Einstein-Hermitian metrics on non-compact Kähler manifolds

Shigetoshi Bando

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300, Bonn 3, BRD and Mathematical Institute Tohoku University Sendai, 980, Japan

MPI/90-60

Einstein-Hermitian metrics on non-compact Kähler manifolds

Shigetoshi Bando

In his paper [D], Donaldson showed that there is a natural correspondence between the moduli space of anti-self-dual connections with finite action on the complex Euclidean plane \mathbb{C}^2 and the moduli space of holomorphic vector bundles on the complex projective plane \mathbb{P}^2 whose restrictions to the complex line at infinity are trivial. The purpose of the paper is to generalize the result for certain class of Kähler manifolds.

Let \overline{X} be an *n*-dimensional $(n \ge 2)$ compact Kähler manifold and Da smooth divisor which has positive normal line bundle. We denote the complement of D by X and put a cone-like Kähler metric ω on X. We fix a point o in X and denote the distance from o by r. Then our main result is

Theorem 1. There is a natural correspondence between the moduli space of Einstein-Hermitian holomorphic vector bundles on (X, ω) which satisfy the curvature decay condition

$$|F| = O(r^{-2-\epsilon}), \quad \text{with } \epsilon > 0,$$

and have trivial holonomy at infinity, and the moduli space of holomorphic vector bundles on \bar{X} whose restrictions to D are U(r)-flat.

Corollary 2. If (X, ω) is asymptotically locally Euclidean, ALE in short, then in the Theorem 1 we can replace the curvature decay condition by

$$\int_X |F|^n < \infty.$$

And in this case it is equivalent to

$$|F| = O(r^{-(n+2-\epsilon)}),$$
 for any $\epsilon > 0.$

Corollary 3. Let X be a non-singular compact Kähler surface, C a nonsingular curve with positive self intersection $C^2 > 0$ and E a holomorphic vector bundle on X. If the restriction $E|_C$ of E is poly-stable with vanishing first Chern class $c_1(E|_C) = 0 \in H^2(C, \mathbf{R})$ then we have

$$2c_2(E) - c_1(E)^2 \ge 0.$$

Moreover the equality holds if and only if E is flat.

Remark.

(i) In Corollary 3, if $E|_C$ is poly-stable but may have non-vanishing first Chern class, then considering $E \otimes E^*$ one can get the following inequality.

 $2rc_2(E) - (r-1)c_1(E)^2 \ge 0, \qquad r = \operatorname{rank} E.$

One can also show that the equality holds if and only if E is projectively flat.

(ii) Let X is a compact normal surface, C a smooth ample divisor and E a holomorphic vector bundle on X whose restriction to C is polystable with first Chern class zero. If we take a resolution, we can apply Corollary 3.

Here we remark that Theorem 1 can be considered as a sort of removable singularity theorem of holomorphic vector bundles across divisors. For a removable singularity theorem across subvarieties of higher co-dimension, the readers are referred to [B] and [B-S].

The author would like to express his thanks to Professors Mabuchi and Nakajima for helpful discussions. He also would like to acknowledge his gratitude to Max-Planck-Institut für Mathematik for hospitality. This work was done during his stay in Bonn.

1. Existence of Einstein-Hermitian metrics

Let (\bar{X}, ω_0) be a compact *n*-dimensional $(n \ge 2)$ Kähler manifold and D a smooth divisor which has positive normal line bundle. We denote the Poincaré dual of D and its restriction to D by the same notation [D]. Set $X = \bar{X} \setminus D$. By assumption, there exists a Hermitian metric $\|\cdot\|$ on the line bundle L_D defined by D such that its curvature form θ is positive definite on a neighborhood of D. Pick a holomorphic section σ of L_D on \bar{X} whose zero divisor is D. Put $t = \log \|\sigma\|^{-2}$. Then $\theta = \sqrt{-1}\partial\bar{\partial}\log \|\sigma\|^{-2} = \sqrt{-1}\partial\bar{\partial}t$. Fix an arbitrary positive number a > 0 and a sufficiently large positive constant C. We define a Kähler metric ω on X by

$$\omega = \sqrt{-1}\partial\bar{\partial}\frac{1}{a}\exp(at) + C\omega_0$$

= $\exp(at)\theta + a\exp(at)\sqrt{-1}\partial t \wedge \bar{\partial}t + C\omega_0.$

Here we identify a Kähler metric and its Kähler form. Then it is easy to see that ω is a $C^{k,\alpha}$ -cone-like metric for any positive integer k, real number $0 < \alpha < 1$ and some positive number $\tau > 0$.

Definition. A complete Riemannian manifold (M,g) is said to be $C^{k,\alpha}$ cone-like of order $\tau > 0$ if there exists a compact subset K of M, a compact Riemannian manifold (N,h), a compact subset K' of the cone CN over N and a diffeomorphism $\phi : CN \setminus K' \longrightarrow M \setminus K$ such that it holds that up to $C^{k,\alpha}$ -order

$$\phi^* g = dr^2 + r^2 h + O(r^{-\tau}).$$

Then in particular (M, g) is asymptotically flat in the following sense ([BK]).

Definition. A complete Riemannian metric g on a manifold M is said to be of $C^{k,\alpha}$ -asymptotically flat geometry if for each point $p \in M$ with distance r from a fixed point o in M, there exists a harmonic coordinates system $x = (x^1, x^2, \ldots, x^m)$ centered at p which satisfies the following conditions: (i) The coordinate x runs over a unit ball \mathbf{B}^m in \mathbf{R}^m .

- (ii) If we write $g = \sum g_{ij}(x) dx^i dx^j$, then the matrix $(r^2 + 1)^{-1}(g_{ij})$ is
- bounded from below by a constant positive matrix independent of p. (ii) The $C^{k,\alpha}$ -norms of $(r^2 + 1)^{-1}g_{ij}$, as functions in x, are uniformly

bounded. On such a manifold we can define the Banach space $C^{k,lpha}_{\delta}$ of weighted

On such a manifold we can define the Banach space C_{δ} of weighted $C^{k,\alpha}$ -bounded functions: We may assume that $(r^2 + 1)^{-1}(g_{ij}) \leq 1/2(\delta_{ij})$

and the norm of a function $u \in C_{\delta}^{k,\alpha}$ is given by the supremum of the $C^{k,\alpha}$ -norms of $(r^2+1)^{\delta/2}u$ with respect to the coordinates x. Then we can apply the interior Schauder estimates as in [BK]. Note that on a cone-like manifold the Sobolev inequality holds.

Definition. For the Hermitian holomorphic vector bundle (E, h) on (X, ω) with fast decreasing curvature $|F| = O(r^{-2-\epsilon})$, $\epsilon > 0$, we can define a holonomy at infinity as follows. Take a complex disk D in \overline{X} which transversally intersects D at a point o and the circle S_r of radius r centered at o. Then the equivalence class of the holonomy of S_r converges as r tends to zero. It is easy to see that the equivalence class is independent of the choice of the disk, and we call it the holonomy at infinity.

Theorem 4. Let E a holomorphic vector bundle on \overline{X} . If its restriction $E|_D$ to D is poly-stable and degree zero with respect to [D], then the restriction $E|_X$ admits an Einstein-Hermitian metric with respect to the metric ω which satisfies the curvature decay condition

$$|F| = O(r^{-2}).$$

Moreover, if $E|_{D}$ is flat, then the Einstein-Hermitian metric satisfies

$$|F| = O(r^{-2-\epsilon}),$$

and has trivial holonomy at infinity.

Proof. By assumption, $E|_D$ admits an Einstein-Hermitian metric h_0 with respect to the Kähler metric $\theta|_D$ (cf. [N-S], [D1-3], [U-Y1-2], [Sim], [Siu], [K]). We smoothly extend it over \bar{X} and get a Hermitian metric, we still call it h_0 , on E. Then it is easy to see that with respect to the metric ω , its curvature F_0 satisfies with some $0 < \epsilon < 1$

$$|F_0| = O(r^{-2}),$$
 $(|F_0| = O(r^{-2-\epsilon}),$ if $E|_D$ is flat),
 $|\Lambda F_0| = O(r^{-2-\epsilon}),$

together with the corresponding estimates for their covariant derivatives. Now we solve the following heat equation on Hermitian metric h.

$$\frac{dh}{dt}h^{-1} = -\sqrt{-1}\Lambda F,$$
$$h\Big|_{t=0} = h_0.$$

As shown by Simpson [Sim], for any compact smooth subdomain D in X, we have a unique solution until infinite time with the boundary condition

$$h\big|_{\partial D} = h_0\big|_{\partial D}.$$

Then it satisfies

$$\frac{d\Lambda F}{dt} = \Box \Lambda F,$$

$$\frac{d|\Lambda F|}{dt} \le \Box |\Lambda F|,$$

$$|\Lambda F|(t,x) \le \int_D H_D(t,x,y) |\Lambda F_0|(y).$$

Here \Box and $H_D(t, x, y)$ are the complex (crude) Laplacian with respect to ω and its heat kernel on D with the Dirichlet boundary condition. Since the metric ω is cone-like, X admits the heat kernel H(t, x, y) and the Green function $G(x, y) = \int_0^\infty H(t, x, y) dt$. Then

$$\int_0^\infty |\frac{dh}{dt} h^{-1}|(x)dt \le \int_0^\infty dt \int_D H_D(t, x, y) |\Lambda F_0|(y)$$
$$\le \int_0^\infty dt \int_X H(t, x, y) |\Lambda F_0|(y)$$
$$= \int_X G(x, y) |\Lambda F_0|(y).$$

Applying the argument of [B-K] to the function $u(x) = \int_X G(x,y) |\Lambda F_0|(y)$ which satisfies $\Box u = -|\Lambda F_0|(y) = O(r^{-2-\epsilon})$, we can show the estimate $u = O(r^{-\epsilon})$. Thus taking the limit of $t \longrightarrow \infty$ and $D \longrightarrow X$, the solution metrics conveges to an Einstein-Hermitian metric. Now we call it h and it holds that $|h - h_0| = O(r^{-\epsilon})$. Then the argument of [B-K] and the proof of Proposition 1 in [B-S] gives the higher order estimates of $h - h_0$ and hence the desired curvature estimates. The triviality of the holonomy of hat infinity follows from that for h_0 and the estimate of $h - h_0$.

If n = 2 and $E|_{D}$ is flat, then it holds

$$2c_2(E) - c_1(E)^2 = (8\pi^2)^{-1} \int_X (|F|^2 - |\Lambda F|^2).$$

Since $\Lambda F = 0$, we get

$$2c_2(E) - c_1(E)^2 = (8\pi^2)^{-1} \int_X |F|^2 \ge 0.$$

This shows the first part of Corollary 3, and that the equality implies the flatness of E on X. To show the flatness on \overline{X} we need results in the next section.

Remark. By the similar argument we can show the following existence theorem for harmonic mappings. Let M be a not necessarily complete Riemannian manifold with the Green function $G(x, y) \ge 0$ and N a complete Riemannian manifold with non-positive sectional curvature. We denote the distance function on N by d. For a mapping $f: M \longrightarrow N$, we define

$$u_f(x) = \int_M G(x, y) |\Delta f|(y).$$

Theorem. If the integral u_f converges and defines a continuous function on M, then f can be deformed by the heat equation to a harmonic mapping h which satisfies

 $d(h(x), f(x)) \le u_f(x).$

2. Einstein-Hermitian bundles with fast curvature decay

By Theorem 4, we get the correspondence stated in Theorem 1 in one direction. Here we work in the converse direction. Let (E, h) be an Einstein-Hermitian holomorphic vector bundle on (X, ω) whose curvature F decreases rapidly such that with $0 < \epsilon < 1$

$$|F| = O(r^{-2-\epsilon}).$$

F satisfies the following equation.

$$(*) \qquad \qquad \Box F = F * R + F * F,$$

where R is the curvature tensor of the metric ω and *'s stand for some bilinear pairings.

The following Lemma 5 is standard. For instance, refer to [B-K-N].

Lemma 5. Let u, f and g be non-negative functions and τ a constant such that

$$\Box u \ge -fu - g, \qquad f = O(r^{-2}), \quad g = O(r^{-2-\tau}),$$
$$\frac{1}{r^{2n}} \int_{B(x,\delta r)} u^2 = O(r^{-\tau}),$$

where $B(x, \delta r)$ is the ball of radius δr centered at x with some fixed number $0 < \delta < 1$. Then u satisfies

$$u = O(r^{-\tau}).$$

Lemma 6. For any non-negative integar k, we have

$$|\nabla^k F| = O(r^{-2-k-\epsilon}).$$

Proof. We only show the case k = 1. The general case is done by induction. The equation (*) implies

(**)
$$\Box |F|^2 \ge |\nabla F|^2 - C(|R||F|^2 + |F|^3).$$

Here and hereafter C stands for a general constant which may change in different appearance. Fix a small $0 < \delta < 1$ and take a cut-off function $\phi \geq 0$ such that $\phi = 1$ on $B(x, \delta r)$, $d(\operatorname{supp}\phi, o) \geq \delta r$ and $\Box \phi \leq Cr^{-2}$.

Multiply the inequality (**) by ϕ and integrate the result by parts, then we get

$$\int_{B(x,\delta r)} |\nabla F|^2 \le \int \Box \phi |F|^2 + Cr^{-2} \int \phi |F|^2 \le Cr^{2n-6-2\epsilon}.$$

Differentiate the equation (*) and get

$$\Box \nabla F = R * \nabla F + F * \nabla F + \nabla R * F$$
$$\Box |\nabla F| \ge -C(|R| + |F|)|\nabla F| - C|\nabla R||F|.$$

Then we apply Lemma 5 and conclude that

$$|\nabla F| = O(r^{-3-\epsilon}).$$

From now on we work locally. We take a local coordinates system $(z', z) = (z^1, z^2, \ldots, z^{n-1}, z^n)$ at an arbitrary fixed point $p \in D$ such that $D = \{z^n = 0\}$. By calculation one can show the following Lemmas.

Lemma 7. With respect to the flat metric $|dz'|^2 + |z^n|^{-2}|dz^n|^2$, the curvature F admits the following estimates. For any non-zero integer k

$$|\nabla^k F| = O(|z|^{a\epsilon}).$$

We take an *m*-covering $\phi_m : (w', w^n) \longrightarrow (z', z^n)$ such that z' = w'and $z^n = (w^n)^m$ with large positive integer *m*.

Lemma 8. We pull back the bundle (E, h) to w-space by ϕ_m , then with respect to the flat metric $|dw|^2$

$$|\nabla^k F| = O(|w|^{a\epsilon m - k - 2}).$$

Now we put the assumption of trivial holonomy at infinity. On the w-space we have C^l -bound on the curvature tensor for any fixed l taking m large, the connection extends over the set $D_m = \{w^n = 0\}$ smoothly up to C^l -order (cf. [BKN]). Since outside D_m , the Hermitian connection satisfies the integrability condition, it remains so over D_m and defines a Hermitian holomorphic vector bundle E_m on the w-space. The deck transformation group $G_m = \{\tilde{\rho} : (w', w^n) \longrightarrow (w', \rho w^n) \mid \rho^m = 1\}$ lifts to a group of holomorphic bundle maps of E_m . We recover the original bundle E as the

invariant subspace $E = E_m^{G_m} |_{\{w^n \neq 0\}}$. Since by assumption the isotropy group of G_m at D_m is trivial, the natural extension $\hat{E} = E_m^{G_m}$ of E over D is again a Hermitian holomorphic vector bundle. Note that $\hat{E}|_D$ and $E_m|_{D_m}$ is isomorphic and the later has vanishing curvature. Hence $\hat{E}|_D$ is a flat bundle. This completes the proof of the converse direction of Theorem 1. The proof also shows the last part of Corollary 3.

Corollary 2 follows from the results in [B-K-N, §4].

Reference.

- [B] S. Bando, Removable singularities of holomorphic vector bundles, a preprint.
- [B-K] S. Bando and R. Kobayashi, Ricci-flat Kähler metrics on affine algebraic manifolds. II, Math. Ann. 287 (1990), 175–180.
- [B-K-N] S. Bando, A. Kause and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. math. 97 (1989), 313-349.
- [B-S] S. Bando and Y.-T. Siu, Stable sheaves and Einstein-Hermitian metrics, in preparation.
- [C-G] M. Cornalba and P. Griffiths, Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. math. 28 (1975), 1-106.
- [D1] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Diff. Geom. 18 (1983), 269-277.
- [D2] S. K. Donaldson, Anti self-dual Yang-Mills connections over comlpex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985), 1-26.
- [D3] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231-247.
- [G-T] D. Gilbarg and N. S. Trudinger, "Elliptic partial differential equations of second order", second edition, Springer-Verlag, Berlin and New York, 1983.
- [H] N. J. Hitchin, The self-duality equations on a Riemannian surface, Proc. London Math. Soc. (3) 55 (1987), 59-126.
- [K] S. Kobayashi, "Differential geometry of holomorphic vector bundles", Publ. Math.
 Soc. Japan, Iwanami Shoten and Princeton Univ., 1987.
- [N-S] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. 82 (1965), 540-564.
- [Sim] C. Simpson, Constructing variation of Hodge structure using Yang-Mills theorey and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867–918.
- [Siu] Y.-T. Siu, "Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics", Birkhäuser Verlag, Basel-Boston, 1987.
- [U-Y1] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), S257-S293.
- [U-Y2] K. Uhlenbeck and S.-T. Yau, A note on our previous paper: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 42 (1989), 703-707.

Author's address S. Bando Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300, Bonn 3, BRD and Mathematical Institute Tohoku University Sendai, 980, Japan