AMPLE CARTIER DIVISORS ON NORMAL SURFACES

by

Fumio Sakai

Saitama University and Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3, Fed. Rep. of Germany

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3 Sonderforschungsbereich 40 Theoretische Mathematik Beringstraße 4 D-5300 Bonn 1

SFB/MPI 85-26

By a <u>polarized normal surface</u> we mean a pair (Y,H) of a normal projective surface Y over C and an ample Cartier divisor H on it. Define a graded ring:

$$R = \bigoplus_{m \ge 0} H^0(Y, O(m(K_Y + H))) .$$

Let $\kappa = \kappa (K_Y + H, Y)$, which is by definition, tr.deg. $\mathbb{R}^R - 1$ or $-\infty$ in case $R \cong \mathbb{C}$. To state the structure theorem, we introduce an example. Let $\mathbb{F}_e = \mathbb{P}(0 \oplus 0 \pmod{1})$ (-e) and suppose $\mathbb{P}^1 \oplus \mathbb{P}^1$ (-e) and suppose \mathbb{P}^2 . Let $\pi : \mathbb{F}_e \longrightarrow Y_e$ be the contraction of the base section b, a (-e)-curve, and let ℓ denote the image of a fibre f on \mathbb{F}_e . Then $\pi^*\ell = f + (1/e)b$ and $\pi^*K_{Y_e} = K_{\mathbb{F}_e} + (1-2/e)b$. It turns out that $H_e = e\ell$ is an ample Cartier divisor on Y_e and we have $e(K_{Y_e} + H_e) = -2H_e$.

THEOREM: Let (Y,H) be a polarized normal surface. Then we have the following classification:

к	Structure of (Y,H)	Sing(Y)
8	$(\mathbb{P}^{2}, \mathcal{O}(1)), (\mathbb{P}^{2}, \mathcal{O}(2)), (Y_{e}, H_{e}) e \ge 2$	smooth or quotient
	\mathbf{IP}^1 - bundle with $\mathbf{Hf} = 1$ for a fibre f	smooth
0	К _Y + H~О	Gorenstein
1	Conic bundle with $\kappa = 1$	RDP of type A
2	R is finitely generated	Q-Gorenstein
	R is not finitely generated	not Q-Gorenstein

This type of Theorems have been obtained by Sommese [7], Lanteri-Palleschi [2] for the case in which Y is smooth and by Sommese [8] for the case in which Y is normal Gorenstein. I would like to thank A. Sommese for inspiring me by his preprint [8].

§1 PRELIMINARIES

For the basic results on normal surfaces we refer to [5] and [6]. A <u>divisor</u> will mean a Weil divisor. A divisor is said to be <u>ample</u> if its some positive multiple becomes a very ample Cartier divisor. We use the intersection theory with Q-coefficients introduced by Mumford. We denote by \sim (resp. =) the linear (resp. numerical) equivalence of divisors. A divisor D is <u>nef</u> if DC \geq 0 for all irreducible curves C and is <u>pseudoeffective</u> if DP \geq 0 for all nef divisors P. We associate to a normal surface Y a triple (X, π , Δ) where π : X —> Y is the minimal resolution and the Δ is an effective Q-divisor supported on the exceptional set so that $\pi^*K_Y = K_X + \Delta$. By definition, Y is Q-<u>Gorenstein</u> if some multiple of K_Y is a Cartier divisor. A rational double point will be abbreviated by RDP.

We use the following facts:

LEMMA 1. Let C be an irreducible curve on Y and let \overline{C} denote its strict transform on X. Then

- 2 -

- (i) $\overline{C}^2 \leq C^2$, the equality holds if and only if C does not meet Sing(Y),
- (ii) $K_X \overline{C} \le K_C$, the equality holds if and only if C meets only RDP's in Sing(Y),
- (iii) $(K_{Y} + C)C \ge -2$, the equality holds if and only if $C \cong \mathbb{P}^{1}$ and C does not meet Sing(Y).

<u>PROOF</u>: Let $A = \pi^{-1}(Sing(Y))$. (i) By definition (see [5]), $\pi^*C = \overline{C} + Z$ where the Z is an effective Q-divisor supported on A. It follows that $\overline{C}^2 = C^2 + Z^2 \leq C^2$. The equality implies that Z = 0 so that C does not meet Sing(Y). For otherwise, \overline{C} must meet at least one irreducible component E in A, and Z would contain E, because $(\pi^*C)E = 0$. (ii) Clearly, $K_{\underline{X}}\overline{C} = K_{\underline{Y}}C - \Delta\overline{C} \leq K_{\underline{Y}}C$. The equality implies that $\Delta\overline{C} = 0$, so that C can meet only RDP's. (iii) follows from (i) and (ii). Q.E.D.

LEMMA 2. Let (Y,H) be a polarized normal surface. If $H^{0}(Y,O(K_{Y} + H)) = 0$, then Y has only rational singularties.

<u>PROOF</u>: This has been essentially given in [8, Theorem (3.1)]. We sketch a proof. Since H is a Cartier divisor, we can write $0(\pi^*H) \bullet 0_{[\Delta]} \cong 0_{[\Delta]}$ where the $[\Delta]$ is the integral part of Δ . There is an exact sequence:

$$0 \rightarrow 0 (K_{X}^{+} \pi^{*} H) \rightarrow 0 (K_{X}^{+} [\Delta] + \pi^{*} H) \rightarrow \omega_{[\Delta]} \rightarrow 0$$

and so

$$\rightarrow H^{0}(X, 0(K_{X}^{+}[\Delta] + \pi^{*}H)) \rightarrow H^{0}([\Delta], \omega) \rightarrow H^{1}(X, 0(K_{X}^{+}\pi^{*}H)) \rightarrow ([\Delta])$$

The hypothesis implies that $H^{0}(X, O(K_{X}^{+}[\Delta] + \pi^{*}H)) = 0$ (projection formula in [5]). On the other hand, $H^{1}(X, O(K_{X}^{+}\pi^{*}H)) = 0$. Putting these together, we get $H^{0}([\Delta], \omega_{[\Delta]}) = 0$, and by duality $H^{1}([\Delta], O_{[\Delta]}) = 0$. It follows that Y has only national singularities (see [4, p. 392]).

§2 Canonical model

Let (Y,H) be a polarized normal surface. We say that (Y,H)is adjointly <u>minimal</u> (resp. adjointly <u>canonical</u>) if $(K_{Y} + H)C \ge 0$ (resp. $(K_{Y} + H)C > 0$) for all irreducible curves C with $C^{2} < 0$. For brevity we omit "adjointly". In the terminology of [5] we deal with the pair $(Y,K_{Y} + H)$.

LEMMA 3. (Y,H) is minimal.

<u>PROOF</u>. Take an irreducible curve C with $C^2 < 0$. We have HC ≥ 1 . If $K_yC \geq 0$, of course $(K_y + H)C \geq 1$. If $K_yC < 0$, then the strict transform \overline{C} must be a (-1)-curve by Lemma 1. It follows that $K_yC \geq -1$ and hence $(K_y + H)C \geq 0$. An irreducible curve C with $C^2 < 0$ on Y is said to be <u>redundant</u> on (Y,H) if $(K_v + H)C = 0$.

LEMMA 4. Let C be a redundant curve on (Y,H). Then C meets at most one singularity y such that

- (i) y is an RDP of type A_n for some n,
- (ii) the strict transform \overline{C} is a (-1)-curve meeting one of the end components of the chain of (-2)-curves of $\pi^{-1}(y)$.

In particular, C can be contracted to a smooth point.

<u>PROOF</u>. By the proof of Lemma 3, we have $K_{\chi}\overline{C} = K_{\chi}C = -1$, and by Lemma 1, C meets only RDP's. Note that C is an exceptional curve of the first kind on Y in the sense of [6], that is $K_{\chi}C < 0$, $C^2 < 0$. Thus, the above description follows from [6, Example 1.2, see also 8].

Q.E.D.

Once we know that (Y,H) is minimal, we introduce the notion of a canonical model as follows. A polarized normal surface (Y_0,H_0) is a <u>canonical model</u> of (Y,H) if (i) (Y_0,H_0) is canonical, (ii) there is a birational morphism $\varphi: Y \longrightarrow Y_0$ such that $K_Y + H = \varphi^*(K_{Y_0} + H_0)$. Then it is known that $R \cong R_0$ where R_0 is the graded ring defined for (Y_0,H_0) (cf. [6]). Clearly, (Y,H) is not canonical if and only if (Y,H) has a redundant curve. Let C be a redundant curve on (Y,H), and let $\varphi : Y \longrightarrow Y'$ be the contraction of C. Since $y' = \varphi(C)$ is a smooth point, the divisor $H' = \varphi_* H$ is again an ample Cartier divisor, and we have $K_Y + H = \varphi^*(K_{Y'} + H')$. We say that (Y',H') is obtained from (Y,H) by contracting a redundant curve C. Continuing this process, we arrive at a canonical model.

<u>PROPOSITION 1. Let</u> (Y,H) be a polarized normal surface. Then there exists a canonical model (Y_0,H_0) of (Y,H). Furthermore, Y_0 is Q-Gorenstein if and only if so is Y.

PROOF. The latter part is clear from the construction.

A morphism of Y onto a smooth curve is called a <u>ruled</u> <u>fibration</u> if the general fibre is isomorphic to \mathbb{P}^1 (see [6]). We say that (Y,H) is a <u>conic bundle</u> if Y has a ruled fibration such that Hf = 2 for a fibre f.

PROPOSITION 2. Let (Y, H) be a conic bundle. Then (i) $(K_y + H)^2 = 0$,

(ii) each singular fibre consists of two irreducible components and obtained by contracting all (-2)-curves in the following chain of \mathbb{P}^{1} 's on X:

In particular, Y has only RDP of type A .

<u>PROOF</u>. Let $p: Y \longrightarrow B$ be the conic fibration of (Y,H). We examine the singular fibre. If f is an irreducible fibre of p ,then $f^2 = 0$ and $K_{Y}f = -Hf = -2$, and so by Lemma 1, we have $f \cong \mathbb{P}^1$ and f does not meet Sing(Y). A reducible fibre consists of two irreducible components, because Hf = 2for a fibre f. Take a reducible fibre f = f' + f''. We must have $f'^2 < 0$ and $f''^2 < 0$. Hence, by the minimality of (Y,H), we get $(K_Y + H)f' = (K_Y + H)f'' = 0$. Thus, both f' and f'' are redundant curves on (Y,H).

We now contract one component of each reducible fibre. Then we obtain a conic bundle (Y_1, H_1) with a commutative diagram:

Since every fibre of p_1 is irreducible, the above argument shows that Y_1 is smooth. Hence Y_1 is a \mathbb{P}^1 -bundle over B. To see (i), from $K_Y + H = \phi^*(K_{Y_1} + H_1)$, it suffices to check it for (Y_1, H_1) , which is immediate (cf. [2,p.20]). We infer from the construction $(Y, H) \longrightarrow (Y_1, H_1)$ that each reducible fibre has the form (ii).

COROLLARY. For a conic bundle (Y,H), we have
$$\kappa = 1$$
 except
in the following cases: $\kappa = -\infty$ in case
 $(Y_1, H_1) = (\mathbb{P}^1 \times \mathbb{P}^1, p_1^* 0 \ (2) \bullet p_2^* 0 \ (1))$, $\kappa = 0$ in case
 $(Y_1, H_1) = \underline{either} \ (\mathbb{P}^1 \times \mathbb{P}^1, p_1^* 0 \ (2) \bullet p_2^* 0 \ (2) \bullet p_2^* 0 \ (2))$ or
 $(\mathbb{F}_1, -K_{\mathbb{F}_1})$.

<u>REMARK</u>. (Y_1, H_1) is a canonical model of (Y, H) unless $(Y_1, H_1) = (IF_1, -K_{IF_1})$.

§3 PROOF OF THE THEOREM

Applying Theorem (7.4) in [5] to $K_Y + H$, we see that $K_Y + H$ is nef if and only if $K_Y + H$ is pseudoeffective. There are four distinguished numerical types (cf.[3]) : (a) $K_Y + H$ is not nef, (b) $K_Y + H = 0$, (c) $(K_Y + H)^2 = 0$, $K_Y + H \neq 0$, (d) $(K_Y + H)^2 > 0$.

PROPOSITION 3. The invariant κ is determined by the numerical type of K_{χ} + H as:

Numerical Typeabcd
$$\kappa$$
 $-\infty$ 012

<u>PROOF</u>. Put $P = \pi^*(K_Y + H)$. From Table II in [3], it is sufficient to consider types (b) and (c). If P is nef and $P^2 = 0$, then $PK_X = -P(\pi^*H) \le 0$. But, in case $P(\pi^*H) = 0$, we would have $P \equiv 0$. Therefore, if $K_Y + H$ is of type (c), then we must have $PK_X < 0$. It follows from a result in [3] that $\kappa = \kappa(P, X) = 1$. It now remains to show that if $K_Y + H$ is of type (b), then $\kappa = 0$. This is asserted by the following:

<u>PROPOSITION 4</u>. $K_y + H = 0 \Leftrightarrow K_y + H \sim 0$.

<u>PROOF</u>. Suppose that $K_{Y} + H = 0$. It suffices to show that $H^{0}(Y, 0(K_{Y}+H)) \neq 0$. Assume $H^{0}(Y, 0(K_{Y}+H)) = 0$. Viewing $-K_{Y} = H$, by the vanishing theorem on Y, we get $H^{1}(Y, 0_{Y}) = H^{2}(Y, 0_{Y}) = 0$ (see [5]). As we have seen in Lemma 2, Y has only rational singularities. Hence $\chi(0_{X}) = \chi(0_{Y})$ and so $\chi(0_{X}) = 1$. By the Riemann-Roch theorem and vanishing results on X, we get

dim H⁰ (X, 0 (K_X+
$$\pi^*$$
H)) = χ (0 (K_X+ π^* H))
= $\frac{1}{2}$ (K_X+ π^* H) (π^* H)+ χ (0_X)
= 1,

because $K_X + \pi^* H = -\Delta$ and hence $(K_X + \pi^* H) (\pi^* H) = 0$. This contradicts the fact: dim $H^0(Y, O(K_Y + H)) \ge \dim H^0(X, O(K_X + \pi^* H))$.

Q.E.D.

PROOF OF THE THEOREM, continued.

Type (a): The argument in [2] combined with the Moritheory for normal surfaces ([5]) proves the existence of an extremal rational curve ℓ such that $(K_y+H)\ell < 0$. By the minimality of (Y,H), we get $\ell^2 \ge 0$. As in [5] we have two subcases:

(i)
$$\rho(Y) = 1$$
 and $-(K_Y+H)$ is numerically ample,
(ii) $\rho(Y) = 2$ and Y has a \mathbb{P}^1 -fibration, i.e., a ruled
fibration of which every fibre is irreducible, and ℓ

L

is a fibre.

First, we examine the case (i).Since Y has only rational singularities (Lemma 2), $-(K_y+H)$ is ample. From a result of [4], we infer that X is rational. We show that X contains no (-1)-curves. Indeed, if not, take a (-1)-curve \overline{C} on \overline{X} , and let C denote the image of \overline{C} by π . Since $\rho(Y) = 1$, C can also be a generator of the divisor group of Y with Q-coefficients. So $(K_v+H)C < 0$. It follows that $K_vC < -1$ and hence $K_{\chi}\overline{C} < -1$, a contradiction. Consequently, X is isomorphic to one of ${\rm I\!P}^2$ and ${\rm I\!F}_{\rm e}$ (e \neq -1) , and so Y is among \mathbf{P}^2 and Y_e . For \mathbf{P}^2 , H could be either $\theta_{\mathbf{r}^2}$ (1) $\theta_{\rm TP}^{(2)}$. For Y it is easy to verify that H = H .We or now consider the case (ii). For any fibre f of the \mathbb{P}^1 -fibration, we have $K_y f < -Hf \leq -1$. Using Lemma 1, we conclude that $f \neq \mathbf{P}^1$ and f does not meet Sing(Y). Thus, Y is a \mathbb{P}^1 -bundle.

Type (b): The assertion follows from Proposition 4.

<u>Type (c)</u>: As in the proof of Proposition 3, the complete linear system |mR| for a suitable positive integer m such that mP is integral defines a ruled fibration ([3]). Take a fibre f. Then $(K_{\chi}+H)f = 0$ and so Hf = 2. Thus, (Y,H) is a conic bundle. The structure of Sing(Y) has been given in Proposition 2.

<u>Type (d)</u>: Let (Y_0, H_0) be a canonical model of (Y, H). By definition, $K_{Y_0} + H_0$ is numerically ample. It is ample if and only if Y_0 is Q-Gorenstein. On the other hand, as is remarked for a general setting in [5], we know that R is finitely generated if and only if $K_{Y_0} + H_0$ is ample. Therefore, by Proposition 1, we conclude that R is finitely generated if and only if Y is Q-Gorenstein.

Q.E.D.

<u>CONCLUDING REMARK</u>. Given a polarized normal surface (Y,H), we define the genus: $g(H) = \frac{1}{2}(K_Y + H)H + 1$. It is easy to see that $g(H) = 0 \leftrightarrow \kappa = -\infty$ and X is rational, $g(H) = 1 \leftrightarrow$ either $\kappa = 0$ or $\kappa = -\infty$ and X is a \mathbb{P}^1 -bundle of genus 1. Our theorem together with the classification of normal Gorenstein surfaces with ample anticanonical divisors describes the cases g(H) = 0 and 1. These cases have been discussed by Bådescu [1].

REFERENCES

- Bådescu, L.: Hyperplane sections and deformations.
 In: Algebraic Geometry, pp. 1-33, Lecture Notes in Mathematics 1056, Berlin-Heidelberg-New York 1984.
- [2] Lanteri, A. and Palleschi, M.: About the adjunction process for polarized algebraic surfaces. J. Reine und Angew. Math. 352 (1984), 15-23.
- [3] Sakai, F.: D-dimensions of algebraic surfaces and numerically effective divisors. Compositio Math. 48 (1983), 101-118.
- [4] Sakai, F.: Anticanonical models of rational surfaces. Math. Ann. 269 (1984), 389-410.
- [5] Sakai, F.: Weil divisors on normal surfaces. Duke Math. J. 51 (1984), 877-887.
- [6] Sakai, F.: The structure of normal surfaces. To appear in Duke Math. J.
- [7] Sommese, A.: Hyperplane sections of projective surfaces: the adjunction mapping. Duke Math. J. 46 (1979), 377-401.
- [8] Sommese, A.: Ample divisors on normal Gorenstein surfaces. Preprint.