identity”" dR = O , where
(aR)(x,Y,2,U,V) = (D,R)(Y,2,U,V) + (DR)(Z,X,U,V) + (D,R)(X,Y,U,V) , and
that R is co-closed if 6R =0 . Let R=U+ 2+ W be the decomposi-
tion of R in the sense of L.72 , and set r = c(R) and u = trg-zT .
Proposition (K. Nomizu [N ], J. P. Bourpuimnon [Bo1]). In the above
notations,

(i) Conditions dU = 0 . U=0 and du = O are mutually equivalent.

(ii) Conditions dZ = O and 6Z = O are mutually equivalent. They are

satisfied if and only if dr = 0 , i.e., if r is a Codazzi tensor.

—

(iii) If, moreover, dR = O , then aw = 0 if and only if W =0 .

which is in turn equivalent to d r - (2n-2)-1;g) =0.

(iv) If aR =0, then R is co-closed if and only if so are U, Z , W .

Proof. (i) and (ii) are obvious from (L.74) together with the easily veri-
fied fact that, for any symmetric 2-tensor field a , conditions &§(a@g) =
=0 and da = 0 are equivalent provided tr )q. is constant, and d(a @g) =
= 0 if and only if da = O . The latter equivalence, together with R =

= (n-2)"' e @[F - (2n-2)""we] + W (cf. (Z.74)) and the formula oW =

= - (n-3)(n-2)"" afr - (2n-2)-1;g] (obtained from dR = O by contrac-

tion, ef. XYl.3), yields (iii). Since &R = - dr and 26r = -~ du whenever
dR = 0 (cf. XY].3 and I.50 ), condition 4R = 6R = 0 implies that u

is constant. Hence (iv) is immediate from (i) and (ii), which completes

the proof.



F. The case Drg C (Q) .

XYl. 43 . The class of Riemannian manifolds with Dr € C (Q) (see XYVLL.i
for an equivalent condition) has already been discussed in the literature
([6r3], [Sv ], [Sva.]). In dirmensions n 3_Ah » all these manifolds have
harmonic Weyl tensor (cf. XYLhL) and so all results of Section D remain
valid for them. In this section we construct examples of compact manifolds
with Dr€ C(Q) and Dr # O , and prove a pinching theorem. We also
discuss some questions related to the local classification problem for

such manifolds.

XVl, ubh . Examples . By XVLL3, an obvious construction procedure is
to impose condition Dr € c"(Q) on the manifolds described in Section D,
vhich immediately rives rise to the folloving, examples of compact mani-
folds with Dr € C (Q) :

(i) Compact manifolds with Dr =0 .

(ii) Bundles with fibre M over S! with twisted varped product metrics

constructed as in XVI.26.i), vhere the compact Einstein manifold (M,g) has

scalar curvature u < 0 and = F! is a non-constant positive periodic
solution of a2f/at? = 2(n-1)"(n-2) 'eut3 + Cf with s constast C > O
(such an f exists by XVI.38). These examples never satisfy Dr =0 .
Some of them (those for which E is of constant curvature) are conformal-

ly flat.

XYl. 45 . Pronosition . Let (M,g) Dbe & compact Riemannian manifold
with Dr € C(Q) and

( XYi.bs) (n-1)(n+6) r ¢ bu, n=daimM23

¢g for a function ¢ < 0). Then Dr =0 .

Corollary . Let g  be an Einstein metric with negstive scalar curva-

ture on a compact manifold M . If a metric g8 on M satisfies Dr €

€ c"(Q) and is sufficiently €2 close to €, » then g has parallel

Ricei tensor.



Proof of the nroposition. From XYI.L.i) and XVI.3, we obtain
2(n-1)(8R)(X,Y,7) = (X,Y)du(Z) - (X,7)du(Y) . The Yeitzenbdck formula XVLO),
applied to XYLL.i) implies, after taking diverpence and usine the formula
r(Du) = dAu - 6Ddu (cf. I. ) that (n-2)8Ddu = (n+6)r(Du) -
- 4(n-1)"'udu , vhich easily yields (cf. [Sva])

(n-2)a|Du|2 = 2(n+6)r(Du,Du) - 8(n-1)"'u|Dul? - 2(n-2)|Daul2 .
Inteprating this and usine the inequality (XVI|.L45), we conclude that

Ddu = O , so that u is constant and, by XYi.L.i), Dr = O , as required.

XVI. 46 . By XYI.L.i), condition Dr € C (Q) can be rewritten as

(XYI.b7) Db=¢Qg, = (n+2)_1d(trgb) , n=ainM,

vhere b =r - (2n-2)_1ug . To determine the local structure of all solu-
tions (M,g,b) of (XY .47), let us first note that for any such solution,
any eirenvalue functions A, v of b with X # v and any xec"(vl) .
2 € C‘(Vv) , we have

(1)  xa = 3¢(X) , zZx =¢(2) .

(e.r., if dim V

(ii) TIf X 1is constant aloneg V 1, cf, XVI.H.i_ii)),

l>

¢ annihilates V

A

then all eisenvalues of b are constant alons Vx . \

and ¢ =4x .

In fact, setting in formula (XVI.10) first A =y =v and
Z=Y=X and then A =u#v and Y = X , we obtain (i) from
(XVI.bT). If A is constant along v, s (i) gives g(X) =0, Xv =

= g(X) =0 and 2ZXA = g(Z) , vhich proves (ii).

XVl. 48 . Local classification of the solutions (M,g,b) of ( XYLUT) which

are of generic type in the sense that, for each x €M, b  has n dis-
tinet eipgenvalues and the restriction of g, to each eipenspace is non-zero :
Set x, = (n4-2)).i - trsb » where Xi are the eigenvalue functions of b ,
1£ign . Py XV0LU6.4), Xx, = 2X(trb) = 2(n+2)5(X) # 0 and Yx; = 0

vhenever X € Vi s X$#0 and YE (Vi )'L . Vi being the eigenspace dis-
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tribution of Ai . Hence the x; form, loeally, a coordinate system and

2 2 =1 ,
g=17L %dxf , d=IAedxd, A = (2n+h) ‘(2x, + I xj)

i i | J
with ¥, = [3.12, 3, = 3/ax, . Since [ai,aj] =0, Xyl.11.ii) yields

=1 . . . R .
ajti = 2(Daiai,aj)_ = 2¢i(lj xi) ajxi for j #i , which implies

*i = GXP(qi(xi)) 'j:i'xj"xi' N

vhere q; are functions of one variable. Conversely, one easily verifies
that in any domain M of /Rn wvhere the Cartesian coordinates x; are
mutually distinct, the above formulae, with arbitrary functions Qi(xi) ,

define a peneric type solution (M,g,b) of (XYI.uT).

XVl. 49 . There exist solutions (M,g,b) of (XVI.4T) which are not of
generic type , other than those with Db = O :

Example . Tet (M ,g,,b,) satisfy (XVI.47) with the 1-form g, » dimM, =
= n, > 1, and denote by D1 , etc., the Riemannian connection, etec., of 31 .
Assume that M’1 is simply connected and that, for some ino € R, T=

= (b1 - ug, )'1 exists, wvhere u = (n1+2)-‘tr8b +u and b1 is viewed

1
as a (1,1) tensor ; locally, these hypotheses ;re always satisfied. Por
any Riemannian manifold (Mz,gz) , we shall construct a solution (M,g,b)
of (XYI.LT) which is an extension of (M,.g,,b;) by (M,.g,) , that is

(XVLL9) M =M xM,, g=g +e‘g2 » b=b, + ue‘ga

for some function ¢ on M, . Condition (XVI.4T) for this (M,g,b) is
equivalent to 2T(du) = dé . To prove that such a ¢ exists, i.e., that
d(T(du)) = 0 , note that du =g, by (XVI.47) and so ((D,),T)(Y,2) =

= - T(du,Y)T(X,7) - T(du,2)T(X,Y) , while (XVI.LT) gives D1d(trs1b1) +
+6Db, =nDdu+ Aug, . Tus, by xvi.iT.i), D,dy commutes with b,

and hence also with T , which implies 4a(T(duy)) = 0 , as required.

XYl. 50 . Local classification of arbitrary solutions (M,g,b) of (XVI.L7)
(at points of meneral position). Assume that M = H.b and { annihilates
a fixed eipensnace distribution Vu (er. XY| . b6.ii) and XVI.uB). We claim

that, if b is not parallel, (M,g,b) is, loecally, obtained from a gene~



ric type solution by a finite number of extension procedures as describ-

ed in XYLLO. In fact, for X€C (V,), Y€ c"(vu) , ZEC (V) with
A#u#v, (XV1.10) and (XVI.LT) yield (A-u)(D,X.Y) = (X,Z)-z(Y) =0,
ie, DXECO ) . Mhus, by V11, (W) ama V) are inte-
prable and the leaves of (Vu)'L are totally geodesic, while those of Vu
are umbilical. Hence we have, locally, formula ( XY1.49), (Mi,gi) being
Riemannian manifolds with b € S2M, ( b, is "constant along M," in

view of (XVI.4T)), and ¢ is a function on M, x M while

1 2°
(M1,51,b1) satisfies (XYI.47) with £, =%, and b1(d1¢) - ud,¢ = 2du ,
di beinr the differential alone Mi . Since, by XYI.WA.i) , d2u =0 ,
this prives (b1-ug1)(d2d1¢) = 0 , and hence (peneral position !) ¢ =
=4, + ¢2 for some functions $; on Mi . Replacing &> by exp(¢2)52 R
we obtain relation (XYI.49) with ¢ M, -+ /R and so (M,g,b) is an ex-
tension as in XVI.ho. Repeating this procedure, we can successively

split off all eigenspace distributions of b annihilated by ¢ , which

eventually leads to a generic type situation.

XYl. S1 . There is the obvious problem of finding a local classification

(at points of peneral position) of all Riemannian manifolds with Dr € c*(q) .
An obvious idea would be to take our classification XVL.L8, XYVI.50 of

the solutions (M,g,b) of (XY1.L47) and impose on them the condition

b=r - (2n-2)-1ur. . This direct approach leads, however, to hopeless

computations.
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G . Condition Dr € C (A) : Riemannian menifolds

such that (nxr)(x,x) = 0 for all tangent vectors X .

XVi. 52 . A Riemannian manifold (M,g) satisfies the condition
Dr € C (A) if and only if o(Dr) = O (see XYI.L.iii), which is clear
1y equivalent to (D,r)(X,X) = O for all X € ™ . This condition oe-
curs as a consequence of some reometrical hypotheses. Namely, it holds
(see [DN1] and XYL55.i)) for all D’Atri spaces [VW ], i.e., Riemann-
ian manifolds (M,g) such that, for each x € M , the local geodesic
symmetry at x (assiminz exp (-X) to exp X , for X € T M close
to O ) preserves, up to a siem, the volume element vs . Moreover,
all Riemannian manifolds (M,g) for which the operator f + (r,DAr) ,
acting on functions, commtes with 4 , satisfy o(Dr) = O (see [Bu 1.
In the present section we describe various examples of manifolds

vith o(Di) = 0 and state a theorer on them.

XVl 53 . Examples of Riemannisn manifolds with o(Dr) = 0, i.e.,
with (D,r)(X,X) = 0 for all vectors X .

(i)  Manifolds with Dr =0 .

(ii) A1l D’Atri spaces (of. XVI.55.i)). This class contains (see [DN2])
all homogeneous Riemannisn manifolds which are naturally reductive (for
some G and @ , ot E.#4), in particular, the normal homogeneous
Riemannian manifolds. Thus, all such manifolds satisfy o(Dr) = 0,
vhich rives rise to a large variety of examples of compsct locally homo-
peneous manifolds with (nxr)(x,x) = 0 for all vectors X , including
all metric spheres in rank one symmetric spaces (as shown directly by
Chen and Vanhecke [CV ], cf. also [Z2 ]), all nearly Kihlerian 3-sym-
metric spaces (by Gray’s result [Gr3], of. [Gr2], [Tv2]) and many com-
pact Lie groups with suitable left-invariant metrics constructed by
D’Atri and Ziller [DAZ]. Yost of these examples have Dr ¢ O . Moreover,
there exist homogeneous D’Atri spaces vhich are not naturally reductive

(for any G and p). Namely, A. Kaplan constructed ([Kai , [ke2], [Ka3,
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cf. [TVZ}) A class of left-invariant metrics on certain 2-step nilpotent
Lie prouvs, all of which have the D’Atri space property without being,
in reneral, naturally reductive. “any of Kaplan’s examples admit compact
quotient manifolds ((Ka2]).

(iii) Riemannian products of manifolds with o(Dr) =0 .

XVi. sk . Theorem (U. Simen [8i2], cf. [Gr3]). Let (M,g) be a compact
Riemannian manifold with (nxr)(x,x) =0 for all X & T™ and with non-
positive sectional curvature K . Then Dr = 0 . If, moreover, K <O

at some point, then (M,g) is Einstein.

Proof. For any symmetric 2-tensor field b on (M,g) such that
(D,b)(X,X) = O for all vectors X , the Weitzenbdck formula L. can
easily be revritten as

6Db + Da(trb) = b or+rob-~2R(v).
If b=r , then trsb is constant (cf. XYl L) and our assertion can be

obtained by intepration, exactly as in XYI.9.

XYl. 55 . Theorem (J. E. D’Atri and H. K. Nickerson, [DN1], [DN2], [DA ]).

(i) Every D’Atri space (M,g) satisfies the condition (Dxr)(x,x) =0

for all vectors X .

(ii) Every naturally reductive Riemannian homogeneous manifold is

a D’Atri space.
Proof. (i) For any Riemannian manifold (M,g) , x€ M and X € 'I‘xM .

3
(Dxr)(x,X) = 4 log 6(exp_ tX) .
at3 x
- t=0

8 =86 being the normal volume function centered at x (see I 4@).

This follows from a direct computation in normal coordinates at x , using
the easy equality .2. gijaksij = 31( log det 8ij and relations obtained

by differentiating 1"](1.3‘9. In a D’Atri space, the function t -+ ex(expxtx)
is even, vhich completes the proof.

(ii) See [DN2] or [DA ].
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XVl 56 . Some open problems.

(i) Find examples of Riemannian manifolds with (Dxr)(x,x) = 0 for
all vectors X , which are neither locally homogeneous’, nor locally iso-
metric to Riemannian products and have non-parallel Riceci tensor.

(ii) Do there exist D’Atri spaces which are not locally homogeneous ?
(ct. [TV1]).
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H . Oriented Riemannian four-manifolds with oW o= 0.

XYl. 57 . For oriented Riemannian four-manifolds, relation swh =0

is equivalent to a linear condition on Dr , namely, to d(r - ug/6) €

€ C(AM@T*™M) (cf. XY1.5). In the present section we discuss the mani-
folds satisfying this condition and show that some of them are in a natu-
ral conformal relationship with Kahler manifolds, which allows us to con-
struct many examples of compact manifolds of this type. Ve also give some

. . . + .
results concerning the behavior of the function det W on such manifolds.

XVi. s8 . In our discussion of oriented Riemannian four-manifolds (M,g) ,
it is convenient to use local trivializations of A+M by eipenvectors

of w . In the open dense subset MV+ of M, consisting of points at
which the number of distinct eigenvalues of W+€ ¢ (Fnd A+M) is local-
ly constant, we can, locally, choose c” fun_ctions uy and mutuslly or—
thogonal ¢” sections ws of A+ with Imilz =2 and W+(wi) = uw, o,

1 <1 g3 . Note that, for x € M , every oriented orthonormal basis
x,,...,xh of TxM pives rise to orthonormal bases 2-1/2(;)(1 A X2 -
- XA %) "1/ "/2(;x1 AXy - Xy A Ky) of

* . . s . . .
A;M . This construction can easily be verified to be equivariant relative

(X, A x3-x,‘nx2) , 2

to the two-fold covering homomorphism SO0(k) + SO(3) x SO(3) , so that
each pair of suitably or.iented orthonormal bases of A:M and A;M is
obtained in this way from an oriented orthonormal basis of TxM . Hence,
by changing the siens of some of our LT we pet (cf. 1.8% )

. - ."‘ 2 -
uimjtmkt “’j“i 1f ei,jk=1" mi= 14 ,

(X¥1.59) -
oz lue®e . 2yt

vhere sijk is the Ricci symbol (skew-syrmetric in i,j,k , with €

The invariance of ATM under parallel displacements implies

123 = 1).

(XY1.60) D, = CkQ ws = C5@¢nk , if €k ™ 1

for certain C 1-forms 9 defined (locally) in Mw, . Calculating

the curvature of the Riemannian connection in A+M in .erms of the con-
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nection forms & o i.e., applying to ( XYL.60) the Ricei identity I.
we obtain

(XV1.61)  ag + giac, = (u; - u/6)w; + 3(re; +w,r) if A

XVl. 62 . Proposition (cf. [or1], [Po ], [De3]). Let (M,J,g) be a

¥Ahler manifold of real dimension four, oriented in the natural wvay (so

— e—— c—

.

that the Kihler form w is a section of A™M). Then W'(w) = uew/6 and

win) = - u-n/12 for any 2-form n € ATM orthogonal to w .

Proof. The Weitzenbdck formula for 2-forms n (cf. I. ),

2W(n) = &Dn - An + 2(n=1)""(a=2) Tuen + (n-h)(n-2)‘1(rn + nr)
implies, in dimension n =4 and for n = with Dw = 0 , that W(w) =
= uew/6 . In M+ (notation of XVI.58), set w, *w fora fixed i ,
so that u, = u/6 . From (XVI.60) and (XVl.61) , t, =0 and re +wr=

s

2 (u/3 - 2us)us , if s #1i . Since ru, = o.r (cr. K. &4 ), this gives,
by (XV1.59), (u/3 - 2w = o, [(u/3 - Zuj)uj] = w (ru; + w.r) = ra +

+ar= (/3 -2y )le for jskx such that e,.. = 1 . Hence (cf. (XVI.59)

ijk

us =w == u/12 , as required.

XYl. 63 . Remark . Ry XVI.62, every Kihler manifold (M,J,g) of real

dimension four satisfies the relation

(XV1.6L) # Spec(A+)W+ <2
i.e., the endomorphism W of A+M has, at each point, less than three
distinct eizenvalues. By the conformal invariance of W , (XVI.6L) will
also hold for any metric conformal to our Kihler metric g . On the other
hand, XVI.62 implies for (M,J,g) the equality W = ueT for some tensor
field T , which is parallel, since it is naturally determined by « and
A'M . Therefore, u-éW + W'(Du,e,+,) = O . Consequently (cf. (XVI.25) anc
XY1.5), for any Kihler four-manifold (M,J,g), the metric g = g/u? =
= g/ (2h|w"|2) , defined wherever W O' , satisfies the conditions
GS,WZ, =0 and # Spec(A-c-)W;, £2; clearly, g = (2&3‘(‘!;. ,H}))‘B-s' .

For a converse statement, see XVI.67.
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XVl. 65 . Fxamples of compact oriented Riemannian four-manifolds

with 6W =0 :

(i)  Compact oriented four-manifolds with Dr = 0 (cf. XVI.57).

(ii) Compact manifolds satisfying the conformally invariant condition W =

= 0 . The only known examples of this type are compact conformally flat

h-manifolds, and (suitably) oriented manifolds conformal to a quotient

of & K 3 surface with & Ricci-flat Kihler metric, or to the standard CP2 ,
or to compact quotients of its dual (cP2)* (cf. [AHS] and ”D:' ).
(iii) For any compact Kihler manifold (M,J,g) with dimRM = 4 and
u ¥ 0 everywhere, the conformally related compact manifold (M,g") =
(M,g/u?) satisfies 5s.ws, = 0 (for the natural orientation ; cf. Yvi 63).

"n._A
Using small Kihlerian deformations of g (see K. ), we obtain a

large variety of such examples (e g., with the underlying menifold CP2),

XVl. 66 . In the notations of XY!.58, formulae (X¥!.59) and (XY}.60) easi-
ly imply that condition & =0 is equivalent to

(Xvl.66) du, = (ui-uj)mk(ck) + (ui‘uk)wj(cj) ir €k ™ 1,

where we set w(g) = - e = w(+,z) for any 2~form w and any i-form [ .
XVI. &7 . 4e nave the following converse of the statement given in XY}.63 -
Theorem (A. Derdzifiski, [De3]) . Let an oriented Riemannian four-mani-

T, | A —————— S ————  ———— s——————

fold (M,g) satisfy the conditions (XVI.6L) and §W = 0 . Then the

metric g = (2h|W+|2)1/3'g , defined wherever W ko, is (locally)

Kihlerian with respect to some complex structure, defined explicitly

(up to a siegn) at points where w40 and compatible with the original
/3

. . 1 . . .
orientation. 'loreover, us. = ¢ , where ¢/6 1s the gimple eigenvalue

of W, and 8'8'/11;. .

Proof. In the notations of XVI.58, let 6u, = - 2p; = - 12y = ¢ for
some Tixed i,j,k with eijk = 1 , the function ¢ Dbeing smooth wher-
ever W #0. Clearly, ¢2 = 24w |2 , & = ¢2/3g ana, vy (XVl.66),
(XY1.68) a4 = 3¢m (2 ) = 3, (c,) .

We claim that

(XV1.69) 30-Dxu. + A0 Auw (X)+w(ad)AX=0
i i i
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for any tanrent vector X . In fact, let n be the 2-form constituting
the left-hand side of (XY/.69). Any €€ A'M is orthoponal to Dyw. and
commtes with w. (cf. X¥1.58, I.85 ), so that (n,f) = 0 . On the
other hand, (XYI.59), (XVi.60) and (XV1.68) yield (0 ,n) = (X,64-5, +
+ 2n|k(d¢)) = 0 and, similarly, (uk,n) = (ui.n) = 0 , vhich proves
(XV1.69). It is now easy to verify (ef. I, )} that (XY1.69) means

nothing but Dg* (¢2/3

ui) = 0, so that g° is a Kihler metric with
Kahler form determined by g up to a sipn (since » is a simple eigen-
vector of W'). Our assertion is now immediate from the obvious rela-
tions between the spectra of w; and w;, » acting on A*M » topgether

with XY1.62.

XVI. 70 . Proof of Proposition XVI.32 : By XVi.28.ii), relations [V | =

=|W|>0 and # Spec(A—)W. £ 2 hold near x . Thus, XYI .67 implies

|2/3

that the metric g" = |W|“'“g is Kihlerian for two complex structures

J+, J , corresponding to different orientations in & neighborhood of

x . The corresponding Kéhler forms ut are sections of At , and there-
fore J° and J must commute (since w> = *, A X, - x3 A X, for some
local g°-orthonormal frame XyseeeaXy » cf. XY1.58). Hence a = J'J°

is a g"-parallel self-adjoint (1,1) tensor field with al = 13 ,» det a =
=1 and a ¥ :Id (note that (.f")-1 = - J+). Consequently, the (41)-ei-
genspaces of a form g° -parallel plane fields near x . Together with

the conformal transformation rule for |W| , this completes the proof.

XVI. 71 . Let (M,g) be an oriented Riemannian four-manifold with .
§W = 0 . In the notations of XYI.58, formulae ( XVL.59) and (XV!.61)
yield ("i’d‘i)"“i(‘j"k) +2u +u/6, (“5"“1’ - - sj(cj.ck) R

(w g, ) = - mk(;j,;k) and hence (cf. (XV1.60)), c(ui(ci)) =

= mj(ci,ck) - uk(l;i,cj) + ui(l:j,ck) - 2w, - u/6 , vhenever ik " 1.
Usinp (XV1.66), we obtain the equality (cf. [De3])

(Xv1.71) s, =202 + hujvk - uep /2 + 2(“5-"1”‘1:‘2 + 2(uk-ni)lcj|z

vhenever eijk = 1,
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XVi. 72 . Proposition . let an oriented Riemannian u-manifold (M,g)

satisfy the conditions W =0 and det(vA+)W+ =0.Then W =0.
Proof. Locally in M+ , we have u, = O for a fixed i (notations of

+
XV| .58). Suppose that W # O near x € M4+ . By (XYl.59), =W #

# 0, Jj,k being such that ¢ 1, and so, by (XVI.66), wj(cj) =

ijk - |
= mk(;k) , which pgives |t;j| = |ck| . Hence (XY!1.71) implies O = Au, =

= hujuk . This contradiction completes the proof.

XYl. 73 . Proposition . Every oriented Riemannian h-manifold with _
§W' = 0 satisfies the relation
(XV1.73) 8[W'12 = = ue [W'[2 + 36 det o yW" - 2[00 |2,

Proof. In the notations of KVI.58, set. Y, = (uj—uk)mi(ci) , if €k = 1.
By (XV1.50) and (X¥1.60), [DW {2 =z (Jau, |2+ 2]¥.]2) .

1
Computing A|W'|2 from(XVI.T1), ve now easily obtain (XVI.T3).

XVI, T: . Theorem . let (M,g) be a compact oriented Riemannian Y-mani-

fold with & =0 and u > O . Viewing W as an endomorvhism of A'M ,

ve have

(XY1.78) ' / aetWev >0,
M 4

the inequality being strict unless W =0 identically.

Proof. The wesk inequality follows from (XV1.73) by intepgration. Equality
occurs there if and only if DW =0 and u°lw+| = 0 , which implies
that |W+| is constant. Thus, by (XYI.73), equality in (XY!.Th) yields

+
det(A+)W = 0 and hence W+ =2 0 in virtue of XYLT?.

XVl. 15 . Remarks .

(i) It follows immediately from (XV].50) that every oriented Riemann-
v V.

ian U-manifold (M,g) satisfies the conditions W = |W|2.g and W=

v

= lwtlzog , where, for an algebraic curvature tensor T , T(X,Y) =

= (T(X,o,,°),T(Y,*,°,°)), . 1.94%.a) , 1. 96 ana [Ba ]. Consequent-

ly, the vector bundle homomorphism TM 3 X + W (X,*,+,) € T*M @ A'M

is injective wherever W # 0 . The transformation rule ss,w‘”_. = &6 -
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- w+(Df,°,',') of cw* for conformally related metrics g° = ezrg on an

oriented four-dimensional manifold (see (XV1.25) and XVI.5) implies that
in the open subset of such a manifold defined by w # 0 , the given con-
formal class cannot contain two essentially distinct (i.e., not propor—
tional with a constant factor) metrics with W' =0 .

(ii) An oriented Riemannian four-manifold (M,g) satisfies the condi-
tion DW =0 if and only if either W= O, or g is locally Kihlerian
(Kdhlerian up to a two-fold isometric covering) in a vay compatible with
the orientation and has non-zero constant scalar curvature. In fact, if
W€ c7(s2A'M) (cf. I.88 ) is parallel and non-zero, it must have a
simple eigenvalue and a local section w of the corresponding line sub-
bundle of A'M , normed by |w|2 = 2 , is parallel, so that our assertion
follows from XY!.63.

(iii) Roter’s theorem saying that Riemannian manifolds (M,g) with

DW =0 must have W=0 or DR=0 (cf. XYI.2k.iii)) can be proved

in dimension four as follows. If W # 0, g is locally Kihlerian by
(ii), so that XY!.30 implies Dr = O , which, together with IW = 0 ,
gives DR=0 (cf. I.74 ).
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Some notations

c(R) the Ricci contraction of an algebraic curvature tensor R

c'(z) the spaée of C  sections of a vector bundle E

eE) the space of algebraic curvature tensors in a Buclidean space E
d exterior derivative of real or vector valued differential forms on

a Riemannian manifold (M,g)
D the Riemannian connection (covariant derivative) of (M,g)

h@b the Kulkarni-Nomizu product of symmetric 2-tensors : (h@b)ijkl
DL PRI LI U PR LI
K the sectional curvature of (M,g) : K(span(X,Y)) = R(X,Y,X,Y) for

orthonormal vectors X,Y

.. k
T the Ricci tensor of (M,g) : tij Rikj
R the curvature tensor of (M,g) : sign convention R(X,Y) =

= [ny.0,] + Drx,v]

0 o
R(b) action of R on symmetric 2-tensors : [R(b)].. = R, . pP1
1} ip1q

SgB the bundle of traceless symmetric 2-forms in a Riemannian vector

bundle E
Crgb the trace of a covariant 2-tensor b on (M,g) : trgb = gubij
u the scalar curvature of (M,g) : u = ttgt
\v8 the volume element of (M,g)

W the Weyl conformal tensor of (M,g)
&» -

W, W the self-dual (resp., anti-self-dual) component of W on an

oriented Riemannian four-manifold (M,g)

W) the space of algebraic Weyl tensors in a Euclidean space E
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-,

§ the divergence (see XVI. 3)

Am - glJDiDj the Laplace operator of (M,g) , acting on functions

0 = ex the normal volume function of (M,g) at x € M (in normal

coordinates at x , 0 = det gij)
AkE the k-th exterior power of a vector space (vector bundle) E

A+H . AM the bundle of self~dual(resp., anti-self-dual) 2-forms on

an oriented Riemannian 4-manifold (M,g)

® the symmetric product

the set of points in (M,g) at which the number of distinct
eigenvalues of the symmetric tensor b is locally constant
(see XVI.10)

Conventions :
1 i
[w]2 = 3w, .» J (d"')i.ik = Di"‘jk + Dj“‘ki + Dk"'ij for a 2-form w
2 ijk =2.1.% . ijk 3 Pq
IR|2 = Rh:.,] ik |pRj2 . ) DR PRIk (Rlw)) 5 Rlapq“'

for an algebraic curvature tensor R and a 2-form w

(x A I)ij = Xin - x&Yi ’ (dX)ij = Dixj - njxi for t-forms X , Y
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