Elliptic Surfaces with Four Singular Fibres

by

Stephan Herfurtner

.

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

•

.

31

relative to this basis has the form

•

.

[0	0	0	0	*]
0	*	0	о	?
0	0	٠	0	?
0	0	0	*	?
+	?	?	?	?

with entries equal to $2\pi\sqrt{-1}$ times sums of suitably defined residues at cusps for D of differentials such as $\partial_{-}^{t}\overline{w}_{1}/\partial cP \partial \overline{w}_{1}/\partial a$ and with nonzero entries at each *. See Endo [5]. Elliptic Surfaces with Four Singular Fibres by Stephan Herfurtner

Already at the beginning of the sixties, elliptic surfaces were considered by K. Kodaira [6]; A. Kas embedded them in a projective bundle over the base curve B [5]; B. Hunt/W. Meyer introduced an estimate for the Euler number which depended on the genus of the base curve and the number of singular fibres [4]; for elliptic surfaces with three singular fibres and section over P_1C , U. Schmickler - Hirzebruch proved that there are only 36 combinations of singular fibres, subdivided in 12 cases [12].

When studying elliptic surfaces with four singular fibres, section and nonconstant \mathcal{J} -invariant over $\mathbf{P}_i \mathbf{C}$, as presented here, it is practical to distinguish two sets:

 $T^*=\{I_n \ (n \ge 0), II, III, IV\} \text{ and } T^-=\{I_n^* \ (n \ge 0), IV^*, III^*, II^*\},$

where I_0 is a regular fibre. At least one fibre is then of type I_n , n > 0, or I_n^* , n > 0, see [4]. By a suitable choice of the homological invariant \mathcal{G} belonging to the \mathcal{J} -invariant, all possible fibre combinations can be reduced such that at most one fibre is in T^{*}.

Theorem 6 summarises the results. Table III shows all fibre combinations and Weierstraß Models. The proof will be given by example. The notation is taken from Kodaira [6] or W. Barth/ C.Peters/ A. Van de Ven [1].

I. Naruki [10] and R. Miranda/U. Persson [9 and 11] achieved similiar results using different methods.

For an elliptic surface $\pi : E \longrightarrow B$, where E is a two-dimensional compact complex analytic manifold, B is a compact Riemann surface of genus g and π is a proper holomorphic mapping, $E_b := \pi^{-1}(b)$ is a nonsingular curve of genus 1 for all $b \in B_0$, $B_0 := B - P$, $P := \{\rho_1, \rho_2, ..., \rho_n\}$, $\rho_i \in B$, i = 1, ..., n. From now on it will be assumed that E is minimal and admits a section, i.e. E has no exceptional curves of the first kind in the fibres. All singular fibres are simple, because there is a section.

The monodromy representation of $\pi: E \longrightarrow B$ is a homomorphism

 $\chi: \pi_{I}(B_{0}, b) \longrightarrow SL(2, \mathbb{Z}) \quad b \in B_{0},$

which is unique up to conjugation in $SL(2,\mathbb{Z})$. The image of $\pi_i(B_0,b)$ is called the monodromy group. Elements of this group are the monodromy matrices A_{β_i} corresponding to the closed paths β_i around ρ_i , i = 1,...,n.

For each type of singular fibre F_i over ρ_i there is one $SL(2,\mathbb{Z})$ - conjugate class of monodromy matrices. In table I they are listed in normal and general form for the singular fibres.

The homological invariant \mathcal{G} , a sheaf over B, is equivalent to the monodromy representation. In a base point ρ with the monodromy matrix A the stalk \mathcal{G}_{ρ} is isomorphic to $\{\mathbf{x} \in \mathbb{Z}^2 \mid A\mathbf{x} = \mathbf{x}\}$.

Each regular fibre E_0 of an elliptic surface $\pi : E \longrightarrow B$ is isomorphic

to
$$(\rho)$$
 to (ρ) to $\omega: \tilde{B}_0 \longrightarrow \mathbb{H}$ with $\omega(\tilde{\beta}(\tilde{b})) = A_{\beta}(\omega(b))$ is a unique

holomorphic function. Here A_{β} is the monodromy in $SL(2,\mathbb{Z})$ of the closed path β in B_0 , $\sigma: \widetilde{B}_0 \longrightarrow B_0$ is the universal covering of B_0 , \mathbb{H} the upper halfplane, $\sigma(\widetilde{b}) = b$ and $\pi_1(B_0) \longrightarrow Aut(\widetilde{B}_0)$ $\beta \longrightarrow \widetilde{\beta}$

is the deck transformation.

There is a mapping $\mathcal{J}: B_0 \longrightarrow SL(2,\mathbb{Z}) \setminus \mathbb{H}$, which allows the diagram to commute:

$$\frac{\widetilde{B}_{0}}{\pi_{1}(B_{0},b)} = \begin{array}{c} \widetilde{B}_{0} & \xrightarrow{\omega} & H \\ \sigma \\ \end{array} \xrightarrow{\sigma} B_{0} & \xrightarrow{\sigma} SL(2,\mathbb{Z}) \setminus H \cong \mathbb{C},$$

 $\widetilde{\mathcal{F}}$ is the elliptic modular function.

The functional invariant of E is defined as the holomorphic continuation of \mathcal{J} on B in SL(2,**Z**) $\mathbb{H}^* \cong \mathbb{P}_1\mathbb{C}$, $\mathbb{H}^* = \mathbb{H} \cup \mathbb{P}_1\mathbb{Q}$. The values of \mathcal{J} in $\rho_i \in P$, depending on the type of the singular fibre over ρ_i , are 0, 1 or ∞ , except for \mathbb{I}_0^* .

Let $P := \{\rho_i \in B \mid i = 1,...,n\}$ $n \ge 2$ be the exceptional set and

 $\chi: \pi_1(\mathbf{B}_0, *) \longrightarrow \operatorname{Aut}^*(\mathbf{H}_1(\mathbf{E}_*, \mathbb{Z})) \cong \operatorname{SL}(2, \mathbb{Z})$

the monodromy representation of the fundamental group, where

$$\pi_{\mathbf{i}}(\mathbf{B}_{0},*) \cong \langle \mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{j}} | \begin{array}{c} \mathbf{i} = 1, \dots, \mathbf{g} \\ \mathbf{j} = 1, \dots, \mathbf{n} \end{array} \middle| \begin{array}{c} \mathbf{f}_{\mathbf{i}} \\ \mathbf{f}_{\mathbf{i}} \\ \mathbf{i} * \mathbf{i} \\ \mathbf{i} * \mathbf{i} \\ \mathbf{j} \\ \mathbf{j} * \mathbf{i} \\ \mathbf{j} \\ \mathbf$$

 $[\mathbf{a}_i, \mathbf{b}_i] = \mathbf{a}_i \mathbf{b}_i \mathbf{a}_i^{-1} \mathbf{b}_i^{-1} \ .$

 \mathcal{J} is the functional invariant of the elliptic surface $E \longrightarrow B$.

The extension of the homological invariant \mathcal{G}_0 over B_0 to \mathcal{G} over B is uniquely given by the monodromy representation χ , which is determined by the \mathcal{J} -invariant except for its sign, i.e. there are 2^{2g+n-1} different homological invariants, depending on choice of sign for the matrices $A_i = \chi(a_i)$, $B_i = \chi(b_i)$ and $C_j = \chi(c_j)$, i = 1,...,g;

j = 1,...,n, in the product $\prod_{i=1}^{g} [A_i, B_i] \prod_{j=1}^{n} C_j = 1$.

Definition

Two elliptic surfaces $\pi : E \longrightarrow B$ and $\pi' : E' \longrightarrow B'$ are isomorphic, if there are biholomorphic mappings f, g, so that the diagram

commutes.

Let $\mathscr{F}(\mathscr{J}, \mathscr{G})$ be the family of isomorphism classes of elliptic surfaces over B with only simple singular fibres with functional invariant \mathscr{J} and homological invariant \mathscr{G} . For each such family $\mathscr{F}(\mathscr{J}, \mathscr{G})$ Kodaira constructed a basic member \mathscr{B} , which is defined by a global holomorphic section $\sigma: B \longrightarrow E$ [6 § 8], and proved the following [6 §§ 9,10]:

Theorem 1

Let $\pi : E \longrightarrow B$ be an elliptic surface with a global section, belonging to the family $\mathcal{F}(\mathcal{J}, \mathcal{G})$. Then E is isomorphic to the uniquely determined basic member \mathcal{B} of the family $\mathcal{F}(\mathcal{J}, \mathcal{G})$.

Kas described this using the Weierstraß Model [8]. Let $\pi: E \longrightarrow B$ be a minimal elliptic surface. K(E) and K(B) are the function fields of E and of B respectively. π induces a homomorphism $\pi^*: K(B) \longrightarrow K(E)$, and K(E)is a transcendental extension of K(B) of transcendence degree and genus one. The section $\sigma: B \longrightarrow E$ determines a rational point. E is birationally equivalent to the subscheme E* in Proj($\mathcal{O} \oplus 2\mathcal{O}(L) \oplus 3\mathcal{O}(L)$), which is given by the equation

 $Y^{2}Z = 4 X^{3} - g_{2}XZ^{2} - g_{3}Z^{3},$

where \mathcal{O} is the structure sheaf of B, L is a line bundle and where $g_2 \in H^0(B, \mathcal{O}(4L))$ and $g_3 \in H^0(B, \mathcal{O}(6L))$ are sections with $\Delta = g_2^3 - 27 g_3^2 \neq 0$.

Theorem 2 (Kas)

 E^* is an algebraic surface with rational double points as the only singularities. E is the minimal resolution of E^* . E^* is determined uniquely by E up to a C^* – operation

 $\begin{array}{ll} (\mathbf{g}_2, \mathbf{g}_3) & \longrightarrow (\lambda^4 \mathbf{g}_2, \lambda^6 \mathbf{g}_3), \ \lambda \in \mathbb{C}^* = \mathbb{C} - \{0\}. \\ \mathbf{g}_2, \mathbf{g}_3 \text{ satisfy} \end{array}$

(i)
$$\Delta = g_2^3 - 27 \ g_3^2 \neq 0$$

(ii) min $(3 \ \nu_p(g_2), 2 \ \nu_p(g_3)) < 12$ for all $p \in B$,

where $\nu_p(g_2)$, $\nu_p(g_3)$ and $\nu_p(\Delta)$ are the order of the zeroes of g_2 , g_3 and Δ in p. The singular fibre in E* over p consists of the minimal resolution of the rational double point and the rational curve, which is defined by the section σ . The type of rational double point and thereby the type of the singular fibre determines $\nu_p(g_2)$, $\nu_p(g_3)$ and $\nu_p(\Delta)$. E* is called the Weierstraß Model of the elliptic surface.

The
$$\mathcal{J}$$
-invariant of the Model is $\mathcal{J} = \frac{g_2^3}{\Delta}$

Meyer proved the following:

For each locally trivial fibre bundle $E \longrightarrow X$ it is possible to compute the signature of E as the signature of the E_2 -term of the Leray spectral sequence of the fibration [see. 7 1.1.4 and 1.2.2], i.e. for an elliptic fibration $E \longrightarrow B$:

Let $B_0 := B - \bigcup_{i=1}^{n} D_i$, with D_i being disjoint small disks around the base points ρ_i of the singular fibres. $E_0 = E_{|B_0|}$ is called the "smooth" part and $E_s := E - E_0$ the "singular" part of E. The signature τ of the fibration is

$$\tau(\mathbf{E}) = \tau(\mathbf{E}_0) + \tau(\mathbf{E}_s).$$

Let F_i be the singular fibre over $\rho_i \in B$, then:

$$\tau(\mathbf{E}_{\mathbf{s}}) = \sum_{i=1}^{n} \tau(\mathbf{F}_{i}),$$

with $\tau(\mathbf{F}_i) = \tau(\mathbf{E}_{|\mathbf{D}_i|}).$

There exists a uniquely determined mapping

$$\boldsymbol{\phi}: \operatorname{SL}(2,\mathbb{Z}) \longrightarrow \frac{1}{3} \mathbb{Z},$$

so that

$$\tau(\mathbf{E}_0) = -\sum_{i=1}^{n} \boldsymbol{\phi}(\boldsymbol{\gamma}_i);$$

where γ_i is the monodromy of a closed path around ρ_i (see Meyer [7]). Then:

$$\tau(\mathbf{E}) = \sum_{i=1}^{n} (\tau(\mathbf{F}_{i}) - \boldsymbol{\phi}(\boldsymbol{\gamma}_{i})).$$

The values of $\tau(\mathbf{F}_i)$ and $\phi(\gamma_i)$ are listed in table I:

$$\tau(\mathbf{F}_{i}) + e(\mathbf{F}_{i}) = \begin{cases} 1 & \text{if } \mathbf{F}_{i} \text{ has type } \mathbf{I}_{n} \ n > 0 \\ 2 & \text{else} \end{cases};$$

where $e(F_i)$ is the Euler number of the singular fibre F_i .

Furthermore:

Lemma 3 (Hunt)

 $|\tau(E_0)| \le 4 g - 4 + 2 n;$

where g is the genus of the base curve;

and

Theorem 4

It is known that for each minimal elliptic surface

$$\tau(\mathbf{E}) = -\frac{2}{3} \mathbf{e}(\mathbf{E}).$$

Noethers formula implies that for compact complex surfaces S

$$p_{a}(S) = \frac{\tau (S) + e (S)}{4},$$

where $\boldsymbol{p}_{\boldsymbol{a}}(S)$ is the arithmetic genus of S and for an elliptic surface E

$$p_{a}(E) = \frac{1}{12} e(E).$$

TODIC T	Ta	b	le	I
---------	----	---	----	---

•

.

Singular fibre	Buler number	Monodromy ma normal form A	strix conjugate form TAT ⁻¹ T = $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{Z})$	Ord v _p (g ₂)	ers of zei v _p (g ₃)	$\nu_{\rho}(\Delta)$	Value of β(ρ)	Signa the sing r(F)	sture of ular fibre ¢(P)
Io	0	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	0	0	0	# m	0	0
I _n n > Q	n	[1 n] -: P ⁿ	$\begin{bmatrix} 1-acn & a^2n \\ -c^2n & 1+acn \end{bmatrix}$ a,c relatively prime	0	0	'n	Pole of order n	1 – n	1 - n 3
II	2	$\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} =: S$	$\begin{bmatrix} ad-bd-ac & a^2+b^2-ab \\ cd-c^2-d^2 & bd+ac-bc \end{bmatrix}$	<u>></u> 1	1	2	0	0	4 3
111	3	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} =: J$	$\begin{bmatrix} -bd-ac & a^2+b^2 \\ -c^2-d^2 & ac+bd \end{bmatrix}$	1	≥2	3	1	- 1'	1
IV	4	$\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = S^2$	$\begin{bmatrix} bc-bd-ac & a^2+b^2-ab \\ cd-c^2-d^2 & bd+ac-ad \end{bmatrix}$	≥ 2	2	4	0	- 2	2 3
I*	6	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	2 > 2 2	> 3 3 3	666	1 0 ≠0,1,∞	- 4	0
I <mark>*</mark> в > 0	n + 6	$\begin{bmatrix} -1 & -n \\ 0 & -1 \end{bmatrix} = -P^n$	$\begin{bmatrix} -1 + \operatorname{acn} & -\operatorname{a}^{2} \operatorname{n} \\ c^{2} \operatorname{n} & -1 - \operatorname{acn} \end{bmatrix}$ a,c relatively prime	2	3	n + 6	Pole of order n	- n - 4	- <u>n</u> 3
11*	10	$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} = S^{-1} = -S^2$	$\begin{bmatrix} ac+bd-bc & ab-a^2-b^2 \\ c^2+d^2-cd & ad-bd-ac \end{bmatrix}$	≥ 4	б	10	0	- 8	$-\frac{4}{3}$
111+	9	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \mathbf{J}^{-1} = -\mathbf{J}$	$\begin{bmatrix} bd+ac & -a^2-b^2 \\ c^3+d^2 & -ac-bd \end{bmatrix}$	3	≥ 5	9	1	-7	- 1
IV*	8	$\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} = -S = S^{-2}$	$\begin{bmatrix} ac+bd-ad & ab-a^2-b^2 \\ c^2+d^2-cd & bc-bd-ac \end{bmatrix}$	<u>≥</u> 3.	4	8	0	- 6	- 2/3

.

.

Calculation of the possible fibre combinations

With the above notation, let $E \longrightarrow \mathbf{P}_i \mathbf{C}$ be a minimal elliptic surface with a section σ and nonconstant \mathscr{J} -invariant. The singular fibres \mathbf{F}_i are over ρ_i , $\rho_i \neq \rho_j$ for $i \neq j$. Let

 $P := \{\rho_1, \rho_2, \rho_3, \rho_4\}$ and $\chi : \pi_1(\mathbb{P}_1\mathbb{C} - P_1*) \longrightarrow SL(2,\mathbb{Z})$ be the monodromy representation of the fundamental group

$$\pi_{\mathbf{j}}(\mathbf{P}_{\mathbf{j}}\mathbf{C} - P, *) = \langle \mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}, \mathbf{a}_{\mathbf{4}} \mid \mathbf{a}_{\mathbf{j}}\mathbf{a}_{\mathbf{2}}\mathbf{a}_{\mathbf{3}}\mathbf{a}_{\mathbf{4}} = 1 \rangle,$$

where a_i is a closed path around ρ_i and $A_i := \chi(a_i)$, i = 1,...,4, is a monodromy matrix. The homological invariant \mathcal{G} of the elliptic surface E is determined by A_i with

$$A_1 A_2 A_3 A_4 = 1, \tag{1}$$

where A_i , i = 1,...,4, is conjugate to a matrix in $M = M^* \cup M^-$ with

$$M^*:= \{Id, P^n (n > 0), S, J, S^2\} \text{ and } M^-:= \{-Id, -P^n (n > 0), -S, -J, -S^2\} \text{ (see table I)}.$$

 \mathscr{G} belongs to the functional invariant \mathscr{J} . For each functional invariant \mathscr{J} and associated homological invariant \mathscr{G} there is exactly one elliptic surface \mathscr{B} over $\mathbb{P}_1\mathbb{C}$ with section. \mathscr{B} is the basic member of $\mathscr{F}(\mathscr{J}, \mathscr{G})$.

Its' Weierstraß - Model E* will be calculated as follows:

Let $G_2 = g_2, g_2 \in H^0(\mathbb{P}_1\mathfrak{C}, \mathcal{O}(4L)); G_3 = 3\sqrt{3} g_3, g_3 \in H^0(\mathbb{P}_1\mathfrak{C}, \mathcal{O}(6L))$ where g_2, g_3 are the sections which determine the Weierstraß Model. The matrices $\widetilde{A}_i = \epsilon_i A_i$, $i = 1, ..., 4, \epsilon_i = \pm 1$, with $\widetilde{A}_1 \widetilde{A}_2 \widetilde{A}_3 \widetilde{A}_4 = 1$ and therefore $\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4 = 1$, determine the homological invariant $\widetilde{\mathscr{G}}$. The Model \widetilde{E}^* of the basic member $\widetilde{\mathscr{B}} \in \mathscr{F}(\mathscr{J}, \widetilde{\mathscr{G}})$ can easily

be calculated from E* by "asterisking "pairs and "moving an asterisk ".

"Asterisking " a fibre over ρ_i corresponds to multiplying the monodromy matrix A_i with -Id. I_n , II, III and IV change to I_n^* , IV^{*}, III^{*} and II^{*} respectively and vice versa (see table I).

The Euler number of the singular fibre increases or decreases by six respectively. In the Weierstraß Model the polynomials G_2, G_3 and Δ are multiplied with

 $(X - \rho_i Y)^{2,3}$ and 6 resp., if $A_i \in M^*$ and $\epsilon_i = -1$, or divided by the same expression, if $A_i \in M^-$ and $\epsilon_i = -1$.

When "Moving the asterisk " of the singular fibre $F_i \in T^-$ over ρ_i to the singular fibre $F_j \in T^+$ over ρ_j (in short, from ρ_i to ρ_j), the monodromy matrices A_i and A_j will be multiplied with - Id, the polynomials G_2, G_3 and Δ with $\frac{(X - \rho_j Y)^{2,3} \text{ and } 6 \text{ resp.}}{(X - \rho_i Y)^{2,3} \text{ and } 6 \text{ resp.}}$ So it suffices to restrict the calculation to the canonical basic member

 $\mathcal{B} \in \mathcal{F}(\mathcal{J}, \mathcal{G})$. \mathcal{G} is determined by $A_1A_2A_3A_4 = 1$, where at most one A_i is conjugate to a matrix in M⁻. At least one singular fibre has to be of type I_n or I_n^* [4, page 79]. For the classification of surfaces, which have one fibre of type I_0 , a regular fibre, see [12].

Lemma 5

The Euler number of an elliptic surface with four singular fibres in T^* over $P_i C$ is twelve.

Proof

The monodromy satisfies

 $\mathbf{A}_1\mathbf{A}_2\mathbf{A}_3\mathbf{A}_4 = 1,$

where all monodromy matrices are conjugate to a normal form in M⁺. By "asterisking " all four singular fibres, the Euler number increases by 24. The Euler number of an elliptic surface, which depends only on the Euler number of the singular fibres is:

 $e(E) = 12 p_a(E) = 3 (e(E_s) + \tau(E_s) + \tau(E_0)) \le 3 (2 n + 4 g - 4 + 2 n),$ where n is the number of singular fibres and g is the genus of the base curve. For n = 4, g = 0 this means

 $0 < e(E) \leq 36$

and so the statement of the lemma.

Theorem 6

Let $E \longrightarrow P_1 C$ be a minimal elliptic surface with section, nonconstant \mathcal{J} -invariant

and four singular fibres, of which at most one is in T⁻. Up to permutation and "Moving the asterisk " there are only those combinations of singular fibres which are listed in table III.

(i) If one singular fibre is in T^- , three in T^+ , the Weierstraß Model depends on a parameter. Given four different base points, in the case $I_1^* I_1 I_1 III$ there exist four, in the cases $I_1^* I_1 I_2 II$ and $I_1 I_1 II IV^*$ there exist two elliptic surfaces, depending on the \mathcal{J} -invariant, and for all other fibre combinations there exists precisely one elliptic surface.

ii) If all four singular fibres are in T^* , then the Weierstraß Models are determined uniquely up to isomorphism, except for one combination. In the case $I_1 I_6$ II III there are two nonisomorphic models. In table III the Weierstraß Models including the \mathcal{J} -invariant and cross ratio of the base points for $\Delta = G_2^3 - 27 G_3^2$ are listed.

Corollary 7

<u>All</u> elliptic surfaces with four singular fibres can be deduced from table III by the following methods:

- (i) "Asterisking" the singular fibres in pairs
- (ii) "Moving the asterisk " of singular fibres.

<u>Proof</u>

1. If one singular fibre is of type I_0^* , a surface with three singular fibres is obtained by "moving the asterisk ". So these elliptic surfaces are easily calculated [12, pages 120 ff., cases 6 - 12].

In the following it is assumed that n > 0 for all fibres of type I_n or I_n^* .

2. Determination of all possible fibre combinations

Because of (1), it follows for the monodromy matrices $A_i \in SL(2,\mathbf{I})$, i = 1,...,4 that:

trace $(A_1A_2) = \text{trace } ((A_3A_4)^{-1}) = \text{trace } (A_3A_4).$ (2) The trace is preserved under conjugation. So let A_2 and A_4 be in normal form, A_1 and

 A_3 be conjugate to $\pm P^n$, S, J, S² (see table I). Table II lists the trace (A_iA_{i+1}) for different fibre combinations.

In the following the calculation will be separate according to the occurence of a fibre

 $F_1 \in T^-$ and the number of fibres of type I_n .

2.1. One singular fibre in T⁻

Assume that this fibre F_1 is of type I_n^* .

2.1.1. F_3 of type I_n , n > 0; $F_2, F_4 \in T^* - \{I_n\}$ See table II. There is trace $(A_1A_2) \ge 0$ and trace $(A_3A_4) \le 0$ with " = " exactly for $F_2 = F_4 = II$. It follows that

 $-1 + n_1 (a_1^2 + a_1 c_1 + c_1^2) = 1 - n_3 (a_3^2 + a_3 c_3 + c_3^2).$

Because of $a_i^2 + a_i c_i + c_i^2 > 0$, we have $n_1 = n_3 = 1$ and the combination is $I_1^* I_1 II II$.

/TR _ 1	1	- T -	т
191	bre	1.	L

Singular fibre	trace (/	A _i A _{i+1})
I _{ni} I _{ni+1}	$2 - c_i^2 n_i n_{i+1} \leq 2$	
I _{ni} II	$1 - n_i \left(a_i^2 + a_i c_i + c_i^2\right) \leq 0$	a _i ,c _i relatively prime
I _{ni} III	$-n_i \left(a_i^2 + c_i^2\right) \leq -1$	a _i ,c _i relatively prime
I _{ni} IV	$-\left[1+n_{i}\left(a_{i}^{2}+a_{i}c_{i}+c_{i}^{2}\right)\right]\leq-2$	a _i ,c _i relatively prime
II II	$- [(\mathbf{b}_{i} - \frac{1}{2}\mathbf{a}_{i} + \frac{1}{2}\mathbf{d}_{i})^{2} + (\mathbf{c}_{i} + \frac{1}{2}\mathbf{a}_{i} - \frac{1}{2}\mathbf{d}_{i})^{2}]$	$(a_i)^2 + \frac{1}{2} (a_i^2 + d_i^2) \le -1$
II III	$-(a_{i}^{2}-a_{i}b_{i}+b_{i}^{2}+c_{i}^{2}-c_{i}d_{i}+d_{i}^{2}) \leq -2$	
II IV	$- \left[(\mathbf{a}_i - \frac{1}{2} \mathbf{b}_i + \frac{1}{2} \mathbf{c}_i)^2 + (\mathbf{d}_i + \frac{1}{2} \mathbf{b}_i - \frac{1}{2} \mathbf{c}_i \right]$	$(a_i)^2 + \frac{1}{2} (b_i^2 + c_i^2)] \le -2$
III III	$-(a_{i}^{2}+b_{i}^{2}+c_{i}^{2}+d_{i}^{2}) \leq -2$	
III IV	$-(\mathbf{a}_i^2 + \mathbf{a}_i \mathbf{c}_i + \mathbf{c}_i^2 + \mathbf{b}_i^2 + \mathbf{b}_i \mathbf{d}_i + \mathbf{d}_i^2) \leq -2$	
IV IV	$- [(\mathbf{b}_i - \frac{1}{2}\mathbf{a}_i + \frac{1}{2}\mathbf{d}_i)^2 + (\mathbf{c}_i + \frac{1}{2}\mathbf{a}_i - \frac{1}{2}\mathbf{d}_i)^2]$	$(a_i)^2 + \frac{1}{2} (a_i^2 + d_i^2)] \le -1$
$\mathbf{I_{n_{i}}^{*}I_{n_{i+1}}}$	$-2 + c_i^2 n_i n_{i+1} \ge -2$	
$I_{n_i}^* II$	$-1 + \mathbf{n}_i \ (\mathbf{a}_i^2 + \mathbf{a}_i \mathbf{c}_i + \mathbf{c}_i^2) \ge 0$	a _i ,c _i relatively prime
$I_{n_i}^*$ III	$n_i (a_i^2 + c_i^2) \ge 1$	a _i ,c _i relatively prime
I* IV	$1 + n_i \left(a_i^2 + a_i c_i + c_i^2\right) \ge 2$	a _i ,c _i relatively prime

2.1.2. $F_2, F_3, F_4 \in T^+ - \{I_n\}$

Table II shows that the equation (2) cannot be satisfied.

2.2. Four singular fibres in T⁺

2.2.1. F_1, F_2, F_3, F_4 of type I_n , n > 0

Equation (2) is equivalent to $c_1^2 n_1 n_2 = c_3^2 n_3 n_4$ see table II. If $c_1 = c_3 = 0$, one easily deduces a contradiction $A_1 A_2 A_3 A_4 \neq 1$ to equation (1). So equation (2) is now

equivalent to

$$n_1 n_2 n_3 n_4 = \frac{c_3^2}{c_1^2} n_3^2 n_4^2.$$

So $\prod_{i=1}^{4} n_i$ is a square and $\sum_{i=1}^{4} n_i = 12$. Only the fibre combinations, which are listed in table III, exist up to permutation.

2.2.2. F_1, F_3 of type I_n , n > 0; $F_2, F_4 \in T^* - \{I_n\}$ Lemma 5 shows

 $n_1 + n_3 = 12 - e(F_2) - e(F_4).$

I₅ II I₈ II and I₈ II I₈ IV are excluded, because of

 $0 \equiv 5 (a_1^2 + a_1c_1 + c_1^2) \neq 3 (a_3^2 + a_3c_3 + c_3^2) \mod{10}{5}$ and

 $0 \equiv 3 (a_1^2 + a_1c_1 + c_1^2) \not\equiv 3 (a_3^2 + a_3c_3 + c_3^2) + 2 \mod 3,$

see table II and (2). The remaining fibre combinations, up to permutation of the fibres, are those which are listed in table III, and the combination $I_3 I_1 IV IV$. Explicit calculation of the Weierstraß Model shows, that the last combination is impossible.

2.2.3. F_1 of type I_n , n > 0; F_2 , F_3 , $F_4 \in T^* - \{I_n\}$

Lemma 5 shows that the Euler number is twelve. Only the combinations listed in table III and I_1 III IV IV, I_2 II IV IV can be possible up to permutation. In the last two cases G_2 and G_3 must have the degree ≥ 5 and ≥ 6 or ≥ 5 and 5 respectively (see table I). This however is impossible.

2.2.4. If there are three fibres of type I_n , one gets all combinations of table III and $I_4 I_3 I_1$ IV as in 2.2.2. This fibre combination can be excluded by explicit calculation.

3. Calculation of the polynomials G_2 , G_3 and Δ in homogeneous coordinates (X,Y) of $P_1 \mathcal{C}$:

Equation $\Delta = G_2^3 - G_3^2$ gives a nonlinear system of equations for the coefficients of G_2 , G_3 . Common factors of $G_2^3 - G_3^2$ and Δ will be cancelled.

<u>Note</u>

Let
$$\bar{\Delta} = \frac{G_2^3 - G_3^2}{\gcd(G_2^3, G_3^2)} = \frac{\Delta}{\gcd(G_2^3, G_3^2)}$$
 (see table I) and let C_i be the coefficient of

 $X^{k-i}Y^{i}$ in $\overline{\Delta}$, where k is the sum of the n_{j} over the numbers of the fibres of types $I_{n_{j}}$ and $I_{n_{j}}^{*}$ of the surface with $0 \le i \le k$. The base points are written as quadruple $(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4})$.

3.1. One singular fibre in T⁻

I† I, II II

It may be assumed that the singular fibres are over $(0, \infty, 1, \rho_4)$. The orders of zeroes at the base points have to be:

ρ	$\nu_{\rho}(G_2)$	$\nu_{\rho}(G_3)$	$\nu_{\rho}(\Delta)$
0	2	3	7
00	0	0	1
1	<u>≥</u> 1	1	2
Ρ4	<u>≥</u> 1	1	2
sum	<u>≥</u> 4	5	12

The equation $\Delta = G_2^3 - G_3^2$ with

$$\begin{split} &G_2(X,Y) = \mu X^2 (X - Y)(X - \rho_4 Y) \\ &G_3(X,Y) = \nu X^3 (X - Y)(X - \rho_4 Y)(X + BY) \\ &\Delta (X,Y) = \sigma \mu^3 X^7 Y (X - Y)^2 (X - \rho_4 Y)^2 , \end{split}$$

where $\mu,\nu,\sigma\in\mathbb{C}^*$, produces the following system of equations with $\mu^3-\nu^2=0$:

$$C_1 = -(\rho_4 + 1 + 2 B) = \sigma$$

 $C_2 = \rho_4 - B^2 = 0.$

It follows that $\rho_4 = B^2 \neq 0$ and $\sigma = -(B + 1)^2$. Consequently one gets

$$G_{2}(X,Y) = \mu X^{2} (X - Y)(X - B^{2}Y)$$

$$G_{3}(X,Y) = \nu X^{3} (X - Y)(X - B^{2}Y)(X + BY)$$

$$\Delta (X,Y) = -(B + 1)^{2} \mu^{3} X^{7}Y(X - Y)^{2}(X - B^{2}Y)^{2}$$

where $B \neq -1, 1$.

The cross ratio of the base points $CR(I_1^* I_1 \mid II II)$ is $\frac{1}{B^2}$. If the base points are given, there exist two different Weierstraß Models, depending on the choice of the \mathscr{J} -invariant. Let $\tilde{\Delta} = 27 \Delta$ and $\tilde{G}_2 = 3 G_2$. Table III lists the surface for $\mu = 1$, $\nu = 1$, $\tilde{\Delta}$ as Δ and \tilde{G}_2 as G_2 in abuse of the notation. G_2 and G_3 are uniquely determined up to a transformation $(G_2, G_3) \longrightarrow (h^4G_2, h^6G_3)$, $h \in \mathbb{C}^*$. Consequently in this calculation, as in the following ones, there are values given for μ and ν , so that one arrives at the polynomials G_2, G_3 and Δ as above which are listed in table III.

3.2. Four singular fibres in T⁺ 3.2.1. Calculation by using the common divisor of G_2, G_3 and Δ $I_3 I_3 I_3 I_3$

The orders of zeroes have to be:

ρ	$\nu_{\rho}(G_2)$	$\nu_{\rho}(G_3)$	$\nu_{\rho}(\Delta)$
ρ ₁	0	0	3
$ ho_2$	0	0	3
$ ho_3$	0	0	3
ρ4	0	0	3
sum	0	0	12

Therefore

$$\mathbf{F^3} = \Delta = \mathbf{G_2^3} - \mathbf{G_3^2}$$

(3)

with $F, G_2 \in H^0(\mathbb{P}_1\mathfrak{C}, \mathcal{O}(4L)), G_3 \in H^0(\mathbb{P}_1\mathfrak{C}, \mathcal{O}(6L)).$

It follows from (3) that G_2, G_3 and F are relatively prime. (4) is equivalent to

$$G_3^2 = G_2^3 - F^3 = (G_2 - F)(\eta^2 G_2 - \eta F)(\eta G_2 - \eta^2 F)$$
 $\eta = e^{\frac{2\pi i}{3}}$.

As mentioned above, the single factors in this decomposition are relatively prime in pairs (3). They are squares. Let

$$\begin{aligned} H_{1}^{2} &:= G_{2} - F \\ H_{2}^{2} &:= \eta^{2}G_{2} - \eta F \\ H_{3}^{2} &:= \eta G_{2} - \eta^{2} F. \end{aligned}$$

If H_i has the appropriate sign it follows that

$$\mathbf{G}_{\mathbf{3}} = \mathbf{H}_{\mathbf{1}} \cdot \mathbf{H}_{\mathbf{2}} \cdot \mathbf{H}_{\mathbf{3}}$$

where
$$H_i \in H^0(\mathbf{P}_1 \mathbf{C}, \mathbf{O}(2L))$$
 $i = 1, 2, 3$
 $0 = H_1^2 + H_2^2 + H_3^2 \iff -H_1^2 = H_2^2 + H_3^2 = (H_2 + iH_3)(H_2 - iH_3)$

Both factors are relatively prime and squares. Let

$$J_1^2 := H_2 + i H_3$$

 $J_2^2 := H_2 - i H_3$

where $J_i, J_2 \in H^0(\mathbb{P}_1 \mathfrak{C}, \mathcal{O}(L))$. It can then be assumed that

$$\mathbf{i} \mathbf{H}_1 = \mathbf{J}_1 \cdot \mathbf{J}_2$$

 J_1, J_2 are relatively prime. By suitable choice of the coordinates on $\mathbb{P}_1\mathbb{C}$, it is possible to choose $J_1 = X$ and $J_2 = Y$. Therefore

$$H_{1} = -i XY$$

$$H_{2} = \frac{1}{2} (X^{2} + Y^{2})$$

$$H_{3} = \frac{1}{2i} (X^{2} - Y^{2})$$

with $\omega = \sqrt{3}$

$$G_{2}(X,Y) = \frac{1}{\eta^{2} - \eta} \left(-\eta H_{1}^{2} + H_{2}^{2} \right) = \frac{i}{4 \omega} \left(X^{4} + 2 i \omega X^{2} Y^{2} + Y^{4} \right)$$

$$G_{3}(X,Y) = H_{1} \cdot H_{2} \cdot H_{3} = -\frac{1}{4} X \cdot Y \left(X^{2} + Y^{2} \right) (X^{2} - Y^{2})$$

$$F(X,Y) = G_{2} - H_{1}^{2} = \frac{i}{4 \omega} \left(X^{4} - 2 i \omega X^{2} Y^{2} + Y^{4} \right)$$

$$\Delta(X,Y) = -\frac{i}{192 \omega} \left(X^{4} - 2 i \omega X^{2} Y^{2} + Y^{4} \right)^{3}.$$

The cross ratio is CR(I₃ I₃ | I₃ I₃) = - η . Table III gives the surface after the transformation (X,Y) $\longrightarrow (\varphi_1(X + \psi_1 Y), \varphi_2(X + \psi_2 Y))$ with $\varphi_{1,2} = \sqrt{-2(\zeta^3 \mp \zeta^{10})}$, $\psi_{1,2} = \frac{1}{2} \frac{1 \mp \zeta^3}{1 \mp \zeta^7}$ and $\zeta = e^{\frac{2\pi i}{12}}$.

Using this method, it is also possible to calculate the Weierstraß Models of $I_4 I_4 I_2 I_2$, $I_4 I_4 II II$, $I_3 I_3 III III [2]$.

3.2.2. All other fibre combinations are calculated using the same method as in 3.1. [2].

 $I_7 I_1 I_1 III , I_6 I_2 I_1 III \text{ and } I_6 II I_1 III$

An Aut($\mathbf{P}_{1}\mathbf{C}$) - operation transforms the singular fibres over the base points $(\omega, \rho_{2}, \rho_{3}, 0)$. The fibres over ω, ρ_{2} are either of type $I_{7} I_{1}$ and $I_{6} I_{2}$ or of type $I_{6} I_{2}$ and I_{6} II respectively, therefore the three calculations differ by a common factor of $G_{2}^{3} - G_{3}^{2}$ and Δ only.

Let
$$i:= \begin{cases} 0 \text{ at } I_7 I_1 I_1 I_1 III \\ 1 \text{ at } I_6 I_2 I_1 III \text{ and } I_6 II I_1 III \end{cases}$$

The orders of zeroes have to be:

ρ	$\nu_{\rho}(G_2)$	$\nu_{\rho}(G_{3})$	$i = 0 \\ \nu_{\rho}(\Delta)$	$i = 1 \\ \nu_{\rho}(\Delta)$
00	0	0	7	6
$ ho_2$	0 (≥ 1)	0(1)	1	2
ρ_3	0	0	1	1
0	1	<u>></u> 2	3	3
sum	1 (2 2)	<u>≥</u> 2 (3)	12	12

The orders of zero for the fibre over ρ_2 in $T^*-\{I_n\}$ are in brackets.

The equation $\Delta = G_2^3 - G_3^2$ with

$$\begin{aligned} G_2(X,Y) &= \mu X(X^3 + A_1 X^2 Y + A_2 X Y^2 + A_3 Y^3) \\ G_3(X,Y) &= \nu X^2 (X^4 + B_1 X^3 Y + B_2 X^2 Y^2 + B_3 X Y^3 + B_4 Y^4) \\ \Delta(X,Y) &= \sigma \mu^3 X^3 Y^{7-i} (X - \rho_2 Y)^{i+i} (X - \rho_3 Y) \end{aligned}$$

where $\mu,\nu,\sigma\in\mathbb{C}^*$; i = 0,1 produces the following system of equations with $\mu^3 - \nu^2 = 0$:

$$\begin{split} & C_1 = 3 A_1 - 2 B_1 = 0 \\ & C_2 = 3 A_1^2 + 3 A_2 - B_1^2 - 2 B_2 = 0 \\ & C_3 = A_1^3 + 3 A_3 + 6 A_1 A_2 - 2 B_3 - 2 B_1 B_2 = 0 \\ & C_4 = 3 A_2^2 + 3 A_1^2 A_2 + 6 A_1 A_3 - B_2^2 - 2 B_4 - 2 B_1 B_3 = 0 \\ & C_6 = 3 A_1 A_2^2 + 3 A_1^2 A_3 + 6 A_2 A_3 - 2 B_1 B_4 - 2 B_2 B_3 = 0 \\ & C_6 = A_2^3 + 3 A_3^2 + 6 A_1 A_2 A_3 - B_3^2 - 2 B_2 B_4 = \begin{cases} 0 & i = 0 \\ \sigma & i = 1 \end{cases} \\ & C_7 = 3 A_1 A_3^2 + 3 A_2^2 A_3 - 2 B_3 B_4 = \begin{cases} \sigma & i = 0 \\ -(2\rho_2 + \rho_3)\sigma & i = 1 \end{cases} \\ & C_8 = 3 A_2 A_3^2 - B_4^2 = \begin{cases} -(\rho_2 + \rho_3)\sigma & i = 0 \\ (2 \rho_2 \rho_3 + \rho_2^2)\sigma & i = 1 \end{cases} \\ & C_9 = A_3^3 = \begin{cases} \rho_2 \rho_3 \sigma & i = 0 \\ -\rho_2^2 \rho_3 \sigma & i = 1 \end{cases} . \end{split}$$

To fulfil $C_1 = C_2 = C_3 = 0$, let

 $A_{1} = 2 \alpha \qquad B_{1} = 3 \alpha$ $A_{2} = 2 \beta - \alpha^{2} \qquad B_{2} = 3 \beta$ $A_{3} = 2 \gamma \qquad B_{3} = 3 \gamma - 2 \alpha^{3} + 3 \alpha \beta$

where $\alpha, \beta, \gamma \in \mathbb{C}$.

From $C_4 = 0$ it follows that:

$$B_4 = \frac{3}{2} \left[(\beta - \alpha^2)^2 + 2 \alpha \eta \right]$$

and from $C_{\delta} = 0$:

$$3(\beta - \alpha^2)[2 \gamma - \alpha(\beta - \alpha^2)] = 0.$$

1)
$$\beta - \alpha^2 = 0$$

The result is

$$C_{6} = 3 \gamma^{2} = \begin{cases} 0 & i = 0 \\ \sigma & i = 1 \end{cases}$$

$$C_{7} = 6 \alpha \gamma^{2} = \begin{cases} \sigma & i = 0 \\ -(2\rho_{2} + \rho_{3})\sigma & i = 1 \end{cases}$$

$$C_{8} = 3 \alpha^{2} \gamma^{2} = \begin{cases} -(\rho_{2} + \rho_{3})\sigma & i = 0 \\ (2 \rho_{2}\rho_{3} + \rho_{2}^{2})\sigma & i = 1 \end{cases}$$

$$C_{9} = 8 \gamma^{3} = \begin{cases} \rho_{2}\rho_{3}\sigma & i = 0 \\ -\rho_{2}^{2}\rho_{3}\sigma & i = 1 \end{cases}$$

 γ may not equal zero, so i = 1. Consequently the only solution is

$$\gamma = \frac{1}{18} \alpha^3$$

$$\rho_2 = -\frac{1}{3} \alpha$$

$$\rho_3 = -\frac{4}{3} \alpha$$

$$\sigma = \frac{1}{108} \alpha^3$$

$$\alpha = -3$$

If

$$G_{2}(X,Y) = \mu X(X^{3} - 6 X^{2}Y + 9 XY^{2} - 3 Y^{3})$$

$$G_{3}(X,Y) = \frac{1}{2} \nu X^{2}(2 X^{4} - 18 X^{3}Y + 54 X^{2}Y^{2} - 63 XY^{3} + 27 Y^{4})$$

$$\Delta(X,Y) = \frac{27}{4} \mu^{3} X^{3}Y^{6} (X - Y)^{2}(X - 4 Y)$$

with $\mu^3 - \nu^2 = 0$ $\mu, \nu \in \mathbb{C}^*$.

The cross ratio is CR(I₆ I₂ | I₁ III) = $-\frac{1}{3}$. Table III shows the surface for $\mu = 4$, $\nu = 8$.

- 2) $\beta \alpha^2 \neq 0$
- $C_5 = 0 \text{ leads to}$ $\gamma = \frac{1}{2} \alpha (\beta \alpha^2).$

After the substitution of $\delta = \beta - \alpha^2$, it follows for C_6, C_7, C_8 and C_9 that:

i) i = 0 $I_7 I_1 I_1 III$

Because $\sigma \neq 0$, this gives:

$$\begin{split} \delta &= \frac{3}{4} \, \alpha^2, \\ C_7 &= \frac{3^3}{2^7} \, \alpha^7 = \sigma \\ C_8 &= \frac{3^3 \cdot 13}{2^{10}} \, \alpha^8 = - \, (\rho_2 + \rho_3) \sigma \\ C_9 &= \frac{3^3}{2^6} \, \alpha^9 = \rho_2 \rho_3 \sigma \,, \end{split}$$

$$\rho_2 + \rho_3 = -\frac{13}{2^3} \alpha$$
$$\rho_2 \cdot \rho_3 = 2 \alpha^2$$

and

$$\rho_2 = \frac{1}{8} \alpha \left[\frac{1 \pm i\sqrt{7}}{2} \right]^7$$
$$\rho_3 = \frac{1}{8} \alpha \left[\frac{1 \mp i\sqrt{7}}{2} \right]^7$$

If $\alpha = 2$, we get:

$$G_{2}(X,Y) = \mu X(X^{3} + 4 X^{2}Y + 10 XY^{2} + 6 Y^{3})$$

$$G_{3}(X,Y) = \frac{1}{2} \nu X^{2}(2 X^{4} + 12 X^{3}Y + 42 X^{2}Y^{2} + 70 XY^{3} + 63 Y^{4})$$

$$\Delta(X,Y) = \frac{27}{4} \mu^{3} X^{3}Y^{7}(4 X^{2} + 13 XY + 32 Y^{2})$$

with $\mu^3 - \nu^2 = 0 \ \mu, \nu \in \mathbb{C}^*$.

The cross ratio is CR(I₇ I₁ | I₁ III) = $\frac{(1 - i \sqrt{7})^7}{(1 + i \sqrt{7})^7 - (1 - i \sqrt{7})^7}$. Table III shows the surface for $\mu = 4$, $\nu = 8$.

ii) i = 1

There is a double zero of Δ at ρ_2 . The discriminant of

 $-\frac{1}{4} \delta^{2} [(4 \ \delta - 3 \ \alpha^{2}) X^{3} + 6 \ \alpha (\delta - \alpha^{2}) X^{2} Y + 3 (3 \ \delta^{2} - 2 \ \alpha^{2} \delta - \alpha^{4}) X Y^{2} - 4 \ \alpha^{3} \delta Y^{3}]$ vanishes (see (5)), i.e.

 $-\frac{27}{16} \delta \left(\delta^2 - \alpha^2 \delta + \frac{1}{3} \alpha^4\right)^3 = 0.$ Because $\delta = \frac{1}{2} \alpha^2 \left(1 \pm \frac{1}{3} \omega\right)$ with $\omega = i \sqrt{3}$, it follows from (5) that:

$$C_{6} = \frac{1}{72} \alpha^{0} (1 \pm \omega)(3 \mp 2 \omega) = \sigma$$

$$C_{7} = \frac{1}{24} \alpha^{7} (1 \pm \omega)(3 \mp \omega) = -(2 \rho_{2} + \rho_{3})\sigma$$

$$C_{8} = \frac{1}{48} \alpha^{8} (1 \pm \omega)(9 \mp \omega) = (2\rho_{2}\rho_{3} + \rho_{2}^{2})\sigma$$

$$C_{9} = \frac{1}{36} \alpha^{9} (1 \pm \omega)(3 \pm \omega) = -\rho_{2}^{2}\rho_{3}\sigma.$$

The result of the system of equations is:

$$\rho_{2} = \frac{\alpha(9 + \omega)}{2(2 - \omega - 3)}$$

$$\rho_{3} = -\frac{4 - \alpha \omega}{2 - \omega - 3}$$
Let $\alpha = -1 + \omega$. After the transformation $(X, Y) \longrightarrow (X, \frac{1}{2} Y)$:
 $G_{2}(X, Y) = \frac{1}{6} \mu X(X - Y) [6 X^{2} + 6 \omega XY - (3 + \omega)Y^{2}]$
 $G_{3}(X, Y) = \frac{1}{4} \nu X^{2}(X - Y) [4 X^{3} - 2(1 - 3 \omega)X^{2}Y - 4(2 + \omega)XY^{2} + (5 - \omega)Y^{3}]$
 $\Delta(X, Y) = -\frac{1}{2^{3} \cdot 3^{2}} \mu^{3} X^{3}Y^{6}(X - Y)^{2} [(9 + \omega) X + 8 \omega Y]$

with $\mu^3 - \nu^2 = 0$.

The cross ratio is CR(I₆ II | I₁ III) = $\frac{3-2}{9}$. After the transformation (G₂,G₃) \longrightarrow ($\frac{1}{9}$ G₂, $\frac{1}{27}$ G₃) table III shows the surface for $\mu = 36$, $\nu = 216$.

Notes to table III

Table III lists the Weierstraß Models of the fibre combinations with the base points $(\rho_1, \rho_2, \rho_3, \rho_4)$ of the fibres. G₂ and G₃ appear as follows: The discriminant is $\Delta = G_2^3 - 27 G_3^2$. All polynomials can be chosen to have integer coefficients except for the combination I₆ I₁ II III . (G₂, G₃) are determined up to $(\lambda^4 G_2, \lambda^6 G_3)$ $\lambda \in \mathbb{C}^*$ only.

If there is a singular fibre in T⁻, then table III lists in addition those values of the the cross ratio $CR(\rho_1 \ \rho_2 \ \rho_3 \ \rho_4) = \frac{\rho_1 \ - \ \rho_3}{\rho_2 \ - \ \rho_3} : \frac{\rho_1 \ - \ \rho_4}{\rho_2 \ - \ \rho_4}$, which are excluded.

All surfaces with four singular fibres, section and nonconstant \mathscr{J} -invariant $\mathscr{J} = \frac{G_2^3}{\Delta}$ can easily be calculated from the models by " moving the asterisk " and " asterisking " the fibres (see page 7). They are uniquely determined up the operation of Aut(P₁C). Table III

.

•

•

.

Fibre combination	Veierstraß Model	J-invariant	Cross ratio of the base points
I ₄ I ₁ I ₁ I <mark>5</mark> (1,m,0,¢4)	$G_{2} = 3 (I - \rho_{4}Y)^{2} (I^{2} + 14 XY + Y^{2})$ $G_{3} = (I - \rho_{4}Y)^{3} (I^{3} - 33 I^{2}Y - 33 XY^{2} + Y^{3})$ $\Delta = 2^{2} \cdot 3^{4} XY (I - \rho_{4}Y)^{4} (I - Y)^{4}$	$\frac{1}{108} \frac{(X^2 + 14 XY + Y^2)^3}{IY(X - Y)^4}$	$\frac{1}{1-\rho_4} \neq 0,1, \alpha$
I ₁ I ₂ I ₂ I [*] (1,,0,ρ ₄)	$G_{2} = 12 (X - \rho_{4}Y)^{2}(X^{2} - XY + Y^{2})$ $G_{3} = 4 (X - \rho_{4}Y)^{3}(2 X^{2} - 3 X^{2}Y - 3 XY^{2} + 2 Y^{3})$ $\Delta = 2^{4} \cdot 3^{4} X^{2}Y^{2}(X - \rho_{4}Y)^{4}(X - Y)^{2}$	$\frac{4}{27} \frac{(X^2 - XY + Y^2)^3}{X^2 Y^2 (X - Y)^2}$	$\frac{1}{1-\rho_4} \neq 0,1, m$
I ₁ I ₁ I ₁ I [*] (<i>u</i> ₁ , <i>u</i> ₂ ,=,0)	$\begin{aligned} G_2 &= 12 \ X^2 (X^2 + 2 \ eXY + Y^2) \\ G_3 &= 4 \ X^3 (2 \ X^3 + 3 \ (e^2 + 1) X^3 Y + 6 \ eXY^3 + 2 \ Y^3) \\ \Delta &= -2^4 \cdot 3^3 \ (e - 1)^2 X^3 Y [12 \ X^2 + 3 \ (3 \ e^2 + 6 \ e - 1) XY + 4 \ (e + 2) Y^2] \\ e \neq -2, \ -\frac{5}{3}, \ 1 \qquad e_{1,2} = -\frac{1}{16} \left[3 \ e^2 + 6 \ e - 1 \pm \sqrt{\frac{1}{3} (e - 1) (3 \ e + 5)^2} \right] \end{aligned}$	$-\frac{4}{(a-1)^2} \frac{(X^2+2 aXY+Y^2)^3}{X^3Y[12 X^2+3 (3 a^2+6 a-1)XY+4 (a+2)Y^3]}$	<u>#-</u> ≠ι .
[1 [1 [2] ⁴ (<i>u</i> 1, <i>u</i> 3,=,0)	$G_{2} = 12 \ \mathbf{I}^{2} (\mathbf{I}^{2} + a\mathbf{I}\mathbf{Y} + \mathbf{Y}^{2})$ $G_{3} = 4 \ \mathbf{I}^{3} (2 \ \mathbf{X}^{3} + 3 \ a\mathbf{X}^{2}\mathbf{Y} + 3 \ a\mathbf{I}\mathbf{Y}^{3} + 2 \ \mathbf{Y}^{3})$ $\Delta = 2^{4} \cdot 3^{3} \ (2 - a)^{2} \mathbf{I}^{3} \mathbf{Y}^{2} [3 \ \mathbf{X}^{2} + 2 \ (2 \ a - 1) \mathbf{I}\mathbf{Y} + 3 \ \mathbf{Y}^{3}]$ $a \neq -1, 2 \qquad u_{1,2} = -\frac{1}{3} \ (2 \ a - 1 \pm 2 \ \sqrt{a^{2} - a - 2})$	$\frac{4}{(2-a)^2} \frac{(I^2 + aIY + Y^2)^2}{I^2Y^2[3 I^2 + 2 (2 a - 1)IY + 3 Y^2]}$	$\frac{u_2}{u_1} \neq 0, 1, =$
$I_{3} I_{1} II I_{6}^{*}$ (0,=,1, ρ_{4})	$G_{2} = 3 (\mathbf{I} - \rho_{4}\mathbf{Y})^{2}(\mathbf{X} - \mathbf{Y})(\mathbf{X} - 9 \mathbf{Y})$ $G_{3} = (\mathbf{I} - \rho_{4}\mathbf{Y})^{3}(\mathbf{X} - \mathbf{Y})(\mathbf{X}^{2} + 18 \mathbf{I}\mathbf{Y} - 27 \mathbf{Y}^{2})$ $\Delta = -2^{4} \cdot 3^{5} \mathbf{I}^{2}\mathbf{Y}(\mathbf{X} - \mathbf{Y})^{2}(\mathbf{X} - \rho_{4}\mathbf{Y})^{6}$	$-\frac{1}{64} \frac{(X-Y)(X-9 Y)^2}{X^2 Y}$	$\frac{1}{\mu_4} \neq 0, 1, \mathbf{m}$
I ₂ I ₁ III I 5 (0,#,1,\$\$\$	$G_{2} = 3 (X - \rho_{4}Y)^{2}(X - Y)(X - 4 Y)$ $G_{3} = (X - \rho_{4}Y)^{2}(X - Y)^{2}(X + 8 Y)$ $\Delta = -3^{4} X^{2}Y(X - Y)^{3}(X - \rho_{4}Y)^{4}$	$-\frac{1}{27} \frac{(X-4,Y)^3}{X^2 Y}$	<u>_1</u> ≠0,1,= ₽,
I ₁ Ι ₄ ΙΨ Ι [#] (0,=,1,ρ ₄)	$G_{2} = 3 (X - \rho_{4}Y)^{2} (X - Y)^{2}$ $G_{3} = (X - \rho_{4}Y)^{3} (X - Y)^{2} (X + Y)$ $\Delta = -108 XY (X - Y)^{4} (X - \rho_{4}Y)^{4}$	$-\frac{1}{4}\frac{(X-Y)^2}{XY}$	$\frac{1}{\mu_4} \neq 0, 1, a$

.

.

21

.

I ₁ I ₁ I ₁ III* (<i>w</i> 1, <i>w</i> 2,=,0)	$G_{2} = 3 \ X^{2} (X + eY)$ $G_{3} = X^{5} (X + Y)$ $\Delta = 27 \ X^{9} Y [(3 \ e - 2) X^{2} + (3 \ e^{2} - 1) XY + e^{3} Y^{2}]$ $e \neq -\frac{1}{3}, \ 0, \ \frac{2}{3}, \ 1 \qquad \omega_{1,2} = -\frac{1}{6 \ e - 4} \left[3 \ e^{2} - 1 \pm \sqrt{(3 \ e + 1)(1 - e)^{3}} \right]$	$\frac{(X + eY)^3}{Y[(3 - 2)X^3 - (3 e^2 - 1)XY + e^3Y]}$	$\frac{u_3}{u_1} \neq 0, 1,$
I ₁ I ₁ I ₂ IV* (<i>u</i> 1, <i>u</i> 2,=,0)	$G_{2} = 3 \ X^{2} (X + 2 \ eY)$ $G_{2} = X^{4} (X^{2} + 3 \ eXY + Y^{2})$ $\Delta = 27 \ X^{4} Y^{2} [(3 \ e^{2} - 2)X^{3} + 2 \ e \ (4 \ e^{2} - 3)XY - Y^{2}]$ $e \neq 0, \pm \sqrt{\frac{1}{2}}, \pm \sqrt{\frac{2}{3}} \qquad e_{1,2} = -\frac{1}{3 \ e^{2} - 2} [e(4 \ e^{2} - 3) \pm \sqrt{2 \ (2 \ e^{2} - 1)^{3}}]$	$\frac{I(I + 2 eY)^3}{Y^2[(3 e^2 - 2)I^2 + 2 e(4 e^2 - 3)IY - Y^2]}$	$\frac{u_2}{u_1} \neq -1, 0, \frac{1}{2}, 1, 2, =$
I ₁ II III Ι ₀ [*] (=,0,1,ρ ₄)	$G_{2} = 3 \ X(X - \rho_{4}Y)^{3}(X - Y)$ $G_{3} = X(X - \rho_{4}Y)^{3}(X - Y)^{2}$ $\Delta = 27 \ X^{2}Y(X - Y)^{3}(X - \rho_{4}Y)^{4}$	X Y	<i>p</i> ₄ ≠ 0,1,∞
I ₂ II II I [*] (=,0,1, <i>p</i> ₄)	$G_{2} = 12 \ X(X - Y) (X - \rho_{4}Y)^{2}$ $G_{8} = 4 \ X(X - \rho_{4}Y)^{3} (X - Y) (2 \ X - Y)$ $\Delta = -2^{4} \cdot 3^{3} \ X^{2}Y^{2} (X - Y)^{2} (X - \rho_{4}Y)^{5}$	$-4 \frac{X(X-Y)}{Y^2}$	ρ _i ≠ 0,1,
I ₁ I ₁ II IV* (0,=,1,e ²)	$G_{2} = 3 (X - Y)(X - a^{2}Y)^{3}$ $G_{3} = (X - Y)(X - a^{3}Y)^{4}(X + aY)$ $\Delta = -27 (a + 1)^{3}XY(X - Y)^{2}(X - a^{2}Y)^{6}$ $a \neq -1, 0, 1, a$	$-\frac{1}{(s+1)^2} \frac{(\mathbf{I}-\mathbf{Y})(\mathbf{I}-s^2\mathbf{Y})}{\mathbf{I}\mathbf{Y}}$	$\frac{1}{q^2} \neq 0, 1, \infty$
I ₁ I ₁ I ₁ I ₂ (1, 7 , 7 ² ,=)	$G_{2} = 3 \ X(9 \ X^{3} - 8 \ Y^{3})$ $G_{3} = 27 \ X^{4} - 36 \ X^{3}Y^{3} + 8 \ Y^{4}$ $\Delta = 2^{4} \cdot 3^{3} \ Y^{4}(X^{3} - Y^{3})$ $g = e^{\frac{2X}{3}}$	$\frac{1}{64} \frac{X^2(9 X^2 - 8 Y^3)^2}{Y^4(X^3 - Y^3)}$	-•
[, I, I, I, I, (-1,1,0,m)	$G_{2} = 3 (16 X^{4} - 16 X^{2}Y^{2} + Y^{4})$ $G_{3} = 64 X^{6} - 96 X^{4}Y^{2} + 30 X^{3}Y^{4} + Y^{6}$ $\Delta = 2^{2} \cdot 3^{4} X^{2}Y^{6}(X + Y)(X - Y)$	$\frac{1}{108} \frac{(16 X^4 - 16 X^2 Y^2 + Y^4)^3}{X^2 Y^3 (X + Y) (X - Y)}$	- 1
		▶	┝╾᠇╾╾╾╾╾┫╴

F			
[, [, [, [, [, [, [, [, [, [, [, [, [, [$G_{2} = 12 (X^{4} - 4 X^{3}Y + 2 XY^{3} + Y^{4})$ $G_{3} = 4 (2 X^{6} - 12 X^{3}Y + 12 X^{4}Y^{2} + 14 X^{3}Y^{3} + 3 X^{2}Y^{4} + 6 X^{2}Y^{5} + 2 Y^{6})$ $\Delta = 2^{4} \cdot 3^{6} X^{3}Y^{6} (2 X + Y)^{2} (X - 4 Y)$	$\frac{4}{27} \frac{(X^4 - 4 X^3Y + 2 XY^3 + Y^4)^3}{X^3Y^4(2 X + Y)^2(X - 4 Y)}$	- 8
$\begin{bmatrix} I_1 & I_1 & I_2 \end{bmatrix}$ $(\sigma_1, \sigma_2, 0, \omega)$	$G_{2} = 3 \left(X^{4} - 12 X^{3}Y + 14 X^{2}Y^{2} + 12 XY^{3} + Y^{4} \right)$ $G_{3} = X^{6} - 18 X^{5}Y + 75 X^{4}Y^{2} + 75 X^{2}Y^{4} + 18 XY^{5} + Y^{6}$ $\Delta = 2^{6} \cdot 3^{6} X^{4}Y^{6} \left(X^{2} - 11 XY - Y^{2} \right)$ $w_{1,2} = \left[\frac{1 \pm \sqrt{5}}{2} \right]^{5}$	$\frac{1}{2^4 \cdot 3^3} \frac{(X^4 - 12 \ X^3Y + 14 \ X^3Y^3 + 12 \ XY^2 + Y^4)^3}{X^5Y^6(X^2 - 11 \ XY - Y^2)}$	$\left(\frac{1+\sqrt{5}}{1-\sqrt{5}}\right)^{6}$
Γ ₂ Γ ₂ Γ ₄ Γ ₄ (-1,1,0,∞)	$G_{2} = 12 (X^{4} - X^{2}Y^{2} + Y^{4})$ $G_{3} = 4 (2 X^{4} - 3 X^{4}Y^{2} - 3 X^{2}Y^{4} + 2 Y^{4})$ $\Delta = 2^{4} \cdot 3^{4} X^{4}Y^{4} (X + Y)^{2} (X - Y)^{2}$	$\frac{4}{27} \frac{(X^4 - X^2Y^2 + Y^4)^3}{X^4Y^4(X + Y)^2(X - Y)^2}$	- t
I ₁ I ₃ I ₃ I ₃ (1, y, y ³ , m)	$G_{2} = 3 Y(8 X^{3} + Y^{3})$ $G_{3} = 8 X^{6} + 20 X^{3}Y^{2} - Y^{6}$ $\Delta = -2^{6} \cdot 3^{3} X^{3} (X^{3} - Y^{3})^{3}$ $y = e^{\frac{23}{3}}$	$-\frac{1}{64} \frac{Y^3 (8 X^3 + Y^3)^3}{X^3 (X^3 - Y^3)^3}$	- 9
I ₁ I ₁ I ₈ II (v ₁ , v ₂ , ∞, 0)	$G_{2} = 12 \ \mathbf{I} (\mathbf{X}^{3} - 6 \ \mathbf{X}^{2}\mathbf{Y} + 15 \ \mathbf{X}\mathbf{Y}^{2} - 12 \ \mathbf{Y}^{3})$ $G_{3} = 4 \ \mathbf{X} (2 \ \mathbf{X}^{5} - 18 \ \mathbf{X}^{4}\mathbf{Y} + 72 \ \mathbf{X}^{3}\mathbf{Y}^{2} - 144 \ \mathbf{X}^{2}\mathbf{Y}^{3} + 135 \ \mathbf{X}\mathbf{Y}^{4} - 27 \ \mathbf{Y}^{5})$ $\Delta = -2^{4} \cdot 3^{4} \ \mathbf{X}^{2}\mathbf{Y}^{4} (3 \ \mathbf{X}^{2} - 14 \ \mathbf{X}\mathbf{Y} + 27 \ \mathbf{Y}^{2})$ $u_{1,2} = -\frac{1}{3} \ (1 \pm i \ \sqrt{2}^{2})^{4}$	$-\frac{4}{27} \frac{X(X^3 - 6 X^2Y + 15 XY^2 - 12 Y^3)^3}{Y^8 (3 X^2 - 14 XY + 27 Y^2)}$	$\left[\frac{1-i\sqrt{T}}{1+i\sqrt{T}}\right]^4$
I ₁ I ₂ I ₇ II (- ⁹ / ₄ , ⁸ / ₉ ,=,0)	$G_{2} = 12 \ \mathbf{X}(9 \ \mathbf{X}^{3} + 36 \ \mathbf{X}^{2}\mathbf{Y} + 42 \ \mathbf{X}\mathbf{Y}^{2} + 14 \ \mathbf{Y}^{3})$ $G_{3} = 12 \ \mathbf{X}(18 \ \mathbf{X}^{5} + 108 \ \mathbf{X}^{4}\mathbf{Y} + 234 \ \mathbf{X}^{3}\mathbf{Y}^{2} + 222 \ \mathbf{X}^{2}\mathbf{Y}^{3} + 87 \ \mathbf{X}\mathbf{Y}^{4} + 8 \ \mathbf{Y}^{5})$ $\Delta = -2^{4} \cdot 3^{3} \ \mathbf{X}^{2}\mathbf{Y}^{2}(9 \ \mathbf{X} + 8 \ \mathbf{Y})^{2}(4 \ \mathbf{X} + 9 \ \mathbf{Y})$	$-4 \frac{I(9 I^{3} + 36 I^{2}Y + 42 I^{2}Y + 14 Y^{3})^{3}}{Y^{7}(9 I + 8 Y)^{2}(4 I + 9 Y)}$	- <u>32</u> 81
I ₁ I ₄ I ₅ II (- 10,0,, ¹ / _g)	$G_{2} = 3 (8 X - Y) (8 X^{3} + 87 X^{2}Y + 96 XY^{2} - 64 Y^{3})$ $G_{3} = (8 X - Y) (64 X^{6} + 2^{4} \cdot 6 \cdot 13 X^{4}Y + 5^{2} \cdot 167 X^{3}Y^{2} + 100 X^{2}Y^{3} + 2^{7} \cdot 5^{2} XY^{4} - 2^{8} Y^{6})$ $\Delta = -2^{3} \cdot 3^{16} X^{4}Y^{6} (8 I - Y)^{2} (X + 10 Y)$	$-\frac{1}{2^3 \cdot 3^{12}} \frac{(8 \ X - Y)(8 \ X^3 + 87 \ X^2Y + 96 \ XY^2 - 64 \ Y^3)^3}{X^4Y^8(X + 10 \ Y)}$	<u>1</u> 81
I ₂ I ₃ I ₄ II (- ⁵ / ₀ ,0,=,3)	$G_{3} = 3 (X - 3 Y) (81 X^{3} - 9 X^{2}Y - 53 XY^{2} - 27 Y^{3})$ $G_{3} = (X - 3 Y) (3^{6} X^{6} - 3^{6} \cdot 5 X^{4}Y - 2 \cdot 3^{3} \cdot 5^{2} X^{3}Y^{2} - 350 X^{2}Y^{3} - 3^{3} \cdot 5^{2} XY^{4} - 243 Y^{6})$ $\Delta = -2^{14} \cdot 3^{4} X^{3}Y^{6} (X - 3 Y)^{2} (9 X + 5 Y)^{2}$	$-\frac{1}{2^{14} \cdot 3} \frac{(X - 3 Y)(81 X^{1} - 9 X^{2}Y - 53 XY^{2} - 27 Y^{3})^{3}}{X^{3}Y^{6}(9 X + 5 Y)^{2}}$	<u>27</u> 32

•

•

.

			•
I ₁ I ₁ I ₇ III (ψ _t ,ψ ₂ ,∞,0)	$G_{2} = i2 \ \mathbf{X} (\mathbf{X}^{2} + 4 \ \mathbf{X}^{2}\mathbf{Y} + 10 \ \mathbf{X}\mathbf{Y}^{2} + 6 \ \mathbf{Y}^{2})$ $G_{3} = 4 \ \mathbf{X}^{2} (2 \ \mathbf{X}^{4} + 12 \ \mathbf{X}^{2}\mathbf{Y} + 42 \ \mathbf{X}^{2}\mathbf{Y}^{2} + 70 \ \mathbf{X}\mathbf{Y}^{3} + 63 \ \mathbf{Y}^{4})$ $\Delta = 2^{4} \cdot 3^{4} \ \mathbf{X}^{3}\mathbf{Y}^{7} (4 \ \mathbf{X}^{2} + 13 \ \mathbf{X}\mathbf{Y} + 32 \ \mathbf{Y}^{2})$ $u_{1,2} = \frac{1}{4} \left[\frac{1 \pm i \ \sqrt{7^{4}}}{2} \right]^{7}$	$\frac{4}{27} \frac{(X^3 + 4X^2Y + 10XY^2 + 6Y^3)^4}{Y^7(4X^2 + 13XY + 32Y^2)}$	$\begin{bmatrix} \frac{1-i\sqrt{T}}{1+i\sqrt{T}} \end{bmatrix}$
[, [₂ [₄ III (4,1,m,0)	$G_{2} = 12 \ \mathbf{X} (\mathbf{X}^{3} - 6 \ \mathbf{X}^{2}\mathbf{Y} + 9 \ \mathbf{X}\mathbf{Y}^{2} - 3 \ \mathbf{Y}^{3})$ $G_{3} = 4 \ \mathbf{X}^{2} (2 \ \mathbf{X}^{4} - 18 \ \mathbf{X}^{3}\mathbf{Y} + 54 \ \mathbf{X}^{2}\mathbf{Y}^{2} - 63 \ \mathbf{X}\mathbf{Y}^{3} + 27 \ \mathbf{Y}^{4})$ $\Delta = 2^{4} \cdot 3^{6} \ \mathbf{X}^{3}\mathbf{Y}^{4} (\mathbf{X} - \mathbf{Y})^{2} (\mathbf{X} - 4 \ \mathbf{Y})$	$\frac{4}{27} \frac{(X^3 - 6 X^2Y + 9 XY^2 - 3 Y^3)^3}{Y^4 (X - Y)^2 (X - 4 Y)}$	<u>1</u> 4
$I_1 I_3 I_6 III$ $(-\frac{25}{3},0,a,\frac{1}{5})$	$G_{2} = 75 \ (5 \ X - Y) (5 \ X^{3} + 45 \ X^{2}Y + 39 \ XY^{2} - 25 \ Y^{3})$ $G_{3} = 25 \ (5 \ X - Y)^{2} (25 \ X^{4} + 340 \ X^{3}Y + 2 \cdot 3 \cdot 181 \ X^{2}Y^{2} + 100 \ X^{2}Y + 5^{4} \ Y^{4})$ $\Delta = - \ 2^{14} \cdot 3^{4} \cdot 5^{4} \ X^{3}Y^{5} (5 \ X - Y)^{3} (3 \ X + 25 \ Y)$	$-\frac{25}{2^{14} \cdot 3^3} \frac{(5 \ X^3 + 45 \ X^2 Y + 39 \ XY^2 - 25 \ Y^3)^3}{X^3 Y^4 (3 \ X + 25 \ Y)}$	<u>3</u> 128
I, I, I, III (- ¹ / ₃ ,0,,1)	$G_{2} = 3 (X - Y) (16 X^{2} - 3 XY^{2} - Y^{3})$ $G_{3} = (X - Y)^{2} (64 X^{4} + 32 X^{3}Y + 6 X^{2}Y^{2} + 5 XY^{3} + Y^{4})$ $\Delta = 2^{2} \cdot 3^{4} X^{3}Y^{4} (X - Y)^{3} (3 X + Y)^{2}$	$\frac{1}{108} \frac{(16 X^3 - 3 XY^2 - Y^2)^3}{X^3Y^4 (3 X + Y)^2}$	34
I ₁ I ₁ I ₆ IV (1,-1,.,0)	$G_{2} = 3 \ \mathbf{X}^{2} (9 \ \mathbf{X}^{2} - 8 \ \mathbf{Y}^{2})$ $G_{3} = \mathbf{X}^{2} (27 \ \mathbf{X}^{4} - 36 \ \mathbf{X}^{2} \mathbf{Y}^{2} + 8 \ \mathbf{Y}^{4})$ $\Delta = 2^{6} \cdot 3^{2} \ \mathbf{X}^{4} \mathbf{Y}^{6} (\mathbf{X} - \mathbf{Y}) (\mathbf{I} + \mathbf{Y})$	$\frac{1}{64} \frac{X^2 (9 X^2 - 8 Y^2)^3}{Y^4 (X - Y) (X + Y)}$	- 1
$I_1 I_2 I_5 IV$ $(-\frac{27}{4}, -\frac{1}{2}, -0)$	$G_{1} = 12 X^{2} (X^{2} + 8 XY + 10 Y^{2})$ $G_{3} = 4 X^{2} (2 X^{4} + 24 X^{2}Y + 78 X^{2}Y^{2} + 56 XY^{3} + 27 Y^{4})$ $\Delta = -2^{4} \cdot 3^{6} X^{4}Y^{5} (2 X + Y)^{2} (4 X + 27 Y)$	$-\frac{4}{27} \frac{X^2 (X^2 + 8 XY + 10 Y^2)^3}{Y^8 (2 X + Y)^2 (4 X + 27 Y)}$	27
I ₁ I ₁ I ₂ IV (a,0,-1,1)	$G_{2} = 3 (X - Y)^{2} (9 X^{2} + 14 XY + 9 Y^{2})$ $G_{3} = (X - Y)^{2} (27 X^{4} + 38 X^{3}Y + 2 X^{2}Y^{2} + 38 XY^{3} + 27 Y^{4})$ $\Delta = -2^{12} \cdot 3^{2} X^{3}Y^{3} (X - Y)^{4} (X + Y)^{2}$	$-\frac{1}{2^{12}} \frac{(X - Y)^2 (9 X^2 + 14 XY + 9 Y^2)^3}{X^3 Y^3 (X + Y)^2}$	- 1

.

· · ·

•

Ι _ι Ι ₇ ΙΙ ΙΙ (0,∞,ψ ₁ ,ψ ₂)	$G_{2} = 3 (X^{2} - 13 XY + 49 Y^{2})(X^{2} - 5 XY + Y^{2})$ $G_{3} = (X^{2} - 13 XY + 49 Y^{2})(X^{4} - 14 X^{3}Y + 63 X^{2}Y^{2} - 70 XY^{2} - 7 Y^{4})$ $\Delta = -2^{6} \cdot 3^{4} XY^{7}(X^{2} - 13 XY + 49 Y^{2})^{2}$ $u_{1,2} = -\frac{1}{4} (-1 \pm 3 i \sqrt{3}^{3})^{2}$	$-\frac{1}{2^{6} \cdot 3^{2}} \frac{(X^{2} - 13 XY + 49 Y^{2})(X^{2} - 5 XY + Y^{2})^{2}}{YY^{7}}$	$\left\{\frac{-1+3 \text{ i }\sqrt{3}}{-1-3 \text{ i }\sqrt{3}}\right\}$
I ₁ I ₆ II II (0,=,1,-1)	$G_{2} = 3 (X - Y)(X + Y)(9 X^{2} - Y^{2})$ $G_{3} = (X - Y)(X + Y)(27 X^{4} - 18 X^{2}Y^{2} - Y^{4})$ $\Delta = -2^{4} \cdot 3^{3} X^{2}Y^{4}(X - Y)^{2}(X + Y)^{2}$	$-\frac{1}{64} \frac{(X - Y)(X + Y)(9 X^2 - Y^2)^3}{X^2 Y^4}$	-1
$I_4 I_4 II II$ $(u_1, u_2, \frac{1}{2}, -4)$	$G_{2} = 12 \ \text{XY}(2 \ \text{X} - \text{Y})(\text{X} + 4 \ \text{Y})$ $G_{3} = 2 \ (2 \ \text{X} - \text{Y})(\text{X} + 4 \ \text{Y})(\text{X}^{4} + 4 \ \text{X}^{3}\text{Y} + 8 \ \text{XY}^{3} - 4 \ \text{Y}^{4})$ $\Delta = -108 \ (2 \ \text{X} - \text{Y})^{2}(\text{X} + 4 \ \text{Y})^{2}(\text{X}^{2} + 2 \ \text{XY} - 2 \ \text{Y}^{2})^{4}$ $\omega_{1,2} = -1: \pm \sqrt{3}^{3}$	$-16 \frac{X^{2}Y^{3}(2 X - Y)(X + 4 Y)}{(X^{2} + 2 YY - 2 Y^{2})^{4}}$	(-2+√ ⁻ 3 ⁻) ³
I ₁ I ₄ II III (<i>a</i> .a.,1,0)	$G_{2} = 2 \ \mathbf{I} (\mathbf{X} - \mathbf{Y}) \left[6 \ \mathbf{X}^{2} + 6 \ (\ \mathbf{X}\mathbf{Y} - (3 + \zeta)\mathbf{Y}^{2} \right]$ $G_{3} = 2 \ \mathbf{X}^{2} (\mathbf{X} - \mathbf{Y}) \left[4 \ \mathbf{X}^{3} - 2 \ (1 - 3 \ \zeta)\mathbf{X}^{2}\mathbf{Y} - 4 \ (2 + \zeta)\mathbf{X}\mathbf{Y}^{2} + (5 - \zeta)\mathbf{Y}^{3} \right]$ $\Delta = 24 \ \mathbf{X}^{3}\mathbf{Y}^{6} (\mathbf{X} - \mathbf{Y})^{2} \left[(9 + \zeta)\mathbf{X} + 8 \ \zeta \mathbf{Y} \right]$ $\sigma = -\frac{2}{7} \ (3 \ \zeta + 1) \qquad \zeta = \pm i \ \sqrt{3}^{n}$	$\frac{1}{3} \frac{(I - Y) [6 I^{2} + 6 (IY - (3 + \zeta)Y^{2}]^{2}}{Y^{4}[(9 + \zeta)I + 8 \zeta Y]}$	$\frac{3}{8}(3-\zeta)$
$I_2 I_6 II III (\frac{125}{14},, 0, \frac{27}{2})$	$G_{2} = 3 \ \mathbf{I}(2 \ \mathbf{I} - 27 \ \mathbf{Y})(2 \ \mathbf{X}^{2} - 35 \ \mathbf{I}\mathbf{Y} + 140 \ \mathbf{Y}^{2})$ $G_{3} = \mathbf{I}(2 \ \mathbf{I} - 27 \ \mathbf{Y})^{2}(2 \ \mathbf{X}^{3} - 39 \ \mathbf{X}^{2}\mathbf{Y} + 222 \ \mathbf{X}\mathbf{Y}^{2} - 250 \ \mathbf{Y}^{3})$ $\Delta = 2^{2} \cdot 3^{4} \ \mathbf{X}^{2}\mathbf{Y}^{4}(2 \ \mathbf{X} - 27 \ \mathbf{Y})^{3}(14 \ \mathbf{X} - 125 \ \mathbf{Y})^{2}$	$\frac{1}{108} \frac{X(2 X^2 - 35 XY + 140 Y^2)^3}{Y^6 (14 X - 125 Y)^2}$	- <u>125</u> 64
I, I, II III (0,=,- 27,1)	$G_{2} = 3 (\mathbf{X} - \mathbf{Y})(\mathbf{X} + 27 \mathbf{Y})(16 \mathbf{X}^{2} + 80 \mathbf{Y} - 243 \mathbf{Y}^{2})$ $G_{3} = (\mathbf{X} - \mathbf{Y})^{2}(\mathbf{X} + 27 \mathbf{Y})(64 \mathbf{X}^{3} + 2^{5} \cdot 43 \mathbf{X}^{2}\mathbf{Y} + 2 \cdot 3^{4} \mathbf{X}\mathbf{Y}^{2} + 3^{6} \mathbf{Y}^{3})$ $\Delta = -2^{2} \cdot 3^{4} \cdot 7^{7} \mathbf{X}^{5} \mathbf{Y}^{4} (\mathbf{X} - \mathbf{Y})^{2} (\mathbf{X} + 27 \mathbf{Y})^{2}$	$-\frac{1}{2^2 \cdot 3^3 \cdot 7^7} \frac{(X + 27 Y)(16 X^2 + 80 XY - 243 Y^2)^3}{X^3 Y^4}$	- 27
I _t I _s II IV (- 16 ,**,3,0)	$G_{2} = 3 X^{2} (X - 3 Y) (X + 5 Y)$ $G_{3} = X^{2} (X - 3 Y) (X^{3} + 6 X^{2}Y - 3 XY^{2} - 32 Y^{3})$ $\Delta = -2^{4} \cdot 3^{3} X^{4} Y^{4} (X - 3 Y)^{2} (3 X + 16 Y)$	$-\frac{1}{64} \frac{X^2(X-3 Y)(X+5 Y)^3}{Y^8(3 X+16 Y)}$	<u>25</u> 16
I, I, II IV (¹ / ₃ ,=,1,0)	$G_{2} = 36 \ \mathbf{I}^{2} (\mathbf{I} - \mathbf{Y}) (3 \ \mathbf{I} - \mathbf{Y})$ $G_{3} = 4 \ \mathbf{X}^{2} (\mathbf{X} - \mathbf{Y}) (64 \ \mathbf{X}^{3} - 54 \ \mathbf{X}^{2}\mathbf{Y} + 9 \ \mathbf{X}\mathbf{Y}^{2} - \mathbf{Y}^{3})$ $A = -2^{4} \cdot 3^{4} \ \mathbf{X}^{4} \mathbf{Y}^{4} (\mathbf{X} - \mathbf{Y})^{2} (9 \ \mathbf{X} - \mathbf{Y})^{2}$	$-108 \frac{X^{2}(X-Y)(3 X-Y)^{3}}{Y^{4}(9 X-Y)^{2}}$	- 8

$I_{i} I_{j} III III$ $(-\frac{11}{2}, \bullet, i, -i)$	$G_{2} = 3 (X^{2} + Y^{2})(X^{2} + 0 XY + 4 Y^{2})$ $G_{2} = (X^{2} + Y^{2})^{2}(X^{2} + 9 XY + 19 Y^{2})$ $\Delta = -3^{4} Y^{6}(X^{2} + Y^{2})^{3}(2 X + 11 Y)$	$\frac{1}{27} \frac{(X^3 + 6 XY + 4 Y^2)^3}{Y^5 (2 X + 11 Y)}$	$\left[\frac{1+2}{1-2}\frac{i}{i}\right]^2$	
I ₂ I ₄ III III (0,=,1,-1)	$G_{2} = 3 \ (\mathbf{I} - \mathbf{Y}) (\mathbf{I} + \mathbf{Y}) (4 \ \mathbf{I}^{2} - \mathbf{Y}^{2})$ $G_{3} = (\mathbf{X} - \mathbf{Y})^{2} (\mathbf{X} + \mathbf{Y})^{2} (8 \ \mathbf{X}^{3} + \mathbf{Y}^{2})$ $\Delta = 3^{6} \ \mathbf{X}^{2} \mathbf{Y}^{4} (\mathbf{X} - \mathbf{Y})^{3} (\mathbf{X} + \mathbf{Y})^{4}$	$\frac{1}{27} \frac{(4 \ X^2 - Y^2)^3}{X^2 Y^4}$	- 1	
I ₃ I ₃ III III (<i>u</i> 1, <i>u</i> 2,0, e)	$G_{2} = 3 YY(X^{2} + 6 XY - 3 Y^{2})$ $G_{3} = 6 X^{2}Y^{2}(X^{3} + 3 Y^{2})$ $\Delta = 27 X^{3}Y^{3}(X^{2} - 6 XY - 3 Y^{2})^{3}$ $u_{1,2} = 3 \pm 2 \sqrt{3}^{3}$	$\frac{(X^{2} + 6 XY - 3 Y^{2})^{3}}{(X^{2} - 6 XY - 3 Y^{2})^{\frac{3}{2}}}$	- (2 + √ 3)²	26
$I_1 I_1 III IV$ $(-\frac{27}{5}, =, 1, 0)$	$G_{2} = 12 \ X^{2} (X - Y) (X + 5 \ Y)$ $G_{3} = 4 \ X^{2} (X - Y)^{2} (2 \ X^{2} + 16 \ XY + 27 \ Y^{2})$ $\Delta = 2^{4} \cdot 3^{4} \ X^{4} Y^{4} (5 \ X + 27 \ Y) (X - Y)^{2}$	$\frac{4}{27} \frac{X^2(X+5Y)^3}{Y^4(5X+27Y)}$	<u>32</u> 27	
$I_{2} I_{3} III IV$ $(\frac{1}{5}, -, 1, 0)$	$G_{2} = 3 \ \mathbf{X}^{2} (\mathbf{X} - \mathbf{Y}) (9 \ \mathbf{X} - 5 \ \mathbf{Y})$ $G_{3} = \mathbf{X}^{2} (\mathbf{X} - \mathbf{Y})^{2} (27 \ \mathbf{X}^{2} - 9 \ \mathbf{X}\mathbf{Y} + 2 \ \mathbf{Y}^{2})$ $\Delta = 108 \ \mathbf{X}^{4} \mathbf{Y}^{3} (5 \ \mathbf{X} - \mathbf{Y})^{2} (\mathbf{X} - \mathbf{Y})^{3}$	$\frac{1}{4} \frac{X^{2}(9 X - 5 Y)^{3}}{Y^{2}(5 X - Y)^{2}}$	-4	
I ₂ I ₂ IV IV (0,,1,-1)	$G_{2} = 3 (X - Y)^{2} (X + Y)^{2}$ $G_{3} = (X - Y)^{2} (X + Y)^{2} (X^{2} + Y^{2})$ $\Delta = -108 X^{2}Y^{3} (X - Y)^{4} (X + Y)^{4}$	$-\frac{1}{4} \frac{(\chi - \chi)^3 (\chi + \chi)^2}{\chi^2 \chi^2}$	- t	

· .

· · · ·

• .

.

•

.

•

.

. .

.

· ·

.

. .

(. IV III III (.,0,1,-1)	$G_{2} = 3 \ X^{2} (X - Y) (X + Y)$ $G_{3} = X^{2} (X - Y)^{3} (X + Y)^{2}$ $\Delta = 27 \ X^{4} Y^{3} (X - Y)^{3} (X + Y)^{3}$	r r	-1
I ₃ III III III . (=, #, # ² , 1)	$G_{2} = 3 \ X \ (X^{3} - Y^{4})$ $G_{3} = (X^{3} - Y^{3})^{2}$ $\Delta = 27 \ Y^{4} (X^{4} - Y^{2})^{3}$ $y = e^{\frac{2\pi i}{3}}$	<u>X</u> 3 Y3	- # ²
I ₃ II III IV (•,-3,1,0)	$G_{2} = 3 X^{2} (X - Y) (X + 3 Y)$ $G_{3} = X^{2} (X - Y)^{2} (X + 3 Y) (X + 2 Y)$ $\Delta = 108 X^{4} Y^{5} (X + 3 Y)^{2} (X - Y)^{3}$	$\frac{1}{4} \frac{\chi^{2}(\chi + 3 Y)}{Y^{3}}$	<u>3</u> 4
I IV II II (∞,0,1,-1)	$G_{2} = 12 \ X^{2} (X - Y) (X + Y)$ $G_{3} = 4 \ X^{2} (X - Y) (X + Y) (2 \ X^{2} - Y^{2})$ $\Delta = -2^{4} \cdot 3^{3} \ X^{4} Y^{4} (X - Y)^{2} (X + Y)^{2}$	$-4 \frac{X^{2}(X - Y)(X + Y)}{Y^{4}}$	-1.
[₄]]] (■,- 5, <i>u</i> ₁ , <i>u</i> ₂)	$G_{2} = 3 (X^{2} + 2 Y^{2})(X + 5 Y)(X + Y)$ $G_{3} = (X^{2} + 2 Y^{2})^{2}(X + 5 Y)(X + 4 Y)$ $\Delta = -3^{6} Y^{4}(X + 5 Y)^{3}(X^{2} + 2 Y^{2})^{3}$ $u_{1,2} = \pm i \sqrt{2}^{4}$	$-\frac{1}{27} \frac{(X + 5 Y)(X + Y)^3}{Y^4}$	$\left[\frac{1+i\sqrt{T}}{1-i\sqrt{T}}\right]^{3}$
I ₅ III II II (=,0,#1,#2)	$G_{2} = 3 \ \mathbf{I} (\mathbf{X}^{2} + 11 \ \mathbf{X}\mathbf{Y} + 64 \ \mathbf{Y}^{2}) (\mathbf{X} + 3 \ \mathbf{Y})$ $G_{3} = \mathbf{X}^{2} (\mathbf{X}^{2} + 11 \ \mathbf{X}\mathbf{Y} + 64 \ \mathbf{Y}^{2}) (\mathbf{X}^{2} + 10 \ \mathbf{X}\mathbf{Y} + 45 \ \mathbf{Y}^{2})$ $\Delta = 2^{6} \cdot 3^{6} \ \mathbf{X}^{3} \mathbf{Y}^{6} (\mathbf{X}^{2} + 11 \ \mathbf{X}\mathbf{Y} + 64 \ \mathbf{Y}^{2})^{2}$ $\mathbf{y}_{1,2} = \frac{1}{8} \ (1 \pm i \ \sqrt{15}^{-})^{3}$	$\frac{1}{2^{6} \cdot 3^{3}} \frac{(X^{3} + 11 XY + 64 Y^{3})(X + 3 Y)^{3}}{Y^{6}}$	$\left[\frac{1-i\sqrt{15}}{1+i\sqrt{15}}\right]^3$
I ₆ II II II (∞, ψ, ψ ² , 1)	$G_{2} = 12 \ X(X^{2} - Y^{3})$ $G_{3} = 4 \ (X^{2} - Y^{3})(2 \ X^{3} - Y^{3})$ $A = -2^{4} \cdot 3^{3} \ Y^{6}(X^{3} - Y^{3})^{2}$ $q = e^{\frac{2\pi i}{3}}$	- 4 <u>X³(X³ - Y³)</u> Y ⁴	ş 3

· ·

•

<u>Bibliography</u>

•

[1]	Barth, W./Peters, C./ Van de Ven, A.	Compact, complex surfaces, Berlin, Heidelberg 1984.
[2]	Herfurtner, S.	Elliptische Flächen über P ₁ C mit vier Aus- nahmefasern, Diplomarbeit Bonn 1988.
[3]	Hunt, B.	Gemischte automorphe Formen und elliptische Flächen, Diplomarbeit Bonn 1982.
[4]	Hunt, B./ Meyer, W.	Mixed Automorphic Forms and Invariants of Elliptic Surfaces, Math. Ann. 271, 1985, 53 – 80.
[5]	Каз, А.	Weierstraß Normal Forms and Invariants of Elliptic Surfaces, Trans. Amer. Math. Soc. 225, 1977, 259 – 266.
[6]	Kodaira, K.	On Compact Analytic Surfaces I, II, III, Ann. of Math. 71, 1960, 111 – 152; 77, 1963, 563 – 626; 78, 1963, 1 – 40.
[7]	Meyer, W.	Die Signatur von Lokalen Koeffizienten- systemen und Faserbündeln, Bonner Math. Schriften 53, 1972.
[8]	Meyer, W.	Die Signatur von Flächenbündeln, Math. Ann. 201, 1973, 239 – 264.
[9]	Miranda R./Persson U.	On Extremal Rational Elliptic Surfaces, Math. Z. 193, 1986, 537–558.
[10]	Naruki, I.	On Confluences of Singular Fibres in Elliptic Fibrations, Publ. Res. Inst. Math. Sci. 23, 1987, 409 – 431.
[11]	Persson U.	Configuration of Kodaira Fibres on Rational Elliptic Surfaces, Preprint.

[12] Schmickler - Hirzebruch, U.

Elliptische Flächen über P₁C mit drei Ausnahmefasern und die hypergeometrische Differentialgleichung, Diplomarbeit Bonn 1978; Schriftenreihe Math. Inst. Münster Ser. 2, 33, Münster 1985.

Authors address: Stephan Herfurtner Peterstr. 21 5300 Bonn 1 FRG