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ON THE CHARACTERISTIC FUNCTION OF A STRICTLY

CONVEX DOMAIN AND THE FUBINI-PICK INVARIANT

Takeshi SASAKI

Introduction.

This paper is a continuation of the author's note [6] on

the characteristic function and the associated differential equa-

tion defined on a strictly convex bounded domain in the euclidean

space Rn. We denote. such a domain by n and assume that the

boundary an is smooth. Let n* be the dual domain of n
defined as the set int{~ ERn; 1 +<x,~> ~ 0, xEr2}, <,> being

the inner product. It is also a strictly convex domain and pro

jecitvely equivalent to a bounded domain. Then the- characteristic

function Xn 1s defined by

(0.1) X\l(x) = L*nl (1+<x,;»-n-1 d;
n

It tends to infinity at the boundary. By the associated,differen

tial equation we mean an equation of Monge-Ampere type defined by

(0.2)

(-u) n + 2 det (u .. ) = 1
~J

u Ian = 0

on

The unique existence of a convex solution u, i.e. u < 0 and

(u .. ) > 0, is known by S. Y. Cheng and S. T. Yau [2].lJ

The purpose of this paper is to give a relation between

these functions \, and u. The resul t is

Theorem. There e:::ists a smooth funation F on ~ such that

-n-1 5 2
JQ:::: cu (1 + 24 (n-1) Fu + (higher order of u))
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where c is a constant depending on n. The bowzdary vaZue of F is the

Fubini-Pick cubic invariant of the boundary.

From this theorem follows

Corollary 2 [1]. Asswne "the projective automorphi.sm group is noncompact.

Then.it is an.eZZipsoid.

We will define·in §1 an approximate solution of (0.2). The

process is very similar to that shown in [3]. r'n.;§2 we will give

an expansion of X with respeet to u, where eoefficients are

computable by use ·of loeal geometrie data of the boundary. In §3

we will explieitly compute the first non-trivial coefficient and

prove Theorem.

Let us remark that the theorem 1s areal analogoue of the

deep result due to C. Fefferman [4] on the Bergman kernel fune

tion on a strongly pseudoeonvex domain. As was shown in [6], the

equation (0.2) for the domain Q is a restrietion in simple way

~f a complex Mange-Ampere equatian defined on the tube damain

V + iRn+ 1, where V is the non-degenerate convex cone over the

domain Q • Note that a tube domain is not generally strongly

pseudoconvex. It is easy to see that the expansion (2.4) given

in §2 implies the expansion of the Bergman kernal function of
v

this tube domain outside its Silov boundary V + i{ O} with

respect to the solution of this complex equation. However to
give a geometrie interpretation of this expansion is an open

problem.

This paper. is written while the author is staying in the

Max-Planck-Institut für Mathematik, to which he is very grate

ful for the hospitality given to hirn.
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§1. Approximate solutions.

We first modify the equation (0.2) introducing an operator

./

(1 • 1 )

v .. v.
J.J l.

I" (-1-2v) =K(v) =
v. 2

J v

for a negative function v. Then the equation (0.2) is equi

valent to the equation

(# )

= 1

= 0

on n,

We next fix a smooth defining function rp of the domain

n : n = {rp < O} and (~ij) > 0, d~ ~ 0 on the boundary.

By (1.1) we have

K(<P) = (L<pijep.<P.) det(<p .. ) + 0(1))
1. J J.J

where (<P ij.) is the inverse matrix of (1)ij) This shows

K(ep) is positive at the boundary. Since <p satisfies the

Dirichlet condition of (#) , the solution v may be supposed

to be a slight modification of ep. We put

( 1 • 2 ) w = fq,
1

for an undeterrnined function f. Then

( 1 • 3 ) -lf<p .. +f,q,. +f.ep. +f. ,41
1J 1. J ] 1 1J

f tfJ·+ f .1>
] ]

fep. +f.<p
1 1

2ftP



=

-4

f<p .. +f .. 4>
J.] ~J

f<p. -f.q,
~ ~

f<p. - f.<p 2f<p
J J

= fn + 1K (cf» + O( 4» •

If we define f by

(1.4) f = K(4)) -1/n+1 ,

then w, satisfies

ready obtained w
5

K(w,) = 1+0(4)) •

with the property

Assume here we have al-

(' • 5 ) = f cf>s and

f s being srnooth and positive near th~ boundary. Let us put

( ) s+ 1w = w + g ws+1 s 5

and compute K(w s + 1 ) . Denote Ws by w . Then

s
]~w. . + ( 5 +1 ) w (g. w . +g .w. )

~J 1. J J 1.

s+1 5-1
+ g. .w + 5 ( s +1 ) gw . w .W

1.J ~ J

5+1Lw. + g.w
J. J.

S+'2 (w+gw )

where L = 1 + (s+1)gwS , which is invertible near the boundary.

Hence

-1 f 5w·,. +L - (s+1)w (g.w.+g.w,)
lJ L l J J l

s-1 }+ s(s+1)gw w.w.
l J

w,
J

. s+ 1
() (\'1 )
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Hence, b~ the assumption (1.5) for w =

s s+1K(ws + 1 ) = K(w) + (5+1) (n+1-2s)gw + O(w ).

Now define

( 1 • 6 )

9

9 =

by

1 - K(w)

(5+1) (n+1-2s)wS

unless n+1-2s ~ O. Then (1.5) also holds for ws + 1 . This

argument shows

Proposition 1.

a) Assl,une n is even. Then t for any 5 ~ 1 t there e:::ists a funation w

with the property (1.5).

b) Assume n is odd. Then there exists a funation w with the property

(1.5) for s~, (n+1)/2.

We call this w an appro:::imate so Lution of (#). Let

v be a unique convex solution of (#) By the convexity

( 1 • 7) v = gep near

for some pos i tive function g.

w satisfies

Assurne an approximate solution

for some k ~ 1 and K(w) =

Then the similar computation as above shows

{
-1 k-l} kK (w) = 1 + k (n + 3- 2k) hg l4J K (v) + 0 (~ )
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'Since this 1s equal to 1 +0 (eps) , h =0 ($s+1-k) when

k - 1 < 5 and n+3-2k'" o. Therefore

Proposition 2.

a) Asswne n is even". Then, for any S

80 lution w satisgying w = v + 0 (rt> s)

b) Assume n is odd. Then there exists an approximate solution w satis
fying w = v + O(ep (n+3) /2) •

The process defining w is dependent on the choice of ~.

But this proposition implies that it i5 determined uniquely up to

the ambiguity of order 0($5) er O($(n+3)/2)

Problem 1. Is the": so lution

is even (resp. odd) ?

u smooth of class Coo(resp. cn+1/ 2) if n

§2. The characteristic function of a strictly

cenvex domain.

The characteristic function XQ is defined in Introduc

tion. We introduce another function which we call the kernel

function by

(2 • 1 ) f (2n+1)! {1+<x,~»-2n-2 X *(E;)-1 d~
Q* ~

The important property of these functions

variant under a projective transformation

in the sense that

(Ax) =(Jac -1
Xo A) Xr2 (x)

(2.2)
·'2 1

= (Jac
-?

k n (Ax) A) ... k
r2

(x)
"'2 1

is that they are in

A : Q1--> n 2 = An 1

where Jac A is the jacobian deterrninant. The solution v of

(#) is also invariant:
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(2.3)

see [6]. In [6] it 1s shown that X and k have the following

expansions.

k(x)
(2.4)

x(X) =C
1
K($) 1/2 (-ep) -(n+1)/2 + 1 " ö. (1)j-{n+1)/2 + O{A(ep))

1~.J ;;. [n/2 ] J

= C_K($) {_$)-n-1 + L . s. (_$)j-n-1 + O{logl$l)
"L""" 1;;;;J~ J

where A(ep) = '1 er leglepl according as n is even.or odd re

spectively and c. are constants depending on the dimension;
(n-1)/2 1.

c 1 = (~1T) r( (n+1) /2), c 2 = (n+1) ! /2. The boundary value

of coefficients can be cornputed using derivatives of cf> at the

boundary. Since we rnay take an approxirnate solution w in §1

as a def ining function, (2.4) holds for $ = w. Then referring

to Proposition 2, we have

(2 • 5)

x(x)

k(x)

= c
1

(_v)-(n+1)/2 + I. p. (_v)j-(n+1)/2 + O(B(v))
J J

= c (_v)-n-1 + L' Q.(_v)j-n-1 + O(C(v)) ,
2 ] J

where B (v) = 1 or log Ivi and C (v) = log Ivi or v- (n+l) /2

accerding as n is even er odd respeetively. The boundary

values of Pj and ':dj are expressible by use of the derivatives

of a defining function, i.e. by use of Ioeal geometrie data of

the boundary.

Problem 2. In view of the proJ'ective invariance of X, k and v the

above coefficients are certain poZynomiaZs of the projective invariants of

the boundary. Give a precis8 statement of this feet.

In the next section we will compute P1 explicitly and

show that this is a fundamental projective invariant of the

boundary.
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§3. Explicit calculation of a coefficient.

Let us recall first a result in [6]. Fix a point p in the

boundary and choose local coordinates (x 1
, ••• , x n ) at p so

that (xn = O} is the tangent plane at p. We use the notation
n 1 n-1y = x and x = (x , ... , x ). Suppose the boundary is writ-

ten as

y = - h (x)
( 3 • 1 )

h(x)

Here 1 ~ i,j, ... ~n-1 and the summation convention is used. Per

forming a projective change of coordinates at p, we may assume

(3 • 2) 1:. a i , j = L' , a.. , ,= 0 •
~ ~ 1,J 11JJ

We define a scalar invariant F at p by

(3.3) F = L' , k a. 'ka , 'k'1, J , 1J 1J

This is called the Fubini-Pick cubic invariant of the hypersur

face an. It is covariant under a proj~ change of of coordina

tes in the following sense. Take another coordinates satisfying

the above conditions. It corresponds to a matrix of the form

(3.4)

where \,11 ER, a EO(n-1) and b, c ERn
- 1 satisfying the rela-

t ' t ,-1 b d = 1, t Th t f t' . ,10ns C = A a ,~n ,~ ~AC ~ e r
1
ans orrna.1on lS glven

J J.. J J.. - J..by (x, y) --> (a i x + c y / ,\ + b i x + lJY , A. Y/ >.. + b i x + llY) • The

jacobian determinant at the origin is >..-n-1 . And we know that

the Fubini-Pick invariant F in new coordinates is given by

(3.5)
- 2F = ,\ F .



-9-

See [7] for these facts. Now the result we need is

(3 • 6) xl - C 1 (_y)-(n+1/2(1 + 12(~-1)Y) + O(D(y» ,
x=O

where D(y) = y-(n-3)/2 for

for n = 2 (Theorem 6 in [6])

n ~ 4 , log Iy I
Note that

for n = 3 and 1

F = 0 when n = 2

We next cornpute an approximate solution w at p.

a defining function 4> near p by

4> = y + h + ~ (y + h) 2 •

Define

Then K($) = (1+y+h)n-1 deth . • By the ciefinitions (1 . 2 ) and (1 . 4 )
iJ

(3.7) w1 = fep , f = (1 +y+h) -n+1 (deth .. ) -1 /n+1
~J

To find we cornpute the O(ep)-terrn of K(w 1 ) • Put

1 - K (w ) = Q<P + 0 (ep 2) •
1

Then by (1.3) we see that

Q = _2fn +2 det<Paß + \ Q + QL.1:;iy;;iin y n+1'

where is the deterrninant of the matrix fep )o CL whose

y-th

Qn+1
(- f 1 '

Q at

row 15 replaced by the vector (f l' ... , f , -f) and
y yn y

is that of the same matrix whose last row is replaced by

..• , -f , 2f) . Here 1 ~ Ci., ß, "'( ~ n. We will now evaluate
n

p. Recalling def ini tions we see

h = h. = 0
l

h .. =6 .. ,f=1,
lJ lJ ft =

l

n-1
= n+1·

f.. :: E} - 11 8. . __1_
1
b. ., f. 0

lJ n+ lJ n+ lJ ln =

<p.
l = ~l.n :: 0, $n :: tP nn = 1, tP 4. = o. .

lJ lJ

at the origin, where b.. denotes a coefficient of deth .. :
1 i j 1J 3 1)

deth .. = 1 + -2b .. x x + O(!x! ). In viet.oJ of (3.2) it is given by
lJ 1.J
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(3.8)

From these identities we see

det ~aß(p) = 1, Qi (p) = -fii , an(p)

Hence, by use of (3.8) and (3.2),

n-1
= - n+l' ~+1 (p)

n-1
= 2 - n+1

Q(p) = (n-1) (n-3) __2_F
n+1 n+1

Now by definition (1.6) we can easily see

1 2 3
w2 [ x=O = Y - ---z-:-FY + 0 (y )

n -1

This leads to, by Proposition 2,

(3.9) I ----21Fy2 + O(y3) .v x=O = y -
n -1

Then, combining this with (3.6), we have

(3.10) x = C
1

(-V)-(n+1)/2(1 - 12~~-1)V) + O(D(v))

fOl' n ~ 4 ,

on the line x = 0 Here note that the projective invariance

(2.2) and (2.3) of X and v implies that they change by mul

tiplication of An +1 and A- 2 respectively under the coordinate

change by (3.4). Tagether with the property (3.5) this shows that

(3.10) is independent of the.choice of coordinates and that, re

ferring to the transformation (1.1), we have completed the proof

of

Theorem. Let r2 be a strictly convex bounded domain 1.Jith smooth boundary.

Then the characteristic funation XQ o[ the domain r2 is expanded by use oi

the convex solution U oi the equation (0.2) end the Fubini-Pick invariant

F oi the bouneary as follows.

-n-1 SF 2
X~l::: c(-u) (1 + 24(n-1) u) + O(E(u)) ,

where c = 2n iT (n - 1 ) / 2 r ( (n + 1 ) / 2 ) end E (u) ::: u - n + 3

log Iu I f 0 r n ::: 3 end 1 /0 P n ::: 2
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Since the vanishing of the Fubini-Pick invariant character

izes locally an ellipsoid (L. Berwald, see [5]) for n '= 3 , we

have

Corollary 1. In addition to the asswnptions of Theorem, assume that
xun+1 becomes constant near some open set U in the bounriarnJ and that

n,= 3. Then each conneoted cOl7TJ?onent of U is apart of an e'l'lipsoid.

Especially we have

Corollary 2 ([ 1 ] ). In addition to the asswrrption of Theorem, assume

that the projective automorphism group is noncol7TJ?act and that n;;;: 3 . Then its

boundary is an ellipsoid.

Proof.
n+l

XU

By the projective invariance (2.2) and (2.3) the function

roust be constant everywhere.
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