SPECTRA OF SOME DOMAINS IN COMPACT LIE GROUPS #### AND THEIR APPLICATIONS Hajime Urakawa Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3 Federal Republic of Germany and Department of Mathematics College of General Education Tohoku University Kawauchi, Sendai, 980 Japan Max-Planck-institut fur Mathematik Bibliothek Inv. Nr.: 2046 Stancl-Nr.: # Spectra of some domains in compact Lie groups and their applications ## Hajime URAKAWA Abstract. In this paper, we determine explicitly the spectra of the Dirichlet problems of some domains in simply connected compact simple Lie groups. As their applications we can state, combining results of Hoffman [6], Mori [10], some stability conditions of these domains for the standard minimal isometric immersions into unit spheres. This work is supported by Max-Planck-Institut für Mathematik. ¹⁹⁸⁰ Mathematics Subject Classification. Primary 58G; Secondary 53C. Key words and phrases. Dirichlet problem, compact Lie groups, Laplace-Beltrami operators, zonal spherical functions. # Spectra of some domains in compact Lie groups and their applications ### Hajime URAKAWA 1. Introduction and results. Let M be a simply connected compact simple Lie group and let T be its maximal torus. We give a bi-invariant Riemannian metric g on M from the Killing form B of the Lie algebra m of M by $$g_m(X_m,Y_m) = -B(X,Y), X,Y \in \underline{m}, m \in M,$$ where X_m , Y_m are tangent vectors of M at m corresponding to X, Y. Let d(x,y) be the distance of (N,g) between two points x,y in M. Then it is known (cf. Crittenden[4], Sakai [13]) that the cut locus C of the identity e in M satisfies $$C = \bigvee_{x \in M} x C(T) x^{-1},$$ where C(T) is the cut locus of e in the flat torus T induced from the Riemannian metric g. For a positive number $\underline{\varepsilon}$ with $\mathbf{e} < \underline{\varepsilon} < \mathbf{d}(\mathbf{e}, \mathbf{C})$, consider a domain $\Omega(\underline{\varepsilon})$ containing the cut locus C in N defined by $$\underline{\Omega}(\underline{\varepsilon}) = \underbrace{\vee}_{x \in M} \times \underline{\Omega}(\underline{\varepsilon}, T) \times^{-1},$$ $$\mathfrak{L}(\underline{\varepsilon}, \mathbf{T}) = \{t \in \mathbf{T} ; d(t, C(\mathbf{T})) < \underline{\varepsilon} \}.$$ These domains $\Omega(\xi)$, which are invariant under all the inner automorphisms of M, shrink to the cut locus C as $\xi \to 0$ and coverge to the whole M as $\xi \to d(e,C)$. Now let \triangle be the Laplace-Beltrami operator of (M,g) acting on the space $C^{\bullet}(M)$ of smooth functions on M, and for every $\underline{\mathcal{E}}$ with $o < \underline{\mathcal{E}} < d(e,C)$, let us consider the following Dirichlet problem for the above domains: $$(\#) \underbrace{\begin{cases} \Delta u + \lambda u = 0 & \text{on } M \setminus \overline{S}(\underline{E}), \text{ and} \\ u = 0 & \text{on } \Omega(\underline{E}). \end{cases}}$$ For a solution u of the Dirichlet problem $(\#)_{\underline{\xi}}$, define a function u^Q on M by $$u^{0}(x) = \int_{M} u(yxy^{-1}) dy,$$ where dy is the Haar measure on M normalized by \int_{M} dy = 1. Then ,if. u^{O} does not vanish identically, u^{O} is also a solution of $(\#_{\frac{1}{2}}$, which is a zonal spherical function of M, i.e., invariant under all the inner automorphisms of M. In this paper, we determine the spectra of the Dirichlet \eigen problem (#) which have zonal spherical functions as follows: Theorem 1. Let M. be a simply connected compact simple Lie group and let Δ be the Laplace-Beltrami operator of the Riemannian metric g of M induced from negative of the Killing form B of the Lie algebra m of M. Then for every ξ with $0 < \xi < d(e,C)$, the eigenvalues of the Dirichlet problem $(\sharp)_{\xi}$ which have zonal spherical eigenfunctions are given by (1) $$\left\{\frac{d(e,C)}{d(e,C)-\underline{\varepsilon}}\right\}^2 |\Lambda+\underline{\delta}|^2 - |\delta|^2, \Lambda \in \mathbb{D},$$ and the corresponding zonal spherical eigenfunctions up, are described explicitly by (2) $$u_{\Lambda,\underline{\varepsilon}}(\exp H) = \begin{cases} \frac{d(e,C)}{d(e,C)-\underline{\varepsilon}} & H \end{cases} / \frac{\varepsilon}{\varepsilon}(\exp H), \exp H \in T \setminus \underline{\Omega}(\underline{\varepsilon},T),$$ $$exp H \in \Omega(\underline{\varepsilon},T).$$ Here D is the set of all dominant integral forms on $\begin{bmatrix} t \end{bmatrix}$, $\underbrace{\delta}$ is the lie algebra half the sum of all positive roots, $|\cdot|$ is the inner product of the dual space \underline{t}^* of \underline{t} induced from negative of the Killing form, and $\underbrace{\delta}_{\lambda}$, $\lambda \in \mathbb{D}$, are the alternating characters of \mathbb{T} (cf. \S 2). Theorem 1 implies immediately Corollary 1. Under the assumptions of Theorem 1, the first eigenvalue $\lambda_1(\xi)$ of the Dirichlet problem $(\#)_{\xi}$, $0 < \xi < d(e,C)$, is given by $$\left\{\frac{d(e,C)}{d(e,C)-\varepsilon}\right\}^{2}\left|\delta\right|^{2}-\left|\delta\right|^{2}=\left\{\frac{d(e,C)}{d(e,C)-\varepsilon}\right\}^{2}\frac{d}{24}-\frac{d}{24},$$ where d = dim M (cf. [p.291, 15]). The corresponding eigenfunction with the eigenvalue $\lambda_1(\xi)$ is $u_{0,\xi}$. Remark. In case of $S^3 = SU(2)$, the same formula as Theorem 1 was obtained in [p.201, 3]. Chavel and Feldman [3] investigated also the behavior of the eigenvalues $\underline{\lambda}_1(\xi)$ of the Dirichlet problems of the domains $X \setminus \underline{\Omega(\xi)}$, where $\underline{\Omega(\xi)} = \{x \in X \; ; \; d(x,Y) < \underline{\epsilon} \}$ for every compact Riemannian manifold X and a closed submanifold Y of X with codim ≥ 2 . A more precise behavior of the first eigenvalue has obtained in Ozawa [12], Matsuzawa and Tanno [9]. As a geometric application of Corollary 1, we can state some stability conditions of those domains $M\setminus\Omega(\xi)$ in M for the standard minimal isometric immersions x_k of M into the unit sphere as follows. Let $\{0 = \lambda_0 < \lambda_1 < \lambda_2 < ... < \lambda_k < ... \}$ be the set of all mutually distinct eigenvalues of negative of the Laplace-Beltrami operator \triangle acting on $C^\infty(M)$. Let V^k , $k=1,2,\ldots$, be the eigenspace with the eigenvalue λ_k , and put $m(k)+1=\dim V^k$. We choose an orthonormal basis $\{f_j\}_{j=0}^{m(k)}$ of V^k consisting of real valued functions with respect to the inner product $(\mathcal{P},\mathcal{Y})=\int_M \mathfrak{P}(x)\mathcal{Y}(x)\;d\mu(x)$, where $d\mu(x)$ is the Haar measure of M normalized by $\int_M d\mu(x)=m(k)+1$. Consider the following mapping x_k of M into the Euclidean space $\mathbb{R}^{m(k)+1}$ defined by $$x_k(p) = (f_0(p), f_1(p), ..., f_{m(k)}(p)), p \in M.$$ Then it turns out that the image of x_k is contained in the unit sphere $S^{m(k)}$, moreover the mapping x_k is a minimal isometric immersion of $(M,\frac{\lambda k}{d}g)$, $d=\dim M$, into the unit sphere $S^{m(k)}$ with the standard Riemannian metric of constant curvature 1 (cf. [8]) since M is a simple Lie group. For a piecewise smooth domain D in M, we call D is stable for the minimal immersion x_k if for all normal variations D_t which fix the boundary ∂D , the function V(t) = Volume D_t satisfies V''(o) > o. Combining Corollary 1 with results of Hoffman [6], Mori [10], we have Corollary 2. Under the situations of Theorem 1, if a positive number & satisfies $$d(e,C) > \xi > d(e,C) - d(e,C) \left\{ \frac{24 \lambda_k}{d} (\|A\|^2 + d) + 1 \right\}^{-1/2}$$ then for every $D(M\setminus\overline{Q(\xi)})$, D is stable for the minimal isometric immersion x_k . Here $\|A\|^2$ is the square of the length of the second fundamental form of the immersion x_k . Remark. In case of M = Sp(n) and k = 1, then it is known (cf. Nagura[11], Kobayashi and Takeuchi [7]) that d = n(2n+1), $||A||^2 = n(n-1)(n+1)(2n+1)$, and $\lambda_1 = \frac{2n+1}{4n+4}$. Therefore for every $D \subset M \setminus \overline{\Omega(\xi)}$, D is stable for the immersion x_1 if $d(e,C) \ge 0.623$ d(e,C). - 2. Preliminaries. Since we will use the precise formula of the radial part (cf.[2]) of the Laplace-Beltrami operator and the structure of the cut loci C and C(T) (cf.[13]) in the proof of Theorem 1, we have to prepare some notations. - 2.1. Let M be a simply connected compact simple Lie group, and let T be a maximal torus in M. Let m (resp. t) be the Lie algebra of M (resp. T). Since the Killing form B is negative definite on m, we define an Ad(M)-invariant positive definite inner product (,) on m by (X,Y) = -B(X,Y), $X,Y \in m$, which induces a bi-invariant Riemannian metric g on M as in introduction. Let Σ be the root system of the complexification m of m with respect to t, i.e., the set of non-zero elements α of the dual space α of the such that $\{E \in m^{\infty}; [H,E] = \sqrt{-1}\alpha(H)$ E for all α is not zero. We give a lexicographic order α on α and let α be the set of all positive roots. Let α be the highest root of α with respect to the order α . Put α be the highest root of α with respect to the order α . Then the cut locus C of the identity e in (M,g) is given (cf. Sakai [13]); by (2.1) $$C = \bigvee_{x \in M} x C(T) x^{-1}$$. Here C(T) is the cut locus of the flat torus T induced from the Riemannian metric g which is given (cf. Takeuchi[14], Sakai[13]) by (2.2) $$C(T) = \exp \widetilde{C}(\underline{t})$$, (2.3) $$\widetilde{C}(\underline{t}) = \bigcup_{s \in W} s \left\{ H \in \overline{\underline{t}^+} ; \underline{a}^{\circ}(H) = 2\pi \right\},$$ Put (2.4) $$\widetilde{D}^{+}(\underline{t}) = \{ H \in \underline{t}^{+} ; \alpha^{O}(H) \leq 2\pi \}, \widetilde{D}(\underline{t}) = \bigcup_{B \in W} B \widetilde{D}^{+}(\underline{t}),$$ and $\widetilde{D} = \bigcup_{x \in M} Ad(x) \widetilde{D}(\underline{t})$. Then $\widetilde{C}(\underline{t})$ is the boundary $\partial \widetilde{D}(\underline{t})$ of $\widetilde{D}(\underline{t})$, both the exponential mappings $\exp : \widetilde{D}(\underline{t}) \longrightarrow T$, $\exp : \widetilde{D} \longrightarrow M$ are onto mappings, and the restriction to the interior of \widetilde{D} is a diffeomorphism. Moreover the distance d(e,C) between the identity e and the cut locus C is given by (2.5) $$d(e,C) = 2\pi/|a_c^0|$$. Here $|\cdot|$ is the norm of the inner product (,) on \underline{t}^* induced from the inner product (,) on \underline{t} by $(\lambda,\mu) = (H_{\lambda},H_{\mu})$, λ , $\mu \in \underline{t}^*$, where $H_{\lambda} \in \underline{t}$, $\lambda \in \underline{t}^*$, is the unique element in \underline{t} satisfying $(H_{\lambda},H) = \lambda(H)$ for every $H \in \underline{t}$. Note that the distance d(x,y), $x,y \in \underline{T}$, coincides the one with respect to the Riemannian metric on \underline{T} induced from the metric \underline{g} on \underline{M} (see Remark in [p.80, 5]). In fact, since \underline{T} is totally geodesic in \underline{M} , we have only to show the existence of a distance minimizing geodesic in \underline{T} joining \underline{t} and every \underline{T} in \underline{T} . But it follows immediately from Theorem 7.9 (ii) and Lemma 7.10 in $\underline{[5]}$. Then we have : - Lemma 2.1. For every $\underline{\varepsilon}$ with $0 < \underline{\varepsilon} < d(e,C) = 2\pi/|\underline{\zeta}^0|$, - (i) the set $\Omega(\underline{\varepsilon},\underline{\tau}) = \{t \in \underline{\tau} : d(t,C(\underline{\tau})) < \underline{\varepsilon} \}$ is given by $\Omega(\underline{\varepsilon},\underline{\tau}) = \exp \widetilde{\Omega}(\underline{\varepsilon},\underline{t}), \ \widetilde{\Omega}(\underline{\varepsilon},\underline{t}) = \bigcup_{n \in \underline{W}} s \{H \in \underline{t}^+ : 2\pi(1 \underline{\varepsilon}\frac{|\underline{\varepsilon}^0|}{2\pi}) < \underline{c}^0(H) \le 2\pi \}.$ - (ii) The set $M\setminus \overline{Q(E)}$ is given as follows: $$M \setminus \overline{\Omega(E)} = \bigcup_{x \in M} x \exp \widehat{D}^{+}(\underline{E}) x^{-1}$$, where $\widetilde{D}^{+}(\underline{E}) = \{H \in \underline{t}^{+}; \alpha^{O}(H) < 2\pi (1 - \underline{E} \frac{|\alpha^{O}|}{2\pi}) \}.$ (iii) $$\frac{d(e,C)}{d(e,C)-\varepsilon} \cdot \widetilde{D}^{+}(\varepsilon) = \left\{ H \in \overline{t^{+}} ; \alpha^{0}(H) \langle 2\pi \right\}.$$ Here, for every r > 0, $r \cdot \widetilde{D}^+(\underline{\epsilon})$ means the set $\{r \mid H \mid H \in \widetilde{D}^+(\underline{\epsilon})\}$. Proof. (i) By definition of $\widehat{\Omega}(\xi,\underline{t})$, (2.3), and the invariance of the distance d under the inner automorphisms of M, we have $$\widetilde{\Omega}(\xi,\underline{t}) = \bigcup_{B \in W} B \left\{ H \in \widetilde{D}^{+}(\underline{t}) ; d(\exp H, \exp \widetilde{C}(\underline{t})) < \underline{\xi} \right\},$$ We denote $d_{e}(X,Y) = |X-Y|$, for $X,Y \in \underline{t}$. Then, for each $H \in \widetilde{D}^{+}(\underline{t})$, (2.6) $$d(\exp H, \exp \widetilde{C}(\underline{t})) = d(\exp H, \exp(\widetilde{C}(\underline{t}) \wedge \underline{t}^{+}))$$ $$= d_{\underline{C}}(H, \widetilde{C}(\underline{t}) \wedge \underline{t}^{+}).$$ In fact, putting $\Gamma = \{X \in \underline{t} : \exp X = e\}$, we have $d(\exp H, \exp \widetilde{C}(\underline{t})) = d_e(H,\widetilde{C}(\underline{t}) + \Gamma)$ and $d(\exp H, \exp(\widetilde{C}(\underline{t}) + \Gamma)) = d_e(H,\widetilde{C}(\underline{t}) + \Gamma)$. Since $(\widetilde{C}(\underline{t}) + \Gamma) = \widetilde{C}(\underline{t}) = \widetilde{C}(\underline{t}) = \widetilde{C}(\underline{t}) = \widetilde{C}(\underline{t}) = \widetilde{C}(\underline{t}) = \widetilde{C}(\underline{t}) + \Gamma$. Since $H \in \widetilde{D}^+(\underline{t}) = d_e(H,\widetilde{C}(\underline{t})) = d_e(H,\widetilde{C}(\underline{t})) = d_e(H,\widetilde{C}(\underline{t}) + \Gamma) = d_e(H,\widetilde{C}(\underline{t}) + \Gamma)$. Since $H \in \widetilde{D}^+(\underline{t})$, we have $d_e(H,\widetilde{C}(\underline{t})) = d_e(H,\widetilde{C}(\underline{t}) + \Gamma) = d_e(H,\widetilde{C}(\underline{t}) + \Gamma)$. For the proof of the second equality, choose an element X in $\widetilde{C}(\underline{t}) = \underline{t}$ such that $d(\exp H, \exp(\widetilde{C}(\underline{t}) + \underline{t})) = d(\exp H, \exp X)$. Then $d(\exp H, \exp X) = d(e, \exp(-H+X)) = d(\exp H, \exp X)$. Decause of $0 \le \underline{C}(\underline{H}) = d(e, \exp(-H+X)) = d(e, \exp(-H+X)) = d(e, \exp(-H+X)) = d(e, \exp(-H+X))$. The converge inequality is clear. By (2.3) and (2.6), we have $$\left\{ H \in \widetilde{D}^{+}(\underline{t}); \ d(\exp H, \exp \widetilde{C}(\underline{t})) \langle \underline{\varepsilon} \right\} = \left\{ H \in \widetilde{D}^{+}(\underline{t}); \ d_{\underline{c}}(H, \widetilde{C}(\underline{t}) \wedge \underline{t}^{+}) \langle \underline{\varepsilon} \right\}$$ $$= \left\{ (1-r) \frac{2\underline{\pi}H_{\underline{\alpha}0}}{(\underline{\alpha}^{0},\underline{\alpha}^{0})} + X ; \ |r| \langle \frac{\underline{\varepsilon}|\underline{\alpha}^{0}|}{2\underline{\pi}}, \ X \in \underline{t}, \ \underline{\alpha}^{0}(X) = 0 \right\} \wedge \widetilde{D}^{+}(\underline{t})$$ $$= \left\{ H \in \underline{t}^{+}; \ 2\underline{\pi}(1-\underline{\varepsilon}\frac{|\underline{\alpha}^{0}|}{2\underline{\pi}}) \langle \underline{\alpha}^{0}(H) \leq 2\underline{\pi} \right\}.$$ For (ii), we have only to show X = Y when $g_1 \exp X g_1^{-1} = g_2 \exp Y g_2^{-1}$, $X \in \widetilde{D}^+(\underline{\epsilon})$, $Y \in \widetilde{D}^+(\underline{t})$, g_1 , $g_2 \in M$. But in this case, we have $\exp X = \exp gY$ for some $g \in W$, because of Lemma 7.10 in [5]. Since $g \in W$ and $g \in W$ and $g \in W$ implies $g \in W$, and then $g \in W$ and $g \in W$ implies $g \in W$, and then $g \in W$ in follows immediately from (ii). 2.2. For $\lambda \in \underline{t}^*$, $\lambda \dagger$ o, put $H_{\lambda}^* = \frac{2}{(\lambda,\lambda)} H_{\lambda}$. Then since M is simply connected, the lattice $\Gamma = \{H \in \underline{t} : \exp H = e\}$ is given by $\Gamma = 2\pi \sum_{i=1}^{L} Z_i H_{\alpha_i}^*$, where $\{\alpha_i\}_{i=1}^{L}$ is a fundamental system of Σ with respect to the order >, and let $L = \dim T$. $$I = \{ \underline{\lambda} \in \underline{t}^*; \ \underline{\lambda} (H_{\underline{\alpha}_{\underline{i}}}) \in \mathbb{Z}, \ i = 1, \dots, \mathbb{Z} \}$$ $$= \{ \underline{\lambda} \in \underline{t}^*; \ \underline{\lambda} (\underline{\Gamma}) \subset 2\pi \mathbb{Z} \},$$ $$\underline{D} = \{ \underline{\lambda} \in \underline{I} ; \ (\underline{\lambda}, \underline{\alpha}) \ge 0 \text{ for every } \underline{\alpha} \in \underline{\Sigma}^+ \}.$$ An element of D is called a <u>dominant integral</u> form on \underline{t} . For $\lambda \in I$, define an function ξ_{λ} on T, called the <u>alternating</u> character, by $$\xi(\exp H) = \sum_{s \in W} (-1)^s e^{s \lambda(H)}, H \in \underline{t}.$$ Put $\underline{\delta} = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \infty$. Then $\underline{\delta}$ belongs to \underline{D} . Moreover it is known that $$\xi_{\underline{\xi}}(\exp H) = \prod_{\underline{q} \in \underline{\Sigma}^+} \left(e^{\frac{-1}{2}\underline{q}(H)} - e^{\frac{-1}{2}\underline{q}(H)} \right),$$ every ξ_{λ} , $\lambda \in I$, can be divided by ξ_{δ} , and $\xi_{\Lambda+\delta}/\xi_{\delta}$, $\Lambda \in \mathbb{D}$, coincides with the restriction to T of the character χ_{Λ} of the irreducible unitary representation of M with highest weight Λ (cf. [14]). For every C^{∞} zonal spherical function f on M, let \tilde{f} be its restriction to T. Then \tilde{f} (exp H) = \tilde{f} (exp H), s \in W, H \in t, and we have (cf. Berezin[2], or [14]) (2.7) $$\xi_{\delta} \overline{(\Delta f)} = \{ \Delta_0 + |\delta|^2 \} (\xi_{\delta} \overline{f})$$ on T, where \triangle_0 is the standard Laplacian on T induced from the Euclidean Laplacian of \underline{t} with respect to the inner product (,). 3. Proof of Theorem 1. For o(£ < d(e,C), assume that a zonal spherical function u on M satisfies (3.1) $$\begin{cases} \Delta u + \lambda u = 0 & \text{on } M \setminus \overline{\Omega(E)}, \text{ and} \\ u = 0 & \text{on } \Omega(E). \end{cases}$$ Then by (2.7), we have $$\left\{ \begin{array}{ll} (\Delta_0 + |\underline{\delta}|^2)(\,\,\xi_{\bar{\delta}}\,\,\bar{u}) + \underline{\lambda}\,\,\xi_{\bar{\delta}}\,\,\bar{u} = o & \text{on } \,\, \mathbb{T} \setminus \,\, \underline{\Omega}(\xi,\mathbb{T}) \,\,, \,\, \text{and} \\ \\ \overline{u} = o & \text{on } \,\, \Omega(\xi,\mathbb{T}) \,. \end{array} \right.$$ Now define a function $(\xi_{\delta} \overline{u})_{\epsilon}$ on T by $$(\underline{\xi}_{\underline{\varepsilon}} \underline{u})(\exp H) = (\underline{\xi}_{\underline{\varepsilon}} \underline{u})(\exp(\underline{d(e,C)-\varepsilon} H)), \quad H \in \widetilde{D}(\underline{t}).$$ It is well-defined on T because of Lemma 3.1(iii), and $\overline{u} = 0$ on $Q(\underline{\epsilon}, T)$. Define also a function $(\overline{\xi_{\delta}} \, \overline{u})_{\underline{\epsilon}}$ on $\widetilde{D}(\underline{t})$ by $$(\widetilde{\xi_{\delta} u})_{\epsilon}(H) = (\widetilde{\xi_{\delta} u})_{\epsilon}(\exp H), H \in \widetilde{D}(\underline{t}).$$ Then the function $(\underbrace{\S_{\underline{b}}\,\overline{u}})_{\underline{c}}$ satisfies $$\begin{cases} \Delta_0(\widetilde{\xi_{\underline{\delta}}}\,\overline{u})_{\underline{\xi}} + \left\{ \frac{d(e,C) - \underline{\xi}}{d(e,C)} \right\}^2 (|\underline{\delta}|^2 + \underline{\lambda})(\widetilde{\xi_{\underline{\delta}}}\,\overline{u})_{\underline{\xi}} = 0, \\ \text{on the interior of } \widetilde{D}(\underline{t}), \text{ and } \\ (\widetilde{\xi_{\underline{\delta}}}\,\overline{u})_{\underline{\xi}} = 0 \quad \text{on } \partial \widetilde{D}(\underline{t}). \end{cases}$$ Moreover $(\underbrace{\xi_{\xi} \ u})_{\xi} = 0$ on $\widehat{D}^{+}(\underline{t})$ since $\underline{\xi}_{\xi} = 0$ on $\partial \widehat{D}^{+}(\underline{t})$. Therefore $(\underbrace{\xi_{\xi} \ u})_{\xi}$ is the eigenfunction of the Dirichlet problem for the domain $\widehat{D}^{+}(\underline{t})$. Since the domain $\widehat{D}^{+}(\underline{t})$ is a fundamental domain of the affine Weyl group of the Lie group M acting on \underline{t} , by a theorem of Bérard $[\underline{1}]$, we have $$(\widetilde{\xi_s}\widetilde{u})_{\varepsilon}(H) = \sum_{s \in W} (-1)^s e^{\sqrt{-1} s(\Lambda + \tilde{s})(H)},$$ for some $\Lambda \in \mathbb{D}$, and $\left\{ \frac{d(e,C)-E}{d(e,C)} \right\}^2 (\left| \underline{\delta} \right|^2 + \underline{\lambda}) = \left| \underline{\Lambda} + \underline{\delta} \right|^2$. Therefore we obtain (3.2) $$\lambda = \left\{ \frac{d(e,C)}{d(e,C) - E} \right\}^2 |\Lambda + \delta|^2 - |\delta|^2 , \text{ and }$$ (3.3) $$u(\exp H) = \begin{cases} \frac{\xi}{\Lambda} + \varepsilon & (\exp(\frac{d(e,C)}{d(e,C) - \varepsilon} H)) / (\frac{\xi}{2} (\exp H), H \in Q(\varepsilon, t)) \\ 0, & H \notin Q(\varepsilon, t). \end{cases}$$ Conversely, the function u defined by (3.3) is a zonal spherical function on M and satisfies (3.1) with the eigenvalue (3.2). We have Theorem 1. ## References - [2] F.A. Berezin, Laplace operators on semi-simple Lie groups, Trudy Moskov Math. Obsc.,6(1957),371-463. - [3] I. Chavel and E.A. Feldman, Spectra of domains in compact manifolds, J. Functional Anal., 30(1978), 198-222. - [4] R. Crittenden, Minimum and conjugate points in symmetric spaces, Canad. J. Math., 14(1962), 320-328. - [5] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978. - [6] D. Hoffman, Lower bounds on the first eigenvalue of the Laplacian of Riemannian submanifolds, Minimal Submanifolds and Geodesic, Kaigai Publ., Tokyo, 1978, 61-73. - [7] S. Kobayashi and M. Takeuchi, Minimal imbeddings of R-spaces, J. Differential Geom. 2(1968).203-215. - [8] K. Mashimo, Degree of the standard isometric minimal immersion of complex projective spaces into spheres, Tsukuba J. Math., 4(1980), 133-145. - [9] T. Matsuzawa and S. Tanno, Estimates of the first eigenvalue of a big cup domain of a 2-sphere, Compos. Math., 47(1982)95-100. - [10] H. Mori, Notes on the stability of minimal submanifolds of Riemannian manifolds, Yokohama Math. J., 25(1977), 9-15. - [11] T. Nagura, On the lengths of the second fundamental forms of R-spaces, Osaka J. Math., 14(1977), 207-223. - [12] S. Ozawa, The first eigenvalue of the Laplacian on two dimensional Riemannian manifolds, Tohoku Math. Jour., 34(1982),7-14. - [13] T. Sakai, On the structure of cut loci in compact Riemannian symmetric spaces, Math. ann., 235(1978), 129.148. - [14] M. Takeuchi, Modern theory of spherical functions, (in Japanese), Iwanami, Tokyo, 1975. - [15] H. Urakawa, The Heat equations on compact Lie groups, Osaka J. Math., 12(1975),285-297. Department of Mathematics, College of General Education, Tohoku University, Kawauchi, Sendai, 980, Japan and Max-Planck-Institut für Mathematik, Gottfried-Claren-Straß 26, 5300, Bonn 3, Federal Republic of Germany