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Introduction.

This paper is a continuation of the author's note [6] on
the characteristic function and the associated differential equa-

tion defined on a strictly convex bounded domain in the euclidean
space R". We denote such a domain by & and assume that the
boundary 9& 1is smooth. Let Q* be the dual domain of Q
defined as the set int{& € R%;1+<x,E> 2 0,x€Q}, <,> being
the inner product. It is also a strictly convex domain and pro-
jecitvely equivalent to a bounded domain. Then the characteristic
function Xq is defined by

(0.1) Xq (%) = J *nl(1+<x,5>)_n_1 dg

It tends to infinity at the boundary. By the associated differen-
tial equation we mean an equation of Monge-Ampeére type defined by

I{u):= (-u)n+2
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The unique existence of a convex solution u, i.e. u<0 and

(uij)> 0 , is known by S.Y. Cheng and S.T. Yau [2].

The purpose of this paper is to give a relation betwgen
these functions XQ and u . The result is

e extsts a smooth function F on Q such that
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{(higher order of u)) ,



where c 18 a constant depending on n . The boundary value of F s the
Fubini-Pick cubic invariant of the boundary.

From this theorem follows

Corollary 2 {1]. Assume “the projective automorphism group is noncompact.
Then.it is an.ellipsoid.

We will define ‘in §1 an approximate solution of (0.2). The
process is very similar to that shown in [3]. In..§2 we will give
an expansion of x with respect to u, where coefficients are
computable by use of local geometric data of the boundary. In §3
we will explicitly compute the first non-trivial coefficient and
prove Theorem.

Let us remark that the theorem is a real analogoue of the
deep result due to C. Fefferman [4] on the Bergman kernel func-
tion on a strongly pseudbconvex domain. As was shown in [6], the
equation (0.2) for the domain @ is a restriction in simple way
of a complex Monge-Ampére equatioﬁ defined on the tube domain
V-+imn+1, where V is the non-degenerate convex cone over the
domain Q . Note that a tube domain is not generally strongly
pseudoconvex. It is easy to see that the expansion (2.4) given
in §2 implies thé expansion of the Bergman kernal function of
this tube domain outside its éilov boundary VvV + i{0} with

respect to the solution of this complex equation. However to
give a geometric interpretation of this expansion is an open

problem.

This paper is written while the author is staying in the
Max-Planck-Institut fir Mathematik, to which he ds very grate-
ful for the hospitality given to him.



§1. Approximate solutions.

We first modify the equation (0.2} introducing an operator

A v,
: — = - 1] L
(1.1) K(v) = I(-/=-2v)
V. 2
J v
for a negative function v . Then the equation (0.2) is equi-

valent to the equation

( K (v)

(#) ‘1 VIag =0 . .

We next fix a smooth defining function ¢ of the domain

Q : @ ={¢ < 0} and (¢ij) > 0, d¢ #0 on the boundary.
By (1.1) we have

1 on &,

. (T4t
K(¢) = (¢ ¢i¢j) det(¢ij) + 0(9)

where (¢ij) is the inverse matrix of (¢ij) . This shows

K(4) 1is positive at the boundary. Since ¢ satisfies the
Dirichlet condition of (#) , the solution v may be supposed
to be a slight modification of ¢ . We put

(1.2) Wy = ¢
for an undetermined function £ . Then

f®j+fj¢ 2fd



If we define £ by
(1.4) £ = k(o) 1/0*1
then W, satisfies

ready obtained W

(1.5) w_ =

s = fg®

S

’

K(w1) =

£ 1k ()

£o, - £0

+ 0(¢

1+ 0(¢)

with the property

and K(ws) =

).

£¢.

1+ 0(s%) ,

_fi¢

Assume here we have al-

£ being smooth and positive near the boundary. Let us put

w = w_ + glw )S+1
s+1 s S
and qompute K(ws+1) . Denote W by Then
) ' s
Lw. . + (s+1)w  (g.w.+g.w.)}
1] 1] 7112 Lw, *+ giws+‘|
s+1 Shes
+gijw + s(s+1)gwiij
- Ki(w ) =
s+1
Lw., + g.wS+1 2(w+gw5+1)
J J
where L = 1 + (s+1)gwS , which is invertible near the boundary.
Hence
. -1 s .
wij-fL i(s+1)w (giwj+gjwi) W
5-1
+ s(s+1)gw w.w.} ‘
- K(w ) = Ln+1 ] + Q(wS+1)
s+1 -1 |
W, 2L W]

J



= Ln+1{1 -2$(s+1)L_1gws}(-K(w)) + ot .

Hence, by the assumption (1.5) for w = We o

K(wg,,) = K(w) + (s+1) (n+1-2s)qw® + o (w"")

Now define g by

(1.6) g = L - Riw) -
(s+1) (n+1-2s)w
unless n+1-2s # 0 . Then (1.5) also holds for Wt This
argument shows
Proposition 1.
a) Assume n s even. Then, for any s21 , there exists a function W

with the property (1.5).

b) Assume n is odd. Then there exists a function W with the property
(1.5) for s s. (n+1)/2.

We call this w an appréximate solution of (#) . Let

v be aunique convex solution of (#) . By the convexity
(1.7) v = g9 near LRy

for some positive function g . Assume an approximate solution

w satisfies
W = v-+h¢k for some k 21 and K(w) = 1 +O(¢S).
Then the similar computation as above shows

K(w) = {1-+k(n+3—2k)hg—1¢k-1} K(v) + 0(s%)



s+1=k

Since this is equal to 1 +O(¢s) yh=0(9 )  when

k-1<s and n+3-2k#0. Therefore

Proposition 2.

a) Asswme n 1is even. Then, for any S , there exists an approximate

golution w satisgying w = v +G($5) ,

b) Assume n is odd. Then there exists an approxzimate solution W  satis-—

fying W = v-r0(¢(n+3)/2)

The process defining w 1is dependent on the choice of ¢ .
But this proposition implies that it is determined uniquely up to
the ambiguity of order O(¢S) or O(¢(n+3)/2) .
Problem 1. Is the solution u smooth of class Cw(r'esp. Cn+1/2) 1f n

13 even (resp. odd) ?

§2. The characteristic function of a strictly

convex domain.

The characteristic function ls defined in Introduc-

XQ
tion. We introduce another function which we call the kernel

function by

(2.1) ko (x) = J*(2n+1)z(1+<x,g>)'2n'2 x (57 hag .
Q v

The important property of these functions is that they are in-
variant under a projective transformation A : Q1—-> Qz = AQ1
in the sense that

X, (Ax) = (Jac A) ] Xq (%)

(2.2) 1

(Ax) = (Jac a) % kg (2)
1

Ko

’
e

where Jac A 1is the jacobian determinant. The sclution v of

(#) is also invariant:



2/mely . x,

2 1

(2.3) VQ (Ax) = (Jac A)

see [6]. In (6] it is shown that ¥ and k have the following
expansions.

- /2, =-(n+1)/2 _ ¥ .y J=(n+1) /2
(2.4) -n-1 j—n-1
k(x) = cK(¢) (=¢) + quan €4 (~9) + O(log|d))
where A(¢) =1 or 1log|¢| according as n is even or odd re-

spectively and c¢. are constants depending on the dimension;:

¢y = (2m /2 1((ne1)/2), ¢, = (n+1)1/2 . The boundary value
of coefficients can be computed using derivatives of ¢ at the
boundary. Since we may take an approximate solution w in §1
as a defining function, (2.4) holds for ¢ = w. Then referring
to Proposition 2, we have

x) = ey (=) T2 e ) T2 6 p v
(2.5) -n-1 j-n-1
k(x) = c,(-v) + 1.y (-v)d +0(C(v)) ,
3 73
where B(v) = 1 or logi{v| and C(v) = log|v| or v~ (n¥1)/2

according as n 1is even or odd respectively. The boundary
values of IH and :Qj are expressible by use of the derivatives
of a defining function, i.e. by use of local geometric data of

the boundary.

Problem 2. In view of the projective imvariance of X, Kk and v the
above coefficients are certain polynomials of the projective invariants of
the boundary. Give a precise statement of this fact.

In the next secticn we will compute P, explicitly and
show that this is a fundamental projective invariant of the

boundary.



§3. Explicit calculation of a coefficient.

Let us recall first a result in [6]}. Fix a point p in the

boundary and choose local coordinates (x1, .oy xn) at p so
that {x" = 0} is the tangent plane at p . We use the notation
Yy = x? and x = (x1, ey xn-1) . Suppose the boundary is writ-
ten as
= - h(x)
L P Y I R i3 ko2 5
x) = 25ijx XD+ g XTXTKT + a gy XTXOXOXK +0(|x]|™)

Here 1<4i,j,...Sn-1 and the summation convention is used. Per-

forming a projective change of coordinates at p, we may assume
(3.2) i ayiy * zi'j ;595 0 -

We define a scalar invariant F ét p by
(3.3) F=1; 5k aijkaijkr

This is called the Fubini-Pick cubie invariant of the hypersur-
face 50 . It is covariant under a proj. change of of coordina-
tes in the following sense. Take another coordinates satisfying

the above conditions. It corresponds to a matrix of the form
A

(3.4) A= | b a
1l

where )\,L€R, a€0{(n-1}) and b, ceR™" satisfying the rela-

tions tc = A_Tab and p = %Actc . The transformation is given
by (x,y) ———>(ai]xl-+cjy/k-+bixl-+uy ' A—]y/k-kbixl-+uy) . The

-n-1

jacobian determinant at the origin is A And we know that

the Fubini-Pick invariant F in new coordinates is given by

(3.5) F o= \°F



See [7] for these facts. Now the result we need is

_ _oy—(n+1/2 F
(3.6 x| = ety (1 + =yy) * 0((Y)
where D(y) = y_(n-3)/2 for nz24,log|y|] for n =3 and

1
for n = 2 (Theorem 6 in [6]) . Note that F = 0 when n = 2.

We next compute an approximate solution w at p. Define

a defining function ¢ near p by

9 = y+h+ %(y-bh)z .

Then K(¢) = (1+y+h)n—1dethij . By the definitions (1.2) and (1.4)
(3.7) w,= £, £= (1+y+h)'“”(dethij)'1/n*1
To find w, Wwe compute the 0f{¢)-term of K(WI) Put
: 2
1 - K(w1) = Q¢ + 0(97) .
Then by (1.3) we see that
_ _aght2
f¢a8 f¢a

where Q is the determinant of the matrix whose

i £6 0

B

Y-th row is replaced by the vector (fY1' «ony fYn' _fY) and
Qn+1 is that of the same matrix whose last row is replaced by

(-f1, ey -fn, 2f) . Here 1< a,B,v&n . We will now evaluate

Q at p. Recalling definitions we see

h=hy =0, hjy=¢6.,,£=1, £ =0, £, = o7
£iy = gi%'sij -5+ i57 Fin=o
S T A T T A SR R
at the origin, whe;e. b,. denotes a coefiicient of dethij:
deth;, = 1 + %bijxlxj + O x13). In view of (3.2) it is given by




-10=.

(3-8) biy = I 2i5ik = 2k, 2 k2 F3ka
From these identities we see

-1 -
det 6,4(p) = 1, Q; () = ~£;, Q) = - 2%, QL p) =2 - B

Hence, by use of (3.8) and (3.2),

(n=1) {(n-3) _ _2
n+1 n+1

Q(p) =

Now by definition (1.6) we can easily see

1 2 3
W2|x=0 =Yy ;{:Fy +0(y™) .

This leads to, by Proposition 2,

2 . o(y3) .

(3.9) v‘x=0 =y - Fy

n--1
Then, combining this with (3.6), we have

-(n+1)/2,, _ _ 5F

(3.10) X = ¢C (-V) (1 WV

1 ) + 0(D(v))

on the line x=0. Here note that the projective invariance
(2.2) and (2.3) of yx and v implies that they change by mul-

An+1 and AT2 respectively under the coordinate

tiplication cf
change by (3.4). Together with the property (3.5) this shows that
(3.10}) is independent of the choice of coordinates and that, re-
ferring to the transformation (1.1), we have completed the proof

of

Theorem. Let Q be a strictly convex bounded domain with smooth boundary.
Then the characteristic function X, of the domain Q is expanded by use of
the convex solution W of the equation (0.2) and the Fubini-Pick znvariant

F of the bouncary as follows.

XQ = C(-U)_n-1 (1 + E‘TSTS_T)UZ) + O(E(u)) ’
ukere ¢ = 2% (/20 (ne)/2) and E(uw) = uThT3 for on oz 4,

log[u| for n = 3 and 1 for n = 2
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Since the vanishing of the Fubini-Pick invariant character-
izes locally an ellipsoid (L. Berwald, see [S])for nz3 , we
have
Corollary 1. In addition to the assumptions of Theorem, assume that
xu.n+1 becomes constant near some open set U 1in the boundary and that

nz3 . Then each connected component of U <s a part of an ellipsoid.
Especially we have

Corollary 2 ([1]). In addition to the assumption of Theorem, assume
that the projective automorphism group is noncompact and that nz23 .Then its

boundary ts an ellipsoid.

Proof. By the projective invariance (2.2) and (2.3) the function

xun+1 must be constant everywhere.
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