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Abstract. Given a B-pair W and a Schur functor S, we show under some general

assumptions that W is trianguline if and only if S(W ) is. This is an extension of

earlier work of Di Matteo. We derive some consequences on the behavior of local Galois

representations under morphisms of Langlands dual groups. We attach to a Schur

functor a map between the trianguline deformation spaces defined by Hellmann, and

we study congruence loci on the Hecke-Taylor-Wiles varieties constructed by Breuil,

Hellmann and Schraen for unitary groups.
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1. Introduction

The original motivation for this paper comes from the intention of generalizing a result

of [Cont16b] that we recall here very approximately. Fix a prime p larger than 3. Consider

an abstract Hecke algebra H for GSp4, spherical outside Np for a fixed integer N and of

Iwahoric level at p. Let E be the GSp4-eigenvariety constructed by Andreatta, Iovita and

Pilloni in [AIP15]. There exists a homomorphism θ from H to the ring of rigid analytic

functions O(E ) over E interpolating the systems of Hecke eigenvalues of classical Siegel

modular forms of tame level N and Iwahoric level at p. We denote by GK the absolute

Galois group of a local or global field K. In [Cont16b, Section 10.3], two loci on E are

defined:

∗ the Galois symmetric cube locus, as the locus of points x of E such that the associated

Galois representation ρx : GQ → GSp4(Qp) takes values in the image of the symmetric

cube representation Sym3 : GL2(Qp)→ GSp4(Qp);

∗ the automorphic symmetric cube locus, as the locus of points x of E such that the

associated system of Hecke eigenvalues θx derives from that of a p-adic overconvergent
1



modular form for GL2 via a suitable morphism of Hecke algebras attached to the

symmetric cube representation.

Theorem 1.1. [Cont16b, Theorem 10.10] The Galois and automorphic symmetric cube

loci on E coincide.

Thanks to the wide range of reductive algebraic groups for which eigenvarieties are

available, one may wish to generalize Theorem 1.1 to other representations than the

symmetric cube. We summarize the proof by a chain of implications below, where the

property “trianguline” is intended in the sense of (ϕ,Γ)-modules or B-pairs (see Definition

2.4). Consider the following statements:

(1) x is a point of the Galois symmetric cube locus on E ;

(2) the restriction of ρx to a decomposition group at p is trianguline;

(3) there exists a continuous representation ρy : GQ → GL2(Qp) that satisfies ρx ∼=
Sym3ρy;

(4) the restriction of the representation ρy at point (3) to a decomposition group at p is

trianguline;

(5) the representation ρy at point (3) is attached to a p-adic overconvergent automorphic

form for GL2;

(6) the point x belongs to the automorphic symmetric cube locus on E .

Under some technical hypotheses, there are implications

(1.1)

(1) (2)

(3) (4) (5) (6)

The implication (1) =⇒ (2) is an application of [KPX14, Corollary 6.3.13], a very

general result that can be applied whenever the eigenvariety under consideration admits

a Zariski-dense set of “refined crystalline” points in the sense of [KPX14, Definition 6.4.1]

(see for instance the application in [BHS17, Section 2.2]). The arrow (5) =⇒ (6) follows

immediately from the definition of the symmetric cube morphism of Hecke algebras. On

the other hand, the implication (4) =⇒ (5) relies on the work of Emerton and Kisin

on the overconvergent Fontaine-Mazur conjecture, that is very specific to the case of

representations GQp → GL2(Qp). We will need to assume an analogue of this conjecture

in the more general cases we are interested in.

The goal of this paper is to fill the diagram (1.1) by generalizing the results (1) =⇒
(3) [Cont16a, Lemma 3.11.5] and (2) + (3) =⇒ (4) [Cont16a, Proposition 3.10.25]

to an algebraic representation S : GLn → GLm, for arbitrary integers n and m, defined

by a Schur functor. This generalization is the content of Proposition 6.3, that relies

essentially on the main results of the paper, Theorems 4.2 and 5.2. We summarize

them in the following statement. Let S be as above, let K be a p-adic field and let

ρ : GK → GLn(Qp) be a continuous representation.
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Theorem 1.2.

∗ If S ◦ ρ : GK → GLm(Qp) is potentially trianguline (see Definition 2.4) then ρ is poten-

tially trianguline (Theorem 4.2).

∗ If S ◦ ρ : GK → GLm(Qp) is trianguline and it admits a triangulation whose parameters

are derived from those of ρ (see Remark 4.8), then ρ is trianguline (Theorem 5.2).

Our results are actually more general than Theorem 1.1, in the sense that we work in

the category of B-pairs that contains as a strict subcategory that of p-adic representations

of GK . Accordingly, trianguline Galois representations are replaced by triangulable B-

pairs. We also remark that when the property “trianguline” is replaced by “de Rham”,

the analogues of the previous results are proved by Di Matteo in [DiM13a, Theorem

2.4.2].

In the last section we describe an application of diagram (1.1) to the Hecke-Taylor-

Wiles varieties for unitary groups that are studied by Breuil, Hellmann and Schraen in

[BHS17]. We summarize our results here.

Let n be an integer such that p > 2n + 1. Let F+ be a totally real number field

and let F be a totally imaginary quadratic extension of F+. Let G be a unitary group

over F+ such that G is split over F , compact at infinity and isomorphic to GLn at all

places in Σp. Let k be a finite field of characteristic p and let ρ : GF → GLn(k) be a

residual representation appearing in a space of automorphic forms for G. For a p-adic

place v of F and a decomposition subgroup GFv of GF , the couples (ρ|GFv , δ) consisting

of a trianguline characteristic 0 lift ρ of ρv := ρ|GFv and an n-tuple of parameters of a

triangulation of ρ|GFv live naturally on a “trianguline deformation space” X�
tri,v [Hel12,

Theorem 1.1]. Breuil, Hellmann and Schraen [BHS17] attached to G and to ρ a “Hecke-

Taylor-Wiles variety” Xp(ρ) that is strictly related both to the eigenvariety for G and

ρ (see for instance [Che11, Definition 2.2]) and to the trianguline deformations spaces

X�
tri,v. In particular there is a natural morphism Xp(ρ)→

∏
v|pX

�
tri,ρv

.

As before, consider an algebraic representation S : GLn → GLm. We study the mor-

phisms induced by S between the trianguline deformation spaces and the Hecke-Taylor-

Wiles varieties attached to two groups Gn and Gm on F+ that are isomorphic to GLn
and GLm, respectively, at p-adic places. We show the following.

Theorem 1.3.

∗ For every p-adic place v of F , the representation S induces morphisms of trianguline

deformation spaces

Stri,v : X�
tri,ρv
→ X�

tri,S ◦ ρv .

∗ Assume part of the standard modularity conjectures for Gn and Gm, as reformulated

in Conjecture 7.4. Then
∏

v∈V Stri induces a morphism STW fitting in the following

commutative diagram:

Xp(ρ) X�
tri,ρv

Xp(S ◦ ρ) X�
tri,S ◦ ρv

STW
∏
v|p Stri,v

We define an S-congruence locus on Xp(S ◦ ρ) as the locus of points whose associated

local Galois representation are obtained via S from GLn-valued representations. By
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combining Theorems 1.2 and 1.3, we give a characterization of the S-congruence locus

that can be seen as a vast generalization of [Cont16b, Theorem 10.10].

Theorem 1.4.

∗ Every point x of the S-congruence locus is the “twin” of a point x′ in the image of the

morphism STW , that is x and x′ carry the same set of local Galois representation but

possibly different triangulations. (Theorem 7.18).

∗ The image of STW consists of the irreducible components of maximal dimension of the

S-congruence locus (Corollary 7.20).
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at the core of this paper. I also thank Vincent Daruvar, Adrian Iovita, Cédric Pépin,

Benjamin Schraen and Jacques Tilouine for meaningful exchanges.

Notation. In the following p is a fixed prime number. We denote by Qp an algebraic

closure of the field Qp. We extend the p-adic valuation on Qp to a valuation on Qp and

we let Cp be the completion of Qp with respect to this choice. By a “p-adic field” we will

always mean a finite extension of Qp. Given a local or global field F we denote by GF its

absolute Galois group, equipped with the profinite topology. Throughout the whole text

the letters K and E will denote two p-adic fields.

For every n ≥ 1 we write 1n for the n× n unit matrix.

Let K be a finite extension of Qp and let X be a rigid analytic space over K. We

denote by O(X) the K-algebra of rigid analytic functions on X, and by O(X)◦ the OK-

subalgebra of functions of norm bounded by 1. We say that X is wide open if there

exists an admissible covering {Xi}i∈N of X by affinoid domains Xi such that, for every i,

Xi ⊂ Xi+1 and the map O(Xi+1)→ O(Xi) induced by the previous inclusion is compact.

Given a formal scheme Spf (A) over Spf (OK), we denote by Spf (A)rig the rigid analytic

space over K attached to Spf (A) by Berthelot’s construction, described for instance in

[deJ95, Section 7].

2. Generalities on B-pairs

We refer to [Ber08] and [DiM13b] for the basic definitions concerning B-pairs. Let

B be a topological ring equipped with a continuous action of GK . We call semilinear

B-representation of GK a free B-module of finite rank M equipped with a semilinear

action of GK , meaning that g(bm) = g(b)g(m) for every b ∈ B, m ∈M and g ∈ GK . We

denote by SemGK (B) the category whose objects are the semilinear B-representations

of GK and whose morphisms are the GK-equivariant morphisms of B-modules. We call

rank of an object of SemGK (B) its rank as a B-module.

We denote by Bcris, Bst, B+
dR and BdR the rings of periods defined by Fontaine in

[Fon94]. Each of these objects is a topological Qp-algebra carrying a continuous action

of GK . We add an index E denote the extension of scalars from Qp to E. We denote
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by t Fontaine’s chosen generator of the maximal ideal of the complete discrete valuation

ring B+
dR. We denote by ϕ the Frobenius endomorphism of Bcris. We set Be = Bϕ=1

cris . Let

Be,E = Be ⊗Qp E. We let GK act on Be,E via its action on the first factor, that is we set

g(b⊗ e) = g(b)⊗ e for every b ∈ BE, e ∈ E and g ∈ GK .

Definition 2.1. A BE
K-pair is a pair (We,W

+
dR) where:

∗ We is an object of SemGK (Be,E);

∗ W+
dR is a GK-stable B+

dR-lattice of BdR,E ⊗Be,E We.

We define the rank of (We,W
+
dR) as the common rank of We and W+

dR. Given two BE
K-

pairs (We,W
+
dR) and (W ′

e,W
+,′
dR ), a morphism of BE

K-pairs (We,W
+
dR) → (W ′

e,W
+,′
dR ) is a

pair (fe, f
+
dR) where:

∗ fe : We → W ′
e is a morphism in SemGK (Be,E),

∗ f+
dR is a morphism in SemGK (B+

dR),

∗ with the obvious notations, the BdR,E-linear morphisms fe[1/t], fdR[1/t] : WdR → W ′
dR

coincide.

The objects and morphisms described above define the category of BE
K-pairs.

For a BE
K-pair (We,W

+
dR) we also set WdR = BdR,E ⊗Be,E We, that is the same as

BdR,E ⊗Be,E We; it is an object of SemGK (BdR). Given two BE
K-pairs X = (Xe, X

+
dR)

and W = (We,W
+
dR) such that Xe ⊂ We and W+

dR ⊂ W+
dR, we say that X is a saturated

sub-BE
K-pair of W if the lattice W+

dR is saturated in W+
dR. The quotient W/X admits a

natural structure of BE
K-pair if and only if X is a saturated sub-BE

K-pair of W .

Given a BE
K pair W and finite extensions L/K and F/E, we can define a BF

L -pair as

(F ⊗E W )|GL , with the obvious notations. Given a property ?, we say that W has ?

potentially if there is a finite extension L/K such that W |GL has ?.

Definition 2.2. Let ? ∈ {cris, st, dR}. We say that a BE
K-pair (We,W

+
dR) is (poten-

tially) B?,E-admissible if B?,E ⊗Be,E We is (potentially) trivial in SemGK (B?, E). We call

(We,W
+
dR) (potentially) crystalline, semi-stable, de Rham if it is (potentially) admissible

for the corresponding ring.

Recall that the properties of being de Rham and potentially semi-stable are equivalent

for a BE
K-pair by a result of Berger [Ber08, Théorème 2.3.5].

Let Rep GK (E) be the category of continuous, E-linear, finite-dimensional represen-

tation V of GK . For an object V of Rep GK (E) we denote by W (V ) the BE
K-pair

(Be,E ⊗E V,B+
dR ⊗E V ). The rank of W (V ) is equal to the E-rank of V . Given

two objects V , V ′ of Rep GK (E) and a morphism f : V → V ′, we define a morphism

W (f) : W (V ) → W (V ′) by Be,E-linearly extending f to the first element of W (V ) and

B+
dR linearly to the second. The functor W (·) defined this way is fully faithful and identi-

fies Rep GK (E) with a full tensor subcategory of the category of BE
K-pairs. This is [Ber08,

Théorème 3.2.3] when E = Qp and an immediate consequence of it for general E.

For ? ∈ {cris, st, dR}, an object V of Rep GK (E) is (potentially) B?-admissible in the

sense of Fontaine if and only if the BE
K-pair W (V ) is (potentially) B?-admissible in the

sense of Definition 2.2. This means that V is (potentially) crystalline, semi-stable, de

Rham if and only if W (V ) is.

Let R be a ring equipped with an action of GK . A character η : GK → R× is GK-

equivariant (for the action of GK on itself by conjugation) if and only if it takes values
5



in (R×)GK , where we use the standard notation for the elements fixed by a group action.

For a character η : GK → (R×)GK , we denote by R(η) the a free R-module of rank 1 with

a distinguished generator eη, equipped with the semilinear action gη(·) of GK defined by

gη(x · eη) = η(g)g(x) · eη for every x ∈ R, g ∈ GK and the action g(·) of GK on R. For an

object M of SemGK (R), we define a new object of this category as M(η) = M ⊗R R(η).

For every η as before, we define a BE
K-pair B(η) of rank one as (Be,E(η),B+

dR(η)). For a

BE
K-pair W , we define a new BE

K-pair as W (η) = W ⊗B(η).

Definition 2.3. Let F be a field.

∗ An object M of SemGK (F) is split triangulable if there exists a filtration 0 = M0 ⊂M1 ⊂
. . . ⊂ Mn = M such that, for 1 ≤ i ≤ n, Mi is a rank i subobject of M in SemGK (F).

If moreover Mi/Mi−1
∼= F(ηi) for 1 ≤ i ≤ n and characters ηi : GK → (F×)GK , then

we say that M is split triangulable by characters η1, η2, . . . , ηn.

∗ An object M of SemGK (F) is triangulable if there is a finite extension F′ of F such that

F′ ⊗F M is triangulable as an object of SemGK (F′).

Let M be an object of some rank n in SemGK (F) and let (e1, e2, . . . , en) be a F-

basis of M . To every g ∈ GK we attach the only matrix (agij)i,j ∈ GLn(B) satisfying

g(ei) =
∑

j a
g
ijej for every i ∈ {1, 2, . . . , n} (we leave implicit the dependence of (agij)i,j

on the choice of a basis). Then:

∗ the object M is trivial if and only if it admits a basis with respect to which the matrix

(agij)i,j is the identity for every g ∈ GK ;

∗ the object M is triangulable if and only if it admits a basis with respect to which the

matrix (agij)i,j is upper triangular for every g ∈ GK ;

Definition 2.4.

∗ A BE
K-pair W is split triangulable if there exists a filtration 0 = W0 ⊂ W1 ⊂ . . . ⊂

Wn = W such that, for 1 ≤ i ≤ n, Wi is a rank i sub-BE
K-pair of W . If moreover

Wi/Wi−1
∼= BE

K(ηi) for 1 ≤ i ≤ n and characters ηi : GK → (F×)GK , then we say that

W is split triangulable with ordered parameters η1, η2, . . . , ηn.

∗ A BE
K-pair W is triangulable if there is a finite extension F of E such that the BF

K pair

F ⊗E W is split triangulable.

∗ An object V of Rep GK (E) is (potentially, split) trianguline if W (V ) is (potentially,

split) triangulable.

The ring Be,E is a principal ideal domain by [DiM13b, Proposition 1.2.2]. Let FE be

its fraction field, equipped with the action of GK induced by that on BE,e. For every

finite extension L of K, we have BGL
dR,E = FGL

E = L.

The following lemma gives equivalent conditions for a BE
K-pair to be triangulable.

Lemma 2.5. [DiM13b, Corollary 2.2.2] Let W = (We,W
+
dR) be a BE

K-pair. The following

conditions are equivalent:

(1) the BE
K-pair W is split triangulable;

(2) the semilinear Be,E-representation We of GK is split triangulable;

(3) the semilinear FE-representation FE ⊗Be,E We of GK is split triangulable.

In particular the same equivalence holds if we replace “split triangulable” by “triangula-

ble”.
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Thanks to the lemma we will be able to study the triangulinity of a BE
K-pair W by

studying the triangulability of a FE-representation of GK .

3. Generalities on Schur functors

Let q be a positive integer. Consider a decreasing integer partition u of q, that is

a tuple u = (u1, u2, . . . , ur), for some r ≥ 1, satisfying u1 ≥ u2 ≥ . . . ≥ ur ≥ 1 and

u1 +u2 + . . .+ur = q. In the following we will refer to u simply as a partition, leaving the

other properties implicit. If q and r are not specified, we will write r(u) for the length

of u and q(u) for the sum u1 + u2 + . . . + ur(u). Note that in [DiM13a, Section 1.4] the

quantity r(u) is defined in a slightly different way.

We recall that to a partition u = (u1, u2, . . . , ur) we can attach a Young diagram whose

columns have lengths u1, u2, . . . , ur. A Young tableau of shape u is a filling of the Young

diagram attached to u with positive integers. We call a Young tableau semistandard

if its entries are strictly increasing from top to bottom along each column, and weakly

increasing along each row from left to right.

Let R be a commutative ring with unity. To a partition u we can attach in the standard

way a Schur functor Su from the category of R-modules to itself; we leave the dependence

on R implicit. We refer to [FH91, Lecture 6] for the definition of Su. We recall that

Su = (0) if r(u) > n. If M is a free R-module of rank n, then the R-module Su(M) is

also free and we denote by ru(n) its rank.

Let u be a partition. We write q = q(u) in this paragraph. Let Stdn(R) denote a

free R-module of rank n equipped with an ordered basis (ei)1≤i≤n and with the standard

representation of GLn(R) with respect to this basis. The elementary tensors ei1 ⊗ ei2 ⊗
. . . ⊗ eiq form an R-basis of the tensor power Stdn(R)⊗q. We make this basis into an

ordered basis via the lexico-graphic order; we denote it by (⊗qei). We let g ∈ GLn(R)

act on an elementary tensor ei1 ⊗ ei2 ⊗ . . .⊗ eiq ∈ Stdn(R)⊗q by g(ei1 ⊗ ei2 ⊗ . . .⊗ eiq) =

g(ei1)⊗ g(ei2)⊗ . . .⊗ g(eiq), and we extend this action R-linearly to Stdn(R)⊗q. The R-

module SuStdn(R) is a free R-module of rank ru(n) and a GLn(R)-stable direct summand

of the R-module Stdn(R)⊗q. More precisely, it is a direct summand of
⊗r

i=1 ΛuiStdn(R).

We use the ordered basis (ei)1≤i≤n to define an ordered basis of SuStdn(R) in the following

way. Let T be the set of semistandard Young tableaux of shape u taking all their entries

in the set {1, 2, . . . , n}. Let T ∈ T. Denote by iTa,b the integer at the intersection of

the a-th column from the top and the b-th row from the left. Let eT be the element of⊗r
i=1 ΛuiStdn(R) given by

(eiT1,1 ∧ eiT1,2 ∧ . . . ∧ eiT1,u1
)⊗ (eiT2,1 ∧ eiT2,2 ∧ . . . ∧ eiT2,u2

)⊗ . . .⊗ (eiTr,1 ∧ eiTr,2 ∧ . . . ∧ eiTr,ur ).

Let [eT ] be the projection of eT to the quotient SuStdn(R) of
⊗r

i=1 ΛuiStdn(R). We give

the set T the following total ordering: given T, T ′ ∈ T we say that T < T ′ if, proceeding

in the lexico-graphic order, the first value of (a, b) such that iTa,b 6= iT
′

a,b satisfies iTa,b < iT
′

a,b.

When T varies over the ordered set T, the string (eT )T∈T forms an ordered R-basis of

SuStdn(R) [FH91, Problem 6.15]. In the following, when we speak of the basis (eT )T∈T we

always leave implicit the fact that it depends on the choice of an ordered basis (ei)i∈{1,...,n
of V .
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We denote by Sun(R) the representation GLn(R) → GLru(n) defining the action of

GLn(R) on SuStdn(R) with respect to the ordered R-basis (eT )T∈T.

Our choice of ordering on T is explained by the following remark.

Remark 3.1. For every positive integer d, let Bd denote the Borel subgroup of GLd(R)

consisting of upper triangular matrices and let Td denote the torus of diagonal matrices

in GLd(R). An easy check shows that:

∗ the images of Tn and Bn via the representation Sun are contained in Tru(n) and Bru(n),

respectively;

∗ the preimages of Tru(n) and Bru(n) via the representation Sun are contained in Tn and

Bn, respectively.

The properties on Borel subgroups depend on our chosen ordering of the R-basis of

SuStdn(R). Note that such a choice may be unimportant when working with the linear

representation Sun, but it becomes significant when we move to semilinear representations.

Remark 3.2. Let u = (u1, u2, . . . , ud) be any partition. For a positive integer k, let u+k

denote the partition (u1 + k, u2 + k, . . . , ud + k). Then Su+k
n = Sun ⊗ detk.

When the characteristic of R is zero, the representation Sun(R) is irreducible. When

R = C the morphism Sun defines the C-representation of GLn(C) of highest weight u, that

is unique up to isomorphism. For arbitrary R, if r(u) = n and u1 = u2 = . . . = un = u

for a positive integer u then the representation Sun(R) is detu.

Now suppose that R carries an action of GK and that M is an object of rank n in

SemGK (R). We choose an ordered R-basis (ei)1≤i≤n. We let g ∈ GK act on M⊗q by

setting g(ei1 ⊗ ei2 ⊗ . . .⊗ eiq) = g(ei1 ⊗ g(ei2)⊗ . . .⊗ g(eiq)) for every elementary tensor

ei1⊗ei2⊗. . .⊗eiq , and extending semilinearly. This action leaves the R-submodule Su(M)

stable, making it into an object of SemGK (R) that we still denote by Su(M). Note that

the action of GK on M⊗q, hence on Su(M), depends on our choice of basis for M and for

M⊗q.

Remark 3.3. With notations as before, we identify M with Stdn(R) via the chosen

ordered basis (ei)1≤i≤n and we give Su(M) the ordered basis (eT )T∈T constructed in this

section. For g ∈ GK, let Ag be the matrix in GLn(R) describing the action of g on the

basis (ei)1≤i≤n of M . Then g acts on the basis (eT )T∈T of Su(M) via the matrix Sun(Ag).

We recall a standard result.

Lemma 3.4. [Hun86, Theorem 1] Let n be a positive integer. Let u be a partition that

satisfies (∗). Then the morphism GLn → GLn/ kerSun is an isogeny. The kernel of Sun is

the algebraic group µq of q-th roots of unity, embedded in GLn via µ 7→ µ1n.

When choosing a partition u we will often make the following assumption:

(∗) neither (a) r(u) > n nor (b) u1 = u2 = . . . = ur(u).

When (a) holds the representation Sun is trivial, and when (b) holds it is a power of

the determinant. We bear no interest in these two cases: for these representations the

conclusions of Theorems 4.2 and 5.2 are trivally false, if n > 1, or trivially true, if n = 1.

Note that (∗) coincides with the assumption on the partition in [DiM13a, Sections 2.4,

3.3], even if the hypothesis there is phrased differently.
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Let u be a partition and let W = (We,W
+
dR) be a BE

K-pair. As in [DiM13b, Section

1.4], we define a BE
K-pair Su(W ) as (Su(We), Su(W+

dR)). If V is an object of Rep GK (E),

then Su(W (V )) ∼= W (Su(V )) in the category of BE
K-pairs.

4. Schur functors and potentially trianguline B-pairs

We recall a result of Di Matteo.

Theorem 4.1. Let u be a partition satisfying (∗). Let W be a BE
K-pair.

(1) If W is de Rham then Su(W ) is de Rham.

(2) If Su(W ) is de Rham, then there exists a finite extension F/E and a character

µ : GK → F× such that W (µ) is de Rham.

(3) Statements (1) and (2) hold if we replace “de Rham” with “crystalline”.

Part (1) follows by a straightforward semilinear algebra computation. Parts (2) and

(3) are Theorems 2.4.2 and 3.3.2 of [DiM13a], respectively.

The goal of this section is to prove an analogue of Theorem 4.1(1,2), with “de Rham”

replaced by “potentially triangulable”. Our result is the following.

Theorem 4.2. Let u be a partition satisfying (∗). Let W be a BE
K-pair. Then:

(1) if W is split triangulable of parameter δ then Su(W ) is split triangulable of parameter

Su ◦ δ;
(2) if Su(W ) is split triangulable, then W is potentially split triangulable.

By specializing the theorem to the case where W = W (V ) for an E-linear representa-

tion V of GK , we obtain the following corollary.

Corollary 4.3. Let u be a partition satisfying (∗) and let V be an object of Rep GK (E).

Then:

(1) if V is split trianguline of parameter δ, then Su(V ) is split trianguline of parameter

Su ◦ δ;
(2) if Su(V ) is split trianguline, then V is potentially trianguline.

Proof. (of Theorem 4.2) Let u and W be as in the statement of the theorem. Note

that FE ⊗Be,E SuWe = Su(FE ⊗Be,E We) in SemGK (FE). By the implication (1) =⇒
(3) in Lemma 2.5, the object Su(FE ⊗Be,E We) is triangulable in SemGK (FE). On the

other hand, the implication (3) =⇒ (1) gives that if FE ⊗Be,E We is triangulable then

the BE
K-pair W is triangulable. We reduce Theorem 4.2 to a statement about semilinear

representations of GK . More precisely, the theorem follows by specializing the next lemma

to the representation V = FE ⊗Be,E We.

Let V be an object of rank n in SemGK (FE).

Lemma 4.4.

(1) If the action of GK on V is triangulable, then the action of GK on Su(V ) is triangu-

lable.

(2) If the action of GK on Su(V ) is triangulable, then the action of G on Su(V ) is

potentially triangulable.
9



We prove part (1). Let (ei)i∈{1,...,n} be a FE-basis of V in which GK acts via upper

triangular matrices. For g ∈ GK let σg ∈ GLn(FE) be the matrix describing the action

of g on V in the basis (ei)i∈{1,...,n}. Then the matrix describing the action of g on Su(V )

in the basis (eT )T∈T is Sunσg. Since the matrix σg is upper triangular, the matrix Sunσg is

also upper triangular by Remark 3.1, as desired.

We prove part (2). We will need to apply a few results that we restate here.

Lemma 4.5. [DiM13b, Lemma 3.1.1] Let 0→ X ′ → X → X ′′ → 0 be an exact sequence

in SemGK (FE). Then X is triangulable if and only if X ′ and X ′′ are.

Lemma 4.6. [DiM13b, Theorem 3.2.2] If X and Y are two objects in SemGK (FE) such

that X ⊗ Y is triangulable, then X and Y are potentially triangulable.

Lemma 4.7. [Del82, Proposition 3.1] Let F be a field of characteristic zero, G a reductive

algebraic group over F and let S : G → GL(V ) be a finite-dimensional faithful represen-

tation of G over F. Then every irreducible, finite-dimensional F-linear representation of

G appears as a direct factor of S⊗k for some positive integer k.

Let u be a partition of an integer q such that u satisfies (∗) and assume that Su(V ) is

triangulable. Let v be another partition of the same integer, also satisfying (∗). We show

that Sv(V ) is also triangulable. To this purpose we apply Lemma 4.7 to the reductive

algebraic group G over FE defined as GLn/ kerSun. We make this precise. The FE-module

Su(V ), equipped with the action of G given by Sun : G → GL(Su(V )), is a faithful repre-

sentation of G. By Lemma 3.4 the kernels of Sun and Svn coincide the group µq embedded

diagonally in GLn. In particular G = GLn/ kerSvn, so that Sv(V ), equipped with the ac-

tion of G given by Svn : G→ GL(Sv(V )), is a faithful representation of G. By Lemma 4.7

the irreducible representation Sv(V ) of G appears as a subquotient of (Su(V ))⊗k for some

positive integer k. Since Su(V ) is triangulable by assumption, its tensor power (Su(V ))⊗k

is also triangulable. In particular its direct factor Sv(V ) is trangulable by Lemma 4.5.

Now consider the object Symq−1V ⊗ V in SemGK (FE). By the Littlewood-Richardson

rule (see for instance [FH91, Appendix 8]) the FE-linear representation Symq−1V ⊗ V

of GLn can be decomposed in a direct sum of irreducible representations of the form

Sv(V ), where v is a partition of q. By the result of the previous paragraph, every direct

factor Sv(V ) is triangulable as an object of SemGK (FE). We deduce that Symq−1V ⊗ V
is triangulable by Lemma 4.5. Now Lemma 4.6 gives that V is potentially triangulable,

as desired. This concludes the proof of Lemma 4.4(2), hence of Theorem 4.2. �

Remark 4.8.

(1) Suppose that W is triangulable with respect to ordered parameters ηi : GK → E×, 1 ≤
i ≤ n. Let η : GK → GLn(E) be the representation sending g ∈ GK to the diagonal

matrix (η1(g), . . . , ηn(g)). By Remark 3.1, the representation Sun maps the diagonal

torus of GLn(E) to the diagonal torus of GLru(n)(E). In particular the representation

Sun ◦ η : GK → GLru(n)(E) maps an element g ∈ GK to a diagonal matrix that we write

as (ηT (g))T∈T for the usual index set T of an E-basis of SuStdn(E) and characters

ηT : GK → E×. Then it is immediate to see that the BE
K-pair Su(W ) is triangulable

with respect to the ordered parameters (ηT )T∈T.

(2) Each diagonal entry of Sun ◦ η is expressed by a monomial of degree q in the variables

η1, . . . , ηn.
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5. Schur functors and trianguline B-pairs

We adapt the notion of strict triangulinity from [KPX14, Definition 6.3.1] to the context

of B-pairs.

Definition 5.1. Let W be a BE
K-pair of rank n admitting a triangulation {Wi}0≤i≤n with

ordered parameters ηi : GK → K×, 1 ≤ i ≤ n. We say that W is strictly triangulable

with respect to the given ordered parameters if, for 1 ≤ i ≤ n, Wi is the only saturated,

rank i sub-BE
K-pair of W that contains Wi−1 and satisfies Wi/Wi−1

∼= B(η). We call an

E-linear representation V of GK strictly trianguline if W (V ) is strictly triangulable.

We refer to Remark 7.2 for a condition on the parameter (ηi)1≤i≤n that guarantees that

a BE
K pair admitting a triangulation of this parameter is strictly trianguline.

Note that the property of being strictly trianguline with respect to some parameters

depends on the choice of an ordering of the parameters. If L is a finite extension of K and

W is a BE
K-pair that is strictly trianguline with respect to ordered parameters (ηi)1≤i≤n,

then W |GL is strictly trianguline with respect to the ordered parameters (ηi|GL)1≤i≤n.

Under a strict triangulinity assumption, we can improve Theorem 4.2 in the following

way. Let u be a partition satisfying (∗). Let W = (We,W
+
dR) be a BE

K-pair such that

Su(W ) is triangulable. Let L be a finite extension of K such that W |GL is triangulable. It

exists by Theorem 4.2. Let (ηi)1≤i≤n be the ordered set of parameters of the triangulation.

Let (ηT )T∈T be the ordered set of parameters defined in Remark 4.8.

Theorem 5.2. If Su(W ) is strictly triangulable with respect to the ordered parameters

(ηT |GL)T∈T then W is split triangulable.

Proof. As usual we can restrict ourselves to the split triangulable case. Let {Wi}1≤i≤n
be a triangulation of W |GL and write Wi = (Wi,e,W

+
i,dR). Also write Wi/Wi−1 =

((Wi/Wi−1)e, (Wi/Wi−1)+
dR). For every i ∈ {1, . . . , n} let ei,e and e+

i,dR be generators

of (Wi/Wi−1)e over Be,E and of (Wi/Wi−1)+
dR over B+

dR,E, respectively. Lift them to

elements ei,e and e+
i,dR of Wi,e and W+

i,dR, so that:

∗ (ei,e)1≤i≤n is an ordered Be,E-basis of We such that the set (ej,e)1≤j≤i generates Wi,e for

1 ≤ i ≤ n,

∗ (e+
i,dR)1≤i≤n is an ordered B+

dR,E-basis of W+
dR such that the set (e+

j,dR)1≤j≤i generates

W+
i,dR for 1 ≤ i ≤ n.

For g ∈ GK , let Age be the matrix in GLn(Be,E) defining the action of g on the basis

(ei)1≤i≤n. If g ∈ GL, the matrix Age is upper triangular since {Wi,e}1≤i≤n is a triangulation

of We|GL in SemGL(Be,E). Now let (eT,e)T∈T be the ordered Be,E-basis of Su(We|GL)

constructed from (ei)1≤i≤n as in Section 3. For T ∈ T, let WU,e be the subobject of Su(We)

generated over Be,E by the set (eU)U∈T, U≤T . The set {WT,e}T∈T defines a triangulation

of Su(We|GL) by the characters (ηT |GL)T∈T. By Remark 3.3, the matrix describing the

action of g ∈ GK on the basis (eT )T∈T is Sun(Age).

By repeating the reasoning of the preceding paragraph starting with the basis (e+
i,dR)1≤i≤n

of W+
dR, we obtain an ordered basis (e+

T,dR)T∈T of Su(W+
dR) and we define a triangulation

{W+
T,dR}T∈T of Su(W+

dR|GL). We let Ag,+dR be the element of GLn(B+
dR,E) defining the ac-

tion of g ∈ GK on the basis (ei)1≤i≤n, so that Sun(Ag,+dR ) defines the action of g on the

basis (eT )T∈T. The matrix Ag,+dR is upper triangular for g ∈ GL. We deduce from the
11



construction of our bases that the couple (WT,e,W
+
T,dR) defines a BE

K-pair WT for every

T ∈ T, and that the set {WT}T∈T is a triangulation of Su(W ) with respect to the ordered

parameters (ηT |GL)T∈T.

Now let (XT )T∈T be a triangulation of Su(W ) with respect to the ordered parameters

(ηT )T∈T. The restriction (XT |GL)T∈T is a triangulation of Su(W |GL) with respect to the

ordered parameters (ηT |GL)T∈T. By assumption Su(W |GL) is strictly split triangulable

with respect to the aforementioned parameters, so the triangulations XT |GL and WT must

coincide. In particular the filtration {WT}T∈T is stable under every g ∈ GK (not only

g ∈ GL) since XT is a triangulation of Su(W ). This implies that the matrices Sun(Age)

and Sun(Ag,+dR ) are upper triangular. Then Remark 3.1 implies that Age and Ag,+dR are upper

triangular for every g ∈ GK , hence that {Wi}1≤i≤n is a triangulation of W . �

Definition 5.3. We say that an E-linear representation V of GK is strictly trianguline

with ordered parameters (δi)1≤i≤n if the B-pair W (V ) is strictly triangulable with the same

ordered parameters.

If V is refined trianguline in the sense of [KPX14, Definition 6.4.1], then V is strictly

trianguline by [KPX14, Lemma 6.4.2]. However the condition of refined triangulinity is

too strong for our purposes since it implies potential semi-stability.

By combining Theorems 4.2 and 5.2 we obtain the following corollary.

Corollary 5.4. Let u be a partition satisfying (∗). Let V be an E-representation of

GK. Then V is strictly trianguline with ordered parameters (δi)1≤i≤n if and only if SuV
is strictly trianguline with ordered parameters (δT )T∈T constructed from (δi)1≤i≤n as in

Remark 4.8.

6. Lifting trianguline representations via isogenies

Let G be a reductive group over Q. In light of Theorem 5.2, the following definition

makes sense.

Definition 6.1. We say that a continuous representation ρ : GQp → G(Qp) is strictly

trianguline if there exists a homomorphism µ : Gm → G over Qp satisfying the following

property: for every algebraic representation S : G→ GLn defined over Qp, the representa-

tion S ◦ ρ : GQp → GLn(Qp) is strictly trianguline with respect to the n-tuple of parameters

S ◦ µ(Qp) : Q×p → GLn(Qp). In this case we also say that ρ is trianguline with parameter

µ.

In this section L is a number field, H and H ′ be two algebraic groups and π : H ′ → H is

an isogeny. Given a continuous representation ρ : GL → H(Qp) with some prescribed local

properties, we can investigate whether there exists a representation ρ′ : GL → H ′(Qp),

with the same local properties, satisfying π ◦ ρ′ ∼= ρ. When the required local properties

are:

(1) unramifiedness outside of a finite set of places containing the places above p;

(2) a p-adic Hodge theoretic property at p, taken from the set {Hodge Tate, de Rham,

semi-stable, crystalline};
12



the lifting problem is studied and solved in [Win95]. The same question is studied in depth

in the Ph.D. thesis of Hoang Duc [Hoa15], that includes a treatment of the problem of

minimizing the set of ramification primes of the lift. In this section we study the analogue

of the problem above when (2) is replaced by the property that ρ is strictly trianguline

at p, in the special case where the isogeny π is of the form H ′ → SuH ′ for a partition u

satisfying (∗).
The following result guarantees that a lift always exists in our situation. It is a corollary

of a theorem of Tate [Tat77, Theorem 4].

Proposition 6.2. Suppose that kerπ is a torus. Let ρ : GL → H(Qp) be a continuous

representation. There exists a representation ρ′ : GL → H ′(Qp) such that π ◦ ρ′ ∼= ρ.

Proposition 6.3. Keep the notations and hypoteses of Proposition 6.2 and suppose that:

(1) ρ is unramified outside of a finite set of places;

(2) ρ is strictly trianguline at the places of L above p;

(3) the trianguline parameter µ : Gm → H of ρ admits a lift µ′ : Gm → H ′(Qp).

Let ρ′ : GQp → H ′(Qp) be a representation lifting ρ. Then ρ′ is unramified outside of a

finite set of places and strictly trianguline at p with parameter µ′.

Assumption (3) in the corollary is an analogue of the condition on the lifting of the

Hodge-Tate parameter in [Win95, Théorème 1.1.3]. Note that the existence of ρ′ is

guaranteed by Proposition 6.2.

Proof. By a result of Conrad [Conr11, Lemma 5.2 and Proposition 5.3] the representation

ρ′ is unramified outside of a finite set of places. Let v be a place of L above p and let

ρv and ρ′v be the restrictions of ρ and ρ′, respectively, to a decomposition group at v.

Let q be the order of ker π. Let u be a partition of q satisfying (∗). Let S ′ : H ′ → GLn
be a representation. We need to show that S ′ ◦ ρ′v is strictly trianguline of parameters

S ′ ◦ µ′. By Lemma 3.4 the kernel of the representation Sun ◦ S ′ : H ′ → GLru(n) contains

(S ′)−1(µq1n), that in turn contains kerπ since π is a central isogeny with kernel of order q.

In particular Sun ◦ S ′ factors as S ◦ π for a representation S : H → GLru(n). By composing

with ρ′v we obtain

(6.1) Sun ◦ S ′ ◦ ρ′v ∼= S ◦ π ◦ ρ′v
∼= S ◦ ρv,

where the last equivalence comes from the definition of ρ′. The representation S ◦ ρv is

trianguline of parameters S ◦ µ because ρv is strictly trianguline of trianguline parameter

µ by assumption. From the equivalence 6.1 we deduce that Sun ◦ S ′ ◦ ρ′v is trianguline of

parameter S ◦ µ. Now µ = π ◦ µ′ for the parameter µ′ provided by condition (3) in the

statement, so the trianguline parameter of Sun ◦ S ′ ◦ ρ′v is S ◦ π ◦ µ′, that is Sun ◦ S ′ ◦ µ′ by

definition of S. Thanks to Corollary 5.4, we conclude that the representation S ′ ◦ ρ′v is

strictly trianguline of parameters S ′ ◦ µ′ because the representation Sun ◦ S ′ ◦ ρ′v is strictly

trianguline of parameters Sun ◦ S ′ ◦ µ′. Since this is true for every choice of S ′, we obtain

the thesis. �

Let ρ : GL → G(E) be a continuous representation. We denote by Im ρ the Zariski-

closure over E of the image of ρ. The following is a corollary of Propositions 6.2 and

6.3.
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Corollary 6.4. Let H be a reductive group over Q equipped with a central isogeny π : H →
Im ρ over E. Suppose that:

(1) ρ is unramified outside of a finite set of places;

(2) ρ is strictly trianguline at the places of L above p;

(3) the trianguline parameter µ : Gm → Im ρ of ρ admits a lift µ′ : Gm → H(E).

Then there exists a continuous representation ρ′ : GL → H ′(E) that lifts ρ via π and is:

∗ unramified outside of a finite set of places;

∗ strictly trianguline at p with parameter µ′.

7. Congruence loci on Hecke-Taylor-Wiles varieties

We apply the results of the previous section to the study of certain p-adic Langlands

lifts as maps between the “Hecke-Taylor-Wiles varieties” studied by Breuil, Hellmann

and Schraen [BHS17]. We begin by recalling some definitions from there.

In the following n is a positive integer and p a prime number larger than 2n + 1. Let

F+ be a totally real number field and let F be a totally imaginary quadratic extension

of F+. We denote by Σp the set of places of F+ above p. Let G be a unitary group

over F+ such that G is split over F , compact at infinity and isomorphic to GLn at all

places in Σp. Let L be a p-adic field with ring of integers OL and residue field kL. We

say that a representation ρ : GF → GLn(OL) is of automorphic origin if it is attached to

a maximal ideal of a Hecke algebra acting on the space of L-valued automorphic forms

for G of some fixed tame level Up ⊂ Ap∞
F+ . We denote by Σ the support of Up, so that

ρ will be unramified outside Σ ∪ Σp. Fix a representation ρ of automorphic origin. Let

ρ : GF → GLn(kL) be the reduction of ρ modulo the maximal ideal of OL. Let ζp be a

p-th root of unity; we assume that ρ|GF (ζp ) is absolutely irreducible. For every place v of

F+ above p, we denote by ṽ a place of F above v. Up to enlarging L, we can assume

that for every v the field Fṽ admits [Fṽ : Qp] homomorphisms to L. For every v let GFṽ

be a decomposition group for F at ṽ and let ρṽ be the restriction of ρ to GFṽ .

Let CkL be the category of local Artinian kL-algebras with residue field kL. Let W (kL)

be the ring of Witt vectors of kL and let L0 be its field of fractions. Let v ∈ Σ. Let

D�
ρṽ

: CkL → Sets be the functor that associates with A ∈ CkL the set of continuous

representations ρ′ : GFṽ → GLn(A) such that πA ◦ ρ
′ = ρṽ, where πA denotes reduction of

the coefficients modulo the maximal ideal of A. By Schlessinger’s criterion the functor

D�
ρṽ

is represented by a complete local Noetherian W (kL)-algebra R(ρṽ)
� with residue

field kL. We call framed deformation space for ρṽ and denote by X�
ρṽ

the rigid analytic

space Spf (R(ρṽ)
�)rig ×L0 L over L. We also set X�

ρp
∼=

∏
v∈Σp

X�
ρṽ

and X�
ρp
∼=

∏
v∈Σp

X�
ρṽ

.

Let R�
ρṽ

the maximal reduced and p-torsion free quotient of R�
ρṽ

. Let Rloc = ⊗̂v∈ΣpR
�
ρṽ

.

Let g be a positive integer. We define formal series rings R∞ = Rloc[[x1, . . . , xg]] and

S∞ = OL[[y1, . . . , yg′ ]], where g′ = g + [F+ : Q]n(n−1)
2

+ |Σp|n2. We suppose from now on

that g satisfies the conditons in [BHS17, Théorème 3.4] and we give R∞ an S∞-algebra

structure via the morphism given by loc. cit..

Fix an isomorphism of algebraic groups G×F+F ∼= GLn,F . We set Gp =
∏

v∈Σp
G(F+

v ).

The choice of the place ṽ of F determines an isomorphism iṽ : G(F+
v ) ∼= GLn(Fṽ). We
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denote by Bv, Tv and Nv the inverse images via iṽ of the subgroups of upper triangular,

diagonal and upper unipotent matrices in GLn(Fṽ), respectively. We denote by Kv the

inverse image of GLn(OFṽ) via iṽ; it is a compact open subgroup of G(F+
v ). We define

Bp =
∏

v∈Σp
Bv and analogously Tp, Np and Kp. We also set B0

p = Bp∩Kp, N
0
p = Np∩Kp

and T 0
p = Tp∩Kp. We denote by T̂p and T̂ 0

p the rigid analytic spaces over Qp parametrizing

the continuous characters of Tp and T 0
p , and we set T̂p,L = T̂p ×Qp L, T̂ 0

p,L = T̂ 0
p ×Qp L.

Using the Taylor-Wiles-Kisin systems constructed in [Car+16], Breuil, Hellmann and

Schraen construct a Hecke-Taylor-Wiles varietyXp(ρ) (see [BHS17, Section 3] and Définition

3.6 there). It is a reduced rigid analytic space over L, defined as a closed subspace of

Spf (R∞)rig ×L T̂p,L by means of Emerton’s Jacquet functor. We set W∞ = Spf (S∞)rig ×
T̂ 0
p,L and we call it the weight space. We define a weight morphism ωX : Xp(ρ) → W∞

as the composition of the inclusion Xp(ρ) ↪→ Spf (R∞)rig × T̂p,L and the morphism

Spf (S∞)rig × T̂p,L → Spf (S∞)rig × T̂ 0
p,L given by the S∞-algebra structure of R∞ and

the restriction of characters T̂p,L → T̂ 0
p,L. If E (Up)ρ denotes the ρ part of the eigenvariety

for G (as defined for instance in [Che11, Definition 2.2] when n = 3), equipped with a

weight morphism ω : E (Up)ρ → T̂ (OF+ ⊗Z Zp), then there is a commutative diagram of

reduced rigid analytic spaces

E (Up)ρ Xp(ρ)

T̂ (OF+ ⊗Z Zp) T̂ (OF+ ⊗Z Zp)× XS∞

ω ωX

where the lower horizontal arrow is defined by the inclusion of a closed point in XS∞ .

Remark 7.1. We recall that:

(1) the weight morphism ωX is flat and finite locally on the domain [BHS17, Proposition

3.10];

(2) both W∞ and Xp(ρ) are equidimensional of dimension g+[F+ : Q]n(n−1
2

+ |Σp|n2; this

is clear for W∞ and it is given by [BHS17, Corollary 3.11] for Xp(ρ);

(3) the image of an irreducible component of Xp(ρ) via ωX is Zariski-open in W∞.

We refer to [BHS17, Définition 3.14] for the definition of a classical point of Xp(ρ).

We denote by Tv and Wv the rigid analytic spaces over Qp parametrizing continuous

characters F+,×
v → Cp and O×

F+
v
→ Cp, respectively. Restriction of characters induces a

morphism of rigid analytic spaces Tv →Wv. Let Tv,L = Tv×Qp L andWv,L =Wv×Qp L.

The space Tv,L is a product of unit balls over L of dimension n[F+
v : Qp] +n, soWv,L is a

product of unit balls of dimension n[F+
v : Qp]+n−1. We denote by Tv,reg the complement

in Tv,L of the set of L-points

{x 7→ x−i}
i∈ZHom(F+

v ,L)
≥0

∪ {x 7→ x1+i|x|F+
v
}
i∈ZHom(F+

v ,L)
≥0

and by T n
v,reg the Zariski-open subset of T n

v,L consisting of the points (δ1, . . . , δn) satisfying

δiδ
−1
j ∈ Tv,reg for all i, j with i 6= j. We denote byWn

v,reg the image of T n
v,reg inWn

v ×QpL.

Let U�
tri(ρṽ)

reg be the set of couples (r, δ) where:

∗ r : GFv → GLn(OL) is a framed trianguline lift of ρṽ;

∗ δ ∈ T n
v,reg is an ordered set of parameters of a triangulation of r.
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Let X�
tri(ρṽ) be the smallest closed rigid analytic subspace of X�

ρṽ
× T n

v,L containing the

U�
tri(ρṽ)

reg .

Remark 7.2. By [HS16, Lemma 2.12], the points of U�
tri(ρṽ)

reg are strictly trianguline

in the sense of Definition 5.1.

By composing the inclusion X�
tri(ρṽ) ↪→ X�

ρṽ
× T n

v,L with the second projection and

then with the morphism T n
v,L →Wn

v,L given by the restriction of characters we obtain a

weight morphism ωv : X�
tri(ρṽ)→Wn

v,L. We set X�
tri(ρp) =

∏
v∈Σp

X�
tri(ρṽ), that is a closed

rigid analytic subvariety of X�
ρp
× T̂p,L. This space is equipped with a weight morphism

ωp : X�
tri(ρp)→

∏
v∈Σp
Wv,L defined by

∏
v∈Σp

ωv.

We denote by U the open rigid analytic disc of radius 1 over L, that is the rigid analytic

space Spf (OL[[T ]])rig. For every v ∈ Σp, let ιF+
v be the automorphism of T̂ (F+

v ) defined

by

ιF+
v

(δ1, . . . , δn) = δBv · (δ1, . . . , δi · (ε ◦ recK)i−1, . . . , δn · (ε ◦ recK)n−1),

where δBv is the modulus character of Bv(F
+
v ), that is δBv = |·|n−1

F+
v
⊗ |·|n−3

F+
v
⊗ |·|1−n

F+
v

. Let ι

be the automorphism

IdX�
ρp
× (ιF+

v
)v∈Σp : X�

ρp
× T̂p,L → X�

ρp
× T̂p,L.

By [BHS17, Théorème 3.20], there is an embedding

(7.1) Xp(ρ) ↪→ X�
ρp
× X�

ρp × Ug × T̂p,L

that identifies Xp(ρ) with a union of irreducible components of ι(X�
tri(ρp)) × X�

ρp × Ug.

For every v ∈ Σp, we denote by res v the morphism Xp(ρ) → X�
tri(ρṽ) defined as the

composition of the inclusion Xp(ρ) ↪→ ι(X�
tri(ρp)) × X�

ρp × Ug with the projection to

ι(X�
tri(ρṽ)) and the automorphism ι−1. We also set res p =

∏
v∈Σp

res v : Xp(ρ)→ X�
tri(ρp).

If v ∈ Σ− Σp, we denote by res v the morphism Xp(ρ)→ X�
ρv

obtaine by composing the

inclusion Xp(ρ) ↪→ ι(X�
tri(ρp))× X�

ρp × Ug with the projection to X�
ρv

.

As in [BHS17, Définition 3.21], we call an irreducible component X of X�
ρp automorphic

if there exists an irreducible component Xp of X�
ρp such that ι(X)×Xp×Ug is an irreducible

component of Xp(ρ).

Let $ṽ be a uniformizer of Fṽ. For i ∈ {1, . . . , n} we denote by β′i : Gm,Fṽ → GLn,Fṽ
the cocharacter embedding Gm into the i-th entry of TFṽ . We set βi =

∏
j≤i β

′
i and

γṽ,i = βi($ṽ). Recall that we denote by δBv : Bv(F
+
v ) → Q× the modulus character of

Bv. For i ∈ {1, . . . , n}, the map (x, δ) 7→ δδ−1
Bv

(βi(γṽ,i)) defines an analytic function on

X�
tri(ρn,ṽ).

Definition 7.3. Given i ∈ {1, . . . , n} and a point (x, δ) of X�
tri(ρn,ṽ), we set sli(x, δ) =

vF+
v

(δδ−1
Bv

(γṽ,i)) and we call it the i-th slope of (x, δ).

Since the functions δδ−1
Bv

(γṽ,i) are analytic on X�
tri(ρn,ṽ), the slopes sli : X

�
tri(ρn,ṽ)→ R×

are locally constant functions.

The following conjecture of Breuil, Hellmann and Schraen can be seen as an analogue

of the overconvergent Fontaine-Mazur conjecture that Kisin and Emerton proved for the

group GL2/Q.
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Conjecture 7.4. [BHS17, Conjecture 3.22] An irreducible component of
∏

v|pX
�
tri(ρṽ)

is automorphic if and only if its intersection with
∏

v|p U
�
tri(ρṽ)

reg contains a crystalline

point.

Given a Qp-point x of Xp(ρ) and a p-adic place v of F , we denote by ρx : GFṽ →
GLn(Qp) and δx,v ∈ T̂v,L the p-adic Galois representation and the trianguline parameter

at v, respectively, associated with x by the immersion Xp(ρ) ↪→ X�
ρp
× X�

ρp × Ug × T̂p,L.

Definition 7.5. We call strictly trianguline locus of Xp(ρ) and denote by Xp(ρ)str the

locus of Qp-points x of Xp(ρ) such that ρx,v is strictly trianguline for every p-adic place

v of F .

The strictly trianguline locus is Zariski-open in Xp(ρ). In particular it admits a unique

structure of rigid Qp-analytic subspace of Xp(ρ).

Lemma 7.6.

(1) There exists an n-dimensional pseudocharacter Tρṽ : GFṽ → O◦(X�
tri(ρṽ)) with the

property that, for every Qp-point x of X�
tri(ρṽ), the specialization of Tρṽ at x is the

trace pseudocharacter attached to ρx.

(2) There exists an n-dimensional pseudocharacter Tρṽ : GFṽ → O◦(Xp(ρ)) with the prop-

erty that, for every Qp-point x of Xp(ρ), the specialization of Tρṽ at x is the trace

pseudocharacter attached to ρx,v.

(3) Let U be a connected wide open subdomain of Xp(ρ) such that ωX |U : U → ωX(U)

is a finite morphism. Then the pseudocharacter T can be lifted over U to a con-

tinuous representation ρU : GFṽ → GLn(O◦(U)), and for every Qp-point x of U the

specialization of ρU at x is equivalent to the representation ρx.

Proof. Part (1) follows from the argument in [BC09, Proposition 7.5.4], using the fact

that X�
tri(ρṽ) is wide open (or nested in the terminology of loc. cit.). The pseudocharacter

of part (2) is obtained by composing with the morphism O◦(ι(X�
tri(ρp))) → O◦(Xp(ρ))

induced by res p : Xp(ρ)→ X�
tri(ρp).

The ring of analytic functions of norm bounded by 1 on a wide open separated rigid

analytic space is profinite by [BC09, Lemma 7.2.11(2)], hence the ring O◦(U) admits all

of the previous properties; it is moreover local and Noetherian since U is connected and

admits a finite morphism to ωX(U). Then part (3) follows from a classical theorem of

Nyssen and Rouquier [Nys96; Rou96, Corollary 5.2]. �

Note that by [BHS17, Proposition 3.10] Xp(ρm) admits an admissible covering by

domains of the form required in part (2) of the above lemma.

Let (x, δ) be a point of X�
tri(ρn,ṽ) such that the representation ρx is crystalline and non-

critical. Let (ϕ1, . . . , ϕn) be the eigenvalues of the Frobenius automorphism of Dcris(ρx),

with the ordering given by the triangulation of parameter δ, and let (k1, . . . , kn) be

the Hodge-Tate weights of ρx, in decreasing order. Since (x, δ) is non-critical, [BHS17,

Proposition 3.15] gives ϕi = pkiδi(γṽ) for every i. In particular vp(δi(γṽ)) = vp(ϕi) − ki,
so

(7.2) sli(x, δ) = vp(ϕi)− vp(δBṽ(γṽ))− ki.
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Now let (x, δ′) be a point of X�
tri(ρn,ṽ) corresponding to a different triangulation of the

representation ρx. Since we are working over the strict trianguline locus, the triangulation

of parameter δ′ induces an ordering (ϕσ(1), . . . , ϕ
′
σ(n)) of the eigenvalues of the crystalline

Frobenius for some non-trivial permutation σ of {1, . . . , n}. For every i, Equation (7.2)

gives

(7.3) sli(x, δ
′) = vp(ϕσ(i))− vp(δBṽ(γṽ))− ki = slσ(i)(x, δ) + kσ(i) − ki.

Definition 7.7. We call family of representations of GFṽ the datum F = (A, ρF ) of:

∗ an affinoid L-algebra A that is a domain,

∗ a continuous representation ρF : GFṽ → GLn(A),

such that the set of points x such that ρF specializes to a crystalline representation at x

is Zariski-dense and accumulation in Sp(A). We call support of the family the affinoid

space Sp(A) and dimension of the family the L-dimension of Sp(A).

Definition 7.8. Let F = (Sp(A), ρA) be a family of representations of GFṽ . We say that

F appears on X�
tri(ρn,ṽ) if there exists an embedding α : Sp(A)→ X�

tri(ρn,ṽ) such that the

specialization of ρF at x ∈ Sp(A) is isomorphic to ρα,x. We say that F appears j times

on X�
tri(ρn,ṽ) if there are j distinct morphisms α satisfying the previous condition.

Definition 7.9. We say that the i-th weight of F is constant if there is an integer k

such that the i-th Hodge-Tate weight of every crystalline specialization of ρF is k.

We say that F has r constant weights if there exist r distinct indices i in the set

{1, . . . , d} with the property that the i-th weight of F is constant.

Remark 7.10. Let F be a family with r constant weights. If F appears on X�
tri(ρn,ṽ),

then its codimension in X�
tri(ρn,ṽ) is at least the L-codimension r[Fṽ : Qp] of dimLWn−r

v,L

in dimLWn
v,L, since only n− r weights are allowed to vary.

Proposition 7.11. Assume that F has exactly r constant weights. Then F appears at

most r! times on X�
tri(ρṽ).

Proof. Let Icst
F be the set of indices of the constant weights of F . Let ` be the number

of appearances of the family F on X�
tri(ρm,ṽ). This means that there exist ` families

F1, . . . ,F` that satisfy ρFi
∼= ρF for i = 1, . . . , `. By the local constancy of the slopes,

up to restricting the family F to a family of the same dimension we can suppose that

all the slopes sli, 1 ≤ i ≤ n, are constant on each of the families F1, . . . ,F`. Given

a point ρx of the family F , we denote by (ρx, δx,1), . . . , (ρx, δx,`) the ` triangulations of

ρx appearing in the families F1, . . . ,F`. Consider two crystalline points ρx, ρy in the

family F such that both x and y appear with ` distinct triangulations on the families

F1, . . . ,F`. This is possible since the rigid analytic subspaces of X�
tri(ρm,ṽ) supporting

the families F1, . . . ,F` pairwise intersect in a Zariski-closed subspace, while the set of

crystalline points is Zariski-dense in each of them since it is Zariski-dense in F . We denote

the triangulations of x and y on the family Fj by (x, δj,x) and (y, δj,y), respectively. Let

(k1,x, . . . , kn,x) and (k1,y, . . . , kn,y) be the decreasing n-tuples of Hodge-Tate weights of ρx
and ρy, respectively. Up to modifying our choice of the point y respecting the previous

condition, we can suppose that

(7.4) ki1,x − ki2,x = ki′1,y − ki′2,y ⇐⇒ i1, i2, i
′
1, i
′
2 ∈ Icst

F .
18



Indeed, the points y satisfying the first condition accumulate at x, so we can choose a

point y as p-adically close to x as we want making the right hand side of Equation (7.4)

arbitrarily large.

Let i ∈ {1, . . . , n} and j1, j2 ∈ {1, . . . , `} with j1 6= j2. The triangulation of ρx of

parameter δj1 induces an ordering on the eigenvalues of the Frobenius automorphism of

Dcris(ρx). The triangulation of parameter δj2 gives a new ordering, obtained by acting

on the indices of the previous one with a permutation σj2j1,x of {1, . . . , n}. In the same

way we define a permutation σj2j1,y attached to the change of triangulations on ρy. By

Equation (7.3) we have

sli(x, δj2,x) = sl
σ
j2
j1,x

(i)
(x, δj1,x) + k

σ
j2
j1,x

(i),x
− ki,x,

sli(y, δj2,y) = sl
σ
j2
j1,y

(i)
(y, δj1,y) + k

σ
j2
j1,y

(i),y
− ki,y.

Now the slopes are constant on the families Fj1 and Fj2 , so we deduce that

k
σ
j2
j1,x

(i),x
− ki,x = k

σ
j2
j1,y

(i),y
− ki,y.

Then condition (7.4) implies that either

i, σj2j1,x(i) ∈ I
cst
F

or

i = σj2j1,x(i) = σj2j1,y(i).

Therefore σj2j1,x acts trivially on {1, . . . , n} − Icst
F , which implies that there are at most r!

distinct choices for σj2j1,x. Since distinct triangulations of ρx determine distinct values of

σj2j1,x, we conclude that ` ≤ r!. �

7.1. Schur functors on trianguline varieties. Let u be a partition satisfying (∗), let

q = q(u) and let m = ru(n). Suppose that p > 2m + 1. Let S : GLn → GLm be the

representation of GLn of highest weight u. We omit the reference to u since the partition

will be fixed throughout the rest of the text.

Lemma 7.12.

(1) For every v ∈ Σ, there exists a closed morphism of rigid analytic spaces

Sv : X�
ρṽ
→ X�

S ◦ ρṽ

that maps ρx to S ◦ ρx.

(2) For every v ∈ Σp, there exists a closed morphism of rigid analytic spaces

Stri,v : X�
tri(ρṽ)→ X�

tri(Stri ◦ ρṽ)

that maps (ρx, δ) to (S ◦ ρx, S ◦ δ).

Proof. FOr part (2), we show that the map

X�
ρṽ
×T n

v → X�
S ◦ ρṽ ×T m

v

(r, (δi)1≤i≤n) 7→ (S ◦ r, S ◦ δ).

inducess a morphism of rigid analytic spaces. It is sufficient to show that this is true

separately for the maps X�
ρṽ
→ X�

S ◦ ρṽ and T n
v → T m

v . This will also give part (1) for

every v ∈ Σ, since only the first of the two maps appears there. The second map is analytic
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because it is polynomial. We show that the first map is also analytic. By definition

the spaces X�
ρṽ

and X�
S ◦ ρṽ represent the framed deformation functors D�

ρṽ
and D�

S ◦ ρṽ ,

respectively. The representation S defines a morphism of functors S� : D�
ρṽ
→ D�

S ◦ ρṽ : for

an object A of CkL and an object ρ′ : GFṽ → GLn(A) of D�
ρṽ

(A), we define S�(ρ′) as S ◦ ρ′.

Since both D�
ρṽ

and D�
S ◦ ρṽ are representable, S� induces a morphism of representing

spaces X�
ρṽ
→ X�

S ◦ ρṽ .

It follows from Corollary 4.3(1) that the morphism defined in the previous paragraph

maps U�
tri(ρṽ)

reg to U�
tri(S ◦ ρṽ)

reg , hence induces a morphism between the Zariski-closures

X�
tri(ρṽ) and X�

tri(Stri ◦ ρṽ) of the two sets. �

We set Sp =
∏

v∈Σp
Sv, S

p =
∏

v∈Σ−Σp
Sv and Stri,p =

∏
v∈Σp

Stri,v.

A weight κ ∈ Wn
L(L) is an n-tuple (κ1, . . . , κn) of characters O×Fṽ → L×. We define a

character η : Gm → Tn(L) as
∏

1≤i≤n κi ◦ β
′
n,i, recalling that β′i is the embedding of Gm

into the i-th diagonal entry of Tn. Then the composition S ◦ η is a character Gm → Tm(L),

that we can write as S ◦ η =
∏

1≤i≤m(S ◦ κ)iβ
′
m,i for an m-tuple ((S ◦ κ)1, . . . , (S ◦ κ)n) of

characters O×Fṽ → L×. This m-tuple defines an element of Wm
L that we denote by S ◦ κ.

We call S-weight space and denote by WS
L the image of the closed morphism of rigid

analytic spaces

SW : Wn
L →Wm

L

κ 7→ S ◦ κ.

The spaceWS
L is a Zariski-closed subspace ofWm

L . Since S : Tn(L)→ Tm(L) is an isogeny,

WS
L is equidimensional of dimension n[F+

v : Qp] +n− 1. It contains an accumulation and

Zariski-dense subset of algebraic weights, for instance the images via SW of the algebraic

weights in Wn
L.

We add subscripts m and n to distinguish the tori of GLn and GLm and their spaces

of characters. Let (x, δ) be a point of X�
tri(ρṽ) and let κ ∈ T̂n,v,L be its weight. Then

(S ◦ x, S ◦ δ) defines a point of of weight S ◦ κ ∈ T̂m,v,L. For n0 ∈ Z≥1 and an element

k = (ki,τ ) ∈ (Zn0)Hom(Fṽ ,L), we also denote by xk the element of Wn0
v,L defined by x 7→∏

1≤i≤n0,τ∈Hom(Fṽ ,L) x
ki,τ . When n0 = n, we denote by S ◦ k = ((S ◦ k)i,τ ) the unique

element of (Zm)Hom(Fṽ ,L) such that S ◦ xk = xS ◦ k. With an abuse of notation, we will

also write k for the weight xk. If k ∈ (Zn0
≥0)Hom(Fṽ ,L) and (ki,τ ) is decreasing for fixed τ ,

we call k a classical weight.

Lemma 7.13. Let τ ∈ Hom(Fṽ, L). Let (x, δ) be a point of X�
tri(ρṽ) of classical weight

k ∈ Wn
v,L(Qp). Then:

(1) the slopes of S(x, δ) satisfy max1≤i≤m|sli,S(x,δ)| ≤ q ·max1≤i≤n|sli,(x,δ)|;
(2) if κ = (xk1 , . . . , xkn) with (k1,τ , . . . ,kn,τ ) decreasing, then:

(i) max1≤i≤m|(S ◦ k)i,τ | ≤ q ·max1≤i≤n|ki,τ |;
(ii) min1≤i≤m|(S ◦ k)i,τ − (S ◦ k)i+1,τ | ≥ min1≤i≤n|ki,τ − ki+1,τ |;

(iii) min1≤i≤m|(S ◦ k)i−1,τ − 2(S ◦ k)i,τ + (S ◦ k)i+1,τ | ≥ min1≤i≤n|ki−1,τ − 2ki,τ +

ki+1,τ |.

Proof. Statements (1) and (2.i) are an immediate consequence of Remark 4.8(2). State-

ments (2.ii-iii) follow from the fact that (ki,τ )1≤i≤n is a decreasing n-tuple and that the

ordered n-tuple of exponents of (k1,τ , . . . ,kn,τ ) in the monomial defining (S ◦ k)i+1,τ is
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strictly smaller than that of the monomial defining (S ◦ k)i,τ with respect to the lexico-

graphic order. �

7.2. Schur functors on Hecke-Taylor-Wiles varieties. We add subscripts m and n

to most objects depending on the dimension of the relevant Galois representations. Let

ρm : GF → GLm(Fp) be a residual representation of automorphic origin. Let H be an

algebraic subgroup of GLm.

Definition 7.14. We call H-congruence locus on the eigenvariety Xp(ρm,p) the locus of

its Qp-points x satisfying Im ρx,v ⊂ H(Qp) for every v ∈ Σ. We denote it by Xp(ρm)H .

When H = S(GLn(Qp)) with the above notations, we also call Xp(ρm)H the S-congruence

locus and we denote it by Xp(ρm)S.

Remark 7.15. Consider the morphism ωm,v ◦ resm,v : Xp(ρm) → Wm
L . Under this map,

the image of Xp(ρm)S is contained in WS
L .

Lemma 7.16. Assume that ρm is absolutely irreducible. The H-congruence locus is

Zariski-closed in Xp(ρm)(Qp). In particular it admits a unique structure of reduced rigid

Qp-analytic subspace of Xp(ρm).

Proof. Let {Ui}i∈N be an admissible covering of Xp in wide open subdomains with the

properties required by Lemma 7.6(2). It is sufficient to show that the intersection of

the H-congruence locus with each of the Ui’s is Zariski-closed. Let i ∈ N. By Lemma

7.6(2) there is a continuous representation ρUi : GF → GLm(O(Ui)) that specializes to ρx
for every Qp-point x of Ui. Let {fj}j∈J be a set of equations for the subgroup H(Qp) of

G(Qp). Then the H-congruence locus intersects Ui on the zero-locus of the ideal of O◦(Ui)
generated by {fj(ρUi(g))}j∈J,g∈GQ (a finite number of these generators will be sufficient

since O◦(Ui) is Noetherian), hence on a Zariski-closed subspace of Ui. �

In what follows we assume that ρm satisfies the condition:

(Type S)
there exists a continuous representation ρn : GF → GLn(Qp)

of automorphic origin such that ρm = S ◦ ρn.

If (Type S) is not true, the S-congruence locus on Xp(ρm) is clearly empty. We fix from

now on a representation ρn satisfying assumption (Type S).

We set Xp(ρm)S,str = Xp(ρm)S ∩Xp(ρm)str.

Proposition 7.17. Suppose that the “only if” part of Conjecture 7.4 is true for U(m).

Then there exists a morphism of rigid analytic spaces STW : Xp(ρn) → Xp(ρm) fitting in

the commutative diagram

Xp(ρn) X�
tri(ρn,p)× X�

ρpn

Xp(ρm) X�
tri(ρm,p)× X�

ρpm

STW

res p

Stri

res p

Proof. Consider an irreducible component In of Xp(ρn). By [BHS17, Théorème 3.18] the

component In contains a classical Qp-point x. The representation ρx,v is crystalline for

every v ∈ Σp. Let ytri denote the Qp-point Stri ◦
∏

res v(x) of X�
tri(ρm,p). The representa-

tion ρytri,v is isomorphic to S ◦ ρx,v at every v ∈ Σp by definition of Stri. In particular it
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is crystalline by Theorem 4.1(3). By the “only if” part of Conjecture 7.4 for U(m), the

component Im is in the image of res p. �

Conditionally on a part of Conjecture 7.4, we give a description of the space Xp(ρm)S,str.

This result is an analogue of [Cont16b, Theorem 10.10].

In the following gm is the integer given by [BHS17, Theorem 3.4] for the representation

ρm. We denote by res Σ the morphism Xp(ρm)str ↪→ X�
ρm,p
×X�

ρm,p
given by the embedding

(7.1) composed with the projection onto the first two factors, and we use the same

notation when m is replace by n.

Theorem 7.18. Suppose that the “if” part of Conjecture 7.4 is true for U(n). Let x be

a Qp-point of Xp(ρm)S,str such that:

(1) the embedding

Xp(ρm)str ↪→ ι(X�
tri(ρm,p))× X�

ρm,p
× Ugm

is a local isomorphism at x;

(2) the trianguline parameters (µx,v)v∈Σp ∈ T n
v,L(Qp) of (ρx,v)v∈Σp, lift to cocharacters

(µx,v,n)v∈Σp ∈ T m
v,L(Qp) via the isogeny S : T m

v,L → T n
v,L.

Then:

(i) there exists a Qp-point y of Xp(ρn)str such that ρx = S ◦ ρy and µy = µx,n:

(ii) every Qp-point yΣ of X�
ρn,p
× X�

ρm,p
such that Sp × Sp(ytri) = res Σ(x) belongs to

res Σ(Xp(ρm)str).

Note that condition (1) is trivially satisfied for all smooth Qp-points of Xp(ρm)S,str.

Proof. Consider the following diagram:

Xp(ρn)str ι(X�
tri(ρn,p))× X�

ρpn

Xp(ρm)str ι(X�
tri(ρm,p))× X�

ρpm

∏
v∈Σ res v

Stri,p×Sp∏
v∈Σ res v

Since x ∈ Xp(ρm)S,str(Qp). By Corollary 5.4 and the assumption on x, there exists for

every v ∈ Σ a representation ρy,v : GFṽ → GLn(Qp) such that:

(1) ρx,v = S ◦ ρy,v;

(2) if v ∈ Σp, then ρy,v is strictly trianguline of parameter µx,n.

Let ytri be the point of ι(X�
tri(ρn,p)) × X�

ρpn
whose corresponding Galois representations

(with parameters at v ∈ Σp) are (ρy,v, µx,v,n)) for v ∈ Σp and (ρy,v) for v ∈ Σ− Σp. It is

clear from the properties (1-3) that Stri(ytri) = xtri. We will show that ytri is in the image

of the map
∏

v∈Σ res v : Xp(ρn)str → ι(X�
tri(ρn,p))×X�

ρn,p
. Every inverse image y of ytri via∏

v∈Σ res v then satisfies statement (i) in the theorem because of the properties (1,2) above.

We will also obtain statement (ii) of the theorem in the following way. If yΣ is a Qp-point of

X�
ρn,p
×X�

ρm,p
satisfying condition (1) above, it belongs to ι(X�

tri(ρm,p))×X�
ρm,p

by Corollary

5.4, and its trianguline parameters µytri,v are lifts of the parameters µx,v. In particular

yΣ is the image of a Qp-point ytri of ι(X�
tri(ρn,p)) × X�

ρpn
that satisfies (1) and (2). By

showing that such a point is in the image of
∏

v∈Σ res v : Xp(ρn)str → ι(X�
tri(ρn,p))×X�

ρn,p
,

we obtain (ii).
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Consider an irreducible component In of ι(X�
tri(ρn,p))×X�

ρpn
containing ytri. Let Im be

an irreducible component of ι(X�
tri(ρm,p))×X�

ρpm
containing Stri,p×Sp(Im). By assumption

(1), Im is contained in the image of Xp(ρm).

The component In is a product In,p×Ipn of an irreducible component In,p of ι(X�
tri(ρn,p))

and an irreducible component Ipn of X�
ρpn

. We show that the component In,p is automor-

phic. This will imply that the point ytri of In,p×Ipn is in the image of Xp(ρn) via
∏

v∈Σ res v,

giving the conclusion of the theorem.

By the “if” part of Conjecture 7.4 for U(n), it is sufficient to show that In,p ∩ U�
tri(ρp)

contains a crystalline point. By Remark 7.1(3) the image of In,p in the weight space Wn
L

contains a weight k ∈ (Zn)Hom(F+
v ,L). Let ytri,k be a point of In,p of weight k. Consider

an affinoid subdomain Un of In,p containing both ytri and ytri,k. The absolute values of

the slopes sli are bounded on Un by a common constant C. We claim that there exists a

weight k′ and a point ytri,k′ of Un such that, for every embedding τ : F+ → Qp:

(1) k1,τ − k2,τ > 2q(C + 1);

(2) ki,τ − ki+1,τ > ki−1,τ − ki,τ + q(C + 1) for i ≥ 2.

This is clear because ωX(Un) will contain an affinoid neighborhood of k, and we can

choose a weight k′ arbitrarily p-adically close to k satisfying (1) and (2). Let x′tri =

Stri,p × Sp(ytri,k′), which is a point of weight S ◦ k′ on the component Im. Note that

ρx′tri,v = S ◦ ρytri,k′ ,v
for every v ∈ Σ, by definition of Stri,p. It follows from assumptions

(1) and (2) and Lemma 7.13(2.ii-iii) that

(1S) (S ◦ k′)1,τ − (S ◦ k′)2,τ > 2(C + 1);

(2S) (S ◦ k′)i,τ − (S ◦ k′)i+1,τ > (S ◦ k′)i−1,τ − (S ◦ k′)i,τ + C + 1 for i ≥ 2.

In particular x′tri is a classical point by the argument in the proof [BHS17, Théorème

3.18] (it is shown there that the set W appearing in the statement can be taken to be

the set of weights satisfying conditions (1S) and (2S)). In particular the representation

ρx′tri,v is crystalline for every v ∈ Σp. By the fact that ρx′tri,v = S ◦ ρytri,k′ ,v
and a result of

Di Matteo, the representation ρytri,k′ ,v
is also crystalline. We deduce that the component

In,p of X�
tri(ρn,p) contains the crystalline point ytri,k′ , as desired. �

Let Xp(ρm)sm be the locus of smooth points of Xp(ρm).

Corollary 7.19. Suppose that the “if” part Conjecture 7.4 is true for U(n) and the

“only if” part of the conjecture is true for U(m). Let F = (Sp(A), ρA) be a family of

representations of GFṽ appearing in Xp(ρ
m)S,sm. Then F also appears in STW (Xp(ρn)).

Proof. Consider the following commmutative diagram:

(7.5)

Xp(ρn)str X�
ρn,p
× X�

ρn,p

Xp(ρm)str X�
ρm,p
× X�

ρm,p

res Σ

STW Sp×Sp

res Σ

Suppose that F appears in Xp(ρ
m)S,sm via α : Sp(A)→ Xp(ρ

m)S,sm. Consider the image

res Σ(α(Sp(A))) in X�
ρm,p
× X�

ρm,p
and its inverse image (Sp × Sp)−1(res Σ(α(Sp(A)))) in

X�
ρn,p
× X�

ρn,p
. By Theorem 7.18(i), the morphism Sp × Sp induces a surjection (Sp ×

Sp)−1(res Σ(α(Sp(A))))→ res Σ(α(Sp(A))). This morphism is also continuous and closed,
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so there exists an affinoid subdomain Sp(B) of X�
ρn,p
×X�

ρn,p
such that (Sp×Sp)(Sp(B)) =

res Σ(α(Sp(A))). By Theorem 7.18(ii), the affinoid Sp(B) is contained in the image of

Xp(ρn) via res Σ. Since res Σ is a closed embedding, we deduce that there exists an affinoid

subdomain Sp(C) of Xp(ρn) such that res Σ(Sp(C)) = Sp(B). By the commutativity of

Diagram (7.5), res Σ(STW (Sp(C))) = res Σ(α(Sp(A))), which implies that the family of

representations of GFṽ carried by Sp(C) is the same as the family carried by α(Sp(A)),

that is that the family F appears in STW (Xp(ρn)) with support STW (Sp(C)). �

Corollary 7.20. Suppose that the “if” part Conjecture 7.4 is true for U(n) and the

“only if” part of the conjecture is true for U(m). Let Sp : Xp(ρn) → Xp(ρm) be the

morphism of rigid analytic spaces given by Proposition 7.17. Then the rigid analytic space

Sp(Xp(ρn)) ∩ Xp(ρm)sm consists of the irreducible components of maximal dimension of

Xp(ρm)S ∩Xp(ρm)sm.

Proof. Let d be the dimension of WS
L . Since ω(Xp(ρm)S) is Zariski-open in WS

v,L and

ω is of relative dimension 0, the irreducible components of Xp(ρm)S have dimension at

most d. This is also the dimension of every irreducible component Xp(ρn), hence of every

irreducible component of Sp(Xp(ρn)).

Let A be an affinoid Qp-algebra and let F = (Sp(A), ρA) be a family of Galois repre-

sentations appearing in Xp(ρ
m)S via α : Sp(A)→ Xp(ρ

m)S. Assume that α(Sp(A)) is not

contained in Sp(Xp(ρn)). By Corollary 7.19 the family F also appears in Sp(Xp(ρn)), so

it appears at least twice on Xp(ρ
m)S. By Remark 7.10 the family F must have some

constant weight in Wm
L . If F were of dimension d then ω ◦ α(Sp(A)) would be Zariski-

open in WS
L , hence could not have any constant weight in Wm

L . We conclude that the

dimension of F is strictly smaller than d. �

References

[AIP15] F. Andreatta, A. Iovita, and V. Pilloni. “p-Adic families of Siegel modular

cuspforms”. In: Ann. of Math. 181 (2015), pp. 623–697.

[BC09] J. Belläıche and G. Chenevier. Families of Galois representations and Selmer
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