AMPLE CARTIER DIVISORS ON NORMAL SURFACES

by

Fumio Sakai

Saitama University and Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3, Fed. Rep. of Germany

Max-Planck-Institut	Sonderforschungsbereich 40
fur Mathematik	Theoretische Mathematik
Gottfried-Claren-Str. 26	BeringstraBe 4
D-5300 Bonn 3	D-5300 Bonn 1

By a polarized normal surface we mean a pair (Y, H) of a normal projective surface Y over \mathbb{C} and an ample Cartier divisor H on it. Define a graded ring:

$$
R=\underset{m \geq 0}{\oplus} H^{0}\left(Y, O\left(m\left(K_{Y}+H\right)\right)\right)
$$

Let $\kappa=\kappa\left(K_{Y}+\mathrm{H}, \mathrm{Y}\right)$, which is by definition, tr.deg. $\mathbb{C}^{R}-1$ or $-\infty$ in case $\mathrm{R} \cong \mathbb{C}$. To state the structure theorem, we introduce an example. Let $\mathbb{F}_{\mathrm{e}}=\mathbb{P}\left(0_{\mathbb{P}}{ }^{1} 0_{\mathbb{P}}^{0} 1(-\mathrm{e})\right)$ and suppose $e \geq 2$. Let $\pi=\mathbb{F}_{e} \rightarrow Y_{e}$ be the contraction of the base section $b, a(-e)$-curve, and let ℓ denote the image of a fibre f on \mathbb{F}_{e}. Then $\pi^{*} \ell=f+(1 / e) b$ and $\pi{ }^{*} K_{Y_{e}}=K_{F_{e}}+(1-2 / e) b$. It turns out that $H_{e}=e \ell$ is an ample Cartier divisor on Y_{e} and we have $e\left(K_{Y_{e}}+H_{e}\right)=-2 H_{e}$.

THEOREM: Let (X, H) be a polarized normal surface. Then we have the following classification:

K	Structure of (Y, H)	Sing (Y)
$-\infty$	$\left(\mathbb{P}^{2}, O(1)\right),\left(\mathbb{P}^{2}, O(2)\right),\left(\mathrm{Y}_{\mathrm{e}}, \mathrm{H}_{\mathrm{e}}\right) \mathrm{e} \geqq 2$	smooth or quotient
	\mathbb{P}^{1} - bundle with $\mathrm{Hf}=1$ for a fibre f	smooth
	$\mathrm{~K}_{\mathrm{Y}}+\mathrm{H} \sim 0$	Gorenstein
1	Conic bundle with $K=1$	RDP of type A
2	R is finitely generated	Q-Gorenstein
	R is not finitely generated	not Q-Gorenstein

This type of Theorems have been obtained by Sommese [7], Lanteri-palleschi [2] for the case in which Y is smooth and by Sommese [8] for the case in which Y is normal Gorenstein. I would like to thank A. Sommese for inspiring me by his preprint [8].

§1 PRELIMINARIES

For the basic results on normal surfaces we refer to [5] and [6]. A divisor will mean a Weil divisor. A divisor is said to be ample if its some positive multiple becomes a very ample Cartier divisor. We use the intersection theory with Q-coefficients introduced by Mumford. We denote by ~(resp. E) the linear (resp. numerical) equivalence of divisors. A divisor D is nef if $D C \geq 0$ for all irreducible curves C and is pseudoeffective if $D P \geq 0$ for all nef divisors P. We associate to a normal surface Y a triple (X, π, Δ) where $\pi: X \rightarrow Y$ is the minimal resolution and the Δ is an effective -divisor supported on the exceptional set so that $\pi^{*} K_{Y}=K_{X}+\Delta$. By definition, Y is Q-Gorenstein if some multiple of K_{Y} is a Cartier divisor. A rational double point will be abbreviated by RDP .

We use the following facts:

LEMMA 1. Let C be an irreducible curve on X and let \bar{C} denote its strict transform on X. Then
(i) $\overline{\mathrm{C}}^{2} \leqq \mathrm{C}^{2}$, the equality holds if and only if C does not meet Sing (Y),
(ii) $K_{X} \bar{C} \leq K_{Y} C$, the equality holds if and only if C meets only RDP's in $\operatorname{Sing}(Y)$,
(iii) $\left(K_{Y}+C\right) C \geqq-2$, the equality holds if and only if $C \cong \mathbb{P}^{1}$ and C does not meet $\operatorname{sing}(Y)$.

PROOF: Let $A=\pi^{-1}$ (Sing(Y)). (i) By definition (see [5]), $\pi^{*} C=\bar{C}+Z$ where the Z is an effective \mathbb{Q}-divisor supported on A. It follows that $\vec{C}^{2}=C^{2}+z^{2} \leq C^{2}$. The equality implies that $Z=0$ so that C does not meet $\operatorname{sing}(Y)$. For otherwise, $\overline{\mathrm{C}}$ must meet at least one irreducible component E in A , and Z would contain E, because $\left(\pi^{*} C\right) E=0$.(ii) Clearly, $K_{X} \overline{\mathrm{C}}=\mathrm{K}_{\mathrm{Y}} \mathrm{C}-\Delta \overline{\mathrm{C}} \leq \mathrm{K}_{\mathrm{Y}} \mathrm{C}$. The equality implies that $\Delta \overline{\mathrm{C}}=0$, so that C can meet only RDP's . (iii) follows from (i) and (ii).
Q.E.D.

IEMMA 2. Let (Y, H) be a polarized normal surface. If $H^{0}\left(Y, O\left(K_{Y}+H\right)\right)=0$, then Y has only rational singularties.

PROOF: This has been essentially given in [8, Theorem (3.1)]. We sketch a proof. Since H is a Cartier divisor, we can write $O\left(\pi^{*} H\right) \oplus O_{[\Delta]} \approx 0_{[\Delta]}$ where the $[\Delta]$ is the integral part of Δ. There is an exact sequence:

$$
0 \rightarrow O\left(K_{X}+\pi^{*} H\right) \rightarrow O\left(K_{X}+[\Delta]+\pi^{*} H\right) \rightarrow \omega_{[\Delta]} \rightarrow 0
$$

and so

$$
\rightarrow H^{0}\left(X, O\left(K_{X}+[\Delta]+\pi^{*} H\right)\right) \rightarrow H^{0}([\Delta], \omega[\Delta]) \rightarrow H^{1}\left(X, O\left(K_{X}+\pi^{*} H\right)\right) \rightarrow
$$

The hypothesis implies that $H^{0}\left(X, O\left(K_{X}+[\Delta]+\pi^{*} H\right)\right)=0$ (projection formula in [5]). On the other hand, $H^{1}\left(X, O\left(K_{X}+\pi^{*} H\right)\right)=0$. Putting these together, we get $H^{0}\left([\Delta], \omega_{[\Delta]}\right)=0$, and by duality $H^{1}([\Delta], 0[\Delta])=0$. It follows that Y has only national singularities (see [4, p. 392]).
Q.E.D.

§2 Canonical model

Let (Y, H) be a polarized normal surface. We say that (Y, H) is adjointly minimal (resp. adjointly canonical) if $\left(K_{Y}+H\right) C \geq 0 \quad\left(r e s p . \quad\left(K_{Y}+H\right) C>0\right)$ for all irreducible curves C with $c^{2}<0$. For brevity we omit "adjointly". In the terminology of $[5]$ we deal with the pair $\left(Y, K_{Y}+H\right)$.

LEMMA 3. (Y, H) is minimal.

PROOF. Take an irreducible curve C with $C^{2}<0$. We have $\mathrm{HC} \geq 1$. If $\mathrm{K}_{\mathbf{Y}} \mathrm{C} \geq 0$, of course $\left(\mathrm{K}_{\mathbf{Y}}+\mathrm{H}\right) \mathrm{C} \geq 1$. If $\mathrm{K}_{\mathrm{Y}} \mathbf{C}<0$, then the strict transform \bar{C} must be a (-1)-curve by Lemma 1 . It follows that $K_{Y} C \geq-1$ and hence $\left(K_{Y}+H\right) \subset \geq 0$.

An irreducible curve C with $C^{2}<0$ on Y is said to be redundant on (Y, H) if $\left(K_{Y}+H\right) C=0$.

LEMMA 4. Let C be a redundant curve on (Y, H). Then C meets at most one singularity y such that
(i) y is an $R D P$ of type A_{n} for some n,
(ii) the strict transform \bar{C} is a (-1)-curve meeting one of the end components of the chain of (-2)-curves of $\pi^{-1}(y)$.

In particular, C can be contracted to a smooth point.

PROOF. By the proof of Lemma 3 , we have $K_{X} \bar{C}=K_{Y} C=-1$, and by Lemma 1, C meets only RDP's. Note that C is an exceptional curve of the first kind on Y in the sense of [6], that is $K_{Y} C<0, C^{2}<0$. Thus, the above description follows from [6, Example 1.2, see also 8].
Q.E.D.

Once we know that (Y, H) is minimal, we introduce the notion of a canonical model as follows. A polarized normal surface $\left(Y_{0}, H_{0}\right)$ is a canonical model of (Y, H) if (i) (Y_{0}, H_{0}) is canonical, (ii) there is a birational morphism $\varphi: Y \longrightarrow Y_{0}$ such that $K_{Y}+H=\varphi^{*}\left(K_{Y_{0}}+H_{0}\right)$. Then it is known that $R \cong R_{0}$ where R_{0} is the graded ring defined for (Y_{0}, H_{0}) (cf. [6]). Clearly, (Y,H) is not canonical if and only if
(Y, H) has a redundant curve. Let C be a redundant curve on (Y, H), and let $\varphi: Y \longrightarrow Y^{\prime}$ be the contraction of C. Since $y^{\prime}=\varphi(C)$ is a smooth point, the divisor $H^{\prime}=\varphi_{*} H$ is again an ample Cartier divisor, and we have $K_{Y}+H=\varphi^{*}\left(K_{Y},+H^{\prime}\right)$. We say that $\left(Y^{\prime}, H^{\prime}\right)$ is obtained from (Y, H) by contracting a redundant curve C . Continuing this process, we arrive at a canonical model.

PROPOSITION 1. Let (Y, H) be a polarized normal surface. Then there exists a canonical model $\left(Y_{0}, H_{0}\right)$ of (Y, H) : Furthermore, Y_{0} is Q-Gorenstein if and only if so is Y.

PROOF. The latter part is clear from the construction. A morphism of Y onto a smooth curve is called a ruled fibration if the general fibre is isomorphic to \mathbb{P}^{1} (see [6]). We say that (Y, H) is a conic bundle if Y has a ruled fibration such that $H f=2$ for a fibre f.

PROPOSITION 2. Let (Y, H) be a conic bundle. Then
(i) $\quad\left(\mathrm{K}_{\mathrm{Y}}+\mathrm{H}\right)^{2}=0$,
(ii) each singular fibre consists of two irreducible components and obtained by contracting all (-2)-curves in the following chain of $\bar{p}^{1 /}$ s on x :

In particular, Y has only $R D P$ of type A.

PROOF. Let $p: Y \rightarrow B$ be the conic fibration of (Y, H) . We examine the singular fibre. If f is an irreducible fibre of p, then $f^{2}=0$ and $K_{Y} f=-H f=-2$, and so by Lemma 1 , we have $f \cong \mathbb{P}^{1}$ and f does not meet $\operatorname{Sing}(Y)$. A reducible fibre consists of two irreducible components, because $H f=2$ for a fibre f. Take a reducible fibre $f=f^{\prime}+f^{\prime \prime}$. We must have $f^{\prime 2}<0$ and $f^{\prime \prime 2}<0$. Hence, by the minimality of (Y, H), we get $\left(K_{Y}+H\right) f^{\prime}=\left(K_{Y}+H\right) f^{\prime \prime}=0$. Thus, both f^{\prime} and $f^{\prime \prime}$ are redundant curves on (Y,H).

We now contract one component of each reducible fibre. Then we obtain a conic bundle $\left(\mathrm{Y}_{1}, \mathrm{H}_{1}\right)$ with a commutative diagram:

Since every fibre of p_{1} is irreducible, the above argument shows that Y_{1} is smooth. Hence Y_{1} is a \mathbb{P}^{1}-bundle over B. To see (i), from $K_{Y}+H=\varphi^{*}\left(K_{Y_{1}}+H_{1}\right)$, it suffices to check it for $\left(Y_{1}, H_{1}\right)$, which is immediate (cf. [2, p.20]). We infer from the construction $(Y, H) \rightarrow\left(Y_{1}, H_{1}\right)$ that each reducible fibre has the form (ii).

COROLLARY. For a conic bundle (Y, H), we have $\mathrm{K}=1$ except in the following cases: $k=-\infty$ in case
$\left(Y_{1}, H_{1}\right)=\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, p_{1}^{*} 0_{1}(2) \oplus p_{2}^{*} 0_{1}(1)\right), k=0$ in case
$\left(Y_{1}, H_{1}\right)=$ either $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, p_{1}^{*} 0_{p_{1}}{ }^{(2)} \circ p_{2}^{*} 0_{p^{2}}^{(2)}\right)$ or $\left(\mathbb{F}_{1},-K_{\mathbb{F}_{1}}{ }^{\prime}\right.$.

REMARK. $\left(\mathrm{Y}_{1}, \mathrm{H}_{1}\right)$ is a canonical model of (Y, H) unless $\left(\mathrm{Y}_{1}, \mathrm{H}_{1}\right)=\left(\mathrm{F}_{1},-\mathrm{K}_{\mathrm{F}_{1}}\right)$.

§3 PROOF OF THE THEOREM

Applying Theorem (7.4) in [5] to $K_{Y}+H$, we see that $K_{Y}+H$ is nef if and only if $K_{Y}+H$ is pseudoeffective. There are four distinguished numerical types (cf.[3]): (a) $K_{Y}+H$ is not nef, (b) $X_{Y}+H=0$, (c) $\left(X_{Y}+H\right)^{2}=0, X_{Y}+H \geqslant 0$, (d) $\left(\mathrm{K}_{\mathrm{Y}}+\mathrm{H}\right)^{2}>0$.

PROPOSITION 3. The invariant k is determined by the numerical type of $\mathrm{K}_{\mathrm{Y}}+\mathrm{H}$ as:

Numerical Type	a	b	c	d
k	$-\infty$	0	1	2

PROOF. Put $P=\pi^{*}\left(K_{Y}+H\right)$. From Table II in [3], it is sufficient to consider types (b) and (c). If P is nef and $P^{2}=0$, then $P K_{X}=-P\left(\pi^{*} H\right) \leq 0$. But, in case $P\left(\pi^{*} H\right)=0$, we would have $P=0$. Therefore, if $K_{Y}+H$ is of type (c), then we must have $\mathrm{PK}_{\mathrm{X}}<0$. It follows from a result in [3] that $k=k(P, X)=1$. It now remains to show that if $K_{Y}+H$ is of type (b), then $K=0$. This is asserted by the following:

PROPOSITION 4. $K_{Y}+H \equiv 0 \leftrightarrow K_{Y}+H \sim 0$.

PROOF. Suppose that $K_{Y}+H \equiv 0$. It suffices to show that $H^{0}\left(Y, O\left(K_{Y}+H\right)\right) \neq 0$. Assume $H^{0}\left(Y, O\left(K_{Y}+H\right)\right)=0$. Viewing $-K_{Y}=H$, by the vanishing theorem on Y, we get $H^{1}\left(Y, O_{Y}\right)=H^{2}\left(Y ; O_{Y}\right)=0$ (see [5]). As we have seen in Lemma 2 , Y has only rational singularities. Hence $X\left(0_{X}\right)=X\left(0_{Y}\right)$ and so $X\left(0_{X}\right)=1$. By the Riemann-Roch theorem and vanishing results on X, we get

$$
\begin{aligned}
\operatorname{dim} H^{0}\left(X, O\left(K_{X}+\pi^{*} H\right)\right) & =\chi\left(0\left(K_{X}+\pi^{*} H\right)\right) \\
& =\frac{1}{2}\left(K_{X}+\pi^{*} H\right)\left(\pi^{*} H\right)+\chi\left(0_{X}\right) \\
& =1,
\end{aligned}
$$

because $K_{X}+\pi^{*} H=-\Delta$ and hence $\left(K_{X}+\pi^{*} H\right)\left(\pi^{*} H\right)=0$. This contradicts the fact: $\operatorname{dim} H^{0}\left(Y, O\left(K_{Y}+H\right)\right) \geq \operatorname{dim} H^{0}\left(X, O\left(K_{X}+\pi^{*} H\right)\right)$.

> Q.E.D.

PROOF OF THE THEOREM, continued.

Type (a): The argument in [2] combined with the Moritheory for normal surfaces ([5]) proves the existence of an extremal rational curve ℓ such that $\left(K_{y}+H\right) \ell<0$. By the minimality of (Y, H), we get $\ell^{2} \geq 0$. As in [5] we have two subcases:
(i) $\quad \rho(\mathrm{Y})=1$ and $-\left(\mathrm{K}_{\mathrm{Y}}+\mathrm{H}\right)$ is numerically ample,
(ii) $\rho(Y)=2$ and Y has a \mathbb{P}^{1}-fibration, i.e., a ruled fibration of which every fibre is irreducible, and ℓ is a fibre.

First, we examine the case (i). Since Y has only rational singularities (Lemma 2), $-\left(\mathrm{K}_{\mathrm{Y}}+\mathrm{H}\right)$ is ample. From a result of [4], we infer that X is rational. We show that X contains no (-1)-curves. Indeed, if not, take a (-1)-curve $\overline{\mathrm{C}}$ on $\overline{\mathrm{X}}$, and let C denote the image of $\overline{\mathrm{C}}$ by π. Since $\rho(\mathrm{Y})=1$, C can also be a generator of the divisor group of Y with Q-coefficients. So $\left(\mathrm{K}_{\mathrm{Y}}+\mathrm{H}\right) \mathrm{C}<0$. It follows that $\mathrm{K}_{\mathrm{Y}} \mathrm{C}<-1$ and hence $K_{X} \bar{C}<-1$, a contradiction. Consequently, X is isomorphic to one of p^{2} and $F_{e}(e \neq-1)$, and so Y is among P^{2} and Y_{e}. For \mathbb{P}^{2}, H could be either $0_{p^{2}}(1)$ or $0_{\mathbb{P}_{2}}{ }^{(2)}$. For Y_{e} it is easy to verify that $H=H_{e}$. We now consider the case (ii). For any fibre f of the $\mathbb{P}^{1}-f i-$ bration, we have $K_{Y} f<-H f \leq-1$. Using Lemma 1, we conclude that $f \cong \mathbb{P}^{1}$ and f does not meet $\operatorname{Sing}(Y)$. Thus, Y is a \mathbb{P}^{1}-bundle.

Type (b): The assertion follows from Proposition 4.
Type (c): As in the proof of Proposition 3, the complete linear system $|\mathrm{mR}|$ for a suitable positive integer m such that $m P$ is integral defines a ruled fibration ([3]). Take a fibre f. Then $\left(K_{Y}+H\right) f=0$ and so $H f=2$. Thus, (Y, H) is a conic bundle. The structure of Sing(Y) has been given in Proposition 2.

Type (d): Let $\left(Y_{0}, H_{0}\right)$ be a canonical model of (Y, H). By definition, $\mathrm{K}_{\mathrm{Y}_{0}}+\mathrm{H}_{0}$ is numerically ample. It is ample if and only if Y_{0} is Φ-Gorenstein. On the other hand, as is remarked for a general setting in [5], we know that R is finitely generated if and only if $\mathrm{K}_{\mathrm{Y}_{0}}+\mathrm{H}_{0}$ is ample. Therefore, by Proposition 1, we conclude that R is finitely generated if and only if Y is \mathbb{Q}-Gorenstein.
Q.E.D.

CONCLUDING REMARK. Given a polarized normal surface (Y, H) , we define the genus: $g(H)=\frac{1}{2}\left(K_{Y}+H\right) H+1$. It is easy to see that $g(H)=0 \Leftrightarrow K=-\infty$ and X is rational, $g(H)=1 \Leftrightarrow$ either $k=0$ or $k=-\infty$ and X is a \mathbb{P}^{1}-bundle of genus 1 . Our theorem together with the classification of normal Gorenstein surfaces with ample anticanonical divisors describes the cases $g(H)=0$ and 1 . These cases have been discussed by Bădescu [1].

REFERENCES

[1] Bǎdescu, L.: Hyperplane sections and deformations. In: Algebraic Geometry, pp. 1-33, Lecture Notes in Mathematics 1056, Berlin-Heidelberg-New York 1984.
[2] Lanteri, A. and Palleschi, M.: About the adjunction process for polarized algebraic surfaces. J. Reine und Angew. Math. 352 (1984), 15-23.
[3] Sakai, F.: D-dimensions of algebraic surfaces and numerically effective divisors. Compositio Math. 48 (1983), 101-118.
[4] Sakai, F.: Anticanonical models of rational surfaces. Math. Ann. 269 (1984), 389-410.
[5] Sakai, F.: Weil divisors on normal surfaces. Duke Math. J. 51 (1984), 877-887.
[6] Sakai, F.: The structure of normal surfaces. To appear in Duke Math. J.
[7] Sommese, A.: Hyperplane sections of projective surfaces: the adjunction mapping. Duke Math. J. 46 (1979), 377-401.
[8] Sommese, A.: Ample divisors on normal Gorenstein surfaces. Preprint.

