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ABSTRACT. We investigate the minimal resolutions of certain weighted quasi-diagonal sur­
faces over finite fields. We show that their zeta-functions can be descri bed in terms of twisted
Jacobi sums. Using this information) we compute several arithmetic quantities of the mini­
mal resolutions. Our main purpose is to calculate the Picard numbers of such surfaces over
finite fields and give a formula for the orders of their Brauer groups in some special cases.

1. INTRODUCTION

Let k = Fq be a finite field of q elements of characteristic ]J (;::: 0). Fix an algebraic closure, k, of k.
Let Q = (qo, ql, q2, q3) be a quadruplet of positive integers such that

(1)

and

(2)

P Aqi for 0::; i ::; 3

gcd(qcnqß,q,) = 1 forevery {a,ß,,}C {O,1,2,3}.

Let k[xo, Xl, X2, X3] be a polynomial algebra gradcd by the candition deg(xi) = qi for 0 :::; i :::; 3.
The projective variety P~(Q) := Proj k[xo, Xl, X2, X3] is called the weighted projective 3-space over
k 0/ type Q (cf. [5], (8)). Throughout the paper, we assume conditions (1) and (2) (Condition (2)
is not a restriction; see [5], Proposition 1.3).

Choose a positive integer, 7n, such that P Am anel

(3)

for some positive integers mj (0 ::; i :::; 3) with P A1ni' Put c := (co, Cl, C2, C3) E (k X )4. Let X k be a
surface in P~(Q) defined by the equation:

(4)

We call )(k a weighted quasi-diagonal sur/ace in IP'~(Q) oJ degree m with twist c. We mayaIso call
..''(k a weighted Delsarte sur/ace with matrix

[T~1 1J~2 ~]
o 0 0 7713

(cf. [16], [23]). In this paper, we use the former terminology. The latter, on the other hand,
suggests that (4) should be regarded as a special case of a more general equation. In fact, our
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investigation started with more general forms of equations. \Ve aimed at finding surfaces of which
both algebraic and geometrie properties can be described explicitly. Our choiee of (4) is a result of
such trial and error. To iIlustrate this point, consider the surface, ...y

l

, defined by

with a 2: O. As we will see in Section 3, the zeta-funetion of Xl can be computed in terms of
twisted Jaeobi sumSj thus, our algebraic requirement is satisfied. The geometry of it, however, is
not so straightforward. In particular, Xl is quasi-smooth if and only if a = 0 or 1 (cf. Section 2);
when Xl is quasi-smooth, it has only eydic quotient singularities. If a 2: 2, we do not have (at this
moment) a systematic way of describing and resolving the singularities of ...-.(. Thus, we ought to
choose either a = 0 or 1. But if a = 0, then ....( is a wcightecl diagonal surface of degree 1n with
twist c. Such a surface has been studied in various articles (cf. [14]' [17], [25]). Therefore we look
into the casc a = 1.

The purposes of this paper are to compute the zeta-function of the minimal resolution of X k

and to calculate same of its arithmetic quantities explicitly. We recall briefly what quantities are
known to be related to thc zeta-function.

Let X k be a smooth projective surface over k. Denote by Z( ...Yk , T) the (congruence) zeta-function
of "'Yk with T an indeterminate. It is known ([9], [18]) that Z( ...Y.k , T) is a rational function of the
form

( )
_ Pd"'Ykl T)P3("'Yk , T)

Z )(k1 T - (1 _ T)P2("'Y
k

, T) (1 _ q2T)

where ~("'YklT) = det(l- <PT 1fI;t("'Yk' Qd) is the characteristic polynomial of the endomorphism,
<P, induced from the Frobenius automorphism of .....(k and acting on the E-adic (l # p) etale cohomol­
ogy H;t("'Y'kl Ql)' Deligne [4] has proved that R(...Yk , T) has integer coefficients and its reciprocal
roots have absolute value qi/2. In particular,

B 2

P2 (",Y/o: ,T) = rr (1 - tjqT)
j=l

with I tj 1= 1 for 1 ::; j ::; B2 := dirn H;t (Xk1 Ql)' Put

pi (Xk ) = #{1 :; j ::; B 2 1 tj = I}

'I(Xk ) = {I ::; j ::; B2 I Ej # I}.

Then

P2 ("'Yk 1 T) = (1 - qT)P'(XI<) rr (1- tjqT).
jE'I(Xk )

On the other hand, let NS( ...Yr) be the Neron-Severi group of ...'<r. Denote by NS(Xk ) the image of
Pic( ...Yk ) in NS(...Yk-). As NS( ...Y'k) is finitely generated over Z, so is NS( ...y k ). The Z-rank of NS(Xk )

may be called the Picard number 01 X k and writtcll as p( ...Y k ); i.e. NS(Xk ) ~ ZP(XI<) EB NS(Xk)tor,
where NS( ...Yk)tor is the torsion subgroup of NS( ...y k ). About the Picard number, the Tate conjecture
(cf. [28]) asserts that

p(Xk ) = pi (...Yk ).

(An equivalent formulation is that the Gal(klk)-invariant subspace of H;t("'Y'k1 Ql(l)) is spanned
by algebraic cydes.)

Let Br(...Yk ) be the Brauer group of X k : Br( ...Yk ) = H 2 ("'Yeh Gm), where Gm denotes the sheaf of
multiplicative groups on ...Yet • In (29], Artin and Tate conjecture that the order of Br(Xk ) is finite.
If we assurne p # 2 and the validity of thc Tate conjecture for ...Yk , then Br(Xk ) is indeed finite and
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the order is either a square or twice a square (cf. [21]' [29]). Furthermore there is a formula, which
we may call the Artin-Tate formula, about the residue of P2()(k I T) at T = q-1:

II (1 _ .) = (-1)P(XJr)-1#Br(.Xk )discNS(..-Yk )

€J (X )#NS (V)2jE'I(XJr) qCl I< tor "-\.k

where diseNS(..-Yk ) denotes the discriminant of NS(..-Yk ) and a(Xk ) = Pg - dirn H1(Xkl Ox) +
dirn PicVar(Xd (Pg is the geometrie genus of X k , Ox is the strueture sheaf on X k, and PicVar(Xd
is the Picard variety of Xj;); see [29], Theorem 5.2 and [21], Theorem 6.1. If l'(Xk ) = 0, then we
assume that the left-hand side of the Artin-Tate formula is equaJ to 1.

In this paper, we deseribe the zeta.-functions of thc minimal resolutions of weighted quasi-diagonal
surfaces in terms of twisted Jacobi sums. Wo thcll calculate thc Picard numbers and orders of the
Brauer groups of the minimal resolutions, using the validity of the Tate conjecture and Artin-Tate
formula.

The paper is organized as folIows. In Seetion 2, we show that a weighted quasi-diagonal surface
over k has only cyclic quotient singularities of type An,Cl' We determine its singular locus and find

the type of each singularity. Let Xk be the minimal resolution of )(k. In Section 3, we deseribe
the zeta-funetion of }(/e in terms of twisted Jacobi sums. Using this property, in particular, we
calculate the Betti numbers of }(/e. In Section 4, we provc that t~e Tato eonleeture holds for Xk .

As a consequence, we give formulae for the Picard numbers of }(k and of "-Y"k' In Section 5, we
compute the order of the Brauer group of }(k in two cases where we can calculate the discriminant
of the Neron-Severi group of ..-Yk • .Our method is to use the Artin-Tate formula. In Section 6, we
consider weighted quasi-diagonal surfaces which are birational to 1<3 surfaces. There are 85 such
surfaces. We give a formula for the Picard numbers of thcir minimal resolutions. For several K3
surfaces, we also eompute the orders of their Brauer groups.

ACKNOWLEDGMENTS. Thc paper is an extended and corrcctcd version of (mostly the second
half of) my Ph. D. thesis [15]; the main correction is on the proof of Proposition 6.2. I am indebted
to my advisor, Noriko Yui, for eneouragement, support and many suggestions. The preparation
of this paper had begun while I was a post-doctor at the Academia Sinica in Taipei. It has
been eompleted at the Max-Planck-Institut rur Mathematik in Bonn. 1 would like to thank both
institutions for their hospitality.

2. SINCULARITIES OF WEICHTED QUASI-DIAGONAL SURFACES

In this section, we describe the singular locus of a weighted quasi-diagonal surface over k.

It is known that the set of k-rational points in IP~Q) can bc identified with the set

(5)

where k X
acts on At \ {O} by

(6)

if t E k
X

and (xo,'" ,X3) E~ \ {O} (cf. [8], §1.2). This induces a projection

(7)

A (weighted) projective variety, V, in p~Q) is said to be quasi-smooth if the Zariski closure of
i -1 (V) in ~ is smooth outside the origin (cf. [8]). For instance, a weighted quasi-diagonal surface
defined by the equation (4) are quasi-smooth.
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Remark 2.1. As we mentioned in the introduction, it is more general to consider a quasi-diagonal
surface of the form

cox~o + ClXgx~1 + C2X~" + C3X~l3 = 0

where a is a non-negative integer and mi's are chosen so that the equation becomes homogenous.
However, this surfacc becomes quasi-smooth if and only if a = 0 or 1.

It is known that quasi-smooth weighted projective surfaces have only cyclic quotient singularities
of type An,a (cf. [2], [8]). The resolution of cyclic quotient singularities was obtained by Hirzebruch
for complex surfaces (cL [19], see also [12]). By virtue of condition (1), Hirzebruch's resolution is
valid also over k.

Let ...Y(= "'Y'k) be a weighted quasi-diagonal surface in IPt{qo, ql, Q2, qa) defined by the equation

(4). (We often omit to specify the field of definition if it is defined ovel' k.) We are going ta describe
the singular locus, "'"'(6ing, of ...Y. For each P = [XO, Xl, X2, Xa] E P~Q), let

I p := {i 10::; i::; 3, Xj i- O}.

From Proposition 7 of [7], we have

P~Q)6ing= {P E P~Q) I gCd(qi li E I p ) ~ 2}.

Let:1 := {(O,l), (1 , 2), (1,3), (2,3)}. For each (i,j) E :1, put

Pij := {P = [xo, Xl, X2, Xa] E ..."'( I XjXj i= 0, Xh = 0 for hf; i,j}

and

djj := gCd(lJi' qj).

(Note Pij = 0 if (i, j) = (0,2) Of (0,3).) Then as a set,

X = {(O : 1 : 0 : On u U Tij .

(iJ)E:J

We define

:1 1 := {(i,j) E :J I djj ~ 2}.

Proposit ion 2.2. Let ..."'( be a weigh ted quasi-diagonal SH1face i n IP~qo 1 ql, q2, qa) defined by the
equation (4). Put ejj = 1cm (qj, lJj). Then the Jollowing assertions hold.

(a)

i/ ql = 1

i/ql ~ 2.

(b) For (i,j) E:1,

if (i,j) = (0,1)

otherwise.

Proof. (a) As codimx(X n P~kQ). ) > 2, Proposition 8 of [6] implies that
un9 -

X 6ing = ..."'( nPf.{Q). .
... "og

Tt follows from this that Pij C "'Y6iog if and only if djj ~ 2 and that (0 : 1 : 0 : 0) is a singularity if
and only if ql ;::: 2. Hence )Ciog can be described as above.

(b) Note that (m - qO)/eOl is an integer since m - qo is divisible by qo and ql' As we work over
k, we may disregard the coefficients Ci (0 :::; i $ 3).
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Take (i, j) = (0, 1). Then the points in POl satisfy the eq nation

(m-qo)/eOI

II (X~Odql + (}UX~Odql) = 0
u=1

5

where {} is a primitive (m - qo) / eOl-th root of unity. Bach factor x~odqo+{}U X~Ol/ql = 0 gives a point
on X. Hence #POl = (rn - qO)/eOl'

Assume (i , j) f:. (0, 1). Then the points in Pij satisfy thc equation

m/e,jrr (x: ij /
q

; + (P'xjij/qj) = 0
u=1

where B is a primitive m/ei;-th root of unity. As in the ease (i, j) = (0 , 1), each factor gives a point
on .X. Therefore #Pij = rn/eij' D

Corollary 2.3. Let ~"( be a weighted quasi-diagonal sur/ace in P~Q) defined by the equation (4).
/f (0, 1) E J 1, pu t J2 := J1 \ {(0, 1) }. The n

if (0,1) E Jl

if (0, 1) t{. Jl and ql 2:: 2
otherwise.

Next we determine the types of singularities of ~y.. For an integer n ~ 1, let J.Ln denote the group
of n-th roots of unity in I;x.

Lemma 2.4. With the assumptions (2) and (3), we have ged(Q1' q2) = ged(ql' q3) = 1.

Proof. From (3), we have m = qo + mlql = 7n2q2 = 1n3q3. Suppose that gCd(ql' q2) > 1 or
ged(q1l q3) > 1. Then gcd(qo, ql, q2) > 1 or ged(qo, Ql, q3) > 1. But, this contradicts (2). D

Proposition 2.5. Let X be a weighted quasi-diagonal swince in Ir~qo, ql, q2, q3) defined by the
equation (4).

(a) Fix (i,j) E Jl' Let {i""j",} be the complement oJ{i,j} in {OII I2, 3} (wefix their' order once
and Jor all). Let D:ij be n unique positive integer' such thaI.

(mod dij ) and 1:::; D:ij < dij .

Then every point in Pij is a cyclic quotient singulm'ity 01 t,ype Adij,Cfij'

(b) Assume ql 2:: 2. Let 0'1 be a unique positive integer' such that

q20'1 == q3 (mod qd and l:::; 0'. < Ql'

Then (0 : 1 : 0 : 0) E .X is a cyclic quotient singulnrity oJ type Aq1 ,Ot'

Proof. (a) By (2), ged(dijlqi.) = ged(dij,qj.) = 1. Henee O'ij is determined uniquely. Choose an
arbitrary point P = (ao : ... : a3) E Pij . There is a eovering of )( by 4 affine quotient spaces

3

~Y = UFu /lI'qu
u=o

where Vu := Spec A/(xu - 1) with A := k[xo l '" , X3]/(COX~O + CIXOX~1 + C2X~:l + C3X~3) and jlqu

acts on Fu by Xv f--t (q" Xv for 0 :::; tJ :::; 3, tJ f:. U (( ranges ovcr jlqJ. Since ai "# 0, Pis on Vi/pq,. At
the inverse image of P on \~, (Xi., Xj.) gives a IDeal coordinate system. Put V := Spec k[Xi.' Xj.]'

Then the action of J-Lqi on Vi ind uees an action of J-Ld;j on V by

( X' x·) f--t ((qi. x· (qj. x· )
I.' J. I. I J.
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where ( E J.Ldij' As gcd (qiol dij ) = 1, (q;. ranges over J.Ldii' Changing ( to (qi. , we can write this
action as

(Zi.,Zj.) l------t ((Zi.,(Oii Zj .)

where (tij is the integer defined above. Therefore P is of type Adii,oij'

(b) The point (0 : 1 : 0 : 0) can be identified with the image of (0,0,0) E V1 in V1 / J.Lql' On
V1, (X'1' X3) gives a local coordinate system at (0,0,0). Put V := Spec I[X'1' X3]' Since /-lql fixes
(0,0,0) E V1 , J.Lql acts on V by

( X 2, X 3) l------t ((q2 X 2 , (qa x 3 )

where ( E IL q1 . As gcd(q1, q'1) = 1 (see Lemma 2.4), (q2 also ranges over IL q1 • Hence we may express
this action as

(X'1, X3) l------t ((X'1, (OlX3)

where 0'1 is the positive integer defined above. Therefore (0 : 1 : 0 : 0) is a cyclic quotient singularity
of type An,al' 0

To describe the zeta-function of X k , we need to know the minimal field of definition for each

singularity of X. We shall determine it by assuming that kXcontains all m-th roots of unity in IX.
As (0 : 1 : 0 : 0) is obviotlsly defined over k, we may discuss oniy singularities in Pij with (i, j) E :1 1 •

For P E P ij , we write k(P) for the minimal field of definition of P over k.

Proposition 2.6. Let X k be a weighted quasi-diagonal surJace oJ degree m in 1F'~(qo, Q1, q'l, q3) de­

fined by the equation (4). Assume that k X contains all1n-lh roois oJ unity in "kx
. Let P be an

arbitrary point in P ij with (i, j) E J1 . Choose lij E IX satisfying

if (i,j) = (0,1)

otherwise.

Then k (lij) does not depend on the choice 0f 1ij mlll k (P) = k (lij) for all PEPij .

Proof. Since (m - qO)/e01 and m/eij are divisors of 1n, the solutions Lo each equation are of the
form (/ij, where ( is a m-th root of unity. From our assumption, ( is in k. Hence k(/ij) does not
depend on the choice of lij'

For any qi and qj, we see Pk{qi' qj) ~ Pl by composing the following two isomorphisms:

P1(qi, fJj) -----7 Pl(qi/dij , qj/dij ) -----7 P1
( ) ~ ( ) ~ (xJild;i,XJ~i/dii).Xi,Xj ~ Xi,Xj ~.

These isomorphisms are defined over k. If P = (ao : ([1 : a'1 : a3) E Pij , then the non-zero
coordinates are ai and aj. Hence P and (ai: aj) E Pl(qi, qj) have the same field of definition. From
the isomorphism Pk(qi, qj) ~ P~, we obtain

k(P) = k(a?i/dii /aJ;fd ii ).

Furthermore ari / dii /aJ;fd ii and lij satisfy the same equation. Therefore k(P) = k('ij). 0

The equation for Tij is not necessarily minimalover k; so, the extension degree [kC'Yij) : k] is a
divisor of

{
(m - qO)/e01 if Ci,j) = (0,1)

m/eij otherwise.

Let k' be the composite of k(P) over all singularities of ..''<k' Write S~k for the minimal resolutiC:Il of

)("j(. Since each monoidal transformation is defined over the field of definition far its center, Xli is
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defined over k'. (In fact, }<"kcan be defined over k as "-'(,jng is closed under the action ofGal(k/k).)
In what folIows, we always assurne that k is large so that it contains k'.

3. ZETA-FUNCTIONS

In this section, we show that the zeta-function of a weighted quasi-diagonal surface can be described
in terms of twisted Jacobi sums. For integers v ~ 1, we write kv := Fq....

Lemma 3.1. Let ml , ... ,mr be l' positive integers such that q == 1 (fiOel 1nj) /01' 1 ::; i ::; r. Let
Wk be an affine variety in Ak defined by the equation

with bj E k X (0::; i ::; r). Define

M = lern (mI,'" ,1nr )

Mj=M/mj

for 1 :::; i :::; r. Assume q == 1 (mod M). Fix Cl character: x, 0/ k X 0/ exact order M. For each
v ~ 1, let Nv(W) denote the number of kv-rational ]Joints on vVr. Then

where

b' = (bI,'" 1 br ), b" = (bol'" 1 br )

{

li , I ' I ~, }lll= a =(a1,···,ur ) a j EMj Z/A1Z, aj f;O(1$i$7'), f;tUj=O

(f _ { "_ (" "... 11)1 a~ E ZjMZ, a~/. E MjZjMZ (1 ::; i::; 1') }
J..A.2 - a - Uo' all , Ur '.1 ..J. 0 r 0 < . < .,,~ :' = 0a, I Jor _ 1. _ 7, L.....,=o a l

I I I I I

3(b ,a ) = X-i (b~l b~")j(a )

.:J(bll,a") = x-l(b~'l b~~)j(a")

j(a') = L xG~(vd' "XG~(Vr)
viEk x (l~j~r)
Vl+···+V ..=o

, I

XGo(VO) "'XG"(Vr)
viEk X (09~r)

vo+,,·+v .. =O

Praof. The idea of proof is entirely due to Weil [31); we sketch the proaf since there seems to be
no article giving a complete formula for Nv(vV).

Fix v ~ 1. Consider the affine varieties:

1/ ... 1
W . b x q

- + b xm1 + ... + b x m .. - 0k ... • 0 0 1 1 r r -

Since Xf-l = 1 far Xo E kv x, we have

C ~~1.

(8)
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It follows from [31] that

and
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Nv(H/) = qv(r-l) + (qV - 1) L :J(b' 1 alt
a' Elll

Nv(w
Jl
) = qvr + (qV -1) L :J(bJl,a"t.

a" Ell~

Therefore substituting these formulae ioto (8), we obtain the formula for Nv(W). 0

Remark 3.2. The algebraic integer :J(b', a') may be called a twisted Jaeobi surn associated with b'
and a' relative to X (cf. [17]).

Lemma 3.3. The set 0/ k-rational points in P2(Q) ean be identi/ied with the set

(At \ {O})! rv

where "rv" denotes the equivalence relation:

-x
(xo 1 '" IX3) rv (Yo,'" ,Ya) {::> 3t E k such that Xi = tqiYi (0 ~ i ~ 3).

Proof. The result follows from (5) by taking thc Gal(k!k)-invariant subset of P~Q) (cf. [13]). 0

Corollary 3.4. Each equivalence class of (Ak \ {O})! rv consists oJ q ~ 1 elements 0/ At \ {O}.
Consequently, if W,k is a projective variety in P~(Q) and ~Vk is the Zanski closure 0/ t,-I(Wk) in
N {cf· (7)), then for v ~ 1,

Proof. Given x := (xo,'" ,X3) E~ \ {O}, we sec, by using (2), that therc are exactly q -1 values

for t E k X
such that tx are distinct. Since every class has the same cardinality, we obtain the

asserted formula. Details may be found in [13]. 0

We compute the zeta-function of a weighted quasi-diagonal surface applying Lemma 3.1 and
Corollary 3.4.

Theorem 3.5. Let "'Yk be a weighted quasi-diagonal surface in P2(Q) 0/ degree m with twist c :=
(CO l Cl, C21 Ca) defined by the equation:

Define

M =lern (m'l' 1n2l ma)
Mi = M/17li

for 1 ~ i ~ 3. Assume q == 1 (mod M). Fix a character, X, of k X 0/ exact order M. Then the
zeta-function of X k can be described as:
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P,(Xk , T) = (1 - qT) rr (1- qXaM
, (-c,/c3)T) rr (1 - J(c, a)T)

aE'Il aEW

Q) = {a E Z/MZ la f; 0, q3 a == 0 (mod (h))

on_{ -( )1 aoEZ/MZ, (l.j E Mi Z/J..1 Z (1:::; i:::; 3), }
;.a.I - a - ao, al, a2, 113 -I- ( . ) ",,3

lli f 0 0:::; 'l :::; 3 , L...-i=O (Li = 0 allel 1710ao + al = 0

.J(c, a) is the twisted Jacobi sum associat.ed to c and a relative to X.

9

Proof. Let X k be the affine variety in At defined by the same equatian as ~Yk' By Corallary 3.4,
we have Nv(X) = 1 + (qV - 1)Nv(X). Let Zk be the close<:l subset of .Xk defined by Xo = Oj Le.

Write Uk for the open su bset ..:'( k \ Zk:

(9)

Then )( k.., = Zk.., U Uk " (disjoint union) for every v ~ 1. Regarding Xo as a constant , write U(xo)
far the affine surface in ~ defined by (9). Then for v ~ 1, we have

N,..(~Y) = Nv(Z) + L Nv(U(xo)).

It follows from [31] that

Nv(Z) =qv(qv + (qV - 1) L [l((-C')"'c~')")
(tJ :J, tJ 3)

where (U21 U3) ranges over the set

{(U2' U3) IUj E MjZ/MZ, Uj -# 0 (i = 2,3), U2 + U3 = O}.

By substituting U3 = aM3 , thc summation over (-U2' U3) can be transfarmed inta

LX-I (( -C2)
tJ

:J C;3t =L XaM3
(-C2/ C3t·

(tJ:J,U3) aE'Il

Hence

Nv(Z) = qV (qV + (qV - ]) L xaM
, (-c,/c3)")'

aE'Il

Applying Lemma 3.1 ta the case r = 3, bo = cox~o, bl = CIXO, 62 = C2 and b3 = C3, we find

Nv(U(xo)) = q2v - L .J(b', alt + L .:J(b", a"t
a l EU l a"EU:J
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where
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Since a~ =f. 0, we obtain

L: L: .J(b',a't = L L .J(b',a't
xoEk: 0 ' EU! 0 ' EUI XoEk:

= L: x-I(c~:c;;c~~tj(a't L: X-l(X~~t
0' EU j xoEk:

= 0.

On the other hand,

2: L: .J(b", a"t = L: X-l(C~~" .c;~ tj(a"t L X-I (x~~mo+a'/t
xoEk: o'EUJ o"EU~ xoEk:

0" EU:!
11 "aOmo+a1 =0

Hence

L Nv(U(xo)) = q2V(qV - 1) + (qV - 1) L .J(c, at.
xoEk: oEmJ'

Combining this with Nv(Z), wc conclude

Nv(X) = qV { qV + (qV - 1) L X·At
, (-C';C3)" } + (q" - 1) L J(c, a)".

aE'D oE2lJ

Therefore by Corollary 3.4,

Nv = 1 + qV + qV L XaM'(-C2/C3t + L: .J(c,at.
aE'D oEW

This gives rise to the zeta-fUllction of X k . 0

Since 21J is a subset of the group of characters of PM X JtM X J1.M X J.LM, we rnay call a E 21J a
character. '

Remark 3.6. Put e23 := lern (q21 Q3)' Then the eardinality of QJ in Theorem 3.5 is equal to
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Remark 3.7. Let Ho be a closed subseheme of 4'Y k defined by the equation Xo = 0 (eompare with
Zk in thc proof of Theorem 3.5). Then Ho is a union of m/e23 rational lines. These lines intersect
to eaeh other at (1 : 0 : 0) (usually not transversally), All the singularities of X k , except for those
in PO,ll arc on these lines.

Let Qij, Ql and dij be the integers defined in Proposition 2.5. For (i, j) E :J 11 denote by rij the
length of the contintled fraction expansion of dij/O'ij' Ir ql ~ 2, then write 7'1 for the length of the
continued fraction expansion of ql/Cil; if ql = 1, put 7'1 = o.
Proposition 3.8. Let )(k be a weighted quasi-diagonal sur/ace in P~(qo, ql, q2, q3) 0/ degree m with
twists c defined by the eqtwtion (4). Let M be the intege1' defined in Theorem 3.5. Assume that
k is large so that all the singularities 0/ Xf are defined over k (i.e. k => k(P) for all P E 4'Y~ing);

assume also that q == 1 (mod M). /f (0,1) E :J 11 then put:J2 :=:J1 \ {(O,l)}. Let

{

7' +~r + "'" .!2!..7'·· z1 (0 1) E :Je = 1 eOI 01 m L...(i,))EJ" eij I) , 1

7'1 +LUJ)EJI eij 7'ij i/ (0, 1) ~ :J 1 ·

Let S~k be the minimal resolution 0/ )(;;; it is defined ouer k. Then the zeta-/unction 0/ Xk has the
following form:

where

P,(X., T) = (1 - qT)I+c TI (1 - qX·M
, (-c';c3)T) TI (1 - :I(e, a)T).

aEW aEW

(For the notation, see Theorem 3.5.)

Proof. 4'Yk and }(k are isomorphie over k outside of the exceptional locus. Henee Z(i\, T) ean be
computed from Z(Xk I T) by counting the numbcl' of kv-rational points on the exeeptional divisors

on R-;; for every v 2:: 1. VVe know from Hirzebruch's resolution [19] that thcre are e exeeptional

!ines on }(k (cf. Corollary 2.3) eaeh of which is isomorphie to PI anel that these lines intersect

transversally. Henee S~k" acquires eqv more points than _Xv' Therefore

Z(Xkl T) = ZU(k 11')/(1- qT)e.

Applying Theorem 3.5, wo complete the proof. 0

Corollary 3.9. Let 4'Yk be a weighted quasi-diagonal sur/ace in P~(qo, Ql, q2, q3) 0/ degree m defined

by the equation (4). Let 4'YJe be the minimal resolution 0/ .XTi' Put e23 := lern (q:h q3) . Then the
/ollowing assertions hold.

(a) The Betti numbers 0/ XI; are equal to Ba = 134 = 1, 131 = B3 = 0 and

1n
B2 = e +- +#2JJ.

e23

(b) The self-intersection number of the canonical divisor, [(, 0/ S~;; is equal to

2 - m/( = 10 + 12Pg (Xr) - e - - - #2rJ.
e23

Proof. (a) The ßetti numbers ean be computed from the clcgrees of P;(Xk,T) (0::; i::; 4) using
Proposition 3.8 and Remark 3.6.

(b) This follows from thc Riemann-Roeh Theorem. 0

Given m and Q, we ean ealculate #9IJ directly from the definition of 9IJj but, we do not have a
closed formula for this.
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4. THE PICARO NUMBERS

Then for v ~ 1,

In this section, we prove the Tate conjecture for the minimal resolution of a weighted quasi-diagonal
surface over a finite field. Consequently, we give a formlIla for the Picard number of the minimal
resolll tion.

Proposition 4.1. Let "Yk be a weighted quasi-diagonal surface in P~(Q) defined by the equation:

Denote by }(ii the minimal resolution 0/ X jf. Assume that k is large so that every singularity of )(ii

is defined ove~ k. Then "Yk is defined ouer k and the Tate conjecture holds for Xk •

Proof. For the field of definition of S~k' see the remark after Proposition 2.6. It follows from a
cohomological formulation of the Tate conjecture (cf. [29]) that if the conjecture is true for X over
same finite extension of k, then so is it over k. Thus, without loss of generality, we mayassurne
that )(k has coefficients 1; Le. ci = 1 for 0 ::; i ~ 3.

We prove the assertion by showing that X k is birational to a. quotient of a Fermat surface. Put
n = mOml m2m3. Let Yk be thc Fermat surface in IP~ of c1egrcc n:

Yk : y~ + y~ + y~ +y~ = O.

Write /l'n for the grou p of n- th roots of unity in lix
• Let r be a su bgrou p of EB7= 0 J.ln / (diagonal elements)

defined by

r = {(A~o, AoA~l, "\;n~, A~3) 1 (Ao, Al, A2' A3) E EB~=olln/(diagol1al elements)}.

Since p )'n, #r is coprime to p. We may let r act on Yk by

(Vo: YI : V2 : Y3) -----+ (A~Oyo: ..\oA~IYl : A;n~Y2 : >,~3Y3)'

Associated with this action , there is a dominant rational map Yk -----+ "Yk defined by

1
Xo :: Y~:I::::::/1 m'Jm3
Xl - Yl Yo
X2 = y~Omlm3

X3 = y;;'Omlm~.

Hence both X~k and "Yii are birational to yii/r (the quotient of Yk by f). The birational maps are
defined over some finite extension of k.

It is known that the Tate conjecture is true for Fermat surfaces over finite fields [26]. Hence it
is also true for smooth ope~ subspaces of yii/r anel )(ii over their ~elds of definition. Therefore the

Tate conjecture holds for "Yk since the cohomologies of )(k and "Yk differ only by algebraic cycles
over k (cf. [13] I [30]). D

Corollary 4.2. With the hypotheses of Proposition 4.1, let All be the integer defined in Theorem
3.5. Assume q == 1 (mod M). Then the following assertions hold.

(a) For v ~ 1, write

ma,(v) := {a E ml XaM3(-C2/C3t = I}

2l1al (v) := {a E 2l11.J(c, at = qV}.

p(..YkJ = 1 + e +#'iJJal(v) + #2l1al (v).
(b) Let e be the integer defined in Proposition 3.8. Pul

2l1al (oo) := {a E 2lJ 1.J(c, a)/q is a root 0/ unit.y}.
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Proof. (a) Replacing k with kJ) in Proposition 4.1, we see that the Tute conjecture holds for Xk " for
v ~ 1. (The conjecture holds for Fermat surfaces over arbitrary finite extensions of k.) Hence the

formula for p( ...\\J is a direct implication of the Tate conjecture (cf. Introduction) and Proposition
3.8.

(b) p( ...Yd is the maximal number among all p(...YkJ for v ~ 1. The maximal #mal(v) is equal
to im. Hence by Part (a) and Remark 3.6, we obtain the asserted formula. 0

We can express #21Jal (oo) in terms of combinatorical data on characters. The details of what
follows may be found in [26] and [27]. Let!< be the M-th cyclotomic field over Q. Write G :=
Gal(!<jQ) for the Galois group of J<jQ. We may identify G with the group U(ZjMZ) := {t E
ZjMZ 1 gcd(t, M) = I} by the correspondence

U(ZjMZ) ---+ G'
t ~ Ut

where Ut is the automorphism of !<jQ satisfying at(~) = e for every primitive M-th root of unity
~ in C. Twisted Jacobi sums .J(c, a) are elements of !(j G acts on them by at(.J(c, a)) = .J(c, ta),
where ta = (tao, tal' ta2' ta3) E 2l1. Corresponding to this action, we have an action of U(ZjMZ)
on 21J by a ---+ tao Let OaU~l) denote the set of U(ZjJV1Z)-orbits in 211. The orbit of a E 21J will
be written as

[a] := {ta E 211 I t E U(ZjA1Z)}.

Noting that p is coprime to NI, let f be the order of p modulo NI. Let H be the subgroup of
U(ZjA1Z) generated by p:

H = {pi (mod M) 11 S; i :::; f} c U(ZjMZ).

We define

3/ ta ,)
Iltall = ~\ Ad - 1

AH(a) = L Iitall
tEIl

where < a > denotes thc fractional part of a E Q. For cach a E 211, Ilall is equal to 0, 1 or 2. It
follows from Lemma 3.1 of [26] and Proposition 5.11 of [27] that [a] C 211al (00) if and only if

(10) AH(ta) = f for every ta E [a] with IItall = O.

Note that if there is HO t such that lltall = 0, then [a] C 21Jal (00). We put

Oa(21J)al = Ha] E 0(2l1) I [a] satisfies (10)}.

Then #21Ja1 (00) can be expressed as folIows.

Lemma 4.3.

#21Jal (oo) = L #[a].
[a]EOa(W)..1
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5. ORDERS üF THE BRAUER GROUPS

In this section, we compute the order of the Brauer group of the minimal resolution of a weighted
quasi-diagonal surface over a finite field in two special cases.

Let .Xk be a weighted quasi-diagonal surface in PX(Q) defined by thc equation (4). Let M be
the integer defined in Theorem 3.5. Throughout the section, we assurne p =j:. 2, q == 1 (mod M)
and that k is large so that every singularity of )(k is defined over k. Write .S~k for the minimal
resolution of .Xk • We are going to consider the following two cases:

(i) NS(..tYk ) = NS(..tYd and p(..tYk ) = B21 where B2 is the sccond Betti number of Xr;

(ii) NS(..tYk ) = NS(..tYd alld p(..tYk ) = e + m/e23 (cf. Corollary 4.2).

If p(..t\\) = B 21 then ..tYk may be said to be supersingular in the sense of [24]. The condition
NS( ...Yk ) = NS("'Yk") is equivalent to assuming that all thc algebraic cycles of ...Yr; are defined over k.
Since thc Tate conjecture holds for "'Yk (Proposition 4.1), NS( ...\\) = NS(...Yr;) implies QJal(V) = QJ

and Wal (v) = Wal (00) for all v ~ l.

Lemma 5.1. Let }(k be the minimal resolution 0/ .....<.k. lVrite a(...\\) = Pg - dirn H I (...Yr;, 0) +
dirn PicVar( ...\\-) as in the Artin-Tate /ormula. Then the Neron-Severi group of Xk is torsion-/ree

and a(...\\) = Pg(Xk ).

Proof. Recall that "'Yk is birational to a quotient of a Fermat surface by an action of a finite group
(see Proposition 4.1). For a complete intersection, it is known that the Neron-Severi group is torsion
free , the Picarcl vari.=ty is trivial and that the irregularity is equal to 0 (cf. [3]). Hence the same

properties hold for "''(1;' 0

Lemma 5.2. Let ...Yk be the minimal resolution 0/ )(k. Put 'I' = W \ Wal (00). Then the A rtin- Tate
jONnula for Xk can be described as

TI (1- .J(c, a)) = (-1)PCXk )-I#l3r(!k)discNS(...\\).

BE'I q qP'1(X k )

Prooj. Since the Tate conjecture holds for Xkl the Artin-Tate formula is valid for ...Yk • Hence the
assertion follows from Lemma 5.1. 0

Case (i): Assurne NS(..tYk) = NS( ...Yd and p( ...Yk ) = B2 •

]n this case, the left-hand side of the formula in Lemma (5.2) is equal to 1. Thus

(11)

Cl : NS(Xk ) 0z W -----+ H;ri~ (...Yk/W)
(see [20], 11.5). To compute ao, we may use an algorithm of Ekedahl [10]. We explain the algorithm
briefly in the case of Fermat surfaces and their quoiients.

Hence discNS( ...\\) is apower of p. More precisely, olle knows that

discNS(Xk) = (_I)B:;l-lp2ao(Xk )

for some non-negative integer ao (Xk ). ]f Xk is a ](3 surface, then ao is called the Artin invariant

(cf. [1], [24]). In general, if lif denotes the ring of \Vitt vectors over k alld H;ril (XklW) denotes

the second crystalline cohomology of Xr;, then ao is equal to the W -length of the cokernel of the
Chern dass map
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Let Yk be a Fermat surface or a quotient of a Fermat surface by an action of a finite group which
is compatible with the diagonal action of J.lM X J.lM X J.lM X J.lM' Then H;ril (Yk"/W) is decomposed
into a product of W-modules of rank 1:

H;ri~(Yr/Hl) =V(O) EB E8 V(a)
oE2\.

where a = (ao, al, a2, a3) and Qt is a subset of characters of jl'M X J.lM X JLM X PM' As in Section 4,
write j for the order of p modulo M and let II = {zi (mod M) 11 ~ i ~ j}. Let OH(Q.t) be the set
of H-orbits in QL The lI-orbit of a E Q:t will be denoted by [a]p: Le., if h is the smallest positive
integer such that ph a = a, then

[a]p = {a,pa,'" ,ph-la }

(the length h depends on a). Given an H-orbit [a]p of length h, we define

bi = llpiall - 1 (0 ~ i ~ h - 1)

n = - min {t b; I 0 ::; j ::; h - 1}
1=0

h-l ( j)
ero((a]p) = f; n +{; bi •

In particular, if llpiall = 1 for all i, then O'o((a]p) = O. Let Yk" be an arbitrary smooth surface over
Je that is birational to Y"k' Then Ekedahl's algorithlO gives

O'o(Yr ) = L O'o((a]p).
[O]pEOH(2I.)

Proposition 5.3. Let X k be a weighted quasi-diagonal s1l1face defined by the equation (4). Let Xk

be the minimal resolution 0/ ~Yk' Put aO(~Yk) = L{o]pEOH(QI1) ao([a]p). Assume that there exists a

positive integer K, such that p" == -1 (mod M). Thcll Xk is super'singular and

discNS(Xk ) = (_l)8~-11?uo(X,,)

_ qP~(X")

#Br(Xk ) = -
p2uo(X" )

Proof. The result is a direct application of Ekedahl's algorithm. We just note that if p" == -1
(mod M) for same "'} then 2l1al (oo) = 211 by (10). Hence ~~k is supersingular. From Theorem 3.5,
we have

H;rü(~Yr/W) = V(O) E& E8 \f(a) EB E8 \f(a) EB E
aEQ) oEQI1

where E is a submodule of II;ri~(~Yk"/W) associatcd to the exceptional cycles arising from the

resolution X k -t ...Yk"' All the su bmod ules of H;rü (R''k/W), except for lf (a) wi th a E 2l1, contribute
to 0 in O'o(Xk ) since they are algebraic cycles of type (1 1 1). Therefore ao(Xk ) is given as above and

#Br(S'k) can be computed from (11). 0

ense (ii): Assurne NS(~Yk) = NS(Xr) and p(~Yk) = e + m/e23'

It follows from p(R'k ) = e + m/e23 that NS(..-Yk ) ®z Q is spanned by the exceptional cycles and
1n/e23 lines obtained by letting Xo = 0 in (4) (see Remark 3.7); in general} they do not give a Z-basis
for NS(~\\). In what folIows} we consider the case where they are indeed a Z-basis for NS(~Yk)'



16 YASUHIRO GOTO

Let Ho be a subscheme of ~Yk defined by the equation Xo = O. Write Uo for the complement of
Ho in ~Yk: Uo = ~Yk \ Ho· By Theorem 3.1.6 of [8], we find Uo = SpeeR, where

Lemma 5.4. Let )(k be a weighted quasi-diagonal surface tlefined by the equation (4). Let Xk be

the minimal resolution of )(k. Denote by EI, ... , Be the exceptional curves on Xk arising lrom the
singularities of X k and by Cl,'" ,Cm/e~3 the irreducible components of Ho- Write Ci for the strict

trans/orm 01 Ci via 4'Y;; --t ~Yk' Then with the notation above, {EI,'" ,Eel CII ••• ,Cm/e~3} gives

a Z-basis for NS(Xk ) if and only if R is a uniqv.e jactorization domain.

Proof. There are two exact sequences

o ---+ EIZ EB _.. EB EeZ ---+ Pic(Xk) ---+ Pic(4'Y;;) --t 0

o ---+ CIZ EB .. -EB Cm/e~3Z ---+ Pic(~Yk) ---+ Pic(Uo) --t O.

By Lemma 5.1, we have NS(4'Yd = Pic(S"d. ClearlYI R is normal. Hence the equivalence follows
from the fact that Pic(Uo) = 0 if and only if R is a unique factorization domain. D

We give a criterion for {EIl'" I Eel Cl' ... ,Cm/e~3} to form a Z-basis for NS(Xk) (but this
method does not work very often).

Lemma 5.5. Let Ei (1 :s; i :s; e) and Ci (1 ::::; j :::; m/e23) be as in Lemma 5.4. Let ß be the

determinant of the intersection matrix of Ei 's und Ci 'so Assume that ß is square-lree. Then

{EI, - - . , Ee , Cll ... I Cm/en } gives a Z-basis for NS (...Yk)-

Proposition 5.6. Let X k be a weighted quasi-diagonal surface deflned by the equation (4). Let Xk

be the minimal resolution 0J ~Yk. Define Ei (1 :::; i ::; e), Ci (1 ::; j ::; m/ e23) and ß as in Lemmas

5.4 and 5.5. Assume that R is a unique factorization d07Hain. Then discNS(Xk ) = ß (up to sign)
and

ProoJ. Since R is a unique factorization domain, Lemma 5.4 implies discNS(~Yk) = ß (up to sign).
Hence the formula for the order of the Brauer grollp follows from Lemma 5.2. D

6. WEIGHTED QUASI-DIAGONAL 1<3 SURFACES

In this section, we consider weighted quasi-diagonal surfaces of which the minimal resolutions are
K3. We determine all the possible weights and degrees that prodllce such K3 surfaces. We compute
the Picard numbers of the K3 surfaces over k. Furthermore we ca1culate the orders of the Brauer
groups of several K3 surfaces.

Proposition 6.1. Let ~Yk be a weighted quasi-diagorwl smjace in lP'~(Q) of degree m defined by the

equation (4). Let X~k be the minimal resolution 0/ )(i;' Then there exist 51 pairs of m and Q for

which Xi; becomes K3; they produce 85 weighted quasi-diagonal [{3 swj(lCeS (see Table 1).
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Proo/. As we noted in Section 2, ":Yk is quasi-smooth. MOl'eover l ,Xk is a weighted complete intersec­

tion (cf. [8]). Hence by Theorems 3.2.4 and 3.3.4 of [8), -,\\- is 1<3 if and only if m = qo +ql +q2 +q3'
Recall that m and Q also satisfy conditions (2) and (3). Solving these conditions, we find that there
are 51 such m and Q. (More generally, there are 95 pairs of nt and Q which satisfy m = qO+ql +q2+q3
([22]); a list of these pairs can be [ound in [lI). We mayaiso use his list to find all the 51 pairs.) 0

Given a weighted quasi-diagonal surface, its Picard number over k depends only on the charac­
teristic of k. As a special case of [23) (but we need to be a little more careful with weights), we
give the following formula.

Proposition 6.2. Let X k be one 0/ the 85 weighted quasi-diagonal [(3 sur/aces in P~(Q) 0/ degree
m obtained in Proposition 6.1. Let M be the integer definer! in Theorem 3.5. Then the Picard
number 0/ -,yk is equal to

- {22
p(-,Yd = 22 - <p(M)

i/ pI'. == -1 (mod M) for some K, ~ 1

otherwise

where <p denotes the Euler /unetion.

Proof. We use the formula in Corollary 4.2 (b). Since /(1; is K3 1 its second Betti number is equal
to 22. Hence

P(XI;) = 22 - (211 - 211al (00)).

Since Xk is a K3 surface, there exits only one a E 211 satisfying Ilall = 0 (for the definition of Jlall,
see Section 5). Using m = qo +qI + q2 +q3 (cf. the proof of Proposition 6.1) and condition (3), we
see that

ao := ((M - Md/1I1·01 MI, 1112 , Ath)

is the one with this property. (The divisibility of JIt! - At/I by 1no ~an be checked, for instance, by
case-by-case analysis on a11 possible m and Q; see Table 1.) For t E 11, wc find

Iitaoll = !~ if t = 1

if H 3 -1 and t = -1

otherwise.

Hence by (10) and Lemma 4.3,

#'l1Ja/(oo) = {: _ #[ao]

This gives rise to

- {22peXk) = 22 - #[ao]

if H 3 -1

otherwise.

if 11 3 -1

otherwise.

Here 11 3 -1 holds if and only if p" == -1 (mod M) for some K, ~ 1. As gcd(M1, M2 , M3 ) = 1, wo
have gcd((M - Md/1no, MI, M2 , M3 ) = 1. Hence #[ao] = <p(A1). This completes the proof. 0

Next we compute the order of the Brauer group of Xk . When Xk is supersingular l our result is
a special case of [16] and the idea of proof is the sa.me as that of Shioda in [24] (but, we need to
modify his method since it does not work very weil for non-trivial weights).
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Proposition 6.3. Let .Xk be one of the 85 weighted quasi-diagonal/(3 surfaces obtained in Propo­
sition 6.1. Let M and ao(..'\\) be the integers defincd in Theorem 3.5 ond Section 5, respectiveIy.
Assume thai there exists a positive integer K- such that pI( == -1 (mod M). Then the following
assertions hold.

(a) Xk is a supersingular /(3 surface.

(b) /f KO is the smallest positive integer satisJying p'"o = -1 (mod M), then ao(..'Yk ) Ko.
Consequently,

Proof. As we have seen in thc proof of Proposition 6.2, Uo is thc only character with Ilaoll = O.
From this, we find ao(..'\\) = ao([ao]p) = KO' Hence the result follows [rom Proposition 5.3. 0

We give two examplcs of the orders of the Brauer grollps in non-supcl'singular cases. The first
example appears originally in [24], where the focus is put l'ather on the supersingular case. In what
folIows, we discIIss a non-supersingular case.

Example 6.4. Let m = 12 and Q = (1,1,4,6). Let ,Xk be a weighted quasi-diagonal surface defined
by the equation

12 11 3 2 0
COX o +CI X OX I +C2 X 2 +C3 X 3 =

with Ci E k X
• Assume p i= 2,3,11 and p ~ 17,29,35,41,65 (mod 66). Then X k has exactly one

singularity of type A2,1 at (0 : 0 : 1 : yCI)j the singularity is defined over k. We have Wa,(oo) = 0.
Hence lJ: = W. Moreover, e = m/e23 = 1 and p(.\\) = 2. Hence thc conditions of Case (ii) in
Section 5 are satisfied. As m.je23 = 1, Ho is irred 1I ci ble. The singlllarity is on Ho. If Ho dcnotes
the strict transform of Ho, thcn we find Hg = O. Hence Ci = -1. Therefore by Lemma 5.5 and
Proposition 5.6,

#Br(.-Yk ) = q TI (1- J(c,a)) = lV01'm~('6&)/Q(1- J(c,ao))
aEW q q

where (66 is a primitive 66-th root of unity in C. FlIrthermore by Proposition 5.4, we conclude that

R = k[Xl' X2, X3]/(CO + CIX~1 + C2X~ + C3X~)

is a unique factorization domain.

Example 6.5. Let m = 42 anel Q = (21,1,6,14). Let X k be a weighted quasi-diagonal surface
defined by the equation

cox~ + clxoxi1 + C2X; + C3X~ = 0

with Ci E k X. Assume p i= 2, 3, 7 and p ~ 5, 17,20 (mod 21). Then )(k has three singularities

PI := (0 : 0 : *:*) of type A2 ,1

P2 := (*' : 0 : * : 0) of type A3 ,2

P3 := (* : 0 : 0 : *) of type A7,6

where * means some non-zero element of k. Since each singularity has multiplicity 1, th~ are all
defined over k. We have Wa/(oo) = 0. Hence lJ: = W. Moreover, e = 9, rn/e23 = 1 and P(X"k) = 10.
Hence the conditions of Case (ii) in Section 5 are satisfied. VVe fix the order of the 9 exceptional
curves as folIows:

F't f-- EI
P2 f-- E2 U E3

P3 f-- E4 U E 5 U E 6 U E 7 U Es u Eg
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where t-- indicates blowings-up. We modify the lllethod of Lemma. 5.5 slightly to give a Z-basis
for NS( ...Y,d. For 0 ::; i ::; 3, let Hj be the strict transform of thc hyperplane section H i on "'Yk
defined by Xi = O. (Note that Hi are irreducible for 0 ~ i ::; 3.) Then on ...Y~k' we find Hg = 10 and
Hi = 4. Further , [rom thc linear equivaJence

2Ho+ B 1 '" 7H2 + 6E4 + 5E5 + 4E6 + 3E7 + 2Ea + E g

if i = 0

if i = 2

if i = 3.

Since discNS( ...Yk ) must be a common divisor of these numbers, we conc1ude discNS(..-\\) = -1. In
fact, ifwe put H := Ho-H2-li31 then the determinant ofthe intersection matrix of {H1 E 11 ••• 1 Eg }

is equal to -1. Hence this gives a Z-basis for NS( ...Yk ). Therefore by Proposition 5.6, we obtain

#Br(..-\\) = q TI (1- .J(c,a)) = Nor1nQ(C~I)/Q(I- .J(c1 ao))
aE2D q q

where (21 is a primitive 21st root of unity in C.
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Table 1: Picard numbers of weighted quasi-diagonal 1(3 surfaces over k

m Q (mo, ml, m2, ma) M MI ao p(Xd
4 (1,1,1,1) (4,3,4,4) 12 4 (2,4,3,3) 22 if p == 11 (mod 12); 18 otherwise
5 (1,2,1,1) 5,2,5,5 10 5 (1,5,2,2) 22 if p == 3,7,9 (mod 10); 18 otherwise
6 (1,1,1,3) (6,5,6,2) 30 6 (4,6,5,15) 22 if p == 29 (mod 30); 14 otherwise

(3,1,1,1) (2,3,6,6) 6 2 (2,2,1,1) 22 if p == 5 (mod 6); 20 otherwise
(1,1,2,2) (6,5,3,3) 15 3 (2,3,5,5) 22 if p = 14 (mod 15); 14 otherwise
(2,2,1,1) (3,2,6,6) 6 3 (1,3,1,1) 22 if p == 5 (mod 6); 20 otherwise
(2,1,1,2) (3,4,6,3) 12 3 (3,3,2,4) 22 if p == 11 (mod 12); 18 otherwise

8 (1,1,2,4) (8,7,4,2) 28 4 (3,4,7,14) 22 if p == 3,19,27 (mod 28); 10 ol..herwise
(2,1,1,4) (4,6,8,2) 24 4 (5,4,3,12) 22 if p == 23 (mod 24); 14 otherwise
(4,2,1,1) (2,2,8,8) 8 4 (2,4,1,1) 22 if p == 7 (mod 8); 18 ol..herwise
(4,1,1,2) (2,4,8,4) 8 2 (3,2,1,2) 22 if p == 7 (mod 8); 18 otherwise
2,3,1,2 4,2,8,4 8 4 (1,4,1,2) 22 if p =7 (mod 8); 18 otherwise

9 1,4,1,3) 9,2,9,3 18 9 (1,9,2,6) 22 if]J == 5, 11, 17 (mod 18); 16 otherwise
1,2,3,3) 9,4,3,3 12 3 (1,3,4,4) 22 if p == 11 (mod 12); 18 ol..herwise

(3,2,1,3) (3,3,9,3) 9 3 (2,3,1,3) 22 if p == 2,5,8 (mod 9); 16 otherwise
10 (1,3,1,5 (10,3,10,2) 30 10 (2,10,3,15) 22 if p == 29 (mod 30 ; 14 otherwise

(2,2,1,5) (5,4,10,2) 20 5 (3,5,2,10) 22 if p = 19 (mod 20); 14 otherwise
(2,1,2,5) (5,8,5,2) 40 5 (7,5,8,20) 22 if p == 39 (mod 40); 6 otherwise
(5,1,2,2) (2,5,5,5) 5 1 (2,1,1,1) 22 if p == 2,3,4 (mod 5); 18 otherwise

12 (1,1,4,6) (12,11,3,2) 66 6 (5,6,22,33) 22 if p == 17) 29, 35, 41, 65 (mod 66); 2 otherwise
(4,1,1,6) (3,8,12,2) 24 3 (7,3,2,12) 22 if ]J == 23 (lTlod 24); 14 ol..herwise
(6,1,1,4) (2,6,12,3) 12 2 (5,2,1,4) 22 if p == 11 (mod 12); 18 otherwise
(2,1,3,6) (6,10,4,2) 20 2 (3,2,5,10) 22 if p = 19 (mod 20); 14 otherwise
(3,1,2,6) (4,9,6,2) 18 2 (4,2,3,9) 22 if p == 5,11,17 (mod 18); 16 ol..herwise
(6,3,1,2) (2,2,12,6) 12 6 (3,6,1,2) 22 if p == 11 (mod 12); 18 otherwise
(6,2,1,3) (2,3,12,4) 12 4 (4,4,1,3) 22 if p == 11 (mod 12); 18 oiherwise
(6,1,2,3) (2,6,6,4) 12 2 (5,2,2,3) 22 if p == 11 (mod 12); 18 otherwise
2,5,1,4 6,2,12,3) 12 6 (1,6,1,4) 22 if p == 11 mod 12 ; 18 otherwise

(3,1,4,4) (4,9,3,3) 9 1 (2,1 ,3,3) 22 if p == 2,5,8 (mod 9); 16 otherwise
(4,4,1,3) (3,2,12,4) 12 6 (2,6,1,3) 22 if p == 11 (mod 12); 18 otherwise
4,1,3,4) (3,8,4,3 24 3 (7,3,6,8) 22 if p == 23 (mod 24); 14 otherwise
2,5,2,3 6,2,6,4 12 6 (1,6,2,3) 22 if p = 11 mod 12 ; 18 otherwise
3,3,2,4) (4,3,6,3 6 2 (1,2,1,2) 22 if p == 5 (mod 6); 20 otherwise

(4,2,3,3) (3,4,4,4) 4 1 (1,1,1,1) 22 if p == 3 (mod 4); 200therwise
14 (2,4,1,7) 7,3,14,2) 42 14 (4,14,3,21) 22 if p == 5,17,41 (mod 42); 10 otherwise

2,3,2,7 7,4,7,2 28 7 (3,7,4,14) 22 if p = 3,19,27 (mod 28); 10 otherwise
15 3,6,1,5) (5,2,15,3) 30 15 (3,15,2,10) 22 if p == 29 mod 30 ; 14 ol..herwise

(3,2,5,5) (5,6,3,3) 6 1 (1,1,2,2) 22 if p == 5 (mod 6); 20 otherwise
(5,2,3,5) (3,5,5,3) 15 3 (4,3,3,5) 22 if]J == 14 (mod 15); 14 otherwise
3,4,3,5 5,3,5,3 15 5 (2,5,3,5) 22 if p == 14 mod 15 ; 14 otherwise

16 (1,5,2,8 16,3,8,2) 24 8 (1,8,3,12) 22 if p == 23 mod 24 ; 14 otherwise
(1,3,4,8 (16,5,4,2) 20 4 (1,4,5,10) 22 if p = 19 mod 20 ; 14 otherwise
(4,3,1,8) (4,4,16,2) 16 4 (3,4,1,8) 22 if p == 15 (mod 16); 14 otherwise

(continued)
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m Q (ma, n11, m2, fn3) M M 1 ao p(Xd
18 (2,1,6,9) (9,16,3,2) 48 3 (5,3,16,24) 22 if p == 47 (mod 48); 6 otherwise

(5,2,1,9) (3,6,18,2) IS 3 (5,3,1,9) 22 if p == 5, 11,17 (mod 18); 16 otherwise
(6,1,2,9) (3,12,9 ,2) 36 3 (11,3,4,18) 22 if p == 11,23,35 (mod 36); 10 otherwise
9,1,2 ,6 (2,9,9,3) 9 1 4,1,1,3 22 if p == 2,5,8 (mod 9); 16 otherwise
3,5 ,1,9 6,3,18,2 18 6 2,6,],9 22 if p == 5, 11, 17 (mod 18); 16 otherwise
2,4,3,9 9,4,5,2 12 3 1,3,2,6 22 if p == 11 (mod 12 ; 18 otherwise

20 (4,1,5,10) (5,16,4,2) 16 1 (3,1,4,8) 22 if p == 15 (mod 16); 14 otherwise
(5,1,4,10) (4,15,5,2) 30 2 (7,2,6,15) 22 if p == 29 (mod 30); 14 otherwise
(10,5,1,4) (2,2,20,5) 20 10 (5,10,1,4) 22 jf p == 19 (mod 20); 14 otherwise
(10,1,4,5) (2,10,5,4) 20 2 (9,2,4,5) 22 if p == 19 (mod 20); 14 otherwise
(2,3,5,10) (10,6,4,2) 12 2 (1,2,3,6) 22 if p == 11 (mod 12); 18 otherwise
(5,3 ,2,10) (4,5,10,2) 10 2 (2,2,1,5) 22 if p == 3,7 , 9 (mod 10); 18 otherwise
(2,9,4,5) (10,2 ,5,4 20 10 1,10,4,5) 22 if p == 19 (mod 20 ; 14 otherwise

21 (1,10 ,3,7) (21 ,2,7,3) 42 21 (1 ,21,6,14) 22 if p == 5,17 , 41 (mod 42); 10 otherwise
24 (3 ,1,8,12) (8,21 ,3,2) 42 2 (5 ,2,14,21) 22 if p == 5,17,41 (mod 42); 10 otherwise

(8,1,3,12) (3,15,8,2) 16 1 (5,1,2,8) 22 if p == 15 (mod 16); 14 otherwise
(12 ,3,1,8) (2,4,24,3) 24 6 (9,6,1,8) 22 if p == 23 (mod 24); 14 otherwise
(12 ,1,3,8) (2,12,8,3) 24 2 (11,2,3,8) 22 if p == 23 (mod 24); 14 otherwise

6,9,1,8 4,2,24,3 24 12 3,12,1,8 22 if p == 23 (mod 24 ; 14 otherwise
3,7,2,12) 8,3,12 ,2 12 4 (1,4,1,6 22 if p == 11 (mod 12 ; 18 otherwise
2,11,3,8) 12,2,8,3 24 12 1,12,3,8 22 If P = 23 (mod 24 ; 14 otherwise
4,5,3,12) 6,4,8,2 8 2 1,2,1,4 22 jf P == 7 (mod 8); 18 otherwise
3,7,6,8 8,3,4,3) 12 4 1,4,3,4 22 jf P == 11 (mod 12 ; 18 otherwise

28 (1,9,4,14) (28,3,7,2 42 14 (1,14,6,21) 22 if p == 5,17,41 (mod 42); 10 otherwise
(4,3,7,14) (7,8,4,2) 8 1 (1,1,2,4) 22 if p == 5,17,41 (mod 42); 10 otherwise
(7,3,4,14) (4,7,7,2) 14 2 (3,2,2,7) 22 if p == 3,5,13 (mod 14); 160therwise

30 (10,4,1,15) (3 ,5,30,2) 30 6 (8)6,1,15) 22 if p == 29 (mod 30); 14 otherwise
6,S,1 ,15) 5,3,30,2) 30 10 (4,10,1,15) 22 if p = 29 (mod 30 ; 14 otherwise

(10,2,3,15) (3,10,10,2) 10 1 (3,1,1,5) 22 if p = 3,7, 9 (mod 10); 18 otherwise
(15,3,2,10) (2 ,5,15,3) 15 3 (6,3,1,5) 22 if p == 14 (mod 15); 14 otherwise

2,7,6,15) 15,4,5,2 20 5 (1)5,4,10) 22 if p = 19 (mod 20 ; 14 otherwise
6,4,5,15) (5,6,6,2 6 1 1,l,l)a 22 if p = 5 (mod 6); 20 otherwise

36 (1,5,12,18) (36)7 )3 ,2) 42 6 (1,6,14,21) 22 if p == 5,17,41 (mod 42); 10 otherwise
(3,11,4,18) 12,3,9)2 18 6 1,6,2,9 22 if p = 5,17,41 (mod 42); 10 otherwise

40 (5,7,8,20) (8)5,5,2 10 2 (1,2,2,5) 22 if p == 3,7,9 (mod 10); 18 otherwise
42 (6,1 ,14,21) (7,36,3,2) 36 1 (5,],12,18) 22 if p == 3,7,9 (mod 10); 18 otherwise

(14,1,6,21) (3,28,7,2) 28 1 (9) ,4,14) 22 if p == 3,19,27 (mod 28); 10 otherwise
(21,1,6,14) (2 ,21,7,3) 21 1 (10,1,3,7) 22 if p == 5) 17,20 (mod 21); 10 otherwise
(2,5,14,21) 21,8,3,2 24 3 (1)3,8,12) 22 if p = 23 (mod 24 ; 14 otherwise
(14,4,3,21) 3,7,14,2 14 2 4,2,1,7) 22 if p = 3,5, 13 (mod 14); 16 otherwise

48 (3,5,16 ,24) (16)9)3 ,2) 18 2 (1,2,6,9) 22 if p = 5,11,17 (mod 18); 16 otherwise

66 (6 ,5,22,33) (11,12,3,2) 12 1 (1,1,4,6) 22 if p = 11 (mod 12); 18 otherwise
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