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Scalar curvature of ametrie with unit volume

'Osarnu Kobayashi

The problem of finding Riemannian metrids on a closed

manifold with prescribed scalar curvature function is now

fairly well·understood from the works of Kazdan and Warner

in 1970's ([7) and references cited in it). In this paper we

shall consider the same problem under a constraint on the volume.

For this pur~ose it is usefu1 to introduce an invariant ~(M) of

a smooth closed manifold M defined as the suprernurn of ~(M,C) of

all conforrnal c1asses C of Riernannian metries of M,

~ (M) = sup ~(M,C),

C

where ~ (1-,., C ) is c.efined as

~(M,C) = inf
5MRgdvg

(J d )(n-2)/n
,

gEC M v g

where R is the scalar curvature of g, and n = dirn M. Obvious1y
9

~(M) = 4n~(M) by Gauss-Bonnet, if n = 2. In general,· ~(M) > 0

iff M carries ametrie of positive scalar curvature.

The rnethod of Kazdan and Warner is modified to prove the

following.

Theorem 1. (a) Suppose dirn M = 2. Then f E C~(M) is the

sca1ar curvature (= twice the Gaussian curvature) of sorne rnetric

9 of M with Area(M,g) = 1 iff either roin ,f< ~(M)< rnax f 6r f =
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const. = j.L (M) •

(b) Suppose dirn M ~ 3, j.L(M) ~ 0 and j.L(M) = j.L(M,C) for

sorne conforrnal class C. Then f E CO'Q(M) is the scalar curvature

of sorne metric g with Vol(M,g) = 1 iff either min f < j.L(M)" or

f = const. = j.L(M). Moreover, _a metric g with R = j.L(M) andg -

Vol(M,g) =

(c)

1 is an Einstein rnetric.

Suppose dirn M ~ 3, j.L(M) ~ 0 and j.L(M) )' j.L(M,C) for

any C. Then f E C~(M) is the scalar curvature of '~ metric

g with Vol(M,g) = 1 iff rnin f < j.L(M).

It is known that j.L(Tn ) = 0 and j.L(Tn#Tn ) ~ 0 (cf. [6]).

Tn , n ~ 3, are exarnples of the case (b). Tn~Tn, n ? 3, are

examples of (c), because Tn#Tn carries no Ricci flat metries,

and because j.L(Tn#Tn ) = 0 for n ~ 3, which we can see frorn the

following.

Theorem 2. If dirn M1 = dirn M2 ~ 3, j.L(M 1 ) ~ 0 and ~(M2) ~ 0,

then j.L(M1#M2) ~ o.

There is a similar result that j.L(M1#M2) > 0 if j.L(M
1

) > 0

and j.L(M2) > 0 ([13J), but ous requies, a more careful control on

scalar curvature and volume, and basically the same "idea yields

the following, which shows a clear contrast to the case when

Theorem" 3. Suppose dirn M ~ 3 and j..L (H) > O. Then any

function f E C~(M) which is either nonconstant or constant less

than .j..L(M). is the scalar curvature of some rnetric g with Vol(M,g)

= 1.
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The author hopes that this result will be improved and

that in this case any function can be the scalar curvature of

some metric with unit volume, which is shown to be true for

many examples.

When we restric ourselves to a fixed conformal class,

the problem becornes more involved.

Theorem 4. Suppose dirn M f 3 and C is a conformal class

of Riemannian metrics of M with j..l (rot, C) > o. Then for any t:> 0

and any integer k ~ 0, there is a metric g E C wi th Vol (ro1, g) ;;;;

1 and IR - (j..l (M,C)n/2 + k j..l (Sn r/ 2 )2/nl < E., where ~ (Sn) ;;;;
- g

n (n - 1) Vol (Sn ( 1 ))2 /n .

The metries for k ? 1 and small E~ O· cannot be obtained

through the variational method of Aubin (cf.[1]), where the

obtained scalar curvature necessarily satisfies the condition

that (min R )VOl(t1,g)2/n ~ j..l(Sn). In general, we cannot take
g

Eto be 0, for large k. For example, this is impossible for

k ? 1, if C contains an Einstein metric (cf.[11]).

This paper is partly based on the last pa~t of (10), and

was cornpleted during the author's stay at Max-Planck-Institut

für Mathematik.

§1. Preliminaries.

Throughout this paper M denotes a smooth closed connected

manifold of dimension n. We start with basic known facts on the

Yamabe problem ([12] and references in [2J).
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Fact 1.1. Any conformal class C contains a metric 9 such

that R = const. = Vol(M,g)-2/n~(M,C).
9

Fact 1.2. For any (M,C),' .~ (M,C) ~ n ('n - 1) Vol (Sn (1 »2/n, and

eguality occurs iff (M,C) is conformal to the standard n-sphere.

Fact 1.3. If n ~ 3, there is a conformal class C such that

~(M,C) = r for any r < ~(M).

Besides the above we add some other properties of ~(M),

most of which are more or less well-known.

Lerruna 1.4. ( i ) I f n .::. 2, t he n ~ (M') = ~ (M , C ) = 4 1C X(M) f 0 r

any C. (li) ~(M) > 0 iff M carries a metric of positive scalar

curvature.

Proof. (i) is the Gauss-Bonnet formula. The only if part

of (li) is from Fact 1.'1. So, suppose 9 is a metr ic of M with

positive scalr curvature. Then it follows form the following

lerruna that ~ (M., C) .,. 0 for C to whichg belongs, hence ~ (t-1) > o.

Lerruna 1.5. Suppose n = 2 or ~(M,C) ~ o. Then the scalar

2/ncurvature Rg of any rnetric g t C,satisfies (min Rg )Vol (M, g) ,

~ ~(M,C) $ (max Rg )VOl(M,g)2/n, and each of two egualities

irnolies R is constant.g

Proof. The case when n = 2 is again from Gauss-Bonnet.

If n ~ 3, any rnetric in C is written of the form f 4An- 2 )g for

some positive f ~ Coo(M) and an arbi trarily fixed g E C. Then,

~(M,C) is rewritten as
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( 1 • 6 )
4n-

2
1 r , Idfl 2 dv + SMR f2 dvn- JM g. 9 9

~(M,C) = inf
f::>O <SMf2n /(n-2)dV

g
) (n-2) /n

From this expression and Sobolev l s inequality, we get min R
9

~ 0 if ~(M,C) ~ '0. Then, applying Hölder's inequality to (1.6),

we have (min Rg ) Vol (M, 9 ).2 /n '$ ~ (H, C) with equali ty only when R
g

is constant. The latter inequality is obvious from (1.6).

Corollary 1.7. If n = 2 9!. lJ. (M,C) ~ 0, then'

sup (min Rg )VOl(M,9)2/n = ~(M,C).
gEC

In particular, if n = 2 or ~(M) ~ 0, then

sup (min R )v61(M,g)2/n = ~(M).
9 9

In contrast to this, we can see from Theorem 4 that

sup (min R )Vol(M,g)2/n = 00 if n ~ 3 and M(M,C) > o.
geC 9

Corollary 1.8. If TI = 2 or M(M) ~ 0, then

sup ( min Ric (X,X) )Val (M,g) 2/n ~ ..! lJ. (M) •
9 IX L= 1 9 - n

In [5J, GromoV has shown that the left side of the above

inequality is strictly negative for M which carries a metric

with negative curvature. In view of this fact, I want to pose

the following question: Does ~(M) < 0 hold for M which has a

negative sectional curvature metric?

In Corollary 1.8, the equality occurs if ~(M) = ~(M,C)

for some conformal class C, and then the supremurn is attained

by some Einstein metric, which i5 shown from the following

(cf. [3J, [8]).
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Lemma 1.9. If ~(M) ~ 0 and ~(M) = ~(M,C) for some C,

then C contains an Einstein metric g, and with this metric

~ (M) = ~(M,C) = R Vol(M,g)2/n holds.
g

Proof. Let

4~=~ 5M (d~/2 c1.Vg + JMRq f
2

dVgA(g) = inf - -
f>O JMf

2
dV

g

Then in a way similar to the proof of Lemma 1.5, we have

Jl(M,C) ? ),Jg)Vol(M,g)2/n for all gEC, if Jl(M,C) $ 0 (the

opposite inequality holds if ~(M,C) ?-O) w Now, let C be such

that Jl(M) = Jl(M,C), and take g E C such that Rg is constant

equal to Val (M,g) -2/n~ (M.tC) (cf. Fact 1 w1). Let gt = g -
o 0

t Ric , where Ric is the traceless part of the Ricci tensorg g

of g, and t is sufficiently srnallw Then, A(gt) is differentiable

in t, and we have

d 2/nl (2-n)/n j ,~ 12dt .A(gt)Vol(M,gt) t=O = Vol(M,g) M IR1Cg dVg

. 0 2/n
(cf.[S])." Therefore if Ric g i 0, then ~(M,Ct) ~ ~(gt)Vol(M,gt)

>A(g)Vol(M,~)2/n = ~(M,C) = ~(M) for a small positive t, where

Ct = [eUgt ; U E Coo(M)}, which contradicts to the definition of

~ (M) w

§2. Proof of Theorem 1w

The only if part of each of the cases (a), (b) and (c),

and the additional statement in the case (b) have already been

proved in Lemmas 1.5 and 1w9. The remainning parts are from

Facts 1.1, 1w3 and the following generalization of a result of
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Kazdan and Warner [9J.

Proposition 2.1. Let go be a smooth Riemannian metric of

M with Vol(M,gO) = 1, ~and f a smooth function satisfying min f

<min Rand max R < rnax f. Then there exists another smooth
go gO'

metric g such that R = f and Vol(M,g) = 1.
-- .g

Then, for example, the proof of the case (c) is as follows:

We have only. to find a rnetric g with Vol(M,g) = 1 and R = f forg

.f satisfying min f < ~(M). The case when f is constant is irn-

mediate from Facts 1.1 and 1.3. If f is not constant, we can

choose c e:IR so tha t: min f < c < min {~ (M), max f}. Then from

Facts 1.1 and 1.3, we have a rnetric go such that R = c andgo
Vol(M,gO) .= 1. Therefore applying the above proposition we

get the desired metric.

The proofs of the cases (a) and (b) are cornpletely similar.

The same argument works also to some extent when ~(M) > 0 and

dirn M.. ~ 3:

Corollary· 2.2. If dirn M '? 3, then any f E Coo(M) such that

rnin f < ~(M) is the scalar eurvature of sorne metric g with

Vol(M,g) = 1.

Proof of Proposition '2.1. Since the proof is similar to

that given in [9J, we shall only sketch it. Let c.S (M) denote
p

the- Sobolev space of H2 symmetrie covariant 2-tensor fields,,p

where H2 means that derivatives up to second order are L
,p P

integrable. We always assurne p> n = dirn M., Put m (M) =
p
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fh e~pi h is everywhere positive definite} and t5 p (M) =

fh E,5 i SM (tr h) dv = o}.
p . go go

Since Vol:m (M) --tlRi g~Vol(M,g) is a c 1 mapping whose
p

differential is not ~ero, it follows from the implicit function

theorem that there are a neighborhood U of 0 in ~ (M) and a C1
p

function s:U~lR such that S(h):= go + h + s(h)gO for hEU

has the following properties i (i) S (h) E mp (M), (:ii) Vol (S (h))
o

= 1, (iii) 5(0) = go ' (N) DS at 0 is the inclusion map 0 p (M) ~

~ (M). Note that S(h) is a C~metric iff h is of cla55 C~.
p

The scalar curvature R: m (M) ~ L (Mi IR) is defined as a
p p

C
1 rnapping. So, we get a C

1 mapping R05:U..-,Lp(MilR), U C Sp(M),

°whose differential A: c.S (M) ~ L (M i lR) at 0 i5 computed as
p p

A(h) = _~hi, + h ij i' - hijR .. , where the covariant differen-
1 i J 1J·

tiation, the Ricci curvature , etc. are relative to gO. The

A*(u) = Ä*(u). + a(u)go

and a(u) = (JMUR dv )/
go go

a continuous linear

formal L2 adjoint A* of A i5 given by

where Ä* (u) = - (.6. u) go + '\72 u - u Ric
. 0 go

(n Vol(M,gO». A* :H 4 (Mi lR) -.,. eS (M) is
,p P

map. Now, we rernark that we rnay a5sume with no loss of

generality that the scalar curvature R(gO) of go is not cons­

tant. Then, we can show that AoÄ*:H 4 (Mi IR)~L (Mi m) is a,p p

lin~ar horneomorphism, and AoA*:H 4 (Mi lR) ~L (Mi lR) is,p p

injective (cf. [3J, [4J, [9]). Then, since Ao (A* - A*) is a corn-

pact operator, we conclude that AoA* is invertible.

Let V:= (A*)-1(U), and defined a c 1 mapping Q:V-tL (MilR)
. p

by Q = RoSoA*. The differential of Q at 0 is AoA*, hence it

follows from the inverse function theorem that Q is locally
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invertible around O. In particular, Q(V) contains some

€-ball centered at Q(O) in L' (Mi m).
p

For the function f given in the proposition we can find

a diffeomorphism CJ' of M such that \Q(O) - f o9'lL < €, ([9J).
\,. .p

Therefore,' we get u EVC H
4

(MiJR) with Q(u) ;- fog'.
,p .

Although Q(u) involves integrals of u, qu and V2u, we can

see the elliptic regularity argument is applieable, if we write

down Q(u) explicitly. Hence, the u for which Q(u) = fo~ is of

class C~. Thus, g = SoA*(u) is a C~metric with Vol(M,g) = 1

and R- = f o~ • Then the desired metrie is given by g = (t:f-1)* g.g

§3. Approximation Lemmas.

nLet (S ,gO) be the Euclidean unit n-sphere, and r be the

intrinsic distanee relative to go from the north pole so that

. 'tt d 2 p . 2 h h h' h d dgo lS wr1 en as go = r T Sln r 0' w ere 0 lS t e stan ar

metric of the unit (n - 1) -sphere. For an interval I C [O,1rJ,

we denote by A(I) the region A(I) ;;; (x ESni r(x) EI}.

Lemma 3. 1. If n ~ 3, there exists, for any t.1 > 0 and

o < t 2 < 7t., ~ positive function f == f (r) of Sn such that

(i) IRg, - n(n- 1) I< E,1 ' where gl = f- 2g oi

(ii) IVOl(Sn,g.') - 2VOl(Sn,go)1 < (1

(ili) f(r) == 1 for r > €2 ' and (A((O'~2)),gl) is isometrie

to (A((E 2 ,1t]) ,gi) = (A((€-2 ,1t]) ,gO) for some f 2 <: E.2 i

(N) 0 < f(r) ~ 1 and If(r)\ ~ 2/sin r for all r, where

· means d/dr.

-9-



Proof. The scalar curvature of gl is given as R I /n (n - 1)
g

2·· • .• 2 2
= -'f (f :f (n - 1) f cot r) - f + f. It is convenient to change

n

the variables by

(3.2) cos r = tanh t, o< r <1t:, ($) > t .,. - ()Q ,

(3 .4)

and to put

(3.3) u(t) = f(r(t)) cosh t.

Then g' = u- 2 (dt2
+ h O) and

Rg I , ' 2 2 n - 2 2
= -uu ll

- (u') + --un(n-1) n n

where I = d/dt = -(sin r)d/dr. We put

(3.5) B(t) = u- n ((u , )2 - u 2
+ 1).

Then, from (3.4), we get

(3.6)
R 1

B'(t) = (U-n)1 (1 - n(ng...; 1)).

We fix t o > maxfO, log cot(~/2)J' and put

(3.7) u(t) _ cosh t for

hence B(t) _ 0 for t < t O. We shall consider the solution u of

(3.5) with a suitably given B(t). First, we note that

(3.8) u(t) ~cosh t for t?to " if B(t) ~,·O for t2to '

which is easily seen by a simple comparison argument. Let
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B(t) = 0 for t ~ tOi

B(t) < 0 and -2 $ < B' (t) ~ 0 for t o < t < t o + 1 i

B(t) = -ö for t + 1 .~ t < t 1 •0 =

If o > 0 is taken to be sufficiently small, then (3 .5) with (3.7)

is solvable for u in the interval (-00, t 1 ) with arbitral t 1 ~

t o + 1, and u I (t) > 0, u" (t) .,. 0 for' t o ~ t ~ t o + 1 ..:.:, Therefore,

taking ~ > 0 smaller, if necessary, we have from (3.6)

n+1cosh (tO+1)
IRg, - n(n - 1)( ~ 2 (n - 1) sinh t

o
li < C, for t ~ t O+1.

t 1 is then chosen so that u'(.t 1) =0 and u'(t);>O for t O +1<t<t 1

hence, in particular, Rg, _ n (n - 1) for t O+1 ~ t ~ t 1 • For t? t 1 '

we put

B(t) = B(2t
1

- t).

Then

(3.9) u(t) = u(2t
1

-tl for t ? t 1 .

Thus, IR
g

I - n (n - 1)1< t..1 for all t, and the assertion (ili)

follows from (3.7) and (3.9'~via (3.2) and (3.3). As for the

volume, we have

n (u(t1 ) du
Vol(Sn,g') = Vol(S ,gO) + 2J --n--

1 u u'

and we can see by a tedious but elementary calculation that the

n .
second term of the right side converges to Vol(S ,gO) .as Ö~ O.

Therefore (li) holds for a sufficiently small~. From (3.8),
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u(t) ~ cosh t, and hence ~'(t)\ ~ tsinh tl from (3.5), because

B(t) $ 0, which proves (:iv).

In this lemma, when t 1 tends to 0, the obtained metrics

beeome eloser to a singular metrie isometrie to 4dr2
+ Sin2 (2r)ho

o ~ r ~~, whieh has constant seetional eurvature 1 in the non­

singular part r ~ ~/2, and whose volume is twiee the volume of

the unit n-sphere.

Lemma 3.10. Let g be ~ fixed Riemannian metrie of M, and

go another rnetrie defined in ~ neighborhood of ~ point 0 E M

h th t R () R () d · 1 . 1 Th f C 0sue a_ g 0 = go 0 an Jog = JogO. en or any _~~

there is a rnetrie g with the following properties;

(i) 9 = g outside the E-ball eentered at 0;

( :ii. ) g = go in a neighborhood of 0;--
( ili. ) IR-(X) - R (xl\< E for all xE N;

9 g --- ---

(:hl ) \g(X,X) - g(X,X)( ~_~ g (X ,X) for all X ETt-1;------
(v) if go is eonforrnal to g, then so is g.

To prove this lemma, we need the following sublemmas.

Sublemma 3. 11. Let 9 and gl .be two Riemannian metries ,

h = 9 I - 9 and q (x) = max {g (X , X) / 9 I (X, X); X E TxM' " 0 J. Then

R = P (h) + Q (h), where
g 9 9

P (h ) _ h i . j. i j i j= + h .. - h R .. ,
9 1; J ;lJ 1J

and
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where the covariant derivation, the Ricci tensor, etc. are

with respect to the metric g, and an is a constant depending

only on the dimension n.

The proof is a straightforw~rd computation of writting

out the scalar curvature explicitly in terms of the metric

and its derivatives, so it is omitted.

Subleroroa 3.12. For any S > 0, there is a nonnegative

function Ws E Coo(JR) such that (i) b ~ ~5 ~ 1, wS(t) : 1 in

~ neighborhood of 0 and wb (t) .:. 0 for t ?~; (ü) It Ws (t)' < b

and It2ws (t){ < S for all t.

f '\ i:l 1/25-Proo. Take A" 0 so that cosh /' =e , and define a

piecewise smooth continuous function u: IR1~ JR as

u(t) 0 for t e -2~]U [= (-oo,~e ~,OQ) ;

u (t) 2A e5 -2), 2A]= e for t e[5e ,25/(e +1);t

u(t) ~ - 1 for t E [2&/(e
2 i\.

+ 1) , sJ.= t

Then,

5~U(t)dt = 1 , o $ t u (t) ~ b tanh A < S and

0 for -2)" Ut E (-CO,~e ) (S,OQ)

t2~(t) = ~ for t E (Se- 2Ä ,25/(e 2}\+ 1))

-s for t e (25/ (e 2A +1),Et).
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·Therefore, we can rnodify u to get a srnooth function v ~ith the

following propertiesi

v(t) = 0 for t E (-oo,öe-O/4]U[ö,OO).

Thus, Wo (t) = 5i v (t) dt has the de sired properties.

Now, the proof of Lemma 3.10 proceeds as folIows. Choose

r o .,. 0 so that go is defined in the rO-ball at 0 and that

Igo (X,X) - g(X,X) I ~ rnin[E,1/2}g(X,X) for XE TxM if x is in

the ball, and define ametrie gs of M as 9 0 = g + wb (r)(go - g) ,

where 5 < rnin{rO,E.J and r = r(x) = dist(o,x). Then, g:= gs .

satisfies the conditions (i), (ii), (:h.r) and (v). Frorn Sublemma

3.11, we have

- R
9

= P9 (w s (r) (g -. go )) + Qg (\'1 ~ (r) (g - gO))

- Ws (r) (P
g

(g - gO) + Qg (g - gO) - (R - R )).
9 0 9

we get from Sublernrna 3.12

fpg(ws(r) (g- go)) - wö(r)Pg(g- go)1 <. b1S,

IQg(ws(r) (g- go))/ + Iws(r)Qg(g- go)) < b;S2,

for some constant b 1 . And since R (0) = R (0),go 9

for some b 2 . Therefore we have JR - R I< E for a sufficiently
gs 9
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small b, which completes the proof of Lemma 3.10.

Corollary 3.13. If Rg(O) ;;;;'n(n- 1), then for any E. /'0,

there is ametrie g such that (i) IR - R-I<Ei (n) \VOl(g)g g

Vol (g) \ < t:. i (ii.i), g has constant sectional curvature 1 in a

neighborhood of o.

Proof. Put go ;;;; dr 2
+ sin2r h O in the polar normal

coordinates, h O being the standard metric of the (n- 1)-sphere,

and apply Lemma 3.10.

Here we make a digression to see that an argument like

the above shows that there i5 ~ rnetric of JR.
n , n ~ 3, which is

the ordinary Euclidean rnetric outside ~. cornpact set and whose

scalar curvature is not positive, and negative sornewhere. The

proof is as folIows: From Facts 1.1 and 1.3 or a direct con-

struction, which can be made in various ways, we can take a

metric g 1 of sn, n ~ 3, whose scalar curvature is negative

everywhere and equal to -n (n - 1) at some point, say 0 E Sn .

Then by an argument quite similar to the above corollary, we

rnay assurne that g1 is of the form dr 2 + sinh2r h
O

. in a neigh­

borhood V 1 ;;;; t 0 ~ r (x) ;;;; dist (o,x) < r O } ofe o. It is' easy t'?

show that there is a positive function u E Coo(:IR) such that

n-1
Le t V2 = ( - 00, r 0) x s ,

2 2
g2 be a metric of V2 given by g2 = dr + u h O. Then we

nglue (S \ v1 ,g1) and (V2 ,g2) along their boundaries to

u(r) ;;;; sinh r for r ~·rO' u(r) = rO-r for r ~ 0 and

•• .2
2 u u + (n - 2) (u - 1) ~ 0 for all r.

and

can
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obtain a smooth Riemannian manifold. Now it is easy to see

that the resultant space is the desired one.

Corollary 3.14. ~f Rg(O) = n(n-1), then for any E> 0

there is ~ metric g pointwise conforrnal to g such that (i)

{Rq - Rgl < E.., (ü) tvol(g) - Vol(g)} < t,; (iii) Ricg =

(n - 1) g at the point o.

Proof. Put go = f 1/ (n-2) g, f (x) = R..xix j + 1, where xi
lJ

o 0 • •

are normal coordinates around 0 and R.. =Ric (o!dx1,%x J ),
lJ g.

and apply Lemma 3.10.

Corollary 3.14 is a geometric interpretation of necessity

of Hölder continuity in the Schauder estimates, for the metric

g' is eonformal to g and elose to g in cO (ef. (ilr) of Lemma 3.10)

but not in C2 in general because of the condition (lli) above,

so then R- eannot be cO( close to R for 0 <: 0( < l, since other-g g
- 2+0(

wise the Schauder estimates would imply g is C elose to g,

but actually R- is cO elose to R from the condition (i).g g

§4. Proof of Theorems 2 and 3.

We start with the following.

Lemma 4.1. Let (M 1 ,g1) and (M 2 ,g2) be two Riemannian

manifolds of same dimension n > 3 such that R. (p.) =- -- = -- -- g. l.
1

n (n - 1) at sorne points Pi e Mi I i = 1,2. Then for any e>0,

there is a rnetric g of M1#M2 with the following properties;

(i) IVOl(M1#H2 ,g) - ~~=1vOl(Mi,gi)' < E;
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(ii) there are isometr ic imbeddings ty. : (M. " B. , g .) ---7
1. 1. 1. 1.

(M, #M2 ' g), i = 1 ,2, where B. are small balls containning p. e M. ,
1. -- 1. 1.

and JRg(X) - n(n - ')1< € for x E.M,#M2 "(Im 'f1
U Im <:1'2).,

Proof. By virtue of Corollary 3.13, we can take ametrie

g. of M. which coincides with g. outside a small ball B. contain-
1. 1. 1. 1.

ning p. and satisfies the following; IR (x) - n (n - 1)\ < f:, for
1. gi

xE. B. , IVOI(M. ,g.) - Vol(M. ,g.)1 < E/4 and B. includes a smaller
1. 1. 1. 1. 1. 1.

ball B! such that (B~,g.) is isometrie to a geodesie o-ball in
1. 1. 1.

the unit n-sphere and Vol(Bi,gi)< ~/4.

On the other hand, from Lemma 3.1 with ~1 and ~2 sufficiently

small less than E and & respectively, we have a small piece

(A([ SI ,bJ) ,gi) for some S' <: S such that IRg·~ - n(n - 1)1 < C,

Vol(A((~',~J) ,gI) < E/4 and a neighborhooc of each of the boun-

dary cornponents is isometrie to a neighborhood of the boundary

of the S-ball of the unit n-sphere.

Thus, the desired space (M
1

#M
2

,g) is obtained by putting

together three pieces (M1 ' B"g1)' (M2' Bi,g2) arid (A(tb' ,b]) ,gi).

Proof of Theorem 2. It follows from Corollary 2.2 that

for any 5>0, M., i~'1,2, has ametrie g. such that Vol(M. ,g.)
1. 1. 1. 1.

=1, R = n(n-1) at some point, and min R > - S, since IJ.(M.)
gi g1 1.

$ 0. Therefore. from the above lemma we get ametrie 9 of

M1#M2 such that Val (M1 #M2 , g) < 3, min Rg '> - S. Then IJ. (M
1

#M2 )

> _3
2

/
nS fram Carallary 1.7. Hence, IJ.(M 1#M 2 ) ~ ° because

~>o can be chosen arbitrarily.
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Proof of Theorem 3. For the sake of simplicity, we denote

by ~(M,r) and ~(M,v) respectively the following propositions;

(>({M,r) = "for any E > 0 there is a metric g of ~1 such that

IRg - r I< t and Vol(M,g) = 1" and ~(M,v) ="for any t /' 0 there

is a metric gof M such that IR - n(n-1)1<€ and \vol(M,g) - vi
g

2/n
<~I. It is obvious that «(M,v) is equivalent to ~(M,n(n-1)v )

if V)O. From Facts 1.1 and 1.3, we know that (a) if IJ.(M);> 0

n/2
and n '? 3, then P(M,v) holds for 0< v ~ (IJ. (M) /n (n - 1)) , hence

in particular, .(b) if n ? 3, then ~(Sn,v) holds for 0 < v ~

Vo 1 (Sn ( 1 )) . Moreover i t follows from Lemma 4. 1 that if n? 3, .

then P(M 1 ,v1 ) and P(M2 ,v2 ) imply 'P(M1#M2'~1+v2). Hence, re­

placing M
1

and M
2

'here by M and Sn respectively, we see that

i.f n~3, P(M,V) implies p(M,v+a) for any 0~a~Vol(Sn(1)),

because of the above fact (b). Therefore, P(M,v) implie5 ~(M,V')

for all Vi ? v, if n ~ 3. Thus from (a) above, F(M,~) holds for

any v > 0, hence so does O«M, r) for any r .,. 0, provided that IJ. (M)

> 0 and n ~ 3.

On the other hand, we can see from Proposition 2.1 that

any function f E Coo(M) wi th min f< r< max f i5 the scalar cur-

vature of some metric of unit volurne if ~(M,r). Therefore

the above argument yields that any nonconstant function whose

maximum is positive can be realized as the scalar curvature of

ametrie of uni t volume , if IJ. (M) > 0 and n f' 3. This, together

with Corollary 2.2, completes the proof.
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§5. Proof of Theorem 4.

We put b'(M,C,v) = "for any E.>O there is a metric gE C

such that \R
g

- n(n-1)\< E: and tVOl(M,g) - vl< ~11. So we can

rephrase Theorem 4 as follows i k' (M, C, (~ (M, C)!n (n-1 )f/2 + k Vol (Sn( 1 )))

holds for any integer k ~ 0, if n ~ 3 and ~(M,C» O. The case

when k = 0 follows irnrnediately from Fact 1.1. Hence, we have

only to show that ~(M,C,v) irnplies ~(M,C,v+Vol(Sn(1))) if n ? 3 •.

First we prepare the following forrnula.

Lemma 5. 1. Let 0 E M, r (x) = di s t (0 , x) and f = f (r) be a

smooth function of M. Then

•• n - 1 r= f + (--r-- - 3 Ricg(grad r, grad r) +
•

~ ) f

in a neighborhood of 0, where · = d/dr and eis a function such

that le(x)1 ~ Cltr (x)2 with ~ constant al depending only on the metric.

The proof is omitted as it is a direct calculation.

Let us assurne ~(M,C,1V). Then we see from Corollary 3.14

that for any E > 0 there is a metric g E. C such that '~g - n (n - 1 )1
< E., {vol (~1, g) - v I< E and Ric = (n - 1) g at some point- 0 E M.g

Let f = f(r) be the positive function of r in Lemma 3.1 with

a small E 2 • Then naturally we can regard f as a smooth function

of M through the identification r = dist(x,o). Let ~ be the

l · f th . d 2 . 2 hLap aClan 0 e rnetrlc go = r + Sln r 0 of constant sec-

tional curvature 1, defined on 0 ~ r < E. 2 . Note that the Ricci

curvatures of g and go coincides at the point o. Hence fram (lli),

(iv) of Lemma 3.. 1 and the above lemma, we have
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(5.2) \~f

for some constant a
2

. Putting g = f-2 g , we have

. 2
Rg = 2(n-l) f (Af - ÄOf) + (Rg - n(n-l)) f + R Ig

-2where R I = R I (r) is the sca1ar curvature of f go. Thus,g g

from the assurnption, (i), (Y) of Lemma 3.1 and (5.7), we get

(5.3) \Rg - n (n - 1)I ~ 2 (n - 1) a 262
2

/ s in 62 + E. + t:1 .

On the other hand, if we choose a constant a 3 so that

{dv (x) - dv (x)1 < a 3 E2
2

dv (x) for r ~ ce:. 2 ' it is easily seen
g go go

that

(5.4)
2 n$ a 3 ~2 (V01 (S (1)) + E1) + t,1

from Lemma 3.1.

Thus letting 6, t,1 ' E.2 -+ 0 in (5.2) and (5.4), we get

nk'(M,C,v+Vo1(S (1))).
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