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Scalar curvature of a metric with unit volume

‘Osamu Kobayashi

The problem of finding Riemannian metrics on a closed
manifold with prescribed scalar curvature function is now
fairl§ well -understood from the works of Kazdan and Warner
in 1970's ([7) and references cited in it). In this paper we
shall consider the same problem under a constraint on the volume.
For this purpose it is useful to introduce an invariant p(M) of
a smooth closed manifold M éefined as the supremum of p(M,C) of

all conformal classes C of Riemannian metrics of_M,
g (M) = sup p(M,C),
C

where p(M,C) is éefined as

SMRngg
p'(MIC) = inf (n_z)/n r
. geC (IMdvg)
where Rg is the scalar curvature of g, and n = dim M. Obviously
p(M) = 47w X(M) by Causs-Bonnet, if n = 2., 1In general, p(M) > 0
iff M carries a metric of positive scalar curvature.

The method of Kazdan and Warner is modified to prove the

following.
Theorem 1. (a) Suppose dim M = 2. Then f € C™(M) is the
scalar curvature (= twice the Gaussian curvature) of some metric

g of M with Area(M,q) = 1 iff either min £< p(M)< max £ or f =



const. = u(M).

(b) Suppose dim M 2 3, u(M) < 0 and p(M) = p(M,C) for

some conformal class C. Then f € C™(M) is the scalar curvature

of some metric g with Vol(M,g) = 1 iff either min £ < p(M) or
f = const. = p(M). Moreover, a metric g with Rg = p(M) and
Vol(M,g) = 1 is an Einstein metric.

(c) Suppose dim M » 3, p(M) < 0 and p(M) > p(M,C) for

any C. Then f e C™(M) is the scalar curvature of some metric

g with Vol(M,g) = 1 iff min £ < p(M).

It is known that p(T™) = 0 and p(T"#T") < 0 (cf. L61).
Tn, n 2 3, are examples of the case (b). Tn#Tn, n Z 3, are
examples of (c), because Tn#Tn carries no Ricci flat metrics,

and because u(Tn#Tn) = 0 for n > 3, which we can see from the

following.

Theorem 2. If dim M1 = dim M, 2 3, p(M1) Z 0 and p(Mz) Z 0,

then u(M1#M2) z 0.

There is a similar result that u(M1#M2) > 0 if u(M1) > 0
and p(Mz) > 0 (C131), but ous requies a more careful control on
scalar curvature and volume, and basically the same ‘idea yields

the following, which shows a clear contrast to the case when

p(M) 2 0.

Theorem. 3. Suppose dim M 2 3 and p(M) > 0. Then any

function £ € C™(M) which is either nonconstant or constant less

than p(M). is the scalar curvature of some metric g with Vol(M,qg)

= 1.



The author hopes that this result will be improved and
that in this case any function can be the scalar curvature of
some metric with unit volume, which is shown to be true for
many examples.

When we reStric ourselves to a fixed conformal class,

the problem becomes more involved.

Theorem 4. Suppose dim M > 3 and C is a conformal class

of Riemannian metrics of M with u(M,C) > 0. Then for any € >0

and any integer k > 0, there is a metric geC with Vol(M,q) =

1 and IRg - (p(M,CP/Zi-ku(SnP/zﬁ/n]< £, where u(Sn) =

n(n- 1)vol (s (1)2/",

The metrics for k 2 1 and small £ > 0-cannot be obtained
through the variational method of Aubin (cf.C13J), where the
obtained scalar curvature necessarily satisfies the condition
that (min Ra)Vol(l.“I,t_;)2/n < p(s™ . In general, we cannot take
£ to be 0, for large k. For example, this is impossible for
k > 1, if C contains an Einstein metric (cf.C111}.

This paper is partly based on the last part of t10], and

was completed during the author's stay at Max-Planck-Institut

fir Mathematik.

§1. Preliminaries.

Throughout this paper M denotes a smooth closed connected
manifold of dimension n. We start with basic known facts on the

Yamabe problem ([12] and references in L2 .



Fact 1.1. Any conformal class C contains a metric g such
-2/n

that Rg = const. = Vol(M,qg) piM,C).

Fact 1.2. For any (M,C), u(M,C) < n(n-—1)Vol(Sn(1n2/n, and

equality occurs iff (M,C) is conformal to the standard n-sphere.

Fact 1.3. f n2 3, there is a conformal class C such that

—

p(M,C) = r for any r < p(M).

Besides the above we add some other properties of p(M),

most of which are more or less well-known.

Lemma 1.4. (i) If n

v

2, then p(M) = p(M,C) = 471 X(M) for

any C. (i) p(M) > 0 iff M carries a metric of positive scalar

curvature.

Proof. (i) is the Gauss-Ponnet formula. The only if part
of (ii) is from Fact 1.1. So,.suppose g is a metric of M with
positive scalr curvature. Then it follows form the following

lemma that p(M,C) > 0 for C to which g belongs, hence p(M)> 0.

Lemma 1.5. Suppose n = 2 or u(M,C) £ 0. Then the scalar
2/n

curvature Rg of any metric geC satisfies (min Rg)Vol(M,g)

2/n' and each of two equalities

< w{M,C) € (max Rg)Vol(M,g)

implies Rg is constant.

Proof. The case when n = 2 is again from Gauss-Bonnet.

If n » 3, any metric in C is written of the form f4ﬂn_2)

g for
some positive f € C”(M) and an arbitrarily fixed g € C. Then,

p{M,C) is rewritten as



g

221 ( agl? av_ + [ » f2av
(1.6)  p(M,C) = inf D=2 T ‘(g_g)/n
£>0 (f,f av,)
From this expression and Sobolev's inequality, we get min Rg
< 0 1if u(M,C) < 0. Then, applying H&lder's inequality to (1.6),

2/n

we have (min Rg)Vol(M,gr < p(M,C) with equality only when Rg

is constant. The latter inequality is obvious from (1.6).

Corollary 1.7. If n =2 or p(M,C) € 0, then

sup (min Rg)Vol(b-i,g)z/n

geC

= u(M,C).

In particular, if n = 2 or u(M) g 0, then

sup (min Rg)le(M,g)z/n = L(M).

g
In contfast to this, we can see from Theorem 4 that
2/n

sup (min R_)Vol (M,qg) =00 if n 2 3 and ﬁ(M,C) > 0.
geC 9 |

Corollary 1.8. If n = 2 or p(M) £ 0, then

sup ( min Ricg(X,X))Vol(M,g)z/n

g |xt=1

In [5], Gromov has shown that the left side of the above

1
< Eu(M).

inequality is strictly negative for M which carries a metric
with negative curvature. 1In view of this fact, I want to pose
the following question: Does p{(M) < 0 hold for M which has a
negative sectional curvature metric?

In Corollary 1.8, the equality occurs if p(M) = wi(M,C)
for some conformal class C, and then the supremum is attained

by some Einstein metric, which is shown from the following

(Cf. [33 ’ [:8]).



Lemma 1.9. If p(M) <0 and p(M) = p{M,C) for some C,

then C contains an Einstein metric g, and with this metric
2/n

u(M) = p(M,C) = RgVol(M,g) holds.

Proof. Let

-1 2 2
4221 lag] qv SuRo av,

Ag) = inf > .
£>0 Sufavy
Then in a way similar to the proof of Lemma 1.5, we have

L(M,C) > Alg)Vol(m,g) /P

for all geC, if p(M,C) g 0 (the
opposite inequality holds if p(M,C) 2-0). Now, let C be such
that p(M) = p(M,C), and take g € C such that Rg is constant

equal to Vol(M,g)_z/n

p(M,C) (cf. Fact 1.1). Let 9y = 9 -

o [} N '
tRicg, where Ricg is the traceless part of the Ricci tensor
of g, and t is sufficiently small. Then, A(gt) is differentiable

in t, and we have

d 2 2~ S 42
agvkigt?Vol(M,gt) /n £=0 = Vol(M,g)( n”“15¥|R1cgl dvg
, S . 2 2/n
(c£.081). Therefore if Ricg £ 0, then u(M,C) 2 )Jgt)vol(M,gt)/
>.Aig)Vol(M,€h2/n = u(M,C) = p(M) for a small positive t, where

Ct = {eugt; ueac“ﬂm)}, which contradicts to the definition of

pM).

§2. Proof of Theorem 1.

The only if part of each of the cases (a), (b) and (c),
and the additional statement in the case (b) have already been
proved in Lemmas 1.5 and 1.9. The remainning parts are from

Facts 1.1, 1.3 and the following generalization of a result of



Kazdan and Warner [9l.

Proposition 2.7. Let g, be a smooth Riemannian metric of

M with Vol(M,g,) = 1, and f a smooth function satisfying min £
== 0 o= a

< min Rg and max Rg £ max f. Then there exists another smooth
0 , 0
metric g such that Rg = £ and Vol(M,qg) = 1.

Then, for example, the proof of the case {(c) is as foll&ws:
We have only to find a metric g with Vol{(M,g) = 1 and Rg = f for
f satisfying min £ < p(M). The case when f is constant is im-
mediate from Facts 1.1 and 1.3. If £ is not constant, we can
choose c€IR so that min £ £ ¢ < min{u(M), max f}. Then from
Facts 1;1 and 1.3, we have a metric 99 éuch that RgO = c.and
Vol(M,gO) = 1. Therefore applying the above proposition we
get the desired metric.

The proofs of the cases (a) and (b) are completely similar.

The same argument works also to some extent when p(M) >» 0 and

dim M » 3:

Corollary 2.2. If dim M » 3, then any f & C*(M) such that

min £ < p(M) is the scalar curvature of some metric g with

Vol(M,qg) = 1.

Proof of Proposition'2.1. Since the proof is similar to

that given in [9J, we shall only sketch it. Let 'SP(M) denote
the Sobolev space of H2'p symmetric covariant 2-tensor fields,
where Hz,p means that derivatives up to second order are L
integrable. We always assume p>»n = dim M. Put mP(M) =



{h 6<Sb; h is everywhere positive definite} and c?p(M) =

h € : tr h)dv = 0.
{ LSp SM( go) 99 !
Since Vol:Tnp(M)-—elR; g>»Vol(M,qg) is a C1 mapping whose
differential is not gero, it follows from the implicit function
’ o
theorem that there are a neighborhood U of 0 in.LSp(M) and a C|

function s:U - IR such that S(h):= 90

has the following properties; (i) S(h} e‘nip(M). (i) vol (s (h))

+ h + s(h)g0 for heu

= 1, (id) s(0) = g5, (W) DS at 0 is the inclusion map QSP(M)Ca
LSP(M). Note that S(h) is a C® metric iff h is of class C%.

The scalar curvature R:?ﬂP(M)-—9Lp(M;:m) is defined as a
C1 mapping. So, we get a C1 mapping R°S:U-—9Lp(M;IR), U c:(Sp(M),
o .

whose differential A:;Sp(M)-—»Lp(M;ZR) at 0 is computed as

- -ARL 1]
A(h) = -Ah7y + b7,y

tiation, the Ricci curvature , etc. are relative to go. The_

- hljRij ' where the covariant differen-

formal L2 adjoint A* of A is given by A*(u) = A*(u). + a(u)g0 ’
where A*(u) = -(&u)g, +V°u -uRicy and afu) - (jMuRgodng)/
(nVol(M,gy)). A*:H, p(M'; R) -->(SP(M) is a continuous linear

f

map. Now, we remark that we may assume with no loss of
generality that the scalar curvature R(go) of 90 is not cons-
tant. Then, we can show that Aoﬁ*:H4'p(M; IR)—)LP(M; R) is a
linear homeomorphism, and AOA*:H4'p(M;Zm)‘ﬁ>Lp(M;Im) is
injective (cf. C33,[431,[91). Then, since Ao (A* - A*) is a com-
pact operator, we conclude that AcA* is invertible.

Let V:= (A*)-1(U), and defined a C1 mapping Q:V-—)Lp(M;Im)
by Q = ReSepA*, The differential of Q at 0 ié A°A*, hence it

follows from the inverse function theorem that Q is locally



invertible around 0. In particular, Q(V) contains some
. £-ball centered at Q(0) in Lb(M;]R).

For the function f given in the proposition we can find
a diffeomorphism ¢ of M such that \Q(O)-—fo?‘L <€ (L93).

. 4 P
Therefore, we get ueVCH p(M;IR) with Q(u) = fo¥,

4,
Although Q(u) irvolves integrals of u, Yu and Vzu, we can
see the elliptic regularity argument is applicable, if we write
down Q(u) explicitly. Hence, the u for which Q(u) = fo%® is of
class C® Thus, g = SoA*(u) is a C™metric with Vol(M,g) = 1

and Ra = foYf. Then the desired metric is given by g = (?r1ﬁ'§.

§3. Approximation Lemmas.

[}

Let (Sn,go) be the Euclidean unit n-sphere, and r be the

intrinsic distance relative to 99 from the north pole so that

2

g, is written as g, = ar® # sin’r h where h, is the standard

0’ 0
metric of the unit (n- 1)-svhere. For an interval I C [0,x],

we denote by A(I) the region A(I) é{}(GSn; r(x) € I}.

Lemma 3.1. If n > 3, there exists, for any 81> 0 and

0 < €2 < T, a positive function f = f(r) of s™ such that

. -2
(i) |Rg, - n(n-—1)| < 81 ,» where g' = £ “gg;

(1) |vol(s”,g") - 2vol(s™,g,)| < €, ;
(iii) f{r) =1 for r > €, , and (A(LO,E,),g") is isometric
to (a{te, ,m1),g') = (Ale, ,TD),g,) for some g, <_ £, i

(v) 0 < f(r) € 1 and ]f(r)\ < 2/sin r for all r, where

" means d/dr.



Proof. The scalar curvature of g' is given as Rg'/n(n- 1)

= %‘f(.f. # (n- 1) fcotr) - $2 4+ £2. It is convenient to change

the variables by

(3.2) cos r = tanh t, 0<r<T, P>t D -00,
and to put
(3.3) u(t) = f(r(t) cosh t.
Then g' = u % (at? + h,) and
(3 4) R ] l_‘guu" _ (u')2 + n-2u2
: nin-1) "~ n n !
= d/dt = -{(sin r)d/drx. We put

where !

(3.5) B(t) = u® ((u)? - w4+ 1),

Then, from (3.4}, we get

R

' - =n,, - !
(3.6) B'(t) = (u ) (1 ETH%TTT"

We fix tO >—max{0, log cot(€2/2)}, and put

(3.7) . u(t) = cosh t for tE(-OO,tOj,

hence B(t) =z 0 for t < to. We shall consider the solution u of

(3.5) with a suitably given B(t). First, we note that

(3.8) u(t)gcosh t for t2t if B(t) 5'0 for tZt0 ,

OAl

which is easily seen by a simple comparison argument. Let

-10- -



B(t) = 0 for t £ t0;
B(t) £ 0 and -2§ < B'(t) £ 0 for ty <t< ty + 1;
B(t) = -§ for t,+1. <€t <€t,.

If § > 0 is taken to be sufficiently small, then (3.5) with (3.7)

is solvable for u in the interval (-o9, t1) with arbitral t., 2

1

t.+1, and u'(t) > 0, u"(t) > 0 for t gt§t0+1. . Therefore,

0 0

taking & > 0 smaller, if necessary, we have from (3.6)

coshn+%t0+1)

Sinht 8 < &

for t € t,+1.

Rg.-1101-1)l < 2(n-1) 1 < ty

0

1

hence, in particular, Rg' = n(n-1) for t0+1§t:§t1. For tgia
we put |
' B(t) = B(2t.l - t).
Then
(3.9) u(t) = u(2t,I -t) for t 2 t, -
Thus, IRg. - n{n- N}« 81 for all t, and the assertion (ﬁiy

follows from (3.7) and (3.9):xvia (3.2) and (3.3). As for the
volume, we have
ulty) gy

n
1 u u

vol(s™,g') = VOl(Sn,gO) + 25

and we can see by a tedious but elementary calculation that the
second term of the right side converges to Vol(sn,go)tas d—> 0.

Therefore (ii) holds for a sufficiently small 4. From (3.8),

-11-

t, is then chosen so that u'(At1) =0 and u'(t) >0 for t0 + 1<t t

r

1

’ .



u(t) cosh t, and hence ‘u'(t)‘ < lsinh tl from (3.5), because

<
B(t) < 0, which proves (v) .

In this lemma, when 81 tends to 0, the obtained metrics
become closer to a singular metric isometric to 4dr2 + sin2(2r)h0,
0 £ r <™, which has constant sectional curvature 1 in the non-
singular part r # ®/2, and whose volume is twice the volume of

the unit n-sphere.

Lemma 3.10. Let g be a fixed Riemannian metric of M, and

gy another metric defined in a neighborhood of a point c&M

' _ _ A I |
such that Rg(o) = Rgo(o) and 109 = 359" Then for any €> 0

there is a metric 5 with the following properties;

(i) g = g outside the €-ball centered at o;

(ii)

Wl
1]

90 in a neighborhood of o;

(i) |R§(x) - R (x){< € for all xeM;
() |gx,%) - g(x,x)| <eg(x,X) for all X eTM;

(v) if 90 is conformal to g, then so is g.

To prove this lemma, we need the following sublemmas.

Sublemma 3.11. Let g and g' .be two Riemannian metrics,
h = g' - g and g(x) = max{g(x,x)/g'(X,X); XG&TXM\\O}. Then
Rgf - Rg = Pg(h) + Qg(h), where
= - pt 7 ij _ il
Pg(h) h ;73 + h 133 h Rij '
and

o ) < a (1nf* o + Inf[e*n) a® + (BlIV] + Ricn)* @),

-12-



where the covariant derivation, the Ricci tensor, etc. are

with respect to the metric g, and a, is a constant depending

only on the dimension n.

The proof is a straightforward computation of writting
out the scalar curvature explicitly in terms of the metric

and its derivatives, so it is omitted.

Sublemma 3.12. For any § > 0, there is a nonnegative

function wg € c®(R) such that (i) 0 < Wwg €1, wglt) =1 in

a neighborhood of 0 and wg(t) = 0 for t » §; (i) |t g (0)f< 8

and ltzﬁs(t){< $ for all t.

1/2%

Proof. Take A > 0 so that coshA £ e , and define a

piecewise smooth continuous function u: IR+ —:—-? R as

for t € (-W,ée_n:[U[S.m):

f u(t) =0
1‘ u(t) = ezl\- % for t € [Be—ZA,26/(e2A+ 1] ;
L ul(t) = % -1 fort _e[zs/(ez"m),sl

Then,
SS
Joult)at = 1, 0 < tu(t) ¢dtanhA < §  and

0 for t € b*%Se-ZA)kJ(S,N)

2X

£28(t) =1 85 for t e (se 2,28/ (e + 1))

-§ for t € (28/(e*M+ 1), 8).

-13-



- Therefore, we can modify u to get a smooth function v with the

following properties;
SS , | 2.
gvitlat = 1, 0 g tvit)<§, |t v(t)]<a and
v(t) = 0 for t € (-m,6e” 2/47U[§,00) .

Thus, wg(t) = ng(t)dt has the desired properties.

Now, the proof of Lemma 3.10 éroceeds as follows. Choose
r0>-0 so that 99 is defined in the ro—ball at o and £hat
fgq (X,%) = g(x,X)| < minf€,1/2}g(X,X) for Xe T M if x is in
the ball, and define a metric dg of M as gy = 9 + ws(ngo-g),
where § < min{ro,ej and £ = r(x) = dist(o,x). Then, g:= gg
satisfies the conditions (i), (i), () and (v). From Sublemma

3.11, we have

Poe " Bg " Pglwg(r) (g-gg) + Q (welr) (g~ gg)

- wglr) ng(g-go) +Q (g-9gp) = (Ry =R ).

0

Since j;g = j;go ;, we get from Sublemma 3.12
[Py (w5 () (g = go)) = wy(x)P_(g-gp)| < b,§,
' 2
g twg (x) (g = gg)] + [wgxIo g~ gg)f < bi8*,

for some constant b1. And since Rg (o) = Rg(o),
0

'ws(r) (R - P‘g)' < b28

90

for some b2. Therefore we have le - Rg~<£ for a sufficienfly
)

-14-



small 8, which completes the proof of Lemma 3.10.

Corollary 3.13. 1If Rg(o) ='n{n- 1), then for any £ >0

there is a metric g such that (i) Rg - R§|<:£; (i) ‘Vol(g) -

Vol(aﬂ < €;(#ii) g has constant sectional curvature 1 in a

neighborhood of o.

Proof. Put 9o = dr2 + sinzrh0 in the polar normal

coordinates, h, being the standard metric of the (h-—1)—sphere,

0
and apply Lemma 3.10.

Here we make a digression to see that an argument like

the ordinary Euclidean metric outside a compact set and whose

scalar curvature is not positive, and negative somewhere. The
proof is as follows: From Facts 1.1 and 1.3 or a direct con-
structién, which can be méde in various ways, we can take a
metric 94 of Sn,ITZ3, whose scalar curvature is negative
everywhere and equal to -n(n-1) at some point, say oesh,
Then by an argument quite similar to the above corollary, we
may assume that 94 is of the form drz-rsinhzrl%)-in a neigh-
borhood Vv, = {0 <r(x) =dist(o,x)< ro} off£ o. It is easy to

1
show that there is a positive function ue€ C®(R) such that

u(r) = sinh r for r 2 rgyr ulr) =.r0-:r for r < 0 and
2uff+ (n1-2) (4°-1) 20 for all r. Let v, = (-09,r,) x ",
and 9 be a metric of v, given by g, = dr2 + uzhc. Then we

can glue (s™\ V1,g1) and (Vz,gz) along their boundaries to

-15=-



obtain a smooth Riemannian manifold. Now it is easy to see

that the resultant space is the desired one.

Corollary 3.14. 1If Rg(o) = n(n-1), then for any ¢>0

there is a metric g pointwise conformal to g such that (i)

Ra - Rgl( £, (ii) IVol(g) - Vol(g” < ¢ (ii) Rica =
(n-1)g at the point o.

£(x) = R,.x xJ
ij

<] o . .
are normal coordinates around 0 and Rij= Ricg(afaxl,afaxj),

1/(n-2)g'

Proof. Put dg = £ + 1, where x*

and apply Lemma 3.10.

Corollary 3.14 is a geometric interpretation of necessity
of Holder continuity in ﬁhe Schauder estimates, for the metric
g is conformal to g and close to g in CO (cf. (iv) of Lemma 3.10)
but not in C2 in general because of the condition (i) above,
so then R§ cannot be C¥ close to Rg for 0 < <1, since other-
wise the Schauder estimates would imply a is C2+a close to g,

but actually R§ is C0 close to Rg from the condition (i).

§4. Proof of Theorems 2 and 3.

We start with the following.

Lemma 4.1. Let (M,,g,) and (M,,g,) be two Riemannian.

manifolds of same dimension n » 3 such that R (pi) =
i
n(n- 1) at some points p; €M, ,i = 1,2. Then for any €>0,

there is a metric g of M1#M2 with the following properties;

(i) Vol{M1#M2,g) - 232

-16-



(ii) there are isometric imbeddings Wi:(Mi\,Bi,gi) —_>

(M.'#Mz,g) , 1i=1,2, where Bi are small balls containning pieMi .

and Rg(x) - n(n-1)J<t for xeM1#M2\(Im ‘j’1U Im ?2)(

Proof . By virtue of Corollary 3.13, we can take a metric
Ei of M, which coincides with g, outside a small ball B, contain-

ning P and satisfies the following; |R (x) - n(n- 1” £ £ for

g
X€B, , |Vol(Mi,§i) - Vol(Mi,giﬂ < £/4 a;d B, includes a smaller
ball B! such that (Bi,éi) is isometric to a geodesic §-ball in

the unit n-sphere and Vol(Bi,&i)< £/4.

‘ On the other hand, from Lemma 3.1 with 81 and 62 sufficiently
small less than € and § respectively, we have a small piece .
(A(L%',%2]),g9'") for some §' <§ such that RG} - n(n-1] < €,
Vol(A([%',%]),9') < €/4 and a neighborhood éf each of the boun-
dary components is isometric to a neighborhcood of the boundary

of the &-ball of the unit n-sphere.

Thus, the desired space (M1#M2,g) is obtained by putting

together three pieces (M1\.B{,§i), (M, Bé,&z) and (A(L§',81).,9").

Proof of Theorem 2. It follows from Corollary 2.2 that

for any §>0, Mi’ 1221,2, has a metric 95 such that Vol(Mi,gi)

"

1, R = n(n-1) at some point, and min Rg > -§&§, since (M)
i - i

€ 0. Therefore, from the above lemma we get a metric g of

M1#M2 such that Vol(M1#M2,g)< 3, min jo>— 8. Then p(M1#M2)

> _32/n

>0 can be chosen arbitrarily.

§ from Corollary 1.7. Hence, p(M1#M2) 2 0 because
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Proof of Theorem 3. For the sake of simplicity, we denote

by «(M,r) and B(M,v) respecfively the following propositions;
OQM,r) = "for any £ » 0 there is a metric g of M such that
IRg - rI < £ and Vol.(M,g) = .1" and B(M,v) ="for any ¢ »0 there
is a metric g of M such that 'Rg - n(n-—1)'< £ and \Vol(M,g) - v|
<¢€"'. It is obvious that «(M,v) is equivalent to @(M,n(n-‘l)vz/n)
if v>0. From Facts 1.1 and 1.3, we know that (a) if p(M)> O
and n 2 3, then p(M,v) holds for 0< vg (u(M)/n(n-—TDn/z, hence
in particular, .(b) if n > 3, then P(Sn,v) holds for 0 < v £
vol(s™(1) . Moreover it follows from Lemma 4.1 that if n23,.
then P(M1,v1) and P(Mz,vz) imply‘ﬁ(M1#M2,j1+v2). Hence, re-
placing M1 and Mz‘here by M and st respectively, we see that
if n23, p(M,v) implies P(M,v+a) for any O gagVol(s (1)),
bécause of the above fact (b). Therefore, P(M,v) implies p(M,v')
for all v' 2> v, if n 2 3. Thus from (a) above, F(M,v) holds for
any v>0, hence so does o(M,r) for any r >0, provided that p(M)
>0 and n 2 3.

On the other hand, we can see from Proposition 2.1 that
any function f& C®(M) with min f<r< ma;c f is the scalar cur-
vature of some metric of unit volume if o({M,r}. Therefore
the above argument yields that any nonconstant function whose
maximum is positive can be realized as the scalar curvature of

a metric of unit volume, if p(M) >0 and n 2 3. This, together

with Corollary 2.2, completes the proof.
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§5. Proof of Theorem 4.

We put ¥(M,C,v) = "for any £>0 there is a metric gecC
such that Rg - n(n-—1)\<ﬁ£ and {Vol(M,qg) - v|<:e". So we can
rephrase Theorem 4 as follows; ¥(M,C, (k(M,C)/n(n-1)""2+k vol(s™(1))
holds for any integer k 2 0, if n 2 3 and p(M,C) > 0. The case
when k = 0 follows immediately from Fact 1.1. Hence, we have
only to show that ¥(M,C,v) implies y(M,C,v+Vol(s™(1) if n 2 3.

First we prepare the following formula.

Lemma 5.1. Let 0€M, r(x) = dist(o,x) and £ = £(r) be a

smooth function of M. Then

- % Ricg(grad r, grad r) + e)%

in a neighborhbod of o, where ° = d/dr and e ig a function such

that]ﬁ(x)‘ < air(x)2 with a constant a;depending only on the metric.

The proof is omitted as it is a direct calculation.

Let us assume ¥(M,C,#v). Then we see from Corollary 3.14
that for any £> 0 there is a metric g€ C such that Rg - n{n - 1)[
< g, lVol(M,g) - vl(E and Ricg = (n-1)g at some point o €M.

Let £ = f(r} be the positive function of r in Lemma 3.1 with
a‘small 52. Then naturally we can regard f as a smooth function
of M through the identification r = dist(x,o0). LetA0 be the
Laplacién of the metric 9y = dr2 + sir12rh.0 of constant sec-
tional éurvature 1, defined on O§J:<€7 . Note that the Ricci
curvatures of g and 99 coincides at the point o. Hence from (iii),

(v) of Lemma 3.1 and the above lemmwa, we have

-19-



(5.2) Af - By ] g a8l /sin€,

for some constant a,. Putting g = f_zg, we have

- 5 . _ _ _ 2
Ry = 2(n 1) £ (Af Aof) + (R nin=-1) £ + Ry o

where Rg' = Rg,(r) is the scalar curvature of f-ng. Thus,

from the assumption, (i}, (&) of Lemma 3.1 and (5.2}, we get
. 5 ' .
(5.3) \R§ -n(m-1| ¢ 2(n-1)a,g /sink, + €+ g,

On the other hand, if we choose a constant a3 so that

ldvg(x) - dv (x)l < a, 522.dvg (x} for r < E2 , it is easily seen

90 0

that
(5.4)  |vol(m,5) - (v+vol(s®(M| ¢ ay€f (vol(s™(1) + £) + €,

from Lemma 3.1.
Thus letting E, 61, 52-4 0 in (5.2) and (5.4), we get

¥(M,C,v +vol(s" (1) .
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