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Abstract

This preprint contains a new proof of the Abhyankar-Moh-Suzuki

theorem, which Abhyankar calls occasionally the high school lemma,

in characteristic zero case. Preprint can be read without knowing

what is locally nilpotent derivations.

Introduction.

In the preprint MPIM2004-92 I showed that a locally nilpotent deriva-

tion (lnd for short) of an affine domain is equivalent to the restriction of a

Jacobian type derivation of a polynomial ring. As an example where such a

representation of lnd can be useful a new proof of the Abhyankar-Moh-Suzuki

(AMS) Theorem in the zero characteristic case is given below.

∗The author is partially supported by an NSA grant and Max-Planck Institute of

Mathematics.
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In this case the AMS Theorem which was independently proved by Abhyankar-

Moh and Suzuki (see [AM] and [Su]) and later reproved by many authors (see

[Es] for the references) states the following (field C of complex numbers can

be replaced by any field of characteristic zero).

AMS Theorem. Let f and g be polynomials in C[z] such that C[f, g] =

C[z]. If the degree of f is n and the degree of g is m then the greatest common

divisor of m and n is equal to the minimum of m and n.

The only lnd which will be used here to prove the Theorem is the ordinary

derivative ∂ = d
d z

of C[z]. It is locally nilpotent in the following sense:

∂i(h) = 0 for any h ∈ C[z] if i is sufficiently large (larger then deg(h)) but ∂ i

is not zero for any i.

Suppose now that f, g ∈ C[z] and let S be a subalgebra of C[z] which

is spanned by these polynomials. Then S = C[z] if and only if S 6= C

and ∂(S) ⊂ S. One direction of this equivalence is obvious. To check the

other direction take any non-constant polynomial h ∈ S and apply ∂ to it

sufficiently many times to get a linear polynomial.

In order to use this observation we should find a suitable presentation of

∂ through f and g. It can be done as follows.

Any two polynomials in one variable are algebraically dependent; that is,

there is an irreducible polynomial in two variables which is satisfied by these

two polynomials. So let P be an irreducible polynomial which is satisfied by

f and g: P (f, g) = 0. Of course the factor algebra C[x, y]/(P ) ∼= S since the

kernel of the mapping π : C[x, y] → C[z] defined by π(x) = f(z), π(y) = g(z)

is the principal ideal (P ).

Recall that any linear homomorphism φ of an algebra A which satisfies
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the Leibnitz law φ(ab) = φ(a)b + aφ(b) is called a derivation of A. One can

use P to produce a derivation on C[x, y]: define DP (Q) = J(P, Q) where

J(P, Q) is the Jacobian of P and Q, i. e. the determinant PxQy − PyQx of

the corresponding Jacobi matrix.

The derivation DP induces a derivation on C[x, y]/(P ) by ∂P (π(Q)) =

π(DP (Q). Since C[x, y]/(P ) ∼= S we can think about ∂P as a derivation of S.

A more general statement which is proved in [LML] implies that if S =

C[z] then ∂P = c d
d z

where c ∈ C \ 0. To make preprint more self-contained

this particular fact is proved in the appendix.

If ∂P = c d
d z

then π(DP (x)) = ∂P (π(x)) = cf ′(z). Since DP (x) = −∂P
∂y

we have deg(∂P
∂y

(f(z), g(z)) = deg(f(z)) − 1 and actually we will use only

this relation to prove that (deg(f), deg(g)) = min(deg(f), deg(g)). (It is also

easy to show that this relation implies that π(DP ) = c d
d z

.)

In order to be able to connect these two numerical relations we should

know more about P .

Irreducible dependence of two polynomials.

Let us assume in this section that f and g are any two polynomials from

K[z] where K is a field of any characteristic. It is well-known that they are

algebraically dependent and there are many ways to show it. Unfortunately

existence per se is not sufficient for our purposes.

Let f be a polynomial in K[z] with degz(f) = n. Let E = K(z) and

F = K(f(z)) be the fields of rational functions in z and f(z) correspond-

ingly. Since F ⊂ E we can consider E as a vector space over F . Denote by
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[E : F ] the dimension of this vector space.

The next two Lemmas may be skipped by a reader who knows that there

exists an irreducible polynomial dependence between f and g which is given

by a polynomial P (x, y) which is monic in y.

Lemma 1. [E : F ] = n and {1, z, . . . , zn−1} is a basis of E over F .

Proof. It is clear that {1, z, . . . , zn−1} are linearly independent over

F because the degrees of αiz
i where αi ∈ F and 0 ≤ i < n are differ-

ent for different i’s. (As usual degz(h) for h ∈ K(z) is the difference be-

tween the degrees of numerator and denominator of h.) It is also clear

that K[z] =
n−1⊕
i=0

ziK[f(z)] since
n−1⊕
i=0

ziK[f(z)] contains monomials zk for

any non-negative k. So K[z] ⊂
n−1⊕
i=0

ziF and for p ∈ K[z] the elements

1, p, . . . , pn satisfy a linear relation
n∑

i=0
αip

i = 0 where αi ∈ F and some of

them are not equal to zero. By cancelling an appropriate power of p from

this relation we may assume that α0 6= 0. So p−1 = −
n∑

i=1
α−1

0 αip
i−1 and

p−1q = −
n∑

i=1
α−1

0 αip
i−1q ∈

n−1⊕
i=0

ziF for any q ∈ K[z].

Let g ∈ K[z]. By the previous Lemma there exists a non-trivial relation
n∑

i=0
αig

i = 0. So there exists a non-zero element P (x, y) ∈ A = K(x)[y] for

which P (f(z), g(z)) = 0. We will assume that k = degy(P ) is minimal possi-

ble. Then P is an irreducible element of A and if Q(f, g) = 0 for some Q ∈ A

then Q is divisible by P by the Euclidean algorithm. We also assume that
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P is a monic polynomial in y.

Lemma 2. P ∈ K[x, y].

Proof. Since P = yk +
k−1∑
i=0

pi(x)yi where pi ∈ K(x) we can multiply P by

the least common denominator D(x) ∈ K[x] of pi and obtain a polynomial

DP ∈ K[x, y] which is irreducible in K[x, y]. In order to prove that D = 1

it is sufficient to find an element Q ∈ K[x, y] such that Q(f, g) = 0 and Q is

monic in y. Indeed, by a Gauss lemma Q must be divisible by DP in K[x, y]

which is possible only if D = 1.

Let us define Qm ∈ K[x, y] for all natural numbers m so that Qm =

ym + Rm where degy(Rm) < m and degz(Qm(f, g)) is the minimal possible.

Let dm = degz(Qm(f, g)) if Qm(f, g) 6= 0. If a > b and da ≡ db (mod n)

then da < db because otherwise we can find j ∈ Z
+ and c ∈ K so that

degz(Qa(f, g)− cf jQb(f, g)) < degz(Qa(f, g)). Therefore we can have only a

finite number of da which means that Qa(f, g) = 0 for a sufficiently large a.

Let us describe now a procedure which will produce P (over a field of any

characteristic).

First an informal description. Raise g in the smallest possible power d

so that by subtracting some power of f (with an appropriate coefficient) the

degree can be decreased. If the result has a degree which can be decreased by

subtracting a monomial in f and g, do it and continue until the degree of the

result cannot be decreased. Since different monomials in f and g can have the

same degree, use only monomials with power of g less than d. Then the choice
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of a monomial with given degree is unique. If the result h is zero it gives

the dependence we are looking for. If not, raise h to the smallest possible

power so that the degree can be decreased by subtracting some monomial of

f and g and on further steps use for reduction purposes the monomials in f ,

g, and h with appropriately restricted powers of g and h, and so on. After

several steps like that an algebraic dependence will be obtained. It is easy

to implement this procedure and it works nicely on examples. On the other

hand why should it stop? Also it is not clear which monomials to use in the

reduction: say, should we use monomials with negative powers of f?

Here is an example. Take f = z4, g = z6 − z. We have to start with

g2 − f 3 = −2z7 + z2 and h = −2z7 + z2. Next h2 − 4f 2g = z4 and

h2 − 4f 2g − f = 0. So (g2 − f 3)2 − 4f 2g − f = 0. Let us assume now

that the characteristic of the ground field is 2. In this case g2 − f 3 = z2 and

we can proceed with reduction of degree but we should use the monomial

f−1g. So here h = g2 − f 3 − f−1g = z−3 and h2 − f−3g − f−2h = 0 is a

dependence in which miraculously all negative powers disappear: g4 − f 6 −

f−2g2 − f−3g − f−2g2 − f − f−3g = g4 − f 6 − f .

So it seems reasonable to include monomials with negative powers of f

in the process.

formal description.

Below deg denotes the z-degree of a rational function from K(z).
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First step.

Put g0 = g. Let deg(g0) = m0 and deg(f) = n. Find the greatest com-

mon divisor d0 = (n, m0) of n and m0. Find the smallest positive integers

a0, b0 so that a0m0 = b0n. Then deg(ga0

0 ) = deg(f b0). Find k0 ∈ K for which

m0,1 = deg(ga0

0 − k0f
b0) < deg(ga0

0 ). If m0,1 is divisible by d0 find a mono-

mial f igj0
0 with 0 ≤ j0 < a0 and deg(f igj0

0 ) = m0,1, find k1 ∈ K for which

m0,2 = deg(ga0

0 − k0f
b0 − k1f

igj0
0 ) < m0,1 and so on.

If after a finite number of reductions zero is obtained, we have a depen-

dence.

If after a finite number of reductions m0,i which is not divisible by d0 is

obtained, denote the corresponding expression by g1 and make the next step.

If the procedure does not stop we failed.

Generic step.

Assume that after s steps we obtained g0, . . . , gs where gs 6= 0. Denote

deg(gi) by mi and g.c.d.(n, m0, . . . , mi) by di. The numbers di are positive

while mi can be negative. Put d−1 = n and ai = di−1

di
for 0 ≤ i ≤ s. (Clearly

asms is divisible by ds−1 and as is the smallest integer with this property.)

Call a monomial m = f igj0
0 . . . gjs

s with 0 ≤ jk < ak s-standard.

Find an s-standard monomial ms,0 with deg(ms,0) = asms and k0 ∈ K

for which ms,1 = deg(gas
s − k0ms,0) < asms.

If ms,1 is divisible by ds find an s-standard monomial ms,1 with deg(ms,1) =
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ms,1 and k1 ∈ K for which ms,2 = deg(gas
s −k0ms,0−k1ms,1) < ms,1 and so on.

If after a finite number of reductions zero is obtained, we have a depen-

dence.

If after a finite number of reductions ms,i which is not divisible by ds is

obtained, denote the corresponding expression by gs+1 and make the next

step.

If the procedure does not stop we failed.

First we prove that failure is not an option.

Lemma 3. After a finite number of reductions, either zero or ms,i which

is not divisible by ds will be obtained.

Proof. In this proof we consider s-standard monomials which do not

contain f . The degrees of different s-standard monomials are different modn.

Indeed, if
s∑

k=0
jkmk ≡

s∑
k=0

ikmk (modn) then jsms ≡ isms (mod ds−1) and

js = is because 0 ≤ js < as and 0 ≤ is < as and |js − is|ms is not divisible

by ds−1 if 0 < |js − is| < as. So js = is and we can omit them from the sums

and proceed to prove that js−1 = is−1, etc..

Consider now the field E = K(z) as a vector space over its subfield

F = K(f(z)). The s-standard monomials mj are linearly independent over

F since their degrees are different mod n. Let us denote by Vs the subspace

generated by all s-standard monomials over F and call the corresponding

basis of Vs standard.
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We have to look at two cases: gas
s ∈ Vs and gas

s 6∈ Vs.

If gas
s ∈ Vs then ∆gas

s =
∑

δjmj for some non-zero polynomial ∆(f) and

polynomials δj(f). Of course we can assume that these polynomials do not

have a common divisor and so are relatively prime.

Let us show that ∆gas
s −

∑
δjmj = 0 is the irreducible polynomial relation

we are looking for. The elements gi ∈ L = K[f, f−1, g]. Therefore all mj ∈ L.

So ∆gas
s −

∑
δjmj = P (f, f−1, g). It is sufficient to verify that P is an

irreducible element of L.

First of all P is not identically zero. Indeed, it is easy to check by in-

duction that degg(gi) = a0 . . . ai−1. The base degg(g0) = 1 is clear since

g0 = g. Assume that degg(gk) = a0 . . . ak−1 for k < i + 1. Now, gi+1 =

gai

i − ri(f, g0, . . . , gi). Since deggk
(ri) < ak it follows from the assumption

that degg(ri) ≤
i∑

k=0
(ak − 1) degg(gk) = a0 . . . ai − 1 = ai degg(gi) − 1, hence

degg(gi+1) = ai degg(gi). So degg(P ) = a0 . . . as = as degg(gs) and it is a

monic polynomial in g.

Let us check that P is irreducible. Assume for a moment that any non-

zero polynomial Q(g) ∈ K(f)[g] with degg(Q) < as degg(gs) = degg(P ) is

an element of Vs. Any non-zero Q(g) is not equal to zero as a rational

function of z since the z-degrees of the elements of the standard basis of Vs

are different mod n. So P is irreducible since otherwise P = Q1Q2 where

degg(Qi) < degg(P ).

It remains to show that for each d < as degg(gs) there is an s-standard

monomial m with degg(m) = d. There is exactly a0 . . . as = as degg(gs) s-

standard monomials. If
s∑

k=0
jk degg(gk) =

s∑
k=0

ik degg(gk) then j0 ≡ i0 (mod a0)

and j0 = i0 because 0 ≤ j0 < a0 and 0 ≤ i0 < a0 and we can proceed to
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prove that j1 = i1, etc.. So a standard monomial m is completely determines

by degg(m) and different monomials have different g-degree. Therefore we

have a standard monomial with g-degree equal to d for any d < degg(P ).

Since the irreducible polynomial should be monic in g, we have ∆ = 1

and so gas
s −

∑
δjmj = 0 after a finite number of reductions.

Now let gas
s 6∈ Vs. As we know E is n-dimensional over F and {1, z, . . . , zn−1}

is a basis of E over F (Lemma 1). Extend the standard basis of Vs by the ap-

propriate powers of z to the basis of E over F . Write gas
s =

∑
δjmj +

∑
εkz

k

for some rational functions δj(f), εk(f) from F . The second sum is not zero

and any k in it is not divisible by ds. Hence d = deg(
∑

εkz
k) cannot be

divisible by ds and is not equal to z-degree of any s-standard monomial.

A rational function p(f)
∆(f)

can be written in the form p(f)
∆(f)

=
M∑

k=−N

cif
i − rN

where ci ∈ K and degf(rN) < −N . Therefore we can write gas
s −

∑
cj,if

imj =
∑

εkz
k − RN where deg(RN ) is smaller than d. We can also assume that

deg(cj,if
imj) > d by moving all “small” summands into the right side. Then

gas
s −

∑
cj,if

imj = gs+1.

Remark. A standard monomial m = f igj0
0 . . . gjs

s is completely deter-

mined by i and degg(m).

Lemma 4. After a finite number of steps we obtain zero.

Proof. From the definition of Vi it follows that dim(Vi) < dim(Vi+1) if

gai

i 6∈ Vi. Since dim(Vi) ≤ n, after a finite number of steps gai

i ∈ Vi which

leads to a relation.
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So the algorithm works and we even know that on the last step all neg-

ative degrees of f will disappear. What is interesting though is that in our

experiment we did not have negative powers of f in the intermediate steps

when characteristic was zero. Let us prove that this is always the case.

Lemma 5. If characteristic of K is zero then all gi are polynomials in f

and g.

Proof. Order the monomials f igj of L = K[f, f−1, g] lexicographically

by degg, degf . Call a monomial negative if its f -degree is negative, otherwise

call it positive. For an element h ∈ L introduce a function gap as follows. If

h ∈ K[f, g] then gap(h) = ∞. Otherwise find the largest monomial h of h

and the largest negative monomial h̃ of h. Then gap(h) = h ÷ h̃. Define ∞

to be larger than any monomial.

We will use the following properties of gap which are easy to check:

(a) gap(h1h2) ≥ min(gap(h1), gap(h2));

(b) gap(hd) = gap(h) if h is monic in g and the characteristic is zero;

(c) gap(fh) ≥ gap(h).

Call h ∈ L \ K[f, g] a Laurent polynomial. Of course h is a Laurent

polynomial if and only if gap(h) < ∞. We will show that gap(gj+1) ≤

gap(gj). Since we know that the last gs which gives an irreducible dependence

of f(z) and g(z) is a polynomial, this will imply that gap(gj) = ∞ for all j

and hence the Lemma.

Let us use induction. The base of induction gap(g1) ≤ gap(g0) is obvious
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since gap(g0) = ∞. Assume that gap(gj+1) ≤ gap(gj) if j < k. If gk ∈

K[f, g] then gap(gk+1) ≤ gap(gk). So let gk be a Laurent polynomial. Since

gk+1 = gak

k − rk it is sufficient to check that the largest negative monomial of

rk cannot cancel the largest negative monomial of gak

k .

As above, call a k-standard monomial negative if its f -degree is negative

and positive otherwise. Let m = f igj0
0 . . . gjk

k be a k-standard monomial.

From the properties of gap mentioned above it follows that gap(gj0
0 . . . gjk

k ) ≥

gap(gk). Indeed gap(gji

i ) = gap(gi) ≥ gap(gk) since gi is monic in g and

gap(h1h2) ≥ min(gap(h1), gap(h2)). Also if i > 0 then gap(f ih) ≥ gap(h),

so gap(m) ≥ gap(gk) for a positive k-standard monomial m. If i < 0 then

gap(m) = 1 since gj0
0 . . . gjk

k is monic in g and the largest monomial of m is

negative.

Recall that rk is defined as a linear combination of k-standard monomials.

Let m be a positive monomial of rk. Then since degg(m) < degg(g
ak

k ) and

gap(m) ≥ gap(gk) we see that even if m as an element of L is a Laurent

polynomial, the negative monomials of m are smaller than the largest neg-

ative monomial of gak

k . So if e. g. rk does not contain negative k-standard

monomials then gap(gk+1) = gap(gk).

We consider now two cases to make reading less unpleasant. In what

follows j-standard monomials are ordered lexicographically by their g-degree

and f -degree.

(a) gap(gk) < gap(gk−1). Since gk = g
ak−1

k−1 − rk−1 and gap(g
ak−1

k−1 ) =

gap(gk−1) > gap(gk) we can conclude that the largest negative monomial

of rk−1 is larger than negative monomials of g
ak−1

k−1 . Since all summands of

rk−1 have different g-degree this monomial is νk−1 for the largest negative k-
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standard monomial νk−1 of rk−1. So gap(gk) = gbk÷νk−1 where bk = degg(gk).

Next, gk+1 = (g
ak−1

k−1 − rk−1)
ak − rk = g

ak−1ak

k−1 −Rk − rk. Since degg(Rk) <

degg(gk+1) we know that Rk ∈ Vk (see the proof of Lemma 3). Present Rk

through the standard basis as a sum of k-standard monomials. The largest

negative k-standard monomial in Rk is νk−1g
ak−1
k . Indeed gap(g

ak−1ak

k−1 −

Rk) = gap(gak

k ) = gap(gk) < gap(gk−1); therefore the largest negative mono-

mial of g
ak−1ak

k−1 is smaller than the largest negative monomial of Rk. Hence

gbk ÷νk−1 = gap(gk) = g
ak−1ak

k−1 ÷µ where µ is the largest negative k-standard

monomial of Rk. Since g
ak−1ak

k−1 = gbk+1 we have µ = gbk+1−bkνk−1 = gak−1
k νk−1.

Since µ is determined by µ (see Remark to Lemma 3) µ = νk−1g
ak−1
k . Let

us compute its z-degree: deg(νk−1g
ak−1
k ) = deg(νk−1) + (ak − 1)mk > akmk

because deg(νk−1) > mk since νk−1 is a k − 1-standard monomial of rk−1.

But deg(rk) = akmk and all k-standard monomials in rk have z-degree not

exceeding akmk. So νk−1g
ak−1
k is not a summand of rk and cannot be can-

celled.

(b) gap(gk) = gap(gk−1). Since gap(g0) = ∞ and gap(gk) < ∞ we can

find such a p that gap(gk) = gap(gk−1) = . . . = gap(gp) < gap(gp−1). Just

as above, gk+1 = g
ap−1...ak

p−1 − Rk − rk where Rk ∈ Vk. Since gap(g
ap−1...ak

p−1 ) =

gap(gp−1) > gap(g
ap−1...ak

p−1 − Rk) = gap(gk) = gap(gp) we can conclude that

the maximal negative k-standard monomial in the standard representation

of Rk is νp−1g
ap−1
p . . . gak−1

k , where νp−1 is the largest negative p− 1-standard

monomial in rp−1. But deg(νp−1g
ap−1
p . . . gak−1

k−1 ) = deg(νp−1) + (ap − 1)mp +

. . . + (ak − 1)mk > akmk = deg rk since deg(νp−1) > mp and ajmj > mj+1.

So again this monomial cannot be cancelled by a monomial from rk.
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Remark. An explanation for the different behavior in the case of fi-

nite characteristic is in the different behavior of the function gap. Prop-

erty (b) is not true if d is divisible by characteristic. Say, in our example

the largest negative monomial in h2 is f−2g2 and its z-degree is too small.

When we make it 1-standard by substituting g2 = h − f 3 − f−1g we obtain

f−2(h − f 3 − f−1g) = f − f−2h − f−3g and negative monomials in this ex-

pression are the terms in the corresponding r.

Lemma 5 gives us the information sufficient for a proof of AMS Theorem.

Let A = C[x, y] and let π be a projection of A into C[z] which is given by

π(x) = f(z), π(y) = g(z). For an a ∈ A denote degz(π(a)) by deg(a). As

usual put deg(0) = −∞.

Let us introduce a defect function for elements of A: def(a) = deg(J(a, x))−

deg(a). If both π(J(a, x)) = 0 and π(a) = 0 then def(a) is not defined. Here

are some obvious properties of this function.

a) def(ak) = def(a);

b) def(ab) ≤ max(def(a), def(b));

c) def(ab) = max(def(a), def(b)) if def(a) 6= def(b);

d) if deg(a) > deg(b) then def(a−b) ≤ max(def(a), def(b)−(deg(a)−deg(b))).

We proved in Lemma 5 that gi are polynomials in f and g. Put Gi =

gi(x, y). Recall that gi+1 = gai

i − ri where ri is a linear combination of the
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i-standard monomials. So Gi+1 = Gai

i − Ri where Ri can be presented as a

linear combination of the i-standard monomials of G0, . . . , Gi.

Lemma 6. def(Ri) < def(Gi) < def(Gi+1).

Proof. First of all def(xiyj) = −m0 if j 6= 0 and def(xi) = −∞. Hence

def(G0) = −m0 since G0 = y.

Now, G1 = Ga0

0 − R0 where R0 = cxb0 +
∑

cijx
iyj and b0 deg(x) =

a0 deg(G0) > deg(
∑

cijx
iyj). Therefore def(R0) = deg(

∑
jcijx

iyj−1)− b0n <

(b0n − m0) − b0n = −m0 = def(G0) since in + jm0 < b0n. Next, def(G1) =

(a0 − 1)m0 −m1 > −m0 since a0m0 −m0 > deg(jcijx
iyj−1) and by definition

m1 < a0m0. So def(R0) < def(G0) < def(G1).

Let us apply induction. As we know Gi+1 = Gai

i − Ri where Ri is a

linear combination of i-standard monomials. Let ν = xjGj0
0 Gj1

1 . . . Gji

i be

an i-standard monomial from Ri. By c) def(ν) = def(Gk) where k is the

largest number for which Gk is contained in ν since by assumption def(Ga) <

def(Gb) if a < b < i + 1. So def(ν) ≤ def(Gi) for any ν from Ri. The i-

standard monomial µ of Ri with the largest z-degree does not contain Gi since

otherwise ãimi is divisible by di−1 for some ãi < ai. So def(µ) ≤ def(Gi−1).

Since all i-standard monomials have different z-degrees (see the proof of

Lemma 3), by d) def(Ri) = def(µ+(Ri−µ)) ≤ max(def(Gi−1), def(Gi)−1) <

def(Gi). Therefore deg(J(Ri, x)) = def(Ri) + deg(Ri) < def(Gi) + deg(Ri) =

def(Gai

i ) + deg(Gai

i ) = deg(J(Gai

i , x)) because deg(Ri) = deg(Gai

i ). Hence

deg(J(Gai

i − Ri, x)) − deg(Gai

i ) = deg(J(Gai

i , x)) − deg(Gai

i ) = def(Gai

i ) =

def(Gi) < def(Gi+1) = deg(J(Gai

i − Ri, x) − deg(Gi+1) since deg(Gi+1) <
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deg(Gai

i ).

Lemma 7. deg(J(Gi+1, x)) =
i∑

k=0
(ak − 1)mk.

Proof. Indeed, Gi+1 = Gai

i − Ri. So J(Gi+1, x) = J(Gai

i , x) − J(Ri, x).

In the proof of Lemma 6 we checked that deg(J(Ri, x)) < deg(J(Gai

i , x))

and so deg(J(Gi+1, x)) = deg(J(Gai

i , x)) = (ai − 1)mi + deg(J(Gi, x)). Since

deg(J(G0, x)) = deg(1) = 0 the Lemma is proved.

Finally, the numerical relation of the AMS Theorem.

Lemma 8. deg(J(Gs, x)) = deg(x) − 1 only if min(deg(f), deg(g)) =

(deg(f), deg(g)).

Proof. By Lemma 7 we have deg(J(Gs, x)) =
s−1∑
k=0

(ak − 1)mk. So n −

1 ≥ (a0 − 1)m0 since all mk > 0. Now, a0d0 = n for d0 = (n, m0). So

d0(n− 1) ≥ d0(a0 − 1)m0 = (n− d0)m0 and 0 ≥ (n− d0)(m0 − d0) + d0 − d2
0.

It is possible only if (n − d0)(m0 − d0) = 0 since otherwise n − d0 ≥ d0 and

m0 − d0 ≥ d0.

Appendix.

Let us check that ∂P = c d
d z

if C[x, y]/(P ) ∼= C[z]. Take any Q for which

π(Q) = z. Then π(x − f(Q)) = 0 and π(y − g(Q)) = 0 since π(x) =

f(z) and π(y) = g(z). So x − f(Q) = x1P , y − g(Q) = y1P and 1 =

16



J(x, y) = J(f(Q)+x1P, g(Q)+y1P ) ≡ J(P, Q)(x1g
′(Q)−f ′(Q)y1) (mod P ).

Therefore π(J(P, Q)) = c ∈ C
∗ and ∂P (z) = ∂P (π(Q)) = c. Since a derivation

of C[z] is completely determined by is value on z we should have ∂P = c d
d z

.
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