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ABSTRACT. We investigate the minimal resolutions of certain weighted quasi-diagonal sur-
faces over finite fields. We show that their zeta-functions can be described in terms of twisted
Jacobi sums. Using this information, we compute several arithmetic quantities of the mini-
mal resolutions. OQur main purpose is to calculate the Picard numbers of such surfaces over
finite fields and give a formula for the orders of their Brauer groups in some special cases.

1. INTRODUGTION

Let k = F, be a finite field of ¢ elements of characteristic p (> 0). Fix an algebraic closure, %, of &.
Let @ = (g0, ¢1, g2, ¢3) be a quadruplet of positive integers such that

(1) pfg for 0<i<3
and
(2) ged(qa, gp,¢4) = 1 forevery {a, 8,7} C {0,1,2,3}.

Let k[zg, 21, %2, 23} be a polynomial algebra graded by the condition deg(z;) = ¢; for 0 < i < 3.
The projective variety P2(Q) := Projk[zo, 21, z2, 23] is called the weighted projective 3-space over
k of type Q (cf. [5], [8]). Throughout the paper, we assume conditions (1) and (2) (Condition (2)
is not a restriction; see [5], Proposition 1.3).

Choose a positive integer, m, such that p fm and

(3) m= Mgy = go + 1M = (23 = g3M3

for some positive integers m; (0 < 7 < 3) with p Jm;. Put ¢ := (e, €1, ¢a,¢3) € (kX)%. Let X, be a
surface in P3(Q) defined by the equation:

(4) CoZl® + ¢12oz™ 4 ol + ez =0 C P3(Q).

We call X, a weighted quasi-diagonal surface in P3(Q) of degree m with twist ¢. We may also call
X a weighted Delsarte surface with matric

me 0 0 O
1 m 0 0
0 0 my O

0 0 0 mg

(cf. [16], [23]). In this paper, we use the former terminology. The latter, on the other hand,
suggests that (4) should be regarded as a special case of a more general equation. In fact, our
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investigation started with more general forms of equations. We aimed at finding surfaces of which
both algebraic and geometric properties can be described explicitly. Our choice of (4) is a result of
such trial and error. To illustrate this point, consider the surface, X, defined by

oyt + 12zt + coxy’? + cazyt =

with @ > 0. As we will see in Section 3, the zeta-function of X' can be computed in terms of
twisted Jacobi sums; thus, our algebraic requirement is satisfied. The geometry of it, however, is
not so straightforward. In particular, X' is quasi-smooth if and only if a = 0 or 1 (cf. Section 2);
when X' is quasi-smooth, it has only cyclic quotient singularities. If @« > 2, we do not have (at this
moment) a systematic way of describing and resolving the singularities of X'. Thus, we ought to
choose either ¢ = 0 or 1. But if @ = 0, then X is a weighted diagonal surface of degree m with
twist ¢. Such a surface has been studied in various articles (cf. [14], [17], [25]). Therefore we look
into the case a = 1.

The purposes of this paper are to compute the zeta-function of the minimal resolution of X
and to calculate some of its arithmetic quantities explicitly. We recall briefly what quantities are
known to be related to the zeta-function.

Let X be a smooth projective surface over k. Denote by Z(X,,T') the (congruence) zeta-function
of X, with T an indeterminate. It is known ([9], [18]) that Z(X,T') is a rational function of the
form

P (X, T)P5( X4, T)
= T)Po(Xe T)(1 - ¢°T)

where Pi( Xk, T) = det(1—-®T | H% (X%, Q4)) is the characteristic polynomial of the endomorphism,
®, induced from the Frobenius automorphism of X and acting on the {-adic (€ # p) étale cohomol-
ogy H2 (X%, Qo). Deligne [4] has proved that (X, T) has integer coefficients and its reciprocal
roots have absolute value ¢/, In particular,

Z(X;,T) =

By

Py(Xe,T) = [[(1 - &4T)

i=1

with | ¢; |= 1 for 1 < j < By := dim HZ (X5, Q). Put

P(Xe)=#{1<j<Ba|e =1}
T(X) ={1Si< By | #1)

Then ,
Py Xy, T) = (1-¢T) X [ (1-¢qT).
JET(Xk)

On the other hand, let NS(X7) be the Néron-Severi group of Xz. Denote by NS(X) the image of
Pic(Xx) in NS(X3). As NS(X7) is finitely generated over Z, so is NS(X,). The Z-rank of NS(X,)
may be called the Picard number of X, and written as p(Xx); i.e. NS(X;) = Z°X0) & NS(Xk)rory
where NS(X4):or is the torsion subgroup of NS(X,). About the Picard number, the Tate conjecture
(cf. [28]) asserts that

p(Xx) = p (X).
(An equivalent formulation is that the Gal(k/k)-invariant subspace of H2{Xg, Q.(1)) is spanned
by algebraic cycles.)
Let Br(X,) be the Brauer group of X,: Br(X:) = H*(X..,G,.), where G,,, denotes the sheaf of
multiplicative groups on X,,. In [29], Artin and Tate conjecture that the order of Br(X}) is finite.
If we assume p # 2 and the validity of the Tate conjecture for Xy, then Br(X}) is indeed finite and
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the order is either a square or twice a square (cf. [21], [29]). Furthermore there is a formula, which
we may call the Artin-Tate formula, about the residue of Po(X,,T) at T = ¢~

I (t-¢)= (=1)#¥)- 1B (X, )diseNS(X,)
] qa{Xh)#NSior(Xk)z

JET(Xw)

where discNS{X}) denotes the discriminant of NS(X}) and «(X,) = P, — dim H}(Xt, Ox) +
dim PicVar(Xy) (P, is the geometric genus of Xy, Ox is the structure sheaf on X, and PicVar(X7y)
is the Picard variety of X7); see [29], Theorem 5.2 and [21], Theorem 6.1. If T(X) = 9, then we
assume that the left-hand side of the Artin-Tate formula is equal to 1.

In this paper, we describe the zeta-functions of the minimal resolutions of weighted quasi-diagonal
surfaces in terms of twisted Jacobi sums. We then calculate the Picard numbers and orders of the
Brauer groups of the minimal resolutions, using the validity of the Tate conjecture and Artin-Tate
formula.

The paper is organized as follows. In Section 2, we show that a weighted quasi-diagonal surface
over k has only cyclic quotient singularities of type A, .. We determine its singular locus and find
the type of each singularity. Let X, be the minimal resolution of X,. In Section 3, we describe
the zeta-function of X, in terms of twisted Jacobi sums. Using this property, in particular, we
calculate the Betti numbers of X,. In Section 4, we prove that the Tate conjecture holds for Xj.
As a consequence, we give formulae for the Picard numbers of X and of Xi. In Section 5, we
compute the order of the Brauer group of X, in two cases where we can calculate the discriminant
of the Néron-Severi group of X;. Our method is to use the Artin-Tate formula. In Section 6, we
consider weighted quasi-diagonal surfaces which are birational to K3 surfaces. There are 85 such
surfaces. We give a formula for the Picard numbers of their minimal resolutions. For several K3
surfaces, we also compute the orders of their Brauer groups.

ACKNOWLEDGMENTS. The paper is an extended and corrected version of (mostly the second
half of) my Ph. D. thesis [15]; the main correction is on the proof of Proposition 6.2. I am indebted
to my advisor, Noriko Yui, for encouragement, support and many suggestions. The preparation
of this paper had begun while I was a post-doctor at the Academia Sinica in Taipei. It has
been completed at the Max-Planck-Institut fiir Mathematik in Bonn. | would like to thank both
institutions for their hospitality.
2. SINGULARITIES OF WEIGHTED QUASI-DIAGONAL SURFACES
In this section, we describe the singular locus of a weighted quasi-diagonal surface over k.

It is known that the set of k-rational points in P(Q) can be identified with the set
(5) PHQ) = (At \ {O})/F"
where & acts on AL\ {O} by
(6) t- (@0, yz3) = (%m0, -+, 1% 2)
iftek” and (zo,---,z3) € AL\ {O} (cf. [8], §1.2). This induces a projection

(M v AL\ {0} —)P%—(Q)

A (weighted) projective variety, V, in P3Q) is said to be quasi-smooth if the Zariski closure of
"N (V) in Al is smooth outside the origin (cf. [8]). For instance, a weighted quasi-diagonal surface
defined by the equation (4) are quasi-smooth.
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Remark 2.1. As we mentioned in the introduction, it is more general to consider a quasi-diagonal
surface of the form

m a,.m T ms
Coy ° + 1Tzt 4 o2y ? 4 c323 =0
where a is a non-negative integer and m;’s are chosen so that the equation becomes homogenous.
However, this surface becomes quasi-smooth if and only if @ = 0 or 1.

It is known that quasi-smooth weighted projective surfaces have only cyclic quotient singularities
of type A, o (cf. [2], [8]). The resolution of cyclic quotient singularities was obtained by Hirzebruch
for complex surfaces (cf. [19], see also [12]). By virtue of condition (1), Hirzebruch’s resolution is
valid also over k.

Let X (= Xj) be a weighted quasi-diagonal surface in ]P%(qg,ql,qz,qa) defined by the equation
(4). (We often omit to specify the field of definition if it is defined over k.) We are going to describe

the singular locus, X,ing, of X. For each P = [z, 21, 25, 23] € P%(Q), let

Ip:={i|0<i<3 2 #0).
From Proposition 7 of {7], we have

E’%(Q)“.ng ={P e PYQ) | ged(q; | i € Ip) > 2}.
Let J:= {(0,1),(1,2),(1,3),(2,3)}. For each (7,j) € J, put
Pi; = {P = [go, 21,22, 23) € X | mz; #0, 2, =0 for h # 14,5}
and
di; = ged(gi, ¢;)-
(Note P;; = 0 if (¢,7) = (0,2) or (0,3).) Then as a set,
X={0:1:0:0}u |J Py
(i.j)€d

We define

Ti={(,5) €T di; > 2}.

Proposition 2.2. Let X be a weighted quasi-diagonal surface in P%(QD,Q';,QQ,Q';;) defined by the
equation (4). Pul e;; =lcm (g, ¢;). Then the following assertions hold.

(a)
Xying = {U(u)eul Pij fa=1
e {00:1:0:0} VUi jpen, Pis o 22,
(b) For (i,5) €7,

2= 4f (3,5) = (0,1)
P..={ o
#:; {ﬁ otherwise.

Proof. (a) As codimx (X NPQ) . ) > 2, Proposition 8 of {6] implies that

sing
X.n'ﬂg =XNn P%(Q)“-ng'

1t follows from this that P;; C X,ing if and only il d;; > 2 and that (0:1:0:0) is a singularity if

and only if ¢; > 2. Hence X,in, can be described as above.

_ (b) Note that (m — go)/em 18 an integer since m —~ qq is divisible by go and ¢q,. As we work over

k, we may disregard the coefficients ¢; (0 <4 < 3).
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Take (¢, 7) = (0,1). Then the points in Py, satisfy the equation

(m—qo)/ea
H (mf)m/ﬁ + gumt;m/‘h) =0
u=1
where 6 is a primitive (m — ¢o)/eqi-th root of unity. Each factor z5/% + 8% z;°/% = 0 gives a point
on X. Hence #Pg = (m — go)/eq:-
Assume (3, 7) # (0,1). Then the points in P;; satisfy the equation
mjei;

H (E:u/q; + gumjum) -0
u=1
where @ is a primitive m/e;;-th root of unity. Asin the case (2, 7} = (0, 1), each factor gives a point
on X. Therefore #P;; = m/e;. O
Corollary 2.3. Let X be a weighted quasi-diagonal surface in P%(Q) defined by the equation (4).
If (0,1) € 3y, put I :=3;\ {(0,1)}. Then
14+ 758+ Lipen o Y(0,1) €
#Xoing=1{ 1+ Tpjen = if(0,1)¢ 3 and ¢y > 2
Y Gi)en :‘TJ otherwise,

Next we determine the types of singularities of X. For an integer n > 1, let u,, denote the group
of n-th roots of unity in % .

Lemma 2.4. With the assumptions (2) and (3), we have ged(q:, ¢2) = ged(r, ¢3) = 1.

Proof. From (3), we have m = ¢y + m1qy = maqz = maga. Suppose that ged(q:,q2) > 1 or
ged (g, ¢a) > 1. Then ged(qo, ¢1, ¢2) > 1 or ged(go, 41, gs) > 1. But, this contradicts (2). O

Proposition 2.5. Let X be a weighted quasi-diagonal surface in ]l”iz-(qo,ql,qg, g3) defined by the
equation (4).

(a) Fiz (1,7) € J1. Let {i.,j.} be the complement of {1,7} in {0,1,2,3} (we fix their order once
and for all). Let a;; be a unique positive integer such that

%, Qi = q;, (mod d;;) and 1 < a5 < d;;.

Then every point in Py; is a cyclic quotient singularity of lype Ay, o
(b) Assume q; > 2. Lel o, be a unigue positive integer such that

oy =q3 (modgq,) and 1<a<q.
Then (0:1:0:0) € X s a cyclic quotient singularity of type Ay, o,

Proof. (a) By (2), ged(d;i;, ;) = ged(di;,¢;,) = 1. Hence wv; is determined uniquely. Choose an
arbitrary point P = (ag : ---: a3) € P;;. There is a covering of X by 4 affine quotient spaces

3
X = Va/tg,
u=0

where V, := Spec A/(z, — 1) with A 1= k[zo,- -, z3)/(coxq® + 12027 + c275? + c325°) and gy,
acts on V, by z, — %z, for 0 < v < 3,v # u (¢ ranges over p1 ). Since a; # 0, Pison V;/p,,. At
the inverse image of P on V;, (zi.,z;.) gives a local coordinate system. Put V := Speck[z;,, z;,].
Then the action of pg, on V; induces an action of y4,; on V by

(zi.,25.) — ((Femi, (Vhay)
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where € pg,;. As ged(g;,, dij) = 1, (% ranges over pq,;. Changing { to (%-, we can write this
action as

(2i.,25.) — (€2, (%9 25.)
where «;; is the integer defined above. Therefore P is of type Ag,; q;-

(b) The point (0 : 1 : 0 : 0) can be identified with the image of (0,0,0) € V; in V;/pu,,. On
Vi, (z2,73) gives a local coordinate system at (0,0,0). Put V := Speck(z,, z3]. Since p,, fixes
(0,0,0) € V1, pq, acts on V by

(2, 23) — (("z2,(Pzs)
where { € ptq,. As ged(q1, ¢2) =1 (see Lemma 2.4), (9 also ranges over p,, . Hence we may express
this action as

(2, 23) — (C22, (™' @)
where a is the positive integer defined above. Therefore (0 : 1: 0 : 0) is a cyclic quotient singularity
of type A, o,. O

To describe the zeta-function of X, we need to know the minimal field of definition for each

singularity of X. We shall determine it by assuming that k* contains all m-th roots of unity in k.
As (0:1:0:0) is obviously defined over k, we may discuss only singularities in P;; with (¢, j) € J;.
For P € P;;, we write k(P) for the minimal field of definition of P over k.

Proposition 2.8. Let X, be a weighted quasi-diagonal surface of degree m in P¥{(qo, ¢1, 2, ¢3) de-

fined by the equation (4). Assume that k* contains all m-th roots of unity in k. Let P be an
arbitrary point in P;; with (1,5) € J;. Choose v;; € k" satisfying

co‘T(()'lnuqn)/eu1 +c=0 if (isj) = (Ov 1)
cn,.’;.‘/“f +¢; =0 otherwise.

Then k(7y;;) does not depend on the choice of v;; and k(P) = k(vi;) for all P € Py;.

Proof. Since (m — qo)/eo1 and m/e;; are divisors of m, the solutions to each equation are of the
form (vi;, where ( is a m-th root of unity. From our assumption, ¢ is in k. Hence k(v;;} does not
depend on the choice of v;;.

For any ¢; and g;, we see Pi(g;, ¢;) & P, by composing the following two isomorphisms:

(l'i,ﬂ!j) — (."J,’,:r,j) [N (CC:IJ/ -_1,3:.?- .,).

These isomorphisms are deﬁne;l over k. If P = (ap : a1 : ap : az) € P;;, then the non-zero
coordinates are a; and a;. Hence P and (a; : a;) € Pj(gi, ¢;) have the same field of definition. From
the isomorphism P}(g;, ¢;) = P}, we obtain

k(P) — k(a?i/dij/a;'i/dij).

qi/di

Furthermore q] J'/ag"/d‘j and v;; satisfy the same equation. Therefore £(P) = k(7v;;). O

The equation for ¥;; is not necessarily minimal over k; so, the extension degree [k(7;;) : k] is a
divisor of
(m—qo)/ear if (i,5) =(0,1)
m/e;; otherwise.

Let k' be the composite of k(P) over all singularities of Xz. Write Xy for the minimal resolution of
Xz Since each monoidal transformation is defined over the field of definition for its center, X7 is
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defined over k', (In fact, X can be defined over k as X,in, is closed under the action of Gal(k/k).)
In what follows, we always assume that k is large so that it contains k'.
3. ZETA-FUNCTIONS

In this section, we show that the zeta-function of a weighted quasi-diagonal surface can be described
in terms of twisted Jacobi sums. For integers v > 1, we write k, 1= Fo.

Lemma 3.1. Let my, - ,m, be r positive integers such that ¢ =1 (mod m;) for 1 < ¢ < r. Let
Wi be an affine variety in A, defined by the equation

bO +b1$1 + +b Tmr = C A;
with b; € k* (0 < i < r). Define
M =lem (my,---,m,)
M; = M/m;

for1 < i< r. Assume g =1 (mod M). Fiz a character, x, of k* of ezact order M. For each
v > 1, let N,(W) denote the number of k,-rational points on Wr. Then

NW) =g = 50 T ey + 3 Jb'a")

a’ ey a’ ¢uy

where

a; € MiZ/MZ, a; # 0 (1 ZG—O}

" H 1

" " I.I i <
ﬂ2={a :(no,al’...,ar) g EZ/sz @; EM;Z/MZ (1_1ST‘) }

a:-‘ £0for0<i<r, Siga; =0

Proof. The idea of proof is entirely due to Weil [31}; we sketch the proof since there seems to be
no article giving a complete formula for N, (W).
Fix v > 1. Consider the affine varieties:

i

W, @ bizT bl = C AL

W, @ bozd T b 4t ba =0 C AL

- lJ—
Since ¥ ' = 1 for 74 € k,*, we have

ki

(8) N, (W'Y = N,(W') + (¢“ = 1)N,(W).



8 YASUHIRO GOTO

It follows from [31] that
NW)=gU D4 (¢ =-1) Y Jb,a)
a'gy,

and

Nu(wu) — qyr + (qV _ 1) Z j(bll’all)ll.
a'eyl,
Therefore substituting these formulae into (8), we obtain the formula for N,(W). O

Remark 3.2. The algebraic integer J(b', a') may be called a twisted Jacobi sum associated with b
and a’ relative to x (cf. [17]).

Lemma 3.3. The set of k-rational points in P2(Q) can be identified with the set

(A \ {0}/ ~

where “~7 denotes the equivalence relation:
(20,"' ,$3) ~ (yo, s ,y3) &3t € Ex such that ;= t"‘y,- (0 << 3)
Proof. The result follows from (5) by taking the Gal(k/k)-invariant subset of PHQ) (cf. [13])). O

Corollary 3.4. Each equivalence class of (Ay \ {O})/ ~ consists of ¢ ~ 1 elements of A} \ {O}.
Consequently, if Wy is a projective variety in Py(Q) and Wy is the Zariski closure of «= (W) in
Al (cf. (7)), then for v > 1,

Nu(W) =1+ (qV - 1)NV(VV)

Proof. Given & := (zq,---,z3) € A} \ {0}, we sce, by using (2), that there are exactly ¢ — 1 values

for t € k. such that ¢tz are distinct. Since every class has the same cardinality, we obtain the
asserted formula. Details may be found in [13]. O

We compute the zeta-function of a weighted quasi-diagonal surface applying Lemma 3.1 and
Corollary 3.4.

Theorem 3.5. Let X, be a weighted quasi-diagonal surface in P3(Q) of degree m with twist ¢ :=
(o €1, €2, C3) defined by the equation:

Coty® - C1TTT b cpzy? + cy2f? =

Define
M = lem (my, my, m3)
M; = M/m;

for 1 <i<3. Assume ¢ =1 (mod M). Fiz a character, x, of k* of exact order M. Then the
zeta-function of X, can be described as:

1
(1= T)Py(Xe, T)(1 - ¢27)

Z(/Yk,T) =
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where

Bo(XeT) = (1 - ¢T) [ (1 — ax*™ (—ea/co)T) H(l—J(c,a)T)

aEv acl
V={a€Z/MZ|a#0, gsa=0 (mod ¢3)}
o € Z/MZ, a; € M,Z/MZ (1 <i< 3).,
a; #0(0<i<3), S0 0, =0and mgag+a, =0

J(c,a) is the twisted Jacobi sum associated to ¢ and a relative to x.

XD = {a, = (ao, ay, ez, “a)’

Proof. Let _X__k be the affine variety in A} defined by the same equation as X;. By Corollary 3.4,
we have N, (X) =1+ (¢© — 1)N,(X). Let Z; be the closed subset of X defined by z; = 0; i.e.

Zx TP + gz = 0 with @y free C Al
Write U, for the open subset X \ Z:
(9) Ui cozi® + 170 + 272 +cand?® = 0 with 2o #0 C A,

Then X, = Z;, U Uy, (disjoint union) for every v > 1. Regarding zo as a constant, write U(zo)
for the affine surface in A] defined by (9). Then for » > 1, we have

NEX)=N(Z)+ Y N(U(=

zoEk)
It follows from {31] that
N2y = (¢ + @ =1) T x e
ICPRTEY)
where (ug, u3) ranges over the set
{(uz,u3) } u; € MZ/MZ, u; #0 (i =2,3), usz + uy = 0}.

By substituting uz = aMj, the summation over (u,, u3} can be transformed into

Z X" H(—c2) cg® Z\aMa —cz/c3)”

(ug,u3) aed

Hence

N.(Z) = (q + (¢ —1) > X (- 02/63)u>.

aeY

Applying Lemma 3.1 to the case r = 3, by = cozy’®, b1 = €120, by = ¢, and b3 = ¢3, we find

N, (U{zo)) Z J®,a)y+ S g®,a"y

a EU] G”E}.l:
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where

b = (C]ﬂ?o,Cz, Ca), b = (CoI?O,CIIQ,Cg,Cg)

ul={a’=(a‘1,a;,a‘3)‘a € MiZ/MZ, a; #0 (1< 1< 3),

amw

5 =0}

SO 33)}

i "

p v S EZ/MZ, a; € M;Z/MZ
1,12:{(1 =(a0!alaa’2}a'3)| a €2/ “i € / (

" : 3 "
a; #0for0<i <3, Yoy
JE®,a)= X e e eaii(a)

a mo+a ) Lo M

j(a).

—

J(b aan)=,\ (Co Cl Cz C *Zy

Since a, # 0, we obtain

Y Y I6ay=Y ¥ ey

To€k X o’ g a' €Uy wogh
l
— —1
= X (C] C C X 3’0
a'ey; zo€kX
= 0.

On the other hand,

TS gea = o e )iy Y X (et )

zoEkX a' €Uy a' el zoEkY

=(¢"-1) Z X" Heg® - ch) ](a")".

"
a €ily
1 1
a, mo-ta, =0

Hence

> N (¢ -1 +(¢"=1) D T(e,a)”

zp€hX aeTy

Combining this with N,(Z), we conclude

M) = (¢ + 0 =) M (/e + (- 1) T T(ea)

acd a0

Therefore by Corollary 3.4,
No=1+4¢" +¢ Y x*(-cafes)’ + Y T(c,a)”.

agg ac?l

This gives rise to the zeta-function of X;. O
Since 20 is a subset of the group of characters of pa X par X ppr X iy, we may call @ € W a
character.
Remark 3.6. Put €33 := lcm (g2, 3). Then the cardinality of D in Theorem 3.5 is equal to
m

HY = — 1.

€23
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Remark 3.7. Let Hy be a closed subscheme of X defined by the equation zy = 0 (compare with
Zy in the proof of Theorem 3.5). Then Hy is a union of m/es5 rational lines. These lines intersect
to each other at (1:0:0) (usually not transversally). All the singularities of Xz, except for those
in Py 1, are on these lines.

Let o3, oy and d;; be the integers defined in Proposition 2.5. For (4, j) € J;, denote by r;; the
length of the continued fraction expansion of d;;/ay;. If ¢ > 2, then write r, for the length of the
continued fraction expansion of ¢;/ay; if ¢ = 1, put r| = 0.

Proposition 3.8. Let X, be a weighted quasi-diagonal surface in P3(qo, q1, 2, 93} of degree m with
twists ¢ defined by the equation (4). Let M be the integer defined in Theorem 3.5. Assume that
k is large so that all the singularities of Xy are defined over k (i.e. k D k(P) for all P € X,ing);
assume also that g =1 (mod M). If (0,1) € Ty, then put T, := 7, \ {(0,1)}. Let

e d M + 5B+ Legen ot (0,1 €D
- ’1+E|J Ejlc--r'” lf(0,1)¢31

Let X— be the minimal resolution of Xg; it is deﬁned over k. Then the zeta-function of Xy has the

fallowmg form:
1

(1= T)Po(Xh, TY(1 - ¢°T)

Z(X,,T) =

where
Po(R T) = (1= qT)™* T (1 = o™ (=ea/e)T) T (1 - J(c,a)T).
a€T acW
(For the notation, see Theorem 3.5.)

Proof. X and Xy are isomorphic over k outside of the exceptional locus. Hence Z()nfk,T) can be
computed from Z(Xy,T) by counting the number of k,-rational points on the exceptional divisors
on )?F for every v > 1. We know from Hirzebruch’s resolution [19] that there are e exceptional
lines on X, (cf. Corollary 2.3) each of which is isomorphic to P} and that these lines intersect
transversally. Hence )?;.._, acquires eg more points than X,. Therefore

Z(Xe,T) = Z(X,,T)/(1 — qT)".
Applying Theorem 3.5, we complete the proof. O

Corollary 3.9. Let X, be a weighted quasi-diagonal surface in P3(qo, q1, 2, g3) of degree m defined
by the equation (4}, Let )?g be the minimal resolution of Xy. Putl ez := lem (qa,q3). Then the
following assertions hold.

(a) The Betti numbers of X— are equal to By = By =1, By = B3 =0 and

Bz_€+ﬂ"+#f~m

€23
{(b) The self-intersection number of the canonical divisor, K, of )T’; is equal to
m

K? =10+ 12P,(X5) — e — — — #90.

€23

Proof. (a) The Betti numbers can be computed from the degrees of PAX:,T) (0 < i < 4) using
Proposition 3.8 and Remark 3.6.
(b) This follows from the Riemann-Roch Theorem. [0

Given m and ), we can calculate #20 directly from the definition of 2J; but, we do not have a
closed formula for this.
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4. THE PICARD NUMBERS

In this section, we prove the Tate conjecture for the minimal resolution of a weighted quasi-diagonal
surface over a finite field. Consequently, we give a formula for the Picard number of the minimal
resolution.

Proposition 4.1. Let X, be o weighted quasi-diagonal surface in PY(Q)) defined by the equation:
X}, . comg‘u +C1$0'Tl +023 na + ¢3 :Lm’ —

Denote by X the minimal resolution of Xg. Assume that k is large so that every singularity of X¢
is defined over k. Then X,_ is defined over k and the Tate conjecture holds for X

Proof. For the field of definition of X;, see the remark after Proposition 2.6. It follows from a
cohomological formulation of the Tate conjecture (cf. [29]) that if the conjecture is true for X over
some finite extension of %k, then so is it over k. Thus, without loss of generality, we may assume
that X has coefficients 1;ie. ¢;=1for 0 <i < 3.

We prove the assertion by showing that X, is birational to a quotient of a Fermat surface. Put
n = mgm,moms. Let ¥, be the Fermat surface in P3 of degree n:

Ye: yo+ur +uyr +uys =0.

Write jz,, for the group of n-th roots of unity in k. LetT bea subgroup of ®}_, 1, /(diagonal elements)
defined by

= {{(AF, AoAT AT AT | (Ag, Ay, Az, Aa) € DYy pia/(diagonal elements)}.
Since p ,(n, #1' is coprime to p. We may let [ act on Y, by
(o 141 2 ¥2 tya) —> (AT %0 1 AoAT w0 ATy 1 AT ).

Associated with this action, there is a dominant rational map Y, — X defined by

mimgmy
To =Y
MaMemay gy
T, = /Yo
Moy My
Ty =Y
. momlmg
Ia =13

Hence both Xy and X are birational to Yz/T' (the quotient of Y by I'). The birational maps are
defined over some finite extension of k.

It is known that the Tate conjecture is true for Fermat surfaces over finite fields [26}. Hence it
is also true for smooth open subspaces of Y, 7/T and X over their fields of definition. Therefore the

Tate conjecture holds for X, since the cohomologies of X, and X, differ only by algebraic cycles
over k (cf. [13], [30]). O

Corollary 4.2. With the hypotheses of Proposition 4.1, let M be the integer defined in Theorem
3.5. Assume ¢ =1 (mod M). Then the following assertions hold.
(a) Forv > 1, write
Do (v) i= {a € V| x*(~co/c5)” = 1}
Wa(v) = {a€W|T(c,a)" =q¢}.
Then forv > 1, B
P(x‘rkv) =1 +e+ #‘UQ[(V) + #‘.IURJ(V).
(b) Let e be the integer defined in Proposition 3.8. Pul

Wai(oo) := {a € W| T(c,a)/q is a root of unity}.
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Then

p(Xp) = e+~ + #9u(0).
€23

Proof. (a) Replacing k with k, in Proposition 4.1, we see that the Tate conjecture holds for X, for
v > 1. (The conjecture holds for Fermat surfaces over arbitrary finite extensions of £.) Hence the

formula for p(;\';ky) is a direct implication of the Tate conjecture (cf. Introduction) and Proposition
3.8.

(b) p(X3) is the maximal number among all p(Xy,) for ¥ > 1. The maximal #By(v) is equal
to #U. Hence by Part (a) and Remark 3.6, we obtain the asserted formula. O

We can express #20,(oc0) in terms of combinatorical data on characters. The details of what
follows may be found in [26] and [27]. Let K be the M-th cyclotomic field over Q. Write G :=
Gal(K/Q) for the Galois group of K/Q. We may identify G with the group U(Z/MZ) := {t €
Z/MZ| ged(t, M) = 1} by the correspondence

UZ/MZ) — G
t — O

where o, is the automorphism of K /Q satisfying o,(£) = £ for every primitive M-th root of unity
¢ in C. Twisted Jacobi sums J(c,a) are elements of K; G acts on them by 0,(J (¢, a)) = J (¢, ta)},
where ta = (tag,ta,, tas, tas) € W. Corresponding to this action, we have an action of U(Z/MZ)
on 20 by a — ta. Let Og(®) denote the set of U(Z/MZ)-orbits in 2. The orbit of a € 2 will
be written as

[a] :={ta € W |t € U(Z/MZ)}.

Noting that p is coprime to M, let f be the order of p modulo M. Let H be the subgroup of
U(Z/MZ) generated by p:

H={p' (mod M)|1<i< f}CU@Z/MEZ).
We define

Ital =Z<tﬁ) ~1

i=0

An(a) =} |itall

telf

where < ¢ > denotes the fractional part of @ € Q. For cach a € 20, ||a|| is equal to 0,1 or 2. It
follows from Lemma 3.1 of [26] and Proposition 5.11 of [27] that [a@] C 24 (o) if and only if

(10) Ay (ta) = f for every ta € [a] with ||ta] = 0.
Note that if there is no ¢ such that ||ta|f = 0, then {a@] C W4 (cc). We put

Oc(W)a = {la] € O(W) | [a] satisfies (10)}.
Then #24(c0) can be expressed as follows.

Lemma 4.3.

#o(00) = Z #lal.

[al€eOc (W)a:
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5. ORDERS OF THE BRAUER GROUPS

In this section, we compute the order of the Brauer group of the minimal resolution of a weighted
quasi-diagonal surface over a finite field in two special cases.

Let X, be a weighted quasi-diagonal surface in P3(Q) defined by the equation (4). Let M be
the integer defined in Theorem 3.5. Throughout the section, we assume p # 2, ¢ = 1 (mod M)

and that k is large so that every singularity of Xy is defined over k. Write X for the minimal
resolution of Xx. We are going to consider the following two cases:

(i) NS(X,) = NS(X7) and p(X,) = B,, where B, is the second Betti number of Xz
(i) NS(X:) = NS(X7) and p(X;) = e+ m/ey; (cf. Corollary 4.2).

If p(j(—'k) = B,, then X; may be said to be supersingular in the sense of [24]. The condition
NS(fk) = NS(,?;) is equivalent to assuming that all the algebraic cycles of ,\7; are defined over k.
Since the Tate conjecture holds for X, (Proposition 4.1), NS(X,) = NS(X7) implies Vo (v) = T
and 2, (v) = Wy (o) for all v > 1.

Lemma 5.1. Let X, be the minimal resolution of Xi. Write a(Xy) = Py — dim HY (X, 0) +
dim PicVar(X%) as in the Artin-Tate formula. Then the Néron-Severi group of Xy is torsion-free
and o(Xy) = F,(Xy).

Proof. Recall that )?g is birational to a quotient of a Fermat surface by an action of a finite group
(see Proposition 4.1). For a complete intersection, it is known that the Néron-Severi group is torsion
free, the Picard variety is trivial and that the irregularity is equal to 0 (cf. [3]). Hence the same
properties hold for )?;. O

Lemma 5.2. Let X; be the minimal resolution of X;;. Pul T = 9\ Wy (00). Then the Artin-Tate
formula for X, can be described as

I (1 _ J(C-a)) _ (=1)PFO- 1 Br( X, )discNS(X,)

(]Pv(j;:k)

acT q

Proof. Since the Tate conjecture holds for Xy, the Artin-Tate formula is valid for X,. Hence the
assertion follows from Lemma 5.1. O

Case (i): Assume NS(X,) = NS(X7) and p(X}) = B,.
In this case, the left-hand side of the formula in Lemma (5.2} is equal to 1. Thus
(11) gPo X0 = (L1)BF0=1 430§, ) diseNS(X,).
Hence discNS(X,) is a power of p. More precisely, one knows that
discNS(X,) = (—1)3"1],12""(3‘?“)

for some non-negative integer ao(Xy). If X, is a K3 surface, then oq is called the Artin invariant
(cf. [1], [24]). In general, if W denotes the ring of Witt vectors over k and H2,,(Xz/W) denotes

the second crystalline cohomology of Xg, then gy is equal to the W-length of the cokernel of the
Chern class map , N _
c1: NS(Xg) @2 W — HZ,,(Xg/W)

(see [20], 11.5). To compute oy, we may use an algorithm of Ekedahl [10]. We explain the algorithm
briefly in the case of Fermat surfaces and their quotients.
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Let Y, be a Fermat surface or a quotient of a Fermat surface by an action of a finite group which
is compatible with the diagonal action of ppr X piar X piar X pas. Then HZ,, (Yz/W) is decomposed
into a product of W-modules of rank 1:

c,,”(Y/"V '"'V ®®V
ac

where @ = (ap, @1, az,a3) and 2 is a subset of characters of ftp X piar X fiar X piar. As in Section 4,
write f for the order of p modulo M and let H = {p* (mod M) |1 < i< f}. Let Oy (%) be the set
of H-orbits in 4. The H-orbit of @ € % will be denoted by [a],: i.e., if h is the smallest positive
integer such that p*a = a, then

[a]P = {a;par e 1ph_la}
(the length h depends on a). Given an H-orbit [a], of length h, we define

=|lp'all =1 (0<i< h—1)

J
n:-min{Zb,-|0$j§h—l}
i=0
h-1

oo([al,) Z(7L+Zb)

=

In particular, if [[p'a|| = 1 for all i, then oy([a],} = 0. Let Yz be an arbitrary smooth surface over
k that is birational to Yz. Then IEkedahl’s algorithin gives

a(Yg)= > oo(lal,).

[alp€0H ()

Proposition 5.3. Let X, be a weighted quasi-diagonal surface defined by the equation (4). Let X
be the minimal resolution of Xy. Put oo(Xy) = Z[a],gon(m) oo{[al,). Assume that there ezists a
positive integer k such that p* = —1 (mod M). Then Xy is supersingular and

discNS(Xy) = (=1)Fa=1p2eoEn)

Be(Fy) = Lo
#Br(Xy) = A
Proof. The result is a direct application of Ekedahl’s algorithm. We just note that if p* = -1

(mod M) for some k, then 204 (c0) = 20 by (10). Hence X, is supersingular. From Theorem 3.5,

we have
H (Xg/W)=V(0) o PV e PV asE
agy acT
where F is a submodule of Hfm(Xk/W) associated to the exceptional cycles arising from the
resolution X — Xg. All the submodules of H2,,( Xr/W), except for V (a) with a € 90, contribute
to 0 in o (Xk) since they are algebraic cycles of type (1,1). Therefore o’o()?k) is given as above and
#Br(X}) can be computed from (11). O

Case (ii): Assume NS(X,) = NS()?;;) and p(X) = e + m/em.

It follows from p(;‘?k) = e + m/eqy that NS(X’;;) ®z Q is spanned by the exceptional cycles and
m/ ey lines obtained by letting 2o = 0 in (4) (see Remark 3.7); in general, they do not give a Z-basis
for NS(X4). In what follows, we consider the case where they are indeed a Z-basis for NS(X).
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Let Hy be a subscheme of Xi defined by the equation z, = 0. Write U for the complement of
Hy in Xz Uy = Xi\ Ho. By Theorem 3.1.6 of (8], we find Uy = SpecR, where

R= (Flon, 2,2/ (1+ 20" + 25 + 257) "

and pg, acts on the quotient ring by (2, x2, 23) — ((#' %), (%24, (P x3) for ¢ € .

Lemma 5.4. Let X be a weighted quasi-diagonal surface defined by the equation (4). Let X, be

the minimal resolution of X.. Denote by E\,---, E, the exceptional curves on X, arising from the
singularities of X and by Cy, -+, Cr/e,, the irreducible components of Hy. Write C; for the strict
transform of C; via Xg — Xg. Then with the notation above, {E,,--+, E,Cy, -+ ,Cpjesy} gives

a Z-basis for NS(X,) if and only if R is a unique factorization domain.

Proof. There are two exact sequences

0— E\Z®---® E.Z — Pic(X3) — Pic(X3) — 0
0—CiZ® - ®CpnjesyZ — Pic(Xg) — Pic(Up) — 0.

By Lemma 5.1, we have NS()?L—.) = Pic(,‘?;). Clearly, R is normal. Hence the equivalence follows
from the fact that Pic(Uy) = 0 if and only if R is a unique factorization domain. [

We give a criterion for {Ey,--, E,,Cy, - ,(‘f'm/,,,} to form a Z-basis for NS(X,) (but this
method does not work very often).

Lemma 5.5. Let E; (1 <1 < e) and C'j (1 € j € m/exs) be as in Lemma 5.4. Let A be the
determinant of the intersection matriz of E;’s and C;’s. Assume that A is square-free. Then
{E\,--+,E.,Cy, -+ ,Crnfess } gives a L-basis for NS(Xy).

Proposition 5.8. Let X, be a weighted quasi-diagonal surfuce defined by the equation (4). Let X
be the minimal resolution of Xy. Define E; (1 <i<e¢), C; (1 <j <m/fes) and A as in Lemmas
5.4 and 5.5. Assume that R is a unique factorization domain. Then discNS(X,) = A (up to sign)

and

(- 2|

#Br(X,) = X p

aET

Proof. Since R is a unique factorization domain, Lemma 5.4 implies discNS()’(v'k) = A (up to sign).
Hence the formula for the order of the Brauer group follows from Lemma 5.2. O

6. WEIGHTED QUASI-DIAGONAL K3 SURFACES

In this section, we consider weighted quasi-diagonal surfaces of which the minimal resolutions are
K3. We determine all the possible weights and degrees that produce such K3 surfaces. We compute
the Picard numbers of the K3 surfaces over k. Furthermore we calculate the orders of the Brauer
groups of several K3 surfaces.

Proposition 8.1. Let X, be a weighted quasi-diagonal surface in PQ) of degree m defined by the
equation (4). Let Xg be the minimal resolution of Xg. Then there exist 51 pairs of m and Q) for
which XF becomes K3; they produce 85 weighted quasi-diagonal K3 surfaces (see Table 1).
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Proof. As we noted in Section 2, X is quasi-smooth. Moreover, Xt is a weighted complete intersec-
tion (cf. [8]). Hence by Theorems 3.2.4 and 3.3.4 of [8], X;; is K3 if and only if m = gy +q; +¢2 +¢3.
Recall that m and Q also satisfy conditions (2) and (3). Solving these conditions, we find that there
are 51 such m and Q. (More generally, there are 95 pairs of m and @ which satisfy m = ¢o+¢;+42+43
([22]); a list of these pairs can be found in [11]. We may also use his list to find all the 51 pairs.) [

Given a weighted quasi-diagonal surface, its Picard number over k£ depends only on the charac-
teristic of k. As a special case of [23] (but we need to be a little more careful with weights), we
give the following formula.

Proposition 8.2. Let X, be one of the 85 weighted quasi-diagonal K8 surfaces in P3(Q) of degree
m obtained in Proposition 6.1. Let M be the integer defined in Theorem 3.5. Then the Picard
number of Xy is equal to

(Xp) = 22 if p* = —1 (mod M) for some k > 1
PREE =92 - (M)  otherwise

where @ denotes the Euler function.

Proof. We use the formula in Corollary 4.2 (b). Since Xr is K3, its second Betti number is equal
to 22. Hence

p(X5) = 22 — (W - Wa(0)).
Since X is a K3 surface, there exits only one a € 20 satisfying j|a|| = 0 (for the definition of ||a||,

see Section 5). Using m = ¢o -+ ¢1 + g2 + ¢3 (cf. the proof of Proposition 6.1) and condition (3), we
see that

Qp = ((M - M])/”Hlo, Ml, A"[g, A’fa)
is the one with this property. (The divisibility of A — M, by mg can be checked, for instance, by
case-by-case analysis on all possible m and Q; see Table 1.) Fort € H, we find
0 ift=1
itaolj =<2 fH>-landt= -1

1 otherwise.

Hence by (10) and Lemma 4.3,

2 il H3-1
#2u(00) = {QII ~ #tlag] otherwise.
This gives rise to
- 29 if H3-1
/Y_ =
P(X7) {22-#[%] otherwise.

Here H 3 —1 holds if and only if p* = ~1 (mod M) for some x > 1. As ged(My, Ma, M3) =1, we
have gcd((M — M,)/mg, M1, My, M3) = 1. Hence #[ao] = p(A). This completes the proof. O

Next we compute the order of the Brauer group of Xi. When X, is supersingular, our result is
a special case of [16] and the idea of proof is the same as that of Shioda in [24] (but, we need to
modify his method since it does not work very well for non-trivial weights).
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Proposition 6.3. Let X be one of the 85 weighted quasi-diagonal K3 surfaces obtained in Propo-
sition 6.1. Let M and 0o(X}) be the integers defined in Theorem 3.5 and Section 5, respectively.
Assume that there exists a positive integer k such that p* = —1 (mod M). Then the following
assertions hold.

(a) Xx is a supersingular K38 surface.

(b) If ko is the smallest positive integer satisfying p** = —1 (mod M), then c)‘o()?k) = Ko.
Consequently,
v q
Br(X.) = .
#Br(Xy) PR
Proof. As we have seen in the proof of Proposition 6.2, a, is the only character with ||a,| = 0.

From this, we find 04(X;) = o([ac),) = Ko. Hence the result follows from Proposition 5.3. [

We give two examples of the orders of the Brauer groups in non-supersingular cases. The first
example appears originally in [24], where the focus is put rather on the supersingular case. In what
follows, we discuss a non-supersingular case.

Ezample 6.4. Let m = 12 and @ = (1,1,4,6). Let X be a weighted quasi-diagonal surface defined
by the equation
0Ty 4 1oy + Coxy + €375 =0

with ¢; € k*. Assume p # 2,3,11 and p % 17,29, 35,41,65 (mod 66). Then X, has exactly one
singularity of type A, ; at (0:0:1:+/=1); the singularity is defined over k. We have 20,,(c0) = @.
Hence T = 90. Moreover, e = m/ey; = 1 and p(Xy) = 2. Hence the conditions of Case (i) in
Section 5 are satisfied. As m/eqs = 1, Hp is irreducible. The singularity is on Hy. If H, denotes
the strict transform of Hy, then we find ffg = 0. Hence A = —1. Therefore by Lemma 5.5 and
Proposition 5.6,

#Br(%) = ¢ [] (1 _ ﬂ_@) — Normegesa (1 _ J(c,ao))

aclW q q

where (g6 is a primitive 66-th root of unity in C. Furthermore by Proposition 5.4, we conclude that
R = k[z1,Ts, 23]/ (co + c12! + co23 + cazl)
is a unique factorization domain.

FEzample 6.5. Let m = 42 and Q = (21,1,6,14). Let X, be a weighted quasi-diagonal surface
defined by the equation

coTi 4+ 179! + conh + cazd =0
with ¢; € k*. Assume p # 2,3,7 and p # 5,17,20 (mod 21). Then X, has three singularities

Py:=(0:0:%:%) of type Ay,
Pyi=(*:0:%:0) of type A3,
Pyi={(x:0:0:%) oftype As¢

where * means some non-zero element of k. Since each singularity has multiplicity 1, they are all
defined over k. We have 20, (c0) = @. Hence T = 20. Moreover, e = 9, m/ess = 1 and p(X,) = 10.
Hence the conditions of Case (ii) in Section 5 are satisfied. We fix the order of the 9 exceptional
curves as follows:

Pl — El

P, E2 U E4

133 — E4UE5UEGUE7UE3UE9
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where ¢— indicates blowmgs—up ‘We modify the method of Lemma 5.5 slightly to give a Z-basis
for NS(X,,) For 0 < i < 3, let H; be the strict transform of the hyperplane section H; on X3

defined by z; = 0. (Note that H; are irreducible for 0 < i < 3.) Then on X’;, we find ﬁg =10 and
H?Z = 4. Further, from the linear equivalence

2Hy+ 2y ~ THa + 6 E, + 5E; ++ 4Eg + 3F; + 2Es + Eq

we obtain E’g = 0. The determinant of the intersection matrix of {1:?,-, Ey, -+, Eg} is equal to
=37 ifi=0
-2232  ifi=2
=227 if i = 3.

Since dlscNS(X,,) must be a common divisor of these numbers, we conclude dlscNS(Xk) —1. In

fact, if we put H := Ho—Ha— Hy, then the determinant of the intersection matrix of {H E, - Es}
is equal to —1. Hence this gives a Z-basis for NS(XL). Therefore by Proposition 5.6, we obtain

#Br(X) =q [] (1 - (‘; a)) = Noer(Cn)/Q(l - M)

ac?0 q
where (5 is a primitive 21st root of unity in C.
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Table 1: Picard numbers of weighted quasi-diagonal K3 surfaces over k

m Q (mg, myp,mq, n13) M M1 ag p(XF)

4 |(1,1,1,1) (4,3,4,4) 121 4 (2,4,3,3) |22 1if p=11 (mod 12); 18 otherwise

51 (1,2,1,1) (5,2,5,5) 10| 5 (1,5,2,2) |221if p=3,7,9 (mod 10); 18 otherwise

6 ](1,1,1,3) (6,5,6,2) 30 6 | (4,6,5,15) | 22if p =129 (mod 30); 14 otherwise
(3,1,1,1) (2,3,6,6) 6 | 2 (2,2,1,1) | 22if p=5 (mod 6); 20 otherwise
(1,1,2,2) (6,5,3,3) 15 3 | (2,3,5,5) [22if p=14 (mod 15); 14 otherwise
(2,2,1,1) (3,2,6,6) 6| 3 (1,3,1,1) {22if p=5 (mod 6); 20 otherwise
(2,1,1,2) (3,4,6,3) 12 3 (3,3,2,4) |22if p=11 (mod 12); 18 otherwise

8 [(1,1,24) (8,7,43) 98| 4 | (34,7,14) | 22 p = 3,19, 27 (nod 28); 10 otherwise
(2,1,1,4) (4,6,8,2) 2| 4 | (54,312) |22ifp= 23 (mod 24); 14 otherwise
(4,2,1,1) (2,2,8,8) 81 4 (24,1,1) [22if p=7 (mod 8); 18 otherwise
(4,1,1,2) (2,4,8,4) 8| 2 (3, 2,1,2) 22 if p=7 (mod 8); 18 otherwise
(2,3,1,2) (4,2,8,4) g1 4 (14,1,2) [221f p =7 (mod 8); 18 otherwise

9 (14,13 (9,2,9,3) 18 | 9 | (1,9,26) | 221 p =5, 1,17 (mod 18); 16 otherwise
(1,2,3,3) (9,4,3,3) 12| 3 | (1,3,4,4) |22if p=11 (mod 12); 18 otherwise
(3,2,1,3) (3,3,9,3) 9] 3 (2,3,1,3) | 22if p=2,5,8 (mod 9); 16 otherwise

0 (1,3.1,5) | (10,3,10,2) |30 | 10 | (2,10.3,15) | 22 if p = 29 (mod 30); 14 otherwise
G215 G410 201 5 | (3,5,2,10) | 221 p=19 {mod 20); 14 otherwise
(2,1,2,5) (5,8,5,2) 40| 5 | (7,5,8,20) | 22 if p= 39 (mod 40); 6 otherwise
(5,1,2,2) (2,5,5,5) 51 1 (2,1,1,1) {221ifp=2,3,4 (mod 5); 18 otherwise

12 (1,14,6) | (12,11,3,2) 166] 6 |(5.6,22,33) | 22 if p = 17, 29, 35, 41, 65 (mod 66); 2 otherwise
(4,1,1,6) (3,8,12,2) 24 [ 3 | (7,3,2,12) | 22 if p = 23 (mod 24); 14 otherwise
(6,1,1,4) (2,6,12,3) 12| 2 | (52,1,4) |22ifp=11 (mod 12); 18 otherwise
(2,1,3,6) (6,10,4,2) 201 2 | (3,2,5,10) [22if p =19 {mod 20); 14 otherwise
(3,1,2,6) (4,9,6,2) 18] 2 | (4239) |22ifp=5,11,17 (mod 18); 16 otherwise
(6,3,1,2) (2,2,12,6) 12| 6 (3,6,1,2) |[22if p=11 (mod 12); 18 otherwise
(6,2,1,3) (2,3,12,4) 12| 4 (4,4,1,3) | 221if p=11 (mod 12); 18 otherwise
(6,1,2,3) (2,6,6,4) 12| 2 (5,2,2,3) | 22if p=11 (mod 12); 18 otherwise
(2,5,1,4) (6,2,12,3) 12] 6 | (1,6,1,4) |22if p=11 (mod 12); 18 otherwise
(3,1,4,4) (4,9,3,3) 911 (2,1,3,3) [ 22ifp=2,5,8 (mod 9); 16 otherwise
(4,4,1,3) (3,2,12,4) 12| 6 (2,6,1,3) {22if p=11 (mod 12); 18 otherwise
(4,1,3,4) (3,8,4,3) 241 3 (7,3,6,8) |22 if p = 23 (mod 24}; 14 otherwise
(2,5,2,3) (6,2,6,) 217 6 | (1,6,2,3) |22 p= 11 (mod 12); 18 otherwise
(3,3,2,4) (4,3,6,3) 6| 2 (1,2,1,2) [22ifp=5 (mod 6); 20 otherwise
(4,2,3,3) (3,4,4,4) 411 (1,1,1,1}) | 22if p=3 (mod 4); 20 otherwise

14 | (2,4,1,7) (7,3,14,2) 42 | 14 | (4,14,3,21) | 22 if p = 5,17,41 (mod 42); 10 otherwise
@330 (A7) 37 | (3,7.4,14) | 22 p = 3,19, 27 (mod 28); 10 otherwise

15| (3,6,1,5) (5,2,15,3) 30 | 15 [ (3,15,2,10) | 22 if p = 29 (mod 30); 14 otherwise
(3,2,5,5) (5,6,3,3) 6 1 1 (1,1,2,2) [22ifp=5 (mod 6); 20 otherwise
(5,2,3,5) (3,5,5,3) 15| 3| (4335) |22ifp= 14 (mod 15); 14 otherwise
(3,4,3,5) (5,3,5,3) 15 5 (2,5,3,5) [221if p= 14 (mod 15); 14 otherwise

16 | (1,5,2,8) (16,3,8,2) 24 | 8 | (1,8,3,12) [22ifp= 23 (mod 24); 14 otherwise
(1,3,4,8) (16,5,4,2) 20 4 [ (1,4,5,10) {22 if p =19 (mod 20); 14 otherwise
{4,3,1,8) (4,4,16,2) 16| 4 (3,4,1,8) | 22if p=15 (mod 16); 14 otherwise

(continued)
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m Q (mo,my,ma,ma) | M | M, ag (Xg)

181 (2,1,6,9) (9,16,3,2) 48 | 3 |(5,3,16,24) [ 22 if p =47 (mod 48); 6 otherwise
(6,2,1,9) (3,6,18,2) 18| 3 (5,3,1,9) |22 if p=5,11,17 (mod 18); 16 otherwise
(6,1,2,9) (312,9,2) |36 3 [(11,3,4,18) | 22 if p= 11,23,35 (mod 36); 10 otherwise
(9,1,2,6) (2,9,9,3) 9 | 1] (4,1,1,3) |22ifp=258 (mod 9); 16 otherwise
(3,5,1,9) (6,3,18,2) 18] 6 (2,6,1,9) |22ifp=5,11,17 (mod 18); 16 otherwise
(2,4,3,9) - (9,4,6,2) 12| 3 (1,3,2,6) | 221if p=11 (mod 12); 18 otherwise

20 | (4,1,5,10) (5,16,4,2) 16| 1 (3,1,4,8) | 22 if p =15 (mod 16); 14 otherwise
(5,1,4 10) (4,15,5,2) 30| 2 1 (7,2,6,15) | 22 if p= 29 (mod 30); 14 otherwise
(10,5,1,4) (2,2,20,5) 20| 10 | (5,10,1,4) | 22 if p=19 (mod 20); 14 otherwise
(10,1,4,5) (2,10,5,4) 20 2 | (9,24,5) |22if p=19 (mod 20); 14 otherwise
(2,3,5,10) (10,6,4,2) 12 2 (1,2,3,6) |22ifp=11 (mod 12); 18 otherwise
(5,3,2,10) (4,5,10,2) 0 2 (2,2,1,6) |22ifp=3,7,9 (mod 10); 18 otherwise
(2,9,4,5) (10,2,5,4) 20 [ 10 [ (1,10,4,5) | 22 if p = 19 (mod 20); 14 otherwise

21 | (1,10,3,7) (21,2,7,3) 42| 21 [ (1,21,6,14) | 224 p = 5, 17,41 (mod 43); 10 otherwise

24| (3,1,8,12) (8,21,3,2) 421 2 }(5,2,14,21) | 22 if p=5,17,41 (mod 42); 10 otherwise
(8,1,3,12) (3,16,8,2) 6] 1 (5,1,2,8) |22 if p= 15 (mod 16); 14 otherwise
(12,3,1,8) (2,4,24,3) 24| 6 (9,6,1,8) | 22if p=23 (mod 24); 14 otherwise
(12,1,3,8) (2,12,8,3) 24| 2 | (11,2,3,8) |22 if p= 23 (mod 24); 14 otherwise
(6,9,1,8) (4,2,24,3) 24 | 12 | (3,12,1,8) | 22 if p =23 (mod 24) 14 otherwise

(3,7,2,12) (8,3,12,2) 12| 4 (1,4,1,6) | 22if p=11 (mod 12); 18 otherwise
(2,11,3,8) (12,2,8,3) 24 12 | (1,12,3,8) | 221f p = 23 (mod 24); 14 otherwise
(4,5,3,12) (6,4,8,2) 8 2 1 (1,2,1,4) [22if p=7 (mod 8); 18 otherwise
(3,7,6,8) (8,3,4,3) 12 4 | (0,4,34) [22if p=11 (mmod 12); 18 otherwise

28 [ (1,9,4,14) (283,7,2) | 42| 14 | (1,14,6,31) [ 22 if p = 5,17, 41 (mod 42); 10 otherwise
(4,3,7,14) (7,8,4,2) 8| 1 (1,1,2,4) |22ifp=5,17,41 (mod 42); 10 otherwise
(7,3,4,14) (4,7,7,2) 141 2 (3,2,2,7) | 22if p=3,5,13 (mod 14); 16 otherwise

30 | (10,4,1,15) (3,5,30,2) 30 6 | (8,6,1,15) [22if p=29 (mod 30); 14 otherwise
(6,8,1,15) (5,3,30,2) 30| 10 | (4,10,1,15) | 22 if p = 29 (mod 30); 14 otherwise

(10,2,3,15) (3,10,10,2) 101 1 (3,1,1,5) |22if p=3,7,9 (mod 10); 18 otherwise
(15,3,2,10) (2,5,15,3) 15 3 (6,3,1,5) | 22if p =14 (mod 15); 14 otherwise
(2,7,6,15) (15,4,5,2) 20 5 [ (1,5,4,10) [ 22 if p =19 (mod 20); 14 otherwise
(6,4,5,15) (5,6,6,2) 6 | 1 (1,1,1,3) |22 p=5 (mod 6); 20 otherwise
36 | (1,5,12,18) (36,7,3,2) 42| 6 | {1,6,14,21) | 22 if p = 5, 17,41 (mod 42); 10 otherwise
(3,11,4,18) (12,3,9,2) 18| 6 (1,6,2,9) |22if p=5,17,41 (mod 42); 10 otherwise
40 | (5,7,8,20) (8,5,5,2) 10| 2 (1,22,6) |22ifp=3,7,9 (mod 10); 18 otherwise
421 (6,1,14,21) (7,36,3,2) 367 1 [(5,1,12,18)122if p=3,7,9 (mod 10); 18 otherwise
(14,1,621) | (3,287,2) | 28| 1 | (9,1,4,14) | 22ifp=3,19,27 (mod 28); 10 otherwise
(21,1,6,14) (2,21,7,3) 21§ 1 | (10,1,3,7) | 221f p=5,17,20 (mod 21); 10 otherwise
(2,5,14,21) (21,8,3,2) 241 3 (1,3,8,12) [ 22if p = 23 (mod 24); 14 otherwise
(14,4,3,21) (3,7,14,2) 4] 2 (4,2,1,7) [22ifp=3,5,13 (mod 14); 16 otherwise
48 | (3,5,16,24) (16,9,3,2) 18| 2 (1,2,6,9) | 22if p=5,11,17 (mod 18); 16 otherwise
66 | (6,5,22,33) (11,12,3,2) 12 | 1 (1,1,46) |22 if p=11 (mod 12); 18 otherwise
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