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Abstract. In this paper, we determine explicitly the spectra
of the Dirichlet problems of some domains in simply
connected compact simple Lie groups. As their applicetiocn:
we can state, combining results of Hoffman LEJ, Mori [13],
some stability conditions of these domains for the standard

minimal isometric immersions into unit spheres.
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Spectra of some domains in compact Lie groups &nd

their applications
Hajime URAKAWA

v&; Introduction and results. Let M be a simply connected
compact simple Lie group and let T be its maximal torus. We
give a bi-invariant Riemannian metric g on M from the Killing
form B of the Lie algebra m of M by

gm(xm,Ym) = - B(X,Y), X,Yém, meM,

where %, Ym are tangent vectors of M at m corresponding
to X, Y. Let d(x,y) be the distance of (M,g) between two
points x,y in M. ‘Then it is known (ecf. Crittenden[i],_ Sakai
[32}) that the cut locus C of the identity e 4in M satisfies

c= /) xcm x?,
 xeM

where C(T) is the cut locus of e in the flat torus T induced
from the Riemannian metric g. For a positive number £ with

< €< d(e,C), consider a domain S2(E) containing the cut locus
C in M defined by

RUe) = \i x Qe,™) x°1,

x€
Qe = {teT; ats,cmce],

These domains S2(£), which are invariant under all the inner
automorphisms of M, shrink to the cut locus C as € — o and
chergef;.to the whole M as E—»d(e,C).

Now let & be the Laplace-Beltrami operator of (M,g)

acting ‘on tpe space C (M) of smooth functions on M, and for



every £ with o< £¢d(e,C), let us consider the following Dirichlet

problem for the above domains :

aF),

{Au +iu = o0 on M\Z'Zlgs , and
u=o on £(E).

For a solusion u of the Dirichlet problem (#), , define a
function ¥* on M by

ul(x) = S ulyxy™1) ay,
M

where dy is the Haar measure on M normalized by S~M dy = 1.

Then ,if: u® does not vanish identicany, u® is also a solution

of (#% which is a gonal spherical function of M, i.e., invariant
under all the inner sutomorphisma of M.

In this paper, we determine the spectra of the Dirichlet
problem (#)g which have zonal apberical\’%!ﬁ'}cjtions as follows :

Theorem 1. Let M. be a simply connected compact simple
Lie group and let A Dbe the Laplace-Beltrami operator of the
Riemannian metric g of M induced from negative of the Killing
form B of the Lie algebra m of M. Then for every £ with
o< g d(e,C), the eigenvalues of the Dirichlet problem (ﬁ)g

which have zonal spherical eigenfunctions are given by

d(e,C) 12
@ e ot ) 1Avsl -1si? L aep,

e

and the eorreaponding gonal spherical eigenrunctions ‘u A,e are

described explicitly by

xp( d(e,) H)/ E (exp H), exp HE T\Q¢,T),

d(e,C)- € ¢ -
d(e,C)~ . o

(2) A‘(Qip H)I - - ‘

0, , .exp "6.9;(‘_-‘:'1')0 :



of T
Here D is the set of all dominant integral forms on[_t , & s
haaeER the Lie h\gebl‘&
half the sum of all positive roots, |+| is the inner product of the
dual space _tf of t induced from negative of the Killing form, and

§A ,M-D;, are the alternating characters of T (ef. § 2 ).
. =~ T W
Theorem 1 implies immediately

Corollary 1. Under the assumptiom$ of Theorem 1, the first
eigenvalue &1(§) of the Dirichlet problen (ﬁ)£ s 0< €< d(e,C),
is given by

{ d(e,c) - }2 62 - 152 ={__1(__e_._0_1__}2 a _ 4
a(e,C) -E . - d(e,C) -E

where d = dim M ( cf. [p.291, 32] ). The corresponding

eigenfunction with the eigenvalue ,}1(2) is u_._.

0
. _ B3

Remark. In case of s3 = SU(2), the same formula as
Theorem 1 was obtained in [p.291, 2;] . Chavel and Feldman [2“]
investigated also the behavior of the eigenvalues A,(E) of the
Dirichlet problems of the domains X\Q(E) ,(where Qe) =

-’

{xeX ; a(x,¥Y)<€} for every compact Riemannian manifold X and
a closed submanifold Y of X with codim 2 2. A more precise

behavior of the first eigenvalue has obtainedin Ozawa [12],

Matsuzawa and Tanno {9].
YA

As a geometric application of Corollary 1, we can state some
stability conditions of those domains M\S_}(g) in M for the

athﬁdard minimal isometric immersions of M into the unit

Xk
sphere as follows.

Let {087_\0({\1< §2<...< }_Lk<...} be the set of all



mutually distinct eigenvalues of negative of the Laplace~Beltrami
operator A acting on C (M) Let v" s k = 1,2,..., ~be the

, and put m(k) + 1 = dim Vk .
.

eigenspace with the eigenvalue ‘ék

We choose an orthonormal basis {fj}jgm(k) of V© consisting of
real valued functions with respect to the inner product (5’;1’) =
J 3 (x) Y(x) du(x), where du(x) is the Haar measure of M

normalized by J dt(x) = m(k) + 1. Consider the following
. m(k)+1
mapping Xy of M into the Euclidean space 31 , defined by
X (P) = (£,(P), T (P)yeeesfpiyy(P)), PEM.

Then it turns out that the image of x, is contained in the unit

m(k)

k
» moreover the mapping X is a minimal isometric
m(k)

sphere S

immersion of (M,a- g) , d = dim M, into the unit sphere S
with the standard Riemannian metric of constant curvature 1
( cf. RQJ ) eince M is a simple Lie group.

For a piecewise smooth domain D in M, we call D 1is
stable for the minimal immersion x_ if for all normal vafiétipne

k

Dt which fix the boundary 3D , the function V(t) = Volume Dt
satisfies V"(o0) > o. Combining Corollary 1 with results of

Hoffman (6], Mori [1@), we have

Corollary 2. Under the situations of Theorem 1, if a
positive number § satisfies

| -1/2
a(e,C)> ¢ > a(e,C) - d(e,c){?ﬂé%f'(llnua +d) +1 } »

then for every D( M\mg_ Y , D is stable for the minimal isometric
immersion Xy . Here HARZ is the square of the length of the

second fundamental form of the immersion xk.



Remark. In case of M = Sp(n) and k = i, then it is
known ( cf, Nagura [}_&], Kobayashi and Takeuchi [‘Z“] ) that
’- 2 . 2n+1
d = n(2n+1), [|A)lI° = n(n-1)(n+1)(2n+1) , and PR vy S
Therefore for every DCM\E_E(;S s D is stable for the immersion
x, 1f a(e,0)>E > ate,0) {1 - (B Y 4n parsiontar, i1

d(e,c)>§ > 0.623 d(e,C).



\?-L. Preliminaries. Since we will use the precise' formula
of -the radial part ( er.[_g. 1) of the Laplace-Beltrami operator
and the structure of the cut loci C and C(T) (cf. [3‘2‘]) in

the ‘proor of Theorem 1, we have to prepare some notations.

3‘:\3& Let M be a simply connected compact simple Lie
group, and let T be a maximal torus in M. Let m ‘( resp, t )
be the Lie algebra of M ( resp. T ), Since the Killing form B
is ne'g_ative definite on m , we define an Ad(M)-invariant positive
definite inner product ( ,' ) on m by (X,Y) =~ B(X.Y)., X,Yem ,
which induces a bi-invariant Riemannian metric g on M as in
introduction. Let 3, be the root system of the complexificétion

-

gﬁ* of m with respect to t , i.e., the set of non-zero elemen$s
o of the dual space 4 of t such that {Eéx_n_g'*; [H,E] =

-1« (H) E for all He_g} is not zero. We givedle#icographic
order > on % and let Z" be the set of all positive roots.

Let o° be the highest root of z,

Put ¥ ={Het; «(H) Zo forall xeZ}.

Then the cut locus C of the identity e in (M,g) is given
( ef. sakai [13]). by

. N L )

with respect to the order 2.,

(2.1) c¢c= \J xec(m x?,
xe M
Here C(T) 4s the cﬁt locus of the flat torus T induced from
the Riemannian metric g which is given ( cf. Takeuchi [w ’

Sakai [\2.] ) by

Ly ee

(2.2) C(T) = exp '5'(5).

(2.3 g = S Hes' ; (H) » 2 [,
) W '”-{ 5 &) = 2x )



Put

(2.8  DHE) =]mee* 5 LOn ¢ anf, Biw) = \{I s DT(1),
8¢

and D = \J Ad(x) D(t). Then C(t) is the boundary 3D(t) of
xeM -

~o . ~J N
D(t), both the exponential mappings exp : D(t)— T , exp : D —M

are onto mappings, and the restriction to the interior of D is
a diffeomorphism. Moreover the distance d(e,C) between the

identity e and the cut locus C is given by
(2.5) d(e,0) = 2%/ .

Here |*] 4is the norm of the inner product ( , ) on f induced
from the inner product (\, ) on t by @,p) = (Hy,He) » 2 ,hep_*,
where H&E €, A€ f ,is the unique element in t satisfying

(H&,H) = A(H) for every He¢ g. Note that the distance a(x,y),
x,y€T , coincides :.\l';:h one with respect to the Riemannian metric

on T induced from the metric g on M ( see Remark in [p.8o, \2]).
In fact, since T is fotaliy geodesic in M, we have only to show
the existence of a distance minimizing geodesic in T joining

e and every x in T. But it follows immediately from

Theorem 7.9 "(ii) and Lemma 7.1o in [5].

Then we have :

Lemma 2.1. For every £ with o< g < d(e,C) = ax/ \2‘.0! s

(1)  the set Q(E,M:={teT ; a(t,C(TI<E} is given by

— kOI
U aluee®; 2xa-eliLangn},

Se(€,T) = exp ﬁ(e,g), ﬁ(e._t_) =
- - - T - - seW

(i1) The set M\ (Xe) 1is given as follows :



M\m \_/ xexpBHe) x7?,

XeM

where 3’(5) = {Héf ; o« (H)( 2x (1~ ¢ L'%":'

(113) —9(e,€) | D (©) -{net 5 ()¢ 27:}
d(Cac)’
Here, for every r>o0 , r. .p* (€) means the set {r H; He D*(E)}

Proof, (i) By definition of ﬁ(g,g), (2.3), and the
invariance of the distance A wunder the inner automorphiama» of M,

we have

ﬁ(f;,f_) z {HGE*(t) ; d( exp H , exp C(t))( E}

| o
We denote d (X,¥) = |X-¥| ,for X,Y¢t . Then , for each HEeD'(%),

(2.6) a( exp H, exp '5'(3)) = d( exp H, exp(g(g)n?))

~S

= de( H, C(E)I\E ).

In fact, putting f: s{xeg 3 e#p X=e }, we have d( exp H, ex§ ?f(t))
= a (,8FT ) and a( exp H, exp(T(t)n F)) a (L) A t*)+[‘ )
Since (O(t)+|" ) P D(t) 2 C(t) and ((c(t)nt J+#)a D(t) = C(t)ni
dg(H,C()+T ) = o (H,T(¢)) ana q(H, (C(f-)r\!c_ yl ) 8, (H,E(¢)n £,
Since Heb? (t), we have a (H C(t)) =d, (H, c(t)n t ).
For the proof of the second equality, choose an element X in
E(g)nt_:—"' such that d( exp H, exp(a'(_t;.)n ?)) = d( exp H , exp X).
Then d( exp H, exp X)'= d( e , 'e_xp(-H+X)) and ~H+X¢€ B’(g),
because of o ¢ «(H), o (X) $2n for 5&)':* , and the definition
(2.4) of D(t). ‘Then da( e , exp(-H+X)) = | -B+X}, which implies
a( exp H, exp(C(t)A -t_T)) P4 d,(B.'é'(s)n E)- The converse
inequelity is clear.

By (2.3) and (2.6), we have



{Heﬁ*(g); d(exp H,exp ‘E(E)k §} ={H€S+(g); de(H,E(E)n ?k Q}

H M,
{(1"?) '(—-:%—)' 3 ik S g\d_°| , Xet, oO(X) = O}I\ D*(t)

={nee’ ; eom(1- &—‘{,‘-,—;—‘x «O(H) ¢ 23}.
For (ii), we have only to show X = Y when g,exp X 31'1 =

B,0xp Y 8, 1, X€D'(g), YeDB'(t), &, B,€ M. But in this case,

we have exp X = exp 8Y - for some 8¢ W, because of Lemma T.10

in [\23.' Since aYﬁs(g) and X€D'(£), exp X = exp sY implies

X = sY; and then X = Y, (1ii) follows immediately from (ii),
' Q.D.E.

\

2.2.  For A€ £ ,A}o0, put Hy = iy Ba . Then

AN, YA

since M is aimply connected, the lattice [0 = {Hé t;expHs= e}

is given by = 2% ?2 &. H“‘i s Where {gi}i_‘%“ is a fundamental
- 1 -
system of }, with respect to the order > , and let 1 = dim T ,

Put

An element of D is called a dominant integral formon t .

For' A¢ I , define an function §, on T , called the alternating

character , by
_E,L(exp B = 2, (-1)° &®¥H) | pey .

BEW
Put 2 Z
%xe

Nll—l

i\

. . Then § belonge to D . Moreover it is

-



lo

| n , B Ean
known that §s(exp H) = 'Z ( e - e i

every §,,A¢I, can be divided by &g , and Ems/ﬁs »AeD ,
coincidea with the res;ric"tion to T of the character 'X.A of
the irreducible unitary representation of M with highest weight
A ( ef., [ﬁ]). For every C~ zonal spherical functioq f on

M, let T be its restriction to T. Then ¥( exp sH) = F(exp H),
sc¢W, HE &, and we have ( cf. Berezin[f}, or [&W‘t])

(2.7) B GEY ={ A, +IsPF)(5F)

on T, where Ao is the standard Laplacian on T induced from

the Euclidean Laplacian of t with respect to the inner product
(,).



2‘; Proof of Theorem 1. For o<€ <d(e,C), aspume that
AP A\ s PSSP PP -

a zonal spherical function u on M satisfies

y Au +Au = © on M\ SE) , and
(3.1) {' - . - -
, u=o on S_Z(g_).

Then by (2.7), we have
(A, + !5\2)( g u) +A5u= o on T\ Q,T) , and
i us=o on SA(E,T).

Now define a function (% Ti)e on T by

( 8gu)lexp 1) = (% akexp( LaBLK 1)),  me Dlw).

It is well~defined on T because of Lemma 3.1(iii), and u = o
P d ~
on Q(£,T). Define also a function ( %5u), on D(t) by

I~ . - . ~
(Bgu) (H) = (You) (exp H) , HE D(%).

-~
Then the function (§5u) satisfies

~— - 2 ~ |
80l 5 )5*{'%%} (1817 + A ) g ) = o

v
on the interior of D(t), and

()

Lo ~
(§sﬁ)e z o0 on daD(t).

Moreover (’g?'ﬁ/)g =0 on D(t) since 5= 0 on an*(s) .
Therefore (’3_\5'{)1 is the eigenfunction of the Dirichlet problem
for the domain oﬁ*(j_;). Since the domain '3*(3:_) is a fundamental
domain of the affine Yeyl group of the Lie group .M acting on ¢,
by a theorem of Bérard [".L ), we have

(5 u) (H) = 2. (-1)® eFisA s o
-k BEW -
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, ;
"y d(e,C)- 2 2
for some A¢D, and {—‘—a—d—’-é-} v(|§| +5) s 113 +S_,[ .

Therefore we obtain
. ' 2
(3.2) {ﬂ‘;?-’%-‘:’)i-} ‘1.\+8-|2 - |8_!2 , and

§A+8 (exp( a—(-e—?é%_{—(él H))/{jgs(exp H),HGQ__(E,E)
(3.3) u(exp H) ={ - - - o=

o , HEQ(e,t).

Conversely, the function u  defined by (3.:}) is a i .-zonal
spherical function on M and satisfies (3.1) . . with the eigenvalue
(3.2). Ve have Theorem 1.
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