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ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS

\tVOLFGANG EIIOLZER

ABSTRACT. \Ve introduce thc notion of (nondcgencrntc) strong-modular fusion al­
gebras. Here strong-modular mcans timt thc fusion algebra is induced via Verlinde's
formula by a rcpresentation of the modul~~ grou·p r = SL(2, Z) whosc kernel con­
tains a. congrllcnce subgroup. F'lIrtherlllore, nondegenera.te meaus that the conformal
dimensions of possibly underlying rat.ional conformal Held theories do not differ by
integers. Our main result is the classillcation of aU strong-modular fusion algcbras
of dimcnsion two, thrcc and four and thc classification of aH nondegenerate strong­
modular fusion algebras of dimcnsion less than 24. \Ve use t.he classiHcation of the
irred uci ble reprcsentat ions of t hc fin itc groups SL(2, Z p.\) where p is a prime and ,\
a positive integer. Finally, we give polynomial realizations and fusion graphs for aH
simple nondegcnerate strong-modular fusion algebras of dimension less than 24.
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2 W. EHOLZER

1. INTRODUCTION

In the last ten ycars therc have been scveral attcnlpts for thc classification of
rational confonnal fielel theories (RCFTs). However, a cOlllplete classification seenlS
to be an inlpossible task since, for exaluple, a11 self elual double even lattices lead
to RCFTs anel there is no hore to classify a11 such lattices of rank greater than
24. Nevertheless, it nlight be possible to dassify all R,CFTs with "sllla11" effectivc
central charge c. The effective central charge is given by the clifference of the central
charge anel 24 times the sIlla11est confonua.l eliluension of the rational Iuoelel unclel'
consicleration. In particular, for c :::; 1 a dassification of RCFTs can bc obtained
by using a theorenl of Serre-Stark describing a11 Inoelulal' fonns of weight 1/2 on
congruence subgroups if one assunles that tohe corresponding confonnal characters
are Inodular functions on a congruence subgroup.

For c > 1 only partial results have been obtained so far. One of thc possibil­
ities is to look at R,CFTs wherc th~ corrcsponding fusion algebra has a "sllla11"
diIuension. In the special case of a trivial fusion algebra the RCFT has only one
superselection sector ancl a classification of the corresponding Illodular invariant
partition functions for unitary thcories with c :::; 24 has been obtained [1]. As a
next step in the classification one can try to classify the nontrivial fusion algebras of
low dimension first anel then invcstigate corresponeling RCFTs. Indeed, the nlodu­
laI' fusion algebras of diInension less than or equal to three satisfying the so-ea11ecl
Fuchs conditions have been classified (see e.g. [2]). In this paper we elevelop several
tools, fo11owing the icleas of ref. [3], whieh enable us to classify a11 strong-Illodular
fusion algebras of eliluension less than or equal to foul' (for adefinition of strong­
luodu1ar fusion algebl'as see §2). Our approach is basccl on thc known classification
of the irreelucible rcpresentations of the groups SL(2, Zp>') [4].

Another possibility is to investigate theories where the corresponcling fusion al­
gebra has a certain structure but nlay have arbitrary or "big" clilllension. Here,
a classifieation of all selfconjugate fusion algebras which are isoIllorphic t.o a poly­
nOlnial ring in one variable where the elistinguisheel basis has a certain forIll anel
\\ihere the structure constants are less than 01' equal to one has been obtaineel (see
e.g. [2]1 ). Furthenuore, a classification of all fusion algebras which are isomor­
phie to a polynonlia.l ring in one variable and where the quantum dinlension of
the elelllelltary fielel is sIua11er 01' equal to 2 is known (this classifieation eontains
the fusion algebras occurring in the classification of ref. [2] j for a review see e.g.
[5]). 'iVith the tools elcvelopeel in this paper we obtain another partial classification,
nalnely of those strong-Inodular fusion algebras of dünension 1ess than 24 where thc
corresponding representation p of the Inodular group is such that p(T) has noncle­
generate eigenvalues. The nondegeneracy of the eigenvalues of p(T) lUeallS that
the eliffercnce of any two confonual clinlcnsions of a possibly unelerlying RCFT is
not an integer. The restrietion on the eliluension is of purely technical nature so
that it shoulel be possible to obtain a cOIllplete classification of a11 nondegenerate
strong-llloelular fusion algebras with the Inethoels elescribeel in this paper by using
systcluatically Galois theory.

1 More precisely, in [2] all selfeonjugate modular fusion algebras \,.lith Ni~ ~ 1, whieh are

isomorphie to Q(x]/ < P{x) > and ~o ~ 1,~)1 ~ x,<!>j ~ }}j{x) (j = 2, ... ,11-1) for some
polynomials P and Pj anel where thc degrec of P is n allel the degrec of the Pj is j have beeil



i,j,k=O, ... ,l1,-l.

ON THE CLASSIFICATION 01" MODULAR FUSION ALGEBRAS

This paper is ol'ganized as follows: In §2 we recall S0111e basic properties of
rational confonnal field theories and give definitions of thc relevant types of fusion
algebras. Section 3 cOl1tains sOIue general theorenls about represcl1tations of the
nl0dular group which factor through a congrnence subgroup. In the next scction
we give a short review about the classification of the irreelucible represcl1tatiol1s of
8L(2, Zp.\) which will be the nlain tool in the proof of thc theorenls in §5. Thc Iuain
results of this paper are contained in §5. Here we classify a11 strong-Il1oclular fusion
algebras of eliIuension less than 01' equal to foul' and the nondegcnerate st.rong­
nloelular fusion algebras of diIuensiol1 less than 24. Fil1ally, we sumIl1arize our
results anel point out sonle open questions in thc conclusion. Two appendices
contain the explicit fonn of thc irreclucible level ]JA represel1tations of diIuel1sion
less thal1 01' equal to foul' as weH as thc fusion Iuat.rices anel graphs of the siInple
nonelcgenerate strong-modular fusion algebras of cli111ension less than 24.

2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS

2.1 Basic definitions.
COl1sidcr a chiral rational confonnal ficlel theory (01' rationalnloclel) R consisting

of a sYIunletry algebra W anel its finitely Iuany inequivalent irreduciblc nl0dules
H i (·i = 0, ... , n - 1), i.e. R is a rational vertex operator algebra (R\TOA) satis­
fying Zhu's finiteness conelition (for RVOA see e.g. [6,7J anel for the connection of
RVOA to W-algebras anel rational nloclels see [S}). Here Ho denotes the vacuunl
representation. For 1110dulcs H of W therc is the notion of conjngate (01' adjoint 01'
dual) luodules H'. In particular, it is conjectured that one has (Hf)' ~ 11.. Since R
is rat.ional the conjugation defines a pennutation 1r of order two of the irreduciblc
nl0dnIes Hi ~ 11. rr( i) .

Thc structurc constants Ni~j of thc "fusion algebra" associatecl to Rare givcn by
the diluension of the corrcsponding space of intertwiners of the nl0dules 'H i 0 H j

ancl Hk (for adefinition of intertwiners of Inodulcs of vertex operator algcbras
see e.g. (7]). Olle of thc iIuportant properties of the lVi~j which is weIl known

in thc physical literature is thc fact that the 111.uubers JVi~j can bc viewed as the
structure COllstants of all associativc COll1111utativc algebra, thc fusion algebra. In
the termillology of vcrtex operator algebras a corresponding stateluent is proven
under certain assumptions in arecent series of papers [9]. In thc abstract definition
of fusion algebras the propertics of all known cxanlples associated to R.CFTs are
co11ected.

Definition. A fusion algebra :F is a finite diIuensional algebra over Q \vith a dis­
tinguished basis «Po = 1I, ... , «P"-1 (11. = diIn(F)) satisfying thc foHowing aXiOll1s:

(1) F is associative and COll111ll.Itative.
(2) The structurc constants lVi~j (i,j, k = 0, ... ,11., - 1) with respect to the

distinguished basis «Pi are llol1negative integcrs.
(3) There exits a pennutation 1T E Sn of order two such that for the structurc

constants in (2) one ha.'3

;\.70 r i\Trr(k) _ J\Tk
lvi,j = Vi,rr(j) , 1 rr(i),7'l"(j) - hi,j'

cl assifiecl (the ass tl IIIption on t.he cl egree of Pj wa.s used iIIIpI ici tIy in loc. ci t. ).
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Rem,arks.
An isoll10rphisln q; of two fusion algebras :F,:F' is an isonlorphism of unital

algebras which rnaps the clistinguishecl basis to the clistinguished basis, i.c. thcre
exists a pennutation a E Sn such that q;(<I>i) = <I>~(i) (i = 0, ... ,11. - 1).

The tensor proeluct of two fusion algebras :F and :F' is again a fusion alge­
bra, its distinguished basis is given by <I>i 1 0 <I>;2 (i 1 = 0, ... , clim(F) - 1, 1,2 =
0, ... , dim(F') - 1).

The pennutation 7r of order two is callcd charge conjugation. Fusion algebras
with trivial charge conjllgation are called selfconjllgate.

Note that it is an open question \vhether two nonisolnorphic fusion algebras can
be isonl0rphic as unital algebras.

It is known in lnany cases that fusion algebras arising fronl RCFTs have additional
properties. One of thcse additional properties is their relation to confonnal chanl.c­
ters. The confonnal characters Xi of the lnodllies Hi of Ware fonnal power series
in q clefinecl by

where La is the O-th Fourier lnode of the chind energy-nl0Inel1t.um tensor anel c
is thc central charge 01' the rank of the HVOA. One can show for rational vertex
operator algebras satisfying Zhu 's fini teness conclit ion [10] that the cha..racters bc­
corne holornorphic functions in the llpper cOlnplex half plane by setting q = e2trir

.

Furthennorc, for these RVOAs the space spannecl by the finitely lnany confornul.l
characters is invariant nnder thc action of the Inodular group r = 5L(2, Z). In­
deed, it is conjecturecl that Zhll 's finiteness conclition is not necessary at all. It was
conjectured in 1988 by E. Verlincle [11] that for any rational nloclel there exists a
representation p : r ----? GL(n, C) of r such that

71-}

Xi(AT) = (xiIA)(T) = L p(A)j,iXj(r)
711=Ü

lV~j = p(S2)i,j

N k = I: p(S)i,,,,p(S)),mp(S-'),,,,k
I,) m=O p(S)O,m .

vVe will refer to this fonnula as "Verlinde's fonnula" in the following. Thc above
conjecture Inotivates the definition of lnodular fusion algebras.

Definition. A lllodular fusion algebra (:F, p) is a fusion algebra.:F together with
a unitary representation p : SL(2, Z) ----? GL(11., C) satisfying the following additional
aXlon1S:

(1) p(S) is a synul1etric anel p(T) is a diagonallnatrix.
(2) lV~j = p(S2)i,j,

(3) f\l!'. = ",n-1 p(S)i,mp(S)j,mp(S-1 )m,1::
J,) L..nn=O p(S)O,m

where Ni~j (i,j, k: = 0, ... , n - 1) are the structure constants of :F with respect to
the distinguished basis.
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Remarks.
Note that property (3) alreaely iluplies that F is associative anel COl1ullutative.
Two llloelular fusion algebras (F, p) anel (F', p') are called isoillorphic if: 1) F

anel F' are iSOl1l0rphic as fusion algebras, 2) panel pi are equivalcnt, 3) p(T)i,j =
p'(T)u(i)u(j) where a E 5 11 is the pernllItation clefined by the iso1110rphisl11 of the
fusion algehra.s.

The tensor product of two luodular fusion algebras (F, p), (F', p') is clefinecl by
(F 0 F ' , p (9 p') anel is again a nloelular fusion algebra.

A (nlodular) fusion algebra is called C0111posite if it is isoluorphic to a tensor
products of two nontrivial (nloclular) fusion algcbras. Herc a (ulodular) fusion
algebra is called trivial if it is one c1illlensional. A noncomposite (nlodular) fusion
algebra is also called siluple.

Note that for a lllodular fusion algebra. with trivial charge conjugation (p(S2) =

TI) the lllatrix p(S) is real.
For 1110dular fusion algebras associatecl to rational luoclels the eigenvalues of

peT) are given by the confornlal dinlcnsions hi (i = 0, ... ,17. - 1) of the irreducible
lllodules 'Hi (h i is the slllallest Lo cigenva.lue in the lllodule 'Hd aud the central
charge C of the theory:

peT) = diag(e2rri (h o -C/24), ... , e2rri(hn-l-C/24)).

Quitc often nonisoluürphic llloelular fusion algebras are isolllorphic as fusion
algcbras.

In the later sections \ve will investigate which representations of rare related to
lllodular fusion algebras.

Definition. A representation p : SL(2, Z) -+ GL(12, C) of the luoelular grüup is
called conforlllally adlllissible or siIuply adlllissible if there exists a fusion al­
gebra F such that (F, p) i5 a lllodular fusion algebra.

It i5 known that llloelular fusion algebras associateel to rational 1l10elelS have
ulany additional properties. In particular, the ccntral charge anel the confonnal
dirllensions are rational [12,13]. Furthcnnol'c, cOlllpatibility conditions bctween the
central charge c, the confonl1al dill1ensions hi anel the fusion coefficients lVh (the
so-callecl Fuchs condi tions) are satisficcl (see e.g. [2] 2):

12(11. - 1)
12

n-1

'"""' (h i - ~) E ~ (N\ {1} ),
L.J 24 6
01=0

n-l

'"""' ((hi + hj + hk + h l )lV:'J'.N1. In - hm (N:'J1
. 1V[ m + lVtkNJ~ In + Nli1VLll

J.))~ ,~t" ~ ,.,.
m=O

(

n-1 ) (71-1 )- ~ L NijNL,m 1 - L iVi:jNL,m E N
nl=O 711=0

2 Note that the formula. connecting the central charge with the confol'mal dimension in [2]
contains amisprint..
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However, in this paper we will not lllake any use of these properties.
Insteael we will extensively rely on the observation that in 3011 known examples

of RCFTs the confonnal characters are llloelular functions on sOUle congruence
subgroup of f. Therefore, the corresponcling representation p factors through a
representation of rN. Here we have uscel rN for the principal congruence subgroup
of r of level lV

r N = { A E r I A == ] nloel l\T }.

Definition. A llloclular fusion algebra. (F, p) is callcd strong-lllodular if the ker­
nel of the representation p contains a congruence subgroup of r.

In this case p clcfines a reprcsentation of SL(2, ZN) anel is callcd a level IV
representation of r (here anel in the following we use ZN for 7l/l\TZ). A level l\T
representation p will be called even or odd if p( 52) = ]I 01' p( 52) = -], respcctively.
Furthennore, Olle call show that for strong-lllodular fusion a.lgebras associatecl to
rational models the representation p is elefined over thc fielel ]( of N -th roots of
unity, i.e. p : r ~ GL(n, ]() if the corresponding confon11al characters are 1110dular
functions on sonle congruence subgroup [8]. Indeed, we expect that this is true for
all RCFTs what lnotivates the following definition allel cOlljecture.

Definition. A level IV represcntation p : 8L(2, Z) ~ GL(11., C) is called ](-rational
if it is defined over the fielel ]( of the IV-th roots of unity, i.e. p : 8L(2, 7l) ~
GL(n, ]().

Conjecture. All llloclular fusion algebras associated to rational 1110dels are strong­
1110clular fusion algebras and the corrcspolldillg representations of the lllodular
group are ](-rational.

2.2 S011le shllple properties of 1110dular fusion algebras.
In this seetion we prove SOlne siInple lelnlnas about lnoclular fusion algeb1'as

which will be neecleel in the proofs of the ll1ain theo1'ellls in §5.

Lenulla 1. Let (F, p) be a Inodular fusion algebra. Assurne that p(T) has llonde­
generate eigenvalues. Thcn p is irredl1cible.

Proof. Assulue that p is reelucible and p(T) has nondegene1'ate eigenvalues. Thcn
p(5) has block diagonal fonn and thc1'efore p(5)o,m = 0 for sOUle rn.. This is a
contradiction to p1'ope1'ty (3) in thc definition of 1110dular fusion algebras.

Definition. A 1110dular fusion algebra (F, p) is called degenerate 01' nondegen­
erate if p(T) has degenerate 01' nondegcncrate cigenvalucs, rcspcctively.

Lelunla 2. Let p, p' : r ~ GL(n., C) be cql1iva,lent, irredl1cible, unitary rcprcscn­
taUons oE tllC lTIodular grOl1p. ASSlllne that p(T) = p'(T) is a. diagonal ll1atrix with
nondegenerate cigenvalues. Tllen tllel'e exists a unitary diagonal matrix D such
t11at p = D-1 p' D.

Proof. 8ince p and p' are equivalent. therc exists a matrix D' such that p =
D,-l pi D'. Since p(T) = p'(T) is a diagonal Inatrix with nondegenerate eigen­
values D' is diagonal. Finally: thc i1'reducibility of p ilnplies by 8chur's leullna
that D'+D' = 0'] for SOUle positive real ntunber 0' so that D = -j;D' satisfies the

desirecl properties.
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LenUlla 3. Let (F, p) and (F', p') be two nondegenerate Inodular fusion algebras.
Assumc that p is equivalellt to p' allel peT) = p'(T). Tllen Fand F' are isomorphie
as fusion algebras.

Proof. The lemlua follows directly froIn the definition of (ll1odular) fusion algebras
and Lenl1ua 2.

Lenlllla 4. Let (F, p) be a nl0dular fusion algebra. Then p is not isolnorphic to a
direct Silln of one dilnensional representations.

Proof. If p is the direct gUnl of one cliluensional representations p(S) is also a
diagonal matrix. This in1plies that one cannot apply \Terlinde's fonnula giving a
contraeliction since we have assillned that (F, p) is a ll10elular fusion algebra.

Since there are exactly 12 one clinlensional representations of r one has the
following trivial lclullla"

Lenl111a 5.

(1) Let p be a Olle dilnensional representation of r. Tl1en p is equivalent to one
of tl1c following representatiolls

11. = 0, ... ,11.

(2) Let (F, p) bc a Olle dilnensionallnodular fusion algebra. Then (F, p) 1S
strong-lnodular, F is trivial anel p is given by

11. = 0, ... ,5.

Lenllna 6. Let (F, p) be a strong-lllodular fusion algebra. associated to Cl. rational
model. Then p is !(-rational.

Proof. For a rational vertex operator algebra satisfying Zhu's finiteness conclition
the charactcrs are holomorphic functions 011 the upper cOluplex half plane. Since
we have asslllued that (F, p) is strong-lnodular p is a level J.V reprcsentation for
S0111e .N. This iluplies that the characters are rnoclular functions on rN. 1'loreover,
their Fourier coefficients are positive integer so that one can apply the theoreln on
!(-rationality of ref. [8) inlplying that p is ](-rational.

Although Lenuna 6 will not be used in the following it provicles us with a good
lnotivation for looking at !(-rationality of level N representations.

3. SOr-.'lE THEOREMS ON LEVEL 1'/ REPRESENTATIONS OF r

In this section we will consielcr level J.V representations of 8L(2, Z). Firstly, we
review that all irrcducible reprcsentations of SL(2, ZN) can be obtainecl by those
of SL(2, Zp.\) where p is a prilue anel ,\ is a positive integer. 8econdly, we discuss
thc construction of level pA reprcsentations using \Veilrcpresentations (in this part
we follow ref. [4]) .
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Lenuna 7. Let p be a. fini tc dilncnsiOll all'epl'csen tation of 5L( 2, ZN) where 1V is a
positive integer. Tllen the l'eprcsentatioll p is conlpletely reducible. Furthermore,
eac11 irrcducible COIl1pOnent W of p ]](18 a. unique product decoInpositioI1

"" KJ\tl (>"i )W=XYj=t 7r Pj

where lV = iljl=l p)i is tbe prilne factor decolnposition of 1V alld t}le 7r(p;i) are

irreducible representations of SL(2, Z '\i)'
Pj

Proof. 5ince 5L(2, ZN) is a finite group p is conlpletely recIucible. The second state­
ment, nanlely that the irreducible representations of 5L(2, ZN) can bc written as

a tensor procluct of irreducible representations of 5L(2, Z p"» where ~!\T = TIjl=l p;i
)

is thc prilne factor decomposition of l'l, cau be seen as follows. For a proof of the
second statelnent note that

SL(2,ZN) = SL(2,Z .\t) x··· x 8L(2,Z >'n)
Pt Pn

where 1V = TIjl=J p;i (see e.g. [14]). Obviously, thc tensor procluct of irreduciblc

representations 7r(p;j ) of 5L(2, Z '\j) is an irreclucible repr~sentation of 8L(2, ZN)'
Pi

Using now Burnside's lelunla \ve obtain the seconcl stateillent.

In order to deal with thc represent.ations of the groups 5L(2, Zp.\) we clescribe
their structure by the following theorcill.

Theorenl 1 [4, 5atz 1, p. 466]. Tbe group 5L(2, Zp.\) is generated by tl1C elelnents

(0 -1)
5 = 1 0 '

anel tbc relations
>.

TP = 1I, 52 = H (-1 )

H(a)H(a') = H(aa'), H(a)T = T
u2

H(a), 5H(a) = H(a-I)S

wbere H(a) := T-aST-a-
t
S-lT-aS-l anel a, (L' E Z\.

P

Remark. As elements of 5L(2, Zp'\) the H(a) (a E Z;>.) are given by

H(a) = (~ a~l)'

'\'e will now describe the construction af representations of 5L(2, Zp'\) by lneans
of vVeil representatians.

Definition. Let .~i be a finite Zp'\ 111odule. A quadratic fann Q of lvI is a lnap
Q : Ai -t p->"ZjZ such that

(1) Q(-x) = Q(x) for all x E 111.
(2) B(x, y) := Q(x + y) - Q( x) - Q(y) clefines a Zp>.-bilinear lllap froln At[ x lvI

to p->"ZjZ.
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Definition. A finite Zp.\ 1110dulc NI together with a quadratic fann Q is called a
quadratic 1uodule of Z p-\'

Definition. Let (1\1, Q) bc a. quaelratic 1uoclule. Define a right action of 8L(2, Zr\)
on the space of C valucd functions on lVI by

(fIT)( x) = e21l"iQ(x) J(~:)

(f IH (a) )(x) = 0' Q(a)0'Q ( -1) f (:r ) Va. E Z;.\

(fl 5-1 )(;1;) = O'Q( -1) '""'" e 21ri l3(x ,y) J(y)
1.i\11 1j2 0

yEM

where IlvII denotes thc order of j'1,

O'Q(a) = 1;'11 L e21riaQ(x)

xEM

and f is any C valuecl function on lvI.
If this right action of 8L(2, Z p.\) defincs a rcpresentation of 8L(2, Z p.\) it is callecl

the Weil representation associatecl to the quaclratic luoclule (NI, Q) anel clcnoted by
Hl(1\!I, Q).

Note that the above right action always clefilles a projective representation of r.
A necessary anel sufficiellt condition for it to define a proper representation is given
by thc following theorelll.

Theorenl 2 [4, 8atz 2, p. 467]. The abovc right action of 8L(2, Zp'\) defines a.
rcpresentation of 8L(2, Zp'\) if anel on1'y if

O'Q(a)a:Q(a/) = O'Q(l)O'Q(aa') I '71*a, a E /U p.\'

4. THE CLASSIFICATION OF TUE IRREDUCIBLE LEVEL pA REPRESENTATIONS

Although the classification of the irreducible representations of thc finite groups
8L(2, Zp'\) is containecl in [4J we will give a short review here. Dur lllain nlotivation
for this is the fact that we will strongly rely on this classification in the proofs of
thc main theorel11s in §5. Furthcnnorc, ref. [4] is not written in English but in
Genuan.

In the first subsection we describe how one can obtain irreducible level pA rep­
resentations as subrepresentations of 'Veil rcpresentations. The seconel anel third
subsection are used to give complete lists of the corresponding representations for
the cases of p =I=- 2 anel ]J = 2, respectively.

In addition to the review we investigate in SOl11e cases whether the irreducible
representations are !(-rational 01' not.

4.1 Weil representations associated to binary quadratic forIlls.
Nlost of the irrcclucible representations of 8L(2, Zp.\) can be obtained as subrep­

rcsentations of Weil represelltations H1( AI, Q) associatccl to a. 1110clule A1 of rank
one 01' two. The following two theorel11s describe the Vleil representations needed
in the later sectiolls.
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TheoreU13 [4, Lenuua. 1, Satz 3, p. 474]. Let p =I- 2 be a prlIlle. Tbcn t11e following
quacl1'atic; 11l0dules of Z'V \ denne "'leil representations:

(1) 1'1 = Zp'\' Q(x) = p->"1':r;2 (A 2:: 1) (R>J1'))

(2) /vI = Zp'\ EIl Z po\, Q(.'r) = p->"Xj X2 (A 2:: 1) (D>..)

(3) /vI = Z 1"\ ffi Z p>' , Q( x) = p->"(;l:i - ux~) (A 2:: 1) (l'l>..)

(4) ~1 = Zp'\ EB Zp.\-O', Q(x) = p->"r( :z:i - putx~) (A 2:: 2) (R~(1'l t))

where 1', t run tl1rough {I, 1.I,} with (~) = -1 (( ~) denotes tl1c Legendre sYlnbol),
where a = I, ... ,A - 1 and where the last colullln contains the nalJ1C of thc corre­
sponding vFeil represcntation.

Theorenl 4 (4, Satz 4, p, 474]. Let p = 2. Then the following quadratic 11l0dules
of Z2>' de!ine 'Yeil representations:

(1) NI = Z 2'\ ffi Z 2 .\ ,

(2) 1'1 = Z2'\ ffi Z2>"

(3) ~J = Z 2>' - 1 EIl Z 2.\ - <T - 1 ,

Q(:c) = 2->"XIX2 (,\ 2:: 1)

Q(x) = 2->"(xi + XI X Z + x~) (A 2:: 1)

Q(x) = 2->"r'(xi + 2Utx~) (A ~ 2)

(D >..)

(iV>.. )

(R~(r, t))

wl1cre 0" = 0, ... ,A - 2, where (1', t) run tllrough a systenl of represcntativcs of thc
c1asses of pairs denneel by (1' 1 , t1) ~ (1'2, t2)

ift 1 -tz nl0dluin(8,2>"-U) allel

TZ == '1 luod 4 01' 1'2 == l' 1t 1 fiOel 4 for 0"=0

1'2 == 1'1 luod 8 01' '1'2 == 1'1 + 2, 1t 1 IUOel 8 for 0'=1

1'2 == Tl IUOel 4 for 0-=2

1'2 == 1'1 luod 8 for 0-2::3

anel wlle1'e tlle last colulnn contains the 118Jne of the corresponding 'Yeil represen­
tation.

All irreducible representatiolls of 8L(2, Z p'\) CRn be obtained as subrepresenta­
tions of '~Teil representations T'VO\1, Q). One possibility to extract subrepresenta­
tions of such representations is to use characters of thc autol11orphisln group of thc
quaelratic fOrIn Q:

Theorenl 5 (see e.g. [4]). Let TIV(*~1,Q) be Cl. Hleil representation described by
Tlleo1'em 3 01' 4, U an abelian subgroup of A ut( ~1, Q) aJlel X a characte1' afU. Thcl1
tllC subspace

v(X) := { f : A1 -t elf(EX) = X(E)f (x ), x E 1\11, EEU}

oE cA'/ is invaria.nt uneler 8L(2, Zp'\)' Tllc corrcsponding subl'eprescntation is ele­
noted by lV(A1, Q, x).
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RcrnarkLII,.

(a) The space V(x) is spanned by V(x) =< fx(x) >:r:EM where

fx(x)(y) = L X(€)Ocx,y,
f..EU

Ox y = { 1
" 0

for x=y

otherwise.

(b) The autolll0rphislu group of thc quadratic fonns in Theorcln 4 contain a
conjugation 1\,: 1\,(Xl,X2) = (x2,xd in case (1) and K.(Xl,X2) = (XI,-X2) in the
cases (2) aud (3). In these cases thc space

V(x)± := { f E V(x) I f(1\,x) .~ ±f(x), x E lvI}

is invariant under 8L(2, Z2'\)' The corresponding subrepresentation is denotecl by
TV(lVJ, Q, X)±.

From now on we will denotc thc trivial character X == 1 by Xl. Indeed, ahnost
all irreducible represcntations of 8L(2, ZJl'\) can be obtained as subrcprescntat.ions
of the vVeil reprcsenta,tions clcscribecl by Theorenls 3 and 4 using "prilnitive" char­
acters:

Definition3
• Let Hl(.i\I, Q) be a \Veil represent~.tion described by Theoreln 3 01' 4

anel let U = Aut(111, Q). A character X of U is callecl prilnitive iff there exists an
elelnent € E U with x( €) i= 1 such that cach clclnent of pAI is a fixed point of €.

The set of prirnitive characters of U will be denotecl by ~.

\~Tith this definition we have:

Theorenl 6 [4, Hauptsatz 1, p. 492]. Let lV(I\1, Q) alld lV(A1', Q') be "Teil rep­
resentatioll described by Theorenl 3 01' 4 find X, X' priIl1itive characters. Then Olle
has

(1) Hf(1\1, Q, X) is an irredu cible level pA represCll tatioll.
(2) Hl(1\I,Q,X) allel l'V(1'1',Q',x') are is01110rphicif anel only ifthe quadratic

1110dules (M, Q) anel (Al', Q') arc isomorpl1ic and X = X' 01' X = -X'.

The second nlain theorelu of ref. [4] dcscribes the classification of the irrcducible
representations of 8L(2, Zp'\).

Theoreul 7 [4, Hauptsatz 2, p. 493]. Tl1e "Veil reprcsentations elescribed by thc
Theorenls 3 anel 4 contain a11 irreducible representations of tl1e groups 8L(2, Zl"\)
(in general they are of the f01'111 lV(A1, Q, X) for a prünitive c11aractcr X) apart fron1
18 exceptional reprcscntations for p = 2. Tl1escs exccptional repres€ntations CRll
be obtaüled as tensor proelucts of two rcpresentations containcd in SOlne H1(1\1, Q)
(elescribed by Tlleorcnl 3 01' 4).

Complete lists of irreducible representations of 8L(2, Zr\) will bc given in §4.2
ancl §4.3.

3] n thc case of Al = Z 2'\ _ 1 EB Z2 (,\ ~ 5) t.he defi n i tiou of prim iti ve charaetcrs is slight Iy cl iffel'cn t

{
I + 4t + F8t ,\ = 5

[4, p. 491]: Here U ~< -I >< 0' > with CI' =
1 - 2>'-3 + J -2>'-21. ,\ > 5

anel X is primitive if x(cr) = -1.
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4.2 The irreducible representations of 5L(2, Zr\) for p =1= 2.
In the classification of thc irreeluciblc reprcsentations of 5L(2, Z 1'>') for p =1= 2 one

has to elistinguish thc cascs A = 1 anel A > 1. Thcrefore, we treat thenl separately.
Following [4] we denote the trivial representation by Cl.

Theorem 8 [4]. A conlplctc set oi irrcducible rcprescntations of 8L(2, Zp) for a.

prüne p lvit11 P =1= 2 is givell by tl1e represelltatiolls collectccl in Table 1. In Table
1 the X run tllrougll the set oi characters of U Bnd X-1 is tbe unique nontrivial
c11aJ'acter olU taking values in ±1. Furthennare, we denote b.y # (herc and in thc
following) the ntunber of illcquiva.lent reprcselltatiolls.

Table 1: Irreclucible reprcscntations of 5L(2, Zp) far p =1= 2

type of rep. eliInensioll #
Dl(X) X E 'lJ p+l ~(p - 3)

Nl(X) XE'lJ p-1 ~(]J - 1)

R 1(r,Xl) (~) = ±1 t(p + 1) 2

R 1 (1', X-I) (~) = ±1 t(p - 1) 2

1'/1 (Xl) p 1

'Ve will denote the 3 one elimensionallevel 3 representations Cl, R l (1, X-I) anel
R.l (2, X-I) by BI, B 2 anel B3 , respectively.

The explicit fonn of these representat.ions is weIl known (see e.g. [3]) anel one can
acldress thc qllestion which of these rcpresentations are ](-rational (sec also [8]).
Note that, in view of the results in §2.2, this question is natural in the context. of
achnissible represcntations.

LelTIllla 8. Let p =1= 2 be a prüne.

(1) For p =1 (IUOel 3) there is exac tly Olle a11 cl for p =f=. 1 (nloel 3) there is no
](-rational representation of type D 1(X).

(2) For p =2 (Illa cl 3) there is exac tly Olle a11 cI for p =f=. 2 (lllOel 3) tllere is 110

](-ra ti011al reprcsen tation of type lV1 (X) (X E ~).

(3) The representatio11s of t.ype R1 (1', X±d anel .i\T1 (Xl) are ](-rational.

Proof. Using a charactel' table for the above reprcscntations (see e.g. [15]) one casily
finds that the characters of representations of type D1 (X) 01' lVI (X) take values in
the fiel cl of p-th roots of unity only if p == 1 (lnocl 3) 01' P - 2 (mod 3) and if X is
a character of order 3, Therefore, therc is at most one ](-rational representation
of type D l (X) 01' NI (X) for the cOl'responcling values of p, Using the explicit fornl
of these representations (see e.g. [3]) one finds that these two representations aJ:e
indeecl ](-rational. For the ather two types of representations the ](-rationality
follows elirectly fronl the fact that X±1 takes values in ±1.

Theoren1 9 [4]. A. cOlnplete set of irreelucible representations of 8L(2, Z p'\) for
p =1= 2 prime anel ,,\ > 1 is given by tlJe rcprescntatio11s in Tablc 2. 1VlJerc X-1 is the
unique non trivial character wi t11 values in ±1 alld R.>..(1', X±1 h is the ullique level
pA subreprescntation of RA (1', X±1) wllich has dunension ~ (p2 - 1)zi·-2.
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Table 2: Irreducible representations of 5L(2, Zp.\) for p -I 2 anel A > 1

type of rep. cliluension #
D>..(X) X E~ (p + 1)p>"-1 ~(p _ 1)2 p>"-2

lV>..(X) XE~ (p - l)p>"-l ~(p2 _ 1)p>"-2

R(1 (1' t X) (f,) = ±1, (*) = ±1 ~ (p2 _ 1)p,\-2 42:,\-1( - 1) '\-(1-1
>.. '"

(1=} P P

R.>..(1·, X±I h (~) =±1 ~ (pZ _ 1)p>"-z 4

Lenuua 9. Let]J -I 2 be a. prillle anel A > 1 an integer.

(1) Tbe representatiolls oE type R>.. (1', t~ X) are !(-rational for]J -I 2 aJ]d A > 1.
(2) The reprcsentatiolls oE type R>..(1', X±l)1 are!( -rational for p -I 2 and ,\ > 1.

Furthennore, the in]age ofT under these representations l]as nondegenerate
eigellvalucs ollly if p = 3 allel ,\ = 2.

Proof. Since the autolll0rphislll group of the quaclratie fOrIn of R>..(1', t, X) is given
by [4, p. 495] U :: Zz x Zp'\-~ we obtail1 (1). In thc seeond ease one obviously has
U ~ Zz so that the ](-rationality follows direetly. The stateInent concerning the
eigcl1values of thc lInagc of T for thc representatiol1s of type R,\(1', X±l h is proved
in Satz 4 of [4].

4.3 The irreducible representations of 8L(2, Zz.\).
The classification of the irreclucible representatiol1s of 8L(2, Z2'\) is c0I11plieated

since there are a lot of exceptional representations for A < 6 [4]. 8ince these reprc­
sentations have sl11a11 clilnensions anel we will be il1terested in such representations
in §5 we describe theIn in the rest of this subsectiol1. Thc Tables 3-8 list complete
sets of irredueible represel1tations of the groups 8L(2, Z2.\) for the eorresponcling
values of A.

For A = 1 there are only t\vo irreducible represel1tatiol1s (see Table 3). The
represel1tation Cz is given by C2 (S) = C2 (T) = -1 and both level 2 representations
are ](-rational.

For A = 2 there are seven irreducible representations (see Table 4). The rep­
rescntation G'3 i8 givcn by C3 ( S) = C3 (T) = -·i, C4 by G'4 (S) = G'4 (T) = i and
Rg(1,3)1 is definecl by Rg(l, 3) ~ R.g(1,3)1 EB Cl. All level 4 represcntations (U'e

!(-rational.
For A = 3 there are 20 irredueible reprcsentations (see Table 5). Here X i8 one

of the two charaeters of U of order 4 al1d the represcntation R~(l, 3, Xl)1 is clefined
by R.~(l, 3, xd ~ R.~(l, 3, Xt}l EB lVI (X 1) EB C2 EB G'z.

For A = 4 there are 46 irrcclucible representations (see Table 6). Here the
representation R~(1',3,Xl)1 is given by the equality R~(r',3'Xl) ~ R~(1',3,Xl)1 EB

o 'R'2(1', t).

Table 3: Irreducible representations of 8L(2, Zz)

type of rep. dilll #
C2 =NI (X) X E ~ 1 1

lV1(xd 2 1
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Table 4: Irreducible representations of SL(2, ZZ2)

type of rcp. dün #
Dz(X)+ xt1 3 1

D 2 (X)- Xt1 3 1

R~(l, 3)1 3 1

Cz ® R~(l, 3)1 3 1

Nz(X) X E~; x;fi 1 2 1

C3 = Rg(3, I, X) X~l 1 1

C4 = Rg(l,l, X) X~l 1 1

Table 5: Irrecluciblc representations of SL(2, ZZ3)

type of rep_ clinl #
D 3 (X)± XE~ 6 4

R~(l, 3, Xl). 6 1

C3 ® R~(l, 3, X1)1 6 1

lV3 (x) X E~; X2 t= 1 4 2

lV3 (X)± X E ~j X
2 =1 2 4

RO(1' t X) 1'=l,3j t=l,5 3 43 , "

Rg(l, t, X)± X t= 1; t = 3,7 3 4

Table 6: Irreclucible reprcsentations of SL(2, ZZ4)

type of rep. dirn #
D 4 (X) X E ~ 24 2

IV4 (X) X E ~ 8 6

R~(1', t, X) X E~; X ~ l' 'l' = 1 3- t = 1 5 6 4
, 1 " ,

R~(T, t, X)± X E~' X2 = l' r = 1 3' t = 1 5 3 16, ,,-, , " ,
R~(l, t, X)± X E~' t = 3 7 6 8, 1 ,

R2 (r i X) X =f:. 1; 'l',i E {1,3} 6 44 , "

Cz ® R~(r,3, X) x=f:.1' 1'=13 6 2, , ,

R.~ (T, 3, Xl) 1 r = 1,3 6 2

nS(x)+ ®R~(1,7,~)+ X E~; XZ == 1; 1jJ =f:. 1; 12 2

'ljJ2 == 1; 1jJ( -1) = 1



ON THE CLASSIFICATION 01" MODULAR FUSION ALG EBIlAS 15

For ,\ = 5 there are 92 irrcclllcible represcntations (see Table 7). Here for fixed
r = 1,3 the 2 irreclncible representations of type R~(·, 1, X)l (X <t ~) are given by
the 2 two diInensional irreducible level 5 snbrepreselltatiolls of R~ (7', 1).

Table 7: Irreducible representations of 8L(2, Z2f»

type of rep. cliln #
Ds(X) X E ~ 48 4

lVs(X) X E ~ 16 12

RO(1' t X) X E~; 1'=1,3; t=1,5 12 16s , "

R~(l, t, x)± X E~; t. = 3,7 24 4

R,~(7', t, X)± X E ~; T, t E {I, 5} 01' 12 16
l' = 1,3 anel t = 3,7

R~(7', t, X)± X E~' 7' = 1 3' t = 1 3 5 7 6 32, , , , , , ,

R~(r, 1, X)I X~~; l' = 1,3 12 4

C3 ~ R~(r, 1, X)l X~~; l' = 1,3 12 4

For A > 5 there are the following irreelncible reprcsentations (sec Table 8). Here X

are always prilnitivc characters anel R~-3(1', t, X±I h is the nniqne irreducible level
2>' subrepresentation of R~-3(r, t, X±l) which has diIncnsion 3 . 2'\-4.

Tablc 8: Irreduciblc reprcsentations of 8L(2, Z2'\) for ,\ > 5

type of rep. <1 dill} #
D,\(X) 3·2A- 1 2A- 3

lVA(X) 2A- 1 3 . 2A- 3

R~(l, 7, X) t = 3,7 3 ·2A- 2 2,\-3

, 7' = 1,3; t = 1,5 for er = 0

R,~(r, t, X)
7', t E {I, 5} 01'

3 ·2A- 3 5 . 2A- 2
~

7' = 1,3 anel t = 3, 7 for er = 1

l' = 1 3· i = 1,3,5,7 for er = 2" , ,
R~(1', t, X) er = 3, ... ,'\ - 3; r,t E {1,3,5, 7} 3·2A- 4 4 . L:>.-3 2A-0"

0"=3

R~-2(r, t, X) l' = 1,3,5,7; t = 1,3 3·2A- 4 16

R~-3(7', t, X±l h l' = 1,3,5,7; t = 1,3 3·2A- 4 16

4For .\ = 6 onc has to use rcprescntat.ion of type R6(r, t., Xl hand C'2 0 R~(rJ t" Xdl (r = ],:1)

instead of t.hose of type H~ - 3 (r l t , X±1 ) I. The l'eprescntat.ions R~ (r, t. J X I ) 1 are thc unique level 6
subrepresentations of R~(r, t., XI) with dimcnsion 12.
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for lVI (Xl), ]J = 2

for lV1(X), ]J = 3.

5. RESULTS ON THE CLASSIFICATION OF STRaNG-MODULAR FUSION ALGEBRAS

5.1 Classiflcation of the strong-lnodular fusion algebras of dhnension less
then or equal to four.

In this section we consieler a11 bvo, three anel foul' eliInensionallevellV represen­
tations of rand investigate whether they are achnissible.

Main theorenl 1. Let (F, p) be a two dilncnsional strong-lIlodular fusion algebra.
Then (F, p) is isolllorphic to the tensor product of a Olle diIncnsionallllodular fusion
algebra witl1 one of tlle lllodular fusion algcbras in Tahle 9.

Table 9: Two clinlensional strong-nloelular fusion algebras

F p(S) 2~i 10g(p(T)) luod Z

«PI . «PI = «Po 1 (-1 ~1 ) { cliag( t, ~)
Vt2 -1 cliag(~, ~)

( Z2 )

2 (-SinW - sin( 25" ) ) { cliag(~ 11)
«PI . <1>1 = <1>0 + «PI

20' 20

75 - sin( 2
5
7':) sin( f) cliag( 2

1
0' 2

9
0 )

( "(2,5)" )
....L ( - sin( 25,,) sin( f) ) {cliag( 2

3
0 , 2~)

v5 sin( *) sin( 2
5
7': ) cliag( ~~ , ~~ )

Proof. Let (F, p) be a two clilnensional strong-l11odulaJ.· fusion algebra. Len11na 4
iInplics that p is irrcducible. Therefore, wc have to consider a11 irreclucible two
dimensional representations of r which factor through a congruence subgroup. By
Lemllla 7 we know that these representations can be obtainecl by taking the tensor
products of a11 irreducible two clinlcnsional level pA rcpresentations with a11 one
diInensional representations of r.

There are exactly 11 inequivalent irreclucible two dinlensional level pA reprc­
scntations. Their explicit form is givcn in Appendix A. '~Te arc intercsted in thc
classification of the two clilnensional strong-l11odular fusion algebras up to tensor
proclucts with one dilnensional fusion algebras. Therefore, we can restrict our in­
vestigation to one of thc two dirncnsional rcprescntat.ions of level 2, 23 , 3 aud thc
two representations of level 5 (sec Appendix A). For the relnaining 5 two clilnen­
sional reprcsentat.ions the cigenvalues of thc inlage of T are nonclegenerate. Hencc,
Lelnl11a :2 il11plies that the corresponcling nlatrix representations are unique up to
conjugation with unitary diagonallnat.rices anel pcrn1tltation of thc basis elC111cnt.s.
One can easily apply \Tcrlincle's fOflnula and check whether thc resulting coefficients
Ni~j have int.eger absolute values for the two possible choices of the basis element
<1>0 corresponding to thc VaCUU111 (conjugation with a unitary diagonallnatrix docs
not change the absolute value of lVi~j)' In particular for thc level 2 represcntation
lVI (X d ancl the level 3 representa.tion lVI (X) we obtain for both possible choices of
the distinguishecl basis elel11ents <Po anel <1> 1

{

2
1 v'3'

11Vl,l1 = 1

"72'
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Since IJVl11 is not an integer we can excluele these two representations. For the level

23 and 5 'representations one obtains integer values for the JVi~j' 1v10reover, in all
three cases both possible choiccs of thc distinguisheel basis elenlents 4>0 anel «1>1 lead
to isoluorphic fusion algebras. \Ve concluele that the representation of the 1110dular
group given by a two diluensional strong-lnodular fusion algebra is isomorphic to
the tensor proeluct of a one eliluensional representation and JV3 (X)+ (pA = 23 ) 01'
R1(r'X-l) (1' = 1,2;])>' = 5). Using that p(S2) should be a Inatrix consisting of
nonnegative integers one can detennine the Olle dinlensional representation of r
up to an even one cliluensional representation. Therefore, (:F, p) is cletenninecl up
to tensor products with one dilnensional lTIodular fusion algebras. The resulting
representations anel fusion algebras are collected in Table 9. 0

Remark. The two fusion algebras in Table gare called Z2 and "(2,5)" fusion alge­
bras, respectively. The first na111e is evident since this fusion algebra is isolllorphic
to the group algebra of Z2 with the clistinguished basis given by the group elenlents.
\f\Te will call the fusion algebra given by the group algebra of ZN in the following
ZN fusion algebra. The second nall1e results fronl the fact that the Virasoro vertex

operator algebra is rational for c = c(p, q) = 1- 6 (p;;)"1 (p, q > 1, (p, q) = 1) [16,1 7]

(these luoclels a.re called Virasoro ll1ininlal 1110dels) anel the corresponding fusion
algebra are denoted by "(p, q)" fusion algebra. In part icular the "(2, 5)" fusion
algebra is isolllorphic to the fusion algebra in the second row of Table 9.

Main theorenl 2. Let (:F, p) be a tllree dimensional strong-lllodular fusion alge­
bra. Tllen (:F, p) is iso111orphic to thc tensor product of a Olle dilncnsional lllodular
fusion algcbra. with one of the rIlodular fusion algebraB in Table 10.

Proof. Let (:F, p) be a three dilnensional strong-lnodular fusion algebra. By Lenllua
7, p is either irreducible or iS01110rphic to a SU111 of a two dinlcnsional and a one
clilTIensional irreclllcible representation. \\Te willnow consider these two cases sepa­
rately.

Firstly, aSSUlUC that p is irrcducible. By Len1l11a 7, p is iSOlTIOrphic to the tensor
prodllct of a onc clilllcnsional representation aJlel one of the three ditnensiona.l ir­
reclucible level p>' representations. There are exactly 33 inequivalent irreducible
3 diInensional level p>' representations. Their cxplicit fonn is given in Appendix
A. V\Te are interestecl in the classification up to tensor products with one dinlen­
sional Inodular fusion algebras. Therefore, we can restrict our invcstigation to a
set of irreclucible representations which are not related via tensor proclucts with
one ditnensional reprcsentations. This lTIeaJ1S that we have to consider one repre­
sentation of level 3 anel 22

, two representations of level 5 and 7 and, fina.lly, foul'
represcntations of level 24 (see Appendix A).

For these representations the eigenvallles of the illlage of T are nonclegenerate so
that we can proceed no\v as in thc proof of the Main theorelTI 1.

Using \Terlincle:s formula far the rcpresentation 1Vl (1, Xl) (p = 3) we obtain
INt,ll = ~ for a11 possible choiccs of the distinguished basis. In the sanle way one
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IlV; 11 = ~, v2
for p(T) = diag( I, e

2rri f , e2rri 1f)

01' p(T) = diag(l, e 2 1l'i .1; , e 21l'i t)

for p(T) = diag(e2
1l'

i f, 1, e21l'i~)

for p(T) = diag(e2
1l'

i 1f, I, e2
1l'

i f).

Here the different cases correspond to the different possible choices of thc distin­
guished basis. V/e conclucle that p cannot be isoillorphic to a tensor procluct of a
one clilnensional representation and N 1(1, Xl) (p = 3) 01' R1(T, Xl) (1' = 1,2; p = 5).

Table 10: Three dilllensional strong-l11odular fusion algebras

:F p(S) 2~i 10g(p(T)) nl0d Z

«PI .4- 1 = ~2

G
1

1 )<PI . <P2 = <Po
I 2 . 1 '1 r .( t i 7)

V'3
e 1l'1'3 e 2 1t"1 3 (lag 4' 12' 12

'1 "1e 2 1l'J 3 e27r13

4- 2 ' «P2 = «PI

( Z3 )

( -52
-SI

83 ) { 1'( 4 I 2)
<PI . <PI = <Po + <P2 Jr -SI

(lag '7'"7'"7
-83 -82 r (3 6 5)

S3 -82 SI (lag 7' 7' 7

( -83
-8]

82 ) { cliag( t, ~, ~)
ep I . ep2 = ep I + ep2

2

.fi -SI -82 -83 r (6 3 5)
82 -83 S, (lag 7' 7' 7

CI S2
83 ) {r (2 1 4)

<P2 . 4- 2 = <Po + epl + <I>2
2 (lag 7' 7' 7

77 s2 -S3 SI r .( 5 6 3)
83 81 -82 (lag 7' 7' 7

( "(2, 7)" ) 8 j = sin( .if )
4-} . <PI = <Po

(1 1 J2) {
diag( 8-11 IG-n !!.)

16' 16 '8

<PI ' <P2 = <I>2 1. 1 -J2 d' .(16-n 8-n n)
2 lag ----W-' 16' 8"

-J2 0 n = 0, ... ,7

<P2 . <P2 = <Po + <PI

( "(3,4)" )

An analogous caIculation shows that for thc representations of type R1 (1', X-I)
one has IlVi~j I E N for a11 3 possible choices of the distinguishecl basis. For thc
reluaining representations one also has IlVi~jl E N for the two possible choiccs of
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the elistinguished basis (here the lna.trix p(S) contains a zero so tha.t thcre are only
two possible choices of the distinguished basis).

Hence, p is isolnorphic to a tensor product of a one dilnensional representa­
tion with one of these 7 representations. Using that for a nlodular fusion algebra
p(S2)i,j equals lVi~j one can detennine the possible one dilnensional representations.
The corresponding strong-nloclular fusion algebras are contained in Tahle 10 in the
second anel thirel row.

Seconclly, assunle that p clecolnposes into a clirect sunl of two irreducible represen­
tations p ~ PI EB P2 with dirn(pj) = j. Then P2 is isolnorphic to the tensor product
of a one dinlensional representation with one of the two dilnensional irreelucible
level pA represcntations contained in Table Al.

Using Lemlna 1 \ve cOllcluele that p(T) has degellerate eigellvalues so that P2(T)
lnust havc an eigenvalue of the fonn e2

11"i TI. Hencc, P2 cannot be isolnorphic to thc
tensor product of a one dilnensional representation anel one of the two elirnensiollal
irreducible level 5 anel 23 represelltations in Table Al. Using onee illore that p(T)
has clegenet'atc eigellvalues we obtain that P is isornorphic to thc tensor product
of a one dirnensional representation with either !'ll (XI) EB Cj (j = 1,2; p = 2) 01'

lVI (X) EB B j (j = 2,3; p = 3). In oreler find out whether these foul' representations
are adlnissible we have to look for elistinguished hases.

Let us first consider the case p I"V Gf (3) (lVI (X) EB B j ) (j = 2, 3j]J = 3) where C
is a one clirnensional representation. Here p(52) has two different eigenvalues since
lVI (X) is odd anel thc representations Bj are evcn. Since the vaCUUln is selfconjngate,
i.e. p(52 )oo = 1 the representation C has to be oelel. '\Tithont loss of generality we
choose Gf = C4 for j = 2 anel C = 0 3 for j = 3. Furthennorc, thc fact that p(S2)
has two different eigenvalues ilnplies that we lnnst have

Using these two conditions it follows that in a basis in which p(52 ) has this fonn
and p(T) is diagonal we lnnst have

1 (E
p(S) = 13 :

E

211"i 1e 3

2 '1e 11"1 3

and
_ { cliag(e2

11"i~ , e211"i ~ , e21fi
1
1
2 )

p(T)- ,'7 'll 2 'll
diag( e2 11"t TI , e2 1l"l 12 ,e 11"112)

01'

up to conjugation with a unit.ary diagonal lnatrix (the two possibilities for p(T)
corresponel to the two possible choices of the distinguished basis).

Applying now Verlinde's fOl'lnula leads to a ll10elular fusion algebra iff E = 1 for
both choiees of the distillguishecl basis. The corresponding fusion algebra, p(S) anel
p(T) are listed in thc first row of Table 10.
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Finally, consieler the case p ~ C 0 (NI (xd EB Ci) (j = 1,2). Since NI (X.) (p = 2)
and Cj (j = 1,2) are even P has ta be even, too. Therefore, C is even anel w.l.o.g.
we choase C = Cl for j = 1 anel C = C2 for j = 2. Since p is cvcn one 111Ust have
p( 52) = ][ anel, therefore, p(5) is real (c.f. the second re111ark in §2). Plugging this
in we find (up to pennutation of the basis eleluents) that

1 ( 1p(5) =? -J3a
..., J3b

-V3a.
2 - 30.2

30b

V3b )3ab ,
302 -1

p(T) = (-l)i diag(l, -1, -1)

where a, b E IR and ([.2 + b2 = 1. Using \Tcrlinde's fonnula we obtain as conditions
for p to be adlnissible

for p(T) = (-l)i diag(l, -1, -1)

for p(T) = (-l)j diag( -1, -1,1).

The first case ilnplies that a2 = t 01' 0.
2 = ~ and the second Olle (1,2 = t, respcctivcly.

Inserting these values of CL in the explicit fonn of p(5) above we indeed obtain
lllodular fusion algebras if we choose the sig;ns of a and b corrcctly. The resulting
nlodular fusion a.lgebras are contained in the third row of Table 10. As fusion
algebras they are of type" (3,4)", also callccl Ising fusion algebra.

This c0111pletes the proof of the ivlain theorenl 2. D

Main theorenl 3. Let (:F, p) !Je a foul' dünensional strong-lnodular fusion algebra.
Tl1en (:F, p) is eitl1er isomorphie to tl1C tensor ]Jroduct of 2 two dünensional strong­
1110dular fusion algebras 01' isoillorphic to the tensor product of a one dünensional
1110dular fusion a.lgebra with Olle of tlle 1110dular fusion algebras in Tablc 11.

Proof. Let (:F, p) be a strong-nl0dular fusion algebra. Then, by Lenuna 4, we have
the following possibilities for p:

(1) P is irreducible,
(2) p "'" PI E!1pz with diln(Pl) = 3, di111(P2) = 1,
(3) P "'" PI EB (J2 with diln(pI) = diIn(pz) = 2,
(4) p:: PI EB P2 EB P3 with cliln(Pl) = 2, diIn(P2) = diIn(P3) = 1

where Pi (i = 1,2,3) are irreclucible rcprescntat.ions.

(1) fJ is irreducible
Asslllne that P is irreclueible. Then P is either isolllorphic to the tensor product of
2 two diInensional representat.ions of copriIne levels or it is isonl0rphic to the tensor
product of a one diInensional representation with a foul' diInensiollal irrcducible level
pA representation. In the first ease we obviously have that P is only adnlissible iff
both two diInensional representations are a(hnissible (look at Table Al). In this ease
the correspollding Inoelular fusion algebra is a tensor product of two fusion algebras
eontained in Table 9. Let us now consider the other case, namely that p ~ C 0 PI
where C is a OllC dinlcnsional representation anel PI is a four dirnensional irreducible
level pA representation. In this case PI is given by one of the 9 representations in
Table A3. Note that for a11 of these representations the eigenvalues of the ill1age of
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T are nondegenerate so that \ve can use thc argulllentation usecl in the proof of the
1'Iain theorenl 1.

Table 11: Foul' dilllcnsional silllple strong-lllodular fusion algebras

:F p(S) 2 ~i log( p(T)) nI0d Z

(1
1 1

~i)<P~ = <P2, <PI' <1>2 = <P3, -1 { l' 'e I 3 ')l. 'l. C 1ag 8' 4"' 8' 4"

«P~ = <Po, <PI . <P3 = <Po,
2 -1 -1 -1 d' '( 3 1 7 1)lag 8' 4' 8' 4

-l -1 1.

le 1 1

;)<P~ = <1>2, <1>2' «P3 = <1>1, -1 { l' '( 5 3 I 3 )-1. ( lag 8' 4' 8' 4"

( Z4 ) 2 1 -1 -1 -1 r ,( I 3 5 3)
( 1ag 8"' 4' "8' 4"

1 1 -1 -l

cI>i = «Po, cI>1 • <1>2 = <1>3, (~1 -1 -1 -1)<I>~ = <1>0, <1> 1 • <P3 = <P2, ! 1 -1 -'-1 { diag(O, 0, 0, ~)

<1>5 = <1>0, <1>2 . <1>3 = <1>1
2 -1 -1 1 -1 diag(!,O,O,O)

-1 -1 -1 1

( Z2 C?) Z2 )

( ~':4
81 83

-8
2

)2 {diage 19 , 31)1>1 = 1>0 + <1>3
~ S2 S3 84 36 ' 36' 12' 36

<PI . <P2 = <PI + <1>3
3

83 83 ° ~::~
'. ,29 17 11 5

dl..tg( 36' 36' 12' 36)
-82 84 -53

Cl
82 53 84 )<PI . <1>3 = <P2 + <P3 -sI {d' 'e' 7 I '9)~ S2 -84 S3 lag 36' 36 ' 12' 36

<P~ = <Po + <P2 + <P3
3 83 83 ° -83 d' (5 291117)

lag 36' 36 ' 12' 36
84 -81 . -83 82

( S2

-84 83
-SI )

«1>2 . <P3 = <P 1 + <P2 + <P3 { d', e9 31 I 7)
~

-84 81 83 -82 lag 36' 36' 12' 36

<I>~ = <Po + <I> 1 + 1>2 + 1>3
3 83 83 ° -83 . 17 5 11 29

dlag( 36 ' 36 ' T2' 12)
-·'31 -82 -83 -.'34

( "(2,9)" ) . (~)Sj = sin 9

For the l'epl'esentation lVI (X) (X 3 t 1 j]J = 5) we find by Verlinde's fOrIllUla

(n = 1, ... ,4)

where again the different possibilities for p(T) correspond to the different possible
distinguished basis. This shows that PI cannot be isolllorphic to this l'epl'esentation.

Since the representation lV I (X) (X 3 == 1 j P = 5) is isoll1ol'phic to the tensor proc1­
uct of the two different level 5 reprcsentations in Table Al it is cleal' that this
representation is acltllissible. Since the inlage of T uader this rcprescntation has
nondegeneratc eigenvalues the corresponding lllodular fusion algebras are iSOll1or­
phic to the tensor product of 2 two dilllensionallllodular fusion algebras (as fusion
algebras they are of type" (2,5)").
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Consider now the representations R] (1', Xl) (1' = 1,2; P = 7). Here Verlinele's
fOrIuula ilnplies that

Ilvi 11 = ~ for peT) = diag(e2
11"i*, 1,',') (11. = 1, ... 6)

1 v2

anel

IlV; 11 = ~, v2
for

01'

As above this reluoves these representations frolu the list of canelidates leading to
Inodular fusion algebras.

For the rcpresentationlV3 (x) (X 3 t=. l;p = 23
) one has

1 /f]lV 1= - for1,1 3
2 . l!!.±.!. 2' l.!:!.H.p(T) = eliag( e 11" I 1:1 ,e 11" I 8 ,',' ) (n=1, ... ,4)

so that this representation is also excIudcd.
Consider now the representations R~ (1', 1, X) (1' = 1, 2; X3 1=- 1; P = 32). Here one

has

1

;\Tl ! _ 1
1\1 I - M

1 v3
(n = 1,2,3).

The basis elenlent in thc represcntation space corrcsponding to the p(T) eigenvalue
of order three cannot correspond to «Po since in the corresponding ro\v of p(S)
contaillS a zero.

Finally, the only rCll1ainillg foul' elill1ensiollal irreducible level pA represcllta­
tions that Inight lead to 1110dular fusion algebra.., are those of type R.~ (1', 1, X)
(1' = 1,2; X3 == 1; pA = 32

). Indeecl, these rcpresentations lead to IlloelulaJ: fu­
sion algebras. Ta be Ill0re precise one has to consieler the tensor product of an odd
one dilnensional reprcselltation with thClU because the R1 (1', 1, X) (X 3 _ 1) are odel
thell1selves. The corrcsponding fusion algcbras are of type "(2,9)" and the explicit
fOrIU is given in Table 11. The different Illodular fusion algebras result from the bvo
different representations anel thc fact that the distinguished basis can be chosen in
different ways.

P ~ PI E9 P2 with dinl(fl}) = 3, dinl(P2) = 1
Asslune that p is isonl0rphic to thc direct SUHl of a Olle diIuensional anel an irre­
ducible three elinlel1siol1al represcntation. Then one has p f"V C 0 (PI EB D) wherc C
anel D are one diluensiollal representations anel PI is Olle of the three diInensional
irreducible level pA represel1tations in Table A2. By Leluma 1 we kl10W that p(T)
has degenerate eigenvalues. Therefore, PI is of type lVI (Xl) (]J = 3), R'1 (1', Xl)
(1' = 1,2; P = 5), D2(X)+ (pA = 22

) 01' R~(l, 3)± (pA = 23
).

Consider first the representation lVI (XI) (p = 3). In this case we can have
D = B j (j = 1,2,3). Since B j and NI (Xl) are even we can choose without 10ss of
generality C = Cl. USillg Verlinde's fonnula we find that
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giving a contradiction for thesc choices of thc distinguished basis. For p(T)
cliag( e2rri ~ , e2

1'1' i ~ , e2
1'1'1 i4f-!- , e21'1'1~) thc Ene of rC380ning is a li t.tle bi t. 1110re involved.

Here 1V~j = p(S2)i,j = Dilj inlplies that peS) is given by

(

4b2 - 1

(S) = ~ 4ab
p 3 20.

20.

4ab
3 - 4b2

-2b
-2b

2a
-2b
-1
2

up to conjugation with an orthogonal diagonalluatrix, with a, b E IR and a2 +b2 = 1.
vVith thc explicit fonu of peS) we find a8 conditions for p to be achnissible

i\Tl _ 1 Z
J 1 11 - 2a(3 _ 4(1,2) E ,

20.2 -1
lV2

- E Z.
],1 - 2a(3 _ 40.2 )

Howevcr, thc only solutions that satisfy these two conditions are those a which
equal 2~n for an integer nL and satisfy 1n3 == 0 nl0d 3rn2

- 1. It follows that n1. ==
o1110d 3n12 -1 which gives a contradiction. Therefore, the representations NI (X1)EB
B j (p = 3) do not lead to nlodular fusion algebras.

Next we consider the represcntations R'l (1', Xl) (1' = 1,2; P = 5). In this case
the one dimensional representation D has to be thc trivial one. Since these two
representations are even we can choose without loss of generality C = CI, too.
Using that Ni~j = Di,j we find that thc Iuat.rix which describes the basis in the two
diluensional eigenspace corresponding to the eigenvalue 1 of peT) is orthogonal.
Furthenuorc, by looking at suitahlc }li~j we find that there are only two possibilities
for this luatrix. In thc corresponding basis we indecd find nl0dular fusion algebra
given by the tensor product of two modular fusion algebras of type" (2,5)". That p
is admissible can also be interfered frolu the cquality R 1 ( 1', Xl) EB C ~ R 1 (1', X-I) 0
R1 ( 1', X-I) (r = 1, 2; p = 5).

Finally, we have to consider D2(X)+ (pA = 22
) anel R~(l, 3, x)± (pA = 23

).

The corresponding possibilities for p are C3 0 D 2 (X)+ EB Cj (j = 1,3,4), C4 0
R~(1,3, X)+ EB C3 01' C3 @ R.g(l, 3, X)- EB C4 . For the ease p ~ C3 @ D2(X)+ EB Cl
we obtain a nl0dular fusion algebra. given by the tensor product of two Z2 fusion
algebras. This can also be seen by looking at the identity

For C40R~(1,3,X)+EBC3or C30R~(1,3, X)- EBC4 we obtain Z4 type fusion algebras
(see Table 11). The other two representations (C3 0 D 2 (X)+ EB Cj (j = 3,4)) are
not adlnissible as one can easily check by applying Vcrlinde's fornlula.

p ~ PI ffi P2 with dilU(Pl) = dilll(P2) = 2
Assluue that p decoluposes into a direct sunl of 2 two dilnensional irredueible rep­
resentations. In this casc we have p = C @ (PI EB D @ P2) whcre C and D are one
diInensional representations and p] ,P2 are SOlne level pA representations contained
in Table Al. Since p is reducible we know that peT) has degenerate cigenvalues.
This together with the parity of the representations in Table Al inlplies that p
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equals (up to (1, tensor product with an evcn onc dinlcnsional represcntation) aue
of the following representations:

lV l (xI) EB jV I (Xl)

G13 0 (NI (X) ffi Bi o lVI (X)) (i = 1,2)

C4 @ (R l (T, X-1) ffi R'I(1', X-I)) (1' = 1,2)

C<I ® (lV3 (X)+ EB lV3 (X)+).

In all cases we have that p(S) is conjllgate to a Inatrix of block diagonal fonn.
wIore preciscly, this 111atrix consists of two idel1tical two by two Inatrices. A simple
calclliation sho\vs now that cOl1jugation of p(S) \vith a Inatrix which leaves p(T)
cliagonalleacls to a Inatrix which has at least one zero elCll1ent in every row. This
is a contradiction since \ve have assunled that p is ach11issible and one can apply
\Terlinde's fonnula.

p ~ PI EB P2 ffi P3 with diln(pd = 2, dil11(P2) = cliln(P3) = 1
Assllll1e that p deconlposes into a direct sunl of an irreclucible two dinlensional anc!
2 one dimensional representations. Thcn, again by Lenl111o. 1, p(T) has degenerate
eigenvalues and a sill1ple parity argull1ent shows that the only possibilities for P are
(up to a tensor product with an even one diluensional representation):

01'

where lVI (Xl) is the level 2 representat.ion in Table Al. vVe have to consider these
two cases separately.

Firstly, let P be conjugatc to NI (Xl) EB Cl EB Cl. Then the requireruents that
p(5) has to be sYlunletric and real anel that p(T) has to be diagonal iInply that (up
to penuutatiol1 of the basis clenlCnts and conjugation with an orthogonal diagonal
111atrix):

(

-1

(5) = _~ V3a
p 2 V3b

V3c

V3a
3a2 - 2

3ab
3ac

V3b
3ab

3b2 - 2
3bc

V3c )3ac
3bc

3c2 - 2

where a, b, c E IR with a2 + b2 + c2 = 1 and p(T) = diag( -1,1,1,1).
Fixing the distinguished basis such that <Po corrcspol1cls to t.he eigcllvector of

p(T) with eigenvalue -1 we obtain

;\r l (2 - 30.2 )(1 - 3(2
) N~2 (2 - 3b2 )(1 - 3b2

)
h - 1 - -------

11 - V3a '22 - V3b '
lViI = 13(3a2

- 1)b, IVfl = 13(3a.2
- l)c

lVi2 = V3(3b2
- 1)0., IVg2 = V3(3b2

- l)c.

This ill1plies that (1,2 = b2 = c2 = k. The resulting structure constants indeed clefine
a fusion algebra, namely the tensor procluct of two fusion algebras of type Z2. As a
1110dular fusion algebra this fusion algebra is shnple, i.e. it is not a tensor product
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of two nontrivialIlloclular fusion algebras. The resulting modular fusion algebra is
contained in Table 11.

For the other choice of the distinguished basis where 4>0 corresponds to an eigen­
vector peT) with eigenvalue 1 we find

lVI _ (3a 2
- l)b

. 33 - 0.(30.2 _ 2) ,

i\
r3 _ 30.2 - 1

1 33 - fij ,
v 30.(30.2 - 2)

r2 _ (3a 2
- l)c

1\ 33 - 0.(30.2 _ 2) ,

lV 3 _ 1 - 3b2

22 - V3a(30.2 - 2)

where the basis was chosen slieh that p(T) = diag( 1, 1, 1, -1). Let now 11 :=
(1V13)2 + (lV?3? and 171 := (lV;3?' It is now easy to verify that 11. and 1n satisfy the
equation

rn,3 + (1 - 5'11.)1'71.
2 + (4'11 2 + 7n )171 + 4n2

- 3113 = O.

By Lcnlilla 10 in §5.2 below the only nonnegative integer solution of this equation
is gi.ven by n = rll = O. Therefore, we find as the only possible solution 0.2 = b2 =
c2 = ~. Thc resulting structurc constants define a fusion algebra isonl0rphic to
the tensor product of two tE 2 fusion algebras. However, analogons to the case of
the other clistinguished basis cliscussed abovc this lllodular fusion algebra is shnple
anel contained in Table 11.

Secondly, assllllle that p is conjugate to lVI (Xl) EB Cl EB C2 • Requiring that peS)
is a synlllletric real Inatrix anel that peT) is diagonal iInplies (up to apermutation
of the basis elenwnts anel conjugation with an orthogonal diagonal Il1atrix)

(

3b2 - 1

S _ ~ -3ab
p( ) - 2 -V3ac

V3ad

-3ab
3a2

- 1
-V3bc
V3bd

-V3ac
-V3bc
3c2 - 2
-3cd

V3ad)V3bd
-3cd

3d2 - 2

wherea,b,c,d E lRanda2 +b2 = 1,c2 +([2 = 1 andp(T) = diag(l,l,-l,-l). Using
Verlinde's fonnula wc obtain for the choicc of the distinguishcd basis in which 4>0
corresponds to the eigenvector of peT) with eigenvalue 1

(N I )2 _ (3o.-1)2(6a-5? (IV2 )2 _ c
2

(lV3 )2 _ d
2

11 - 90.2(1 _ 0.2)(3(1 _ 2)2' . 11 - 30.2(3a2 _ 2) 1 11 - 3a2 (3a. 2 - 2)

For the other choice of the distingllishcel basis (<I>o corresponding to eigenvalue -1)
Olle finds the sallle expressiolls with a anel c cxchangcd.

Let 11. : = (lViI)2 + (lVrI)2 anel let 111- := (lVl1? It is easy to verify that the
following equation for 11. allel 117. holels truc

(1 - 3n )117.
3 + (12 - 37n + 31n2 )'111 2 + (48 - 15211. + 15511. 2

- 53113 )rn

+ 64 - 208n + 24911.2
- 13011.3 + 25n4 = O.

By Lcnuna 10 in §5.2 below the only nonnegative integer solution of this equation
is given by r71. = 0,11 = 1. This is a contradiction to the explicit fonn of n and 1H in
tenns of Cl above. Hence the representation lVI (Xl) ffi Cl ffi C2 is not achnissible.

This proves thc NIain theoreIll 3. 0
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5.2 Proof of a Lenulla on diophantic equations.

Leuulla 105
• Let 11. be a nonnegative integer, rn a square of an integer find H, 1n

solu tiol1s of

(1) 111.
3 + (1 - 5'11)111. 2 + (411. + 711. 2

)111. + 4n2
- 311. 3 = 0 01'

(2) (1 - 3n)1'n3 + (12 - 37n + 31n.2)7n2 + (48 - 152n + 15511.2
- 5311.3

)111. +64 ­
20871. + 249n2

- 13011.3 + 25'114 = 0

Tl1cn eitl1er n = 1n = 0 for (1) 01' 1n = 0,11. = 1 fo1' (2).

Proof. Firstly, eonsicler the equation (1). It ean be written in t.he fann

(371. - nl.)(rn - n)2 = (rn. +2n?

If 11, = nl. then r11. = 11. = O. Otherwise, set t = m±2n ilnplying
rn-11

(t+2)t 2

r11. = -'----'--
2t - 5 '

11.=
(t-1)t 2

2t - 5

If Tn and 71. are integral then also t has to be Jintegral (any prilne faetor of the
denolninator of t would divicle the denolninator of rn. anel n). Then N = 2t - 5
divicles (t - 1)t2 = k( lV +5)2 (Jll +3) so that JV divides 3· 52. None of the resulting
12 possibilities leads to a nonnegativ~ integer solution of n, 1n, where 111. ::j:. 11 and rn,
1S a square.

Sceondly, considcl' thc equation (2). Set k: = rn - n +4, then (2) is cquivalent to

k 3 + 2k2 n - 3k3n + 125n2
- 92k:n2 + 22k 2n 2

- 1171. 3 = O.

If k = 0 t.hen 11, = 0 anel ro. = -4 is not a. square. Otherwise, (2) is equivalent to

where t = r' This equation has diseritninant (1 + 1St + t 2 ) (1 - 7t + 11t2 )2 and this
lUllst be a square. Setting ~ := (1 - t - (1 + 1St + t2)1/2)j(10t) E Q (with coprinle

p,q and q > 0) we get

t = q(p + q)
p(5p + q)'

Hence, using the quadratic cquation in k: wc finally havc

n = p2(2q _ p)'

. The paralnetrization of n inlplies that ]J = ±1 anel, furthernl0rc, that q3 _ 0 nl0d
(2q - p). Therefore, we have 1} == 0 1110d (2q - p) so that 2q - ]J = ±1. Fronl the
resulting foul' possiblities only p = q = 1 satisfies the desired propertics anel leads
to r"l1. = 0, n = 1. D

Remark. Note that the proof of Le1111na. 10 relies essentiallyon the fact that thc
curves defined by the two above equations are rational.

51 would likc Lo thank D. Zagier for disClIssion on this lemma [18]
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5.3 Classification of the nondegenerate strong-lllodular fusion algebras
with ditllension less than 24.

In this section wc classify all strong ruodular fusion algebras (F, p) of diruension
less than 24 for which peT) has nondegenerate eigenvalues. Thc nlain tool used
in the proof is the classification of the irrec1ucible representations of the groups
8L(2, 7l p >") describecl in section 4.

Main theorenl 4. Let (F, p) be a sünple nondegenerate strong-lJ1odula.r fusion
algebra. Furthenllore, aSSUll1e that thc dÜllcnsion of F is less tha.n 24. Tllen
p is isoillorphic to the tensor product of an evell Olle dimensional rcpresentation
oE r with Olle oE the representations in Table 12. lvIoreover, F is isolnorplJic to
Q[x] / < P(x) > wi th distinguisl1ed basis Pi (x) (j == 0, ... ,11. - 1). Hcre P and Pi
are the unique polyn0111ials satis~ying

P(x) == det(Arl - x)

po(x) == 1, pl(X)==X,
n-]

pj(x) == L (Arl )j,k Pk(x).
k=o

wl1ere the (Ar] )j,k := lVjk,j are the fusion ll1atrices given in Appendix B.

Table 12: 8iruple nondegenerate strong-nlodular fusion of clilncnsion lUBs than 24
(q is a. prilue satisfying q < 47)

fusion din1 p

71 2 2 Gf4 0 lV3(X)±, (pA = 23 )

11 c(3, 4)" 3 C4 0 D 2 (X)+, (pA == 22)

C4 0 R.g(l,3, X)±, (pA = 23)

Ising Gf4 0 R~(1',3,X)±, (1' = 1,2;])A = 24
)

~(q - 1)
rll.

"(2,q)" C4 2 0 B'I ( 1', X-1 ), (( ~) = ±1; pA = q)

"(2,9r' 4 C4 0 R~(1', 1, X), (1' == 1 ')'X3 = l'pA == 32 ),-.." - ,
Bg 6 lV2 (X), (X3 =l;pA = 32

)

BIl 10 lVI (X)~ (X3 == 1; pA = 11)

G17 16 lVI (X), (X 3 == 1; pA = 17)

E23 22 lVI (X), (X3 == 1; pA = 23)

Remark. For all fusion algebras in Table 12 apart fronl B g there indeed exist RCFTs
where the associatecl fusion algebras are isoruorphic to the ones in Table 12: Thc
fusion algebra. in thc first row occurs in thc so-called Z2 nIodcl, the ones in row
2, 3 anel 4 in the corresponding \Tirasoro lninilual nIoclels (see also the renlark at
the end of thc Ma.in Theorerll 1) anel, finally, the ones in row 6, 7 and 8 occur
as fusion algebras of certain ra.tionalrnoelels, so-called ll1inill1alluodels of Casin1ir
W-algebras, nalnely for W B 2 and c = - 41414, WG2 allel C = - 11~O anel W E 7 anel

C = - 3;~4 [3]. The fusion algcbras of type Bg seelUS to be related to WB 2 anel
C = -24. However, in this case the luodcl is not rational.
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Proof. Let (F, p) be a siluplc nondegcncratc strong-nl0dular fusion algebra of di­
luension less than 24. Lemnla 1 iluplies that p is irreclucible. Furthennore, since
(F, p) is strong-Iuoclular wc havc to consieler a11 irreducible representations of
SL(2, ZN) of clüucnsion less than 24. Since (F, p) is sinlple anel nonclegenerate
simple Lcnm1a 7 shows that we can restriet our investigation to irreclucible repre­
sentations of SL(2, Zp'\)' Once again, since (F, p) is nonclegenerate we can follow
the line of reasoning in the proof of thc lvlain thcorenl l.

Therefore, we can elil'cctly apply VCl'linelc's fonuula to any such 1uatrix repre­
sentation p and look whether the resulting coefficients lVi~j have integer absolute
values for the different choices of the basis elenlent corrcsponding to <Po. If the
resulting nU111bers jVi~j do not have integer absolute values we can conclude that
there exists no nondegeneratc strong-nlodular fusion algebra (F, p) whel'e p is con­
jugate to the tensor product of a one cli1ncnsional rcpl'escntation of r anel 13. We
have investigated this for a11 irreducible representations of 5L(2, 7l p.\) of eli111ension
less than 24 by constructing thenl cxplicitly6.

The proof of thc theore1n will consist of three separate cases: \Ve consider rep­
resentations of 5L(2, 7l p) and 5L(2, 7l]v\) anel 5L(2, 7l 2 .\) separatcly.

Firstly, let p be isolnorphic to a tensor proeluct of a one elirucnsional representation
and an irreelucible reprcsentation p of 5L(2, 7l p ) (p "# 2). Note that this case was
alreaely cliscussed in [3].

For the representations of type D 1 (X) the 111atrix p(T) has degeneratc eigcnvalues
so that we can leave out this type of representation.

For the representations of type lV. (X) wc find ruodlllar fusion algebras only for
p = 5, 11, 17 and 23 anel X3 == 1. For p = 5 the ruodular fusion algebra is not
siruple but equals thc t.ensor proelllct of two rnodular fusion algebras where the
corresponeling fusion algebras are of type "(2,5)" (cf. also the proof of the Nlain
theorem 3). The 1110dular fusion algebras corresponding to p = 11, 17, 23 are con­
tained in the last threc rows of Tahle 12. As was already ruentionecl in [3] these
foul' representations are probably the only aclruissible ones of type lV1(X). However,
\ve do not have a proof of this staternent hut. nurnerical checks show that therc is
no other adnlissible representation of this type for p < 167 [3].

The representations of type R l (1', Xl) anel J\Tl (XI) do not lead to ruodular fusion
algebras [3].

For 8011 p of type R l (T, X-I) we obtain rnodular fusion algebras. Here p ::

(C4)~0R1 (r, X-I) is aelmissible for 3011 odd prirnes p. The corresponding rnodular
fusion algebras are of type "(2, ]J)". Thcy are containecl in the third row of Table 12.

Secondly, let p be ison10rphic to a tensor product of a one cliruensional representa­
tiOll anel a irreelucible representation pof 5L(2, Zl"\) (p "# 2, A > 1).

For the representations of type D >.(X) the n1atrix p(T) has clegenerate eigenvalues
excluding these representations froln our investigation.

The only representations of type lV>. (X) w hich have dirnension less than 24 are
those corrcsponeling to (p = 3; A = 2,3) and (p = 5; A = 2). A calculation shows
that exactly one of these representations leads to a rllodular fusion algebra. This

6 Here we have used t.he comput.er algebra system PARI-GP [20].
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is the representation with (p = 3; A = 2) and X3
:::: 1. The corresponding strong­

n10dular fusion algebra is containcd in Table 12.
Only those representations of type R.:\(r, t, X) and R,,(1', X±dl with (p = 3; A =

2,3) 01' (p = 5; A = 2) havc dirnension lcss than 24. The representations m(1', 1, X)
(pA = 32 ; X3 == 1) lead to nondegenerate TI10elular fusion algebras (cf. the proof of
the NIain theorern 3). All other representations of the above two types do not lead
to nondegenerate modular fusion algebras.

Thirdly, consider thc irreducible represcntations of 8L(2, Z2'\)' All irreducible rep­
rescntations of elilnension less than 01' cqual to 4 havc becn considered in the NIain
theorerns 1 to 3. Thc corresponding achnissible represcntations with nondegenerate
eigenvalues of p(T) aJ'e contained in Table 12.

For A 1,2 all irreduciblc representations have elin1cnsion less thcn 01' equal
to 3.

For A - 3 we have to consider the representations of type R.~(l, 3, Xl)1 anel
D 3 (x)±. The fonner reprcsentation does not lead to a 1110dular fusion algebra but
thc representations D 3 (X) ± lcad to modula.r fusion algebras of type Z 2 0 "(3, 4)" .
The corresponcling n10dular fusion algebras are composite anel thcrefore not con­
tained in Table 12.

For A = 4 only the irrcelucible representations of type R~(r, t, X)±, R.~(1·, 3, XI)l
anel R~(r, t, X) lead to rllodular fusion algebras. The first one leads to a fusion'
algebra of type "(3,4)" (see IvIain theorem 2). The ot.her two reprcsentations lead
to cornposite 1110elular fusion algebras. These fusion algebras are of type Z2@"(3, 4)"
and are not contained in Table 12.

For A = 5,6 there are no irreducible representation of dilnension less thaJ1 24
leacling to lnodular fusion algebras (solne of theIn correspond to "fennionic fu­
sion algebras" of lV = l-Super-Virasoro rninimal Inodels which we do not discuss
here). 0

6. CONCLUSIONS

In this paper we have classified aH strong-lllodular fusion algebras of dilnension
less than 01' equal to foul' anel all nondegenCl'ate strong-n10dular fusion algebras of
dilllcnsion less than 24. In oreler to obtain our results we have used the classification
of the irreducible representations of thc groups 8L(2, Z p-\). Not alllllodular fusion
algebras in our classification show up in known R,CFTs. Howevcr, a11 corresponcling
fusion algebras are realized in known RCFTs apart froln the fusion algebra of type
Bg • This fusion algebra can fonna11y be related to the Casilnir W-algebra W B 2 at
c = -24 anc! seelllS to be an analogue of the fusion algebra fon11a11y associated to
the Virasoro algebra with central charge c = c(3, 9).

The fact that we do not know exalnples of RCFTs for all of the Inodular fusion
algebras in our classification can be understood as follo\vs. Thc classification of the
strong-ruodular fusion algebras irnplies restrietions on the central charge and thc
confornlal clilnensions of possibly unelerlying R,CFTs. In Table 13 wc have collectccl
the possible values of c anel the hi for the sinlple strong-llloelular fusion algebras of
dilnension less than 01' equal to four. Note, howevcr, that these restrietions are not
as strong as the ones in [19] for the two dilncnsional case 01' in [2] for the two allel
thrce dilnensional ease. A natural way to obtain stronger restrietions than the ones
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presentecl in Table 13 is to look whether there exist vcctol' valuecllnoclulal' functions
transfonning nndel' the corresponcling reprcsentation of the llloclular gTaup which
have the correct pole order at ,iOCi. This can be clone using the Inethocls clevelopccl in
[8] anel indeeclleads to n1uch stranger restrictions on c and the hi as we will cliscuss
elsewhere. Gf course, we expect that for any R.CFT the correspancling characters
are n10dular functions so that these stronger restrictions have to bc valid explaining
that our classification contains 1110dular fusion algebras for which we do not know
of any realization in RCFTs.

Tablc 13: Central chargcs and confonnal clilnensions
of silnple strong-1110dulaJ.' fusion algebras

F c (1110d4) h j (lnodZ)

Z2 1 O,~

3 O,~

Z3 2 o 1 1 0 2 2, 3' 3 01' , 3' '3

Z4 1 0 111 0 515
, B' 2" B 01' , '8' 2" 8

3 03130717
, 8' 2"' 8 01' 'B: '2' B

Z2@Z2 0 0,0,0, t 01' 0, ~, !, ~

"(2,5)" §.
o,~5

.!..:! O,~5

~ O'R5

li O,~5

"(2,7)" 16 o 4 5
T '7'7
12 0 32
1 '7'7
1. o 3 I
7 , 7' 7

24 o 4 6
7 ' 7' 7
8 o 6 2
7 '7'7

1Q o,t,~7

"(2,9)" 1.9. o I 2 271

3 ' 3' 3' 9

~ o 1 2 71

3 '3'3'9
11.=1,4,7

"(3,4)" 3" o 1 tI

2 ' 2' 16

11. = 0, ... ,15

Fron1 our consiclerations it is clear that a cOlnplcte classification of aH silnple 110n­
clegenerate strong-n1adular fusion algebras is a purely nun1ber theorctical problclll
which can probably be soh~ed. Ho\vever, we do not expect any ne\v aexccptional"
fusion algebras (of course there cxist those of type "( 2, q)" wi th prilne q greater
than 47).
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Unfortunately, the Inethods used in this paper seern to be not sufficient for
obtaining a complete classification of strong-nlodular fusion algebras. For those
strong-lnodular fusion algebras which are not nondegenerate the corresponding rep­
resentations of thc Il10dular group are in general reducible and therefore there is
a lot freedoln for possible choiccs of the distinguished basis in thc representation
space. In thc Inain thcoren1s we have shown how one can dcal with this freedoIl1
in the case of two, three anel foul' eli111ensio11al fusion algebras. However, we do not
know a general n1cthod to overCOllle this problen1 for arbitrary diIl1ensions so that
new Inethods have to be developed.

Fina11y, we would like stress that the Inain assuInption for obtaining our classi­
fications, na11181y that fusion algcbras are induced by representations of SL(2, ZN),
is valid for a11 known exalnples of rational confonnal fiel cl theories. Nevertheless,
the question whether a11 fusion algebras associatecl to RCFTs are strong-lnodular
is not yet answercd.
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pA = 31,

pA = 51,

pA = 71,

pA = 22,

])
A _ ')3

-"", ,

pA = 24 ,

7. ApPENDIX A: THE IRR.EDUCIBLE LEVEL pA REPRESENTATIONS

OF DIMENSION LESS THAN OR EQUAL TO FOUR

Using the results in §4 one obtains as a conlpletc list of two diIncnsional irre-
ducible level pA representations

pA = 21
, lVI (X 1 )

pA = 31
, lVI (XI) 0 Bi

pA = 51, R'l(l,X-I), R I(2,X-I)

pA = 22
, lVI (Xl) ® C3

pA = 23
, lV3 (X)+ ® Cj

whcrc i = 1,2,3; j = 1, ... ,4.

The explicit fonn of thc represent.ations which arc not related by tensor products
with Bi 01' Cj is given in Table Al.

Table Al: Two diInensional irreduciblc level pA rcpresentations

level type of rep. p(S) 2~i 10g(p(T))

2 lVI (xd 1 ( -1 -f) diag(O, ~)
2" -V3

3 lVI (X) ( 1 J2) r .( I 2 )-73 J2 -1 (lag 3' 3'

5 R 1 (1,X-l) 2; (-Sin(f) sin( 2srr) ) d' .( 1 4)
"V5 sin( 2

5
7'; ) sin( ~) lag 5' 5

( . err ) -Sinm)RI (2,X-l)
2i -Sln 5

diag(~: ~)V5 - sin( f) sin( 2
5
7'; )

23 lV3 (X )+ ( -1 ~1) r .( 3 5)72 -1 (lag "8> 8"

SiInilarly, one obt.ains as a conlplete list of threc dilnensional irreducible level pA
representatians

lVI (Xl)

R I (l,XI), R l (2,xd

Rl (l,X-d, R1(2,X-l)

D2 (X)+ 0 Cj

Rg(l, 3, X)+ 0 Cj, R~(l, 3, X)- 0 Cj

R~(l, 1, X)+ ® Cj, R~(l, 1, X)- Ci) Cj,

R,~(3, 1, X)+ Ci) Cj, R~(3, 1, X)- 0 Cj
where j = 1, ... , 4.

The cxplicit fann of thc representations which are not related by tensor products
with C j is given in Tahle A2.
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Table A2: Three clirnensional irreducible level ]JA representations

level type of rep. p(S) 2~i log(p(T))

( -1
2

2 )3 lVI (1 l xd 1 ') -1 2 diag( ~, ~, 0)3 ..

2 2 -1

(I I

~)
2" ~

5 R}(1,xd 2 I -8} diag(O, k, ~)
~ 1

V2 $2 -81

( I 1

1 )

-2" -~ -~

R.,(2,xd 2 1
-82 81 diag(O, ~, ~)

75 =1. V2 81 -S2

8 j = cos( .lf)

CI 82
83 )7 R 1(1,X-d 2 ~

-83 81 d' ,(2 1 4)V7 ~2 lag 7' 7' 7
83 8} -82

R 1(2,x-d - - " -- d' ,(5 6 3)lag 7' 7' "7

8j = sin( Jf)

( 0
/2

~)22 D 2 (X)+ .! J2 -1 diag(~, t, 0)2

J2 1 -1

~ (~
/2 v'2)23 Rg(1, 3, X)+ 1 -1 d' ,(1 5 1)lag 2' 8' 8
-1 1

R~(l, 3, X)- (-1) .(--"--) d' (1 7 3)lag 2' 8' 8

~ (~
v'2 v'2)24 R~(l, 1, X)+ 1 -1 d' (5 ] 9)lag 8' 16' 16

J2 -1 1

R~(l, 1, X)- -- " I' ,( I 5 13 )-- (lag 8' 16' 8""

i (~
/2

~)R~(3, 1, X)+ -1 dia .( 7 3 11)2 ... g 8'16'16
j2 1 -1

R~(3, 1, X)- -- " -- 1" .(315 7)(lag 8' 16' 16
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Tablc A3: Foul' dinlensional irreducible level pA reprcsentations

level type of rep, p(S) 2;; log(p(T))

5 I, '( 3 4 2 1)(lag "5' 5" 1 "5 ' 5"

, (J.!!...) ±8j = SIll 5 1 17± = 82 84

-~2 ~1

-~1 ~3

~3 ~I

el e2

I, ,(:1 <1 2 1)
( 1ag '5'"5'"5 l "5

7

1" - COS( i!!-) Cl - 1'1 - 1'A - 1) - 5' '" - 'I 2'

~2 = 31'2 + 21'4, e3 = 21'2 + 31';1

~i (--~ ~11 ~21 ~31 )
V "7 -1 e2 e3 ~I

-1 e3 el e2
(-1)' (--"--)

8 j = ~ sin( if- ),
el = 282 - 84, e2 = 284 + 86

e2 = 284 + 86, e3 = - 2sG- 82

!3i -SI!3i)
-!3i -81 131:

1 SI

82 -1

I, ,( 3 5 I 7 )(lag 8' 1 8: ä 1 "8

(

-88

2i -54

3 -82

-86

.:-. _ e27!'i~
,.') - ,

S2 -58

-S8 5.,

86 86

I, ,( 4 1 7 1)
(lag 9'9'9'3

R~(2, 1, X), X3 _ 1 (-1) (--"--) , '( 2 5 8 2)
(bag 9'9'9'3

85 S7

-57 -81

-81 85

,56 -86

"-- --

, (!2)S j = SIll 18

1· ,( 4 1 7 1)
( lag 9' 9' "9' 3"

I, ,( 5 8 2 2)
( lag '9 1 9' 9' 3
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Sirnilarly, one obtains as a c01nplete list of fOUl' eli1nensional irrechlcible level pA
representations

A -1P =,J,

pA = 71,

pA = 23,

pA = 32,

lV1(X) (X 3
~ 1),lV1(X) (X 3 =1),

R 1(1,Xl)' R 1 (2,Xl)

N 3 (X), C.1 ® N 3 (X)

Bi ® R~(1, 1, X), Bi 0 R~(2, 1, X)

wherc i = 1,2,3 allel for pA = 32 the character X is a prinütive character of oreler 3
01' 6 (so there are 12 foul' elinlensional irreclucible level 32 representations).

The explicit fornl of the representations which are not relateel by tensor products
with Cj 01' Bi is givcn in Tablc A3.

8. ApPENDIX B: FUSION MAT1UCES AND GRAPHS OF TIIE NONDEGENERATE

STRaNG-MODULAR FUSION ALGEBRAS OF DJMENSlON LESS TIIAN 24

The fusion lnatrices )V. which clefine thc distinguished basis of the sinlple non­
degenerate strong-Illoelular fusion algebras of elilnension lesB than 24 are given by:

Z2 : Nt = (~ ~)

G
0

D"(3~ 4t : Art = 0
1

0 1

"(2, q)" : )V1 =
1

t.!.
2

0 1
1 1

0 1 0
1 0 1 1

Bg : .N"1 = 0 1 0 0 1
1 0 1 1 0

1 1 1 1
0 1 1

0 1 0 0
1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0 1

B Il N,= 0 1 1 0 1 0 1
0 0 1 0 0 0 1

1 0 0 0 1 0 0
1 0 1 1 1 0

1 0 1 1 1
0 0 1 1



36

and for GI 7 we have
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0 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0
0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

JV1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0

0 1 0 0 1 1 0 0 1 0 0 0 1 1 0
0 1 1 0 0 1 0 0 1 1 0 0 0 1

0 1 0 0 0 0 0 1 1 1 0 0 1
0 0 0 0 1 0 0 1 1 0 1 1

1 0 1 0 1 0 0 0 1 1 1
1 0 1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 1 1

anel finally for E 23 the 111a.trix )\r1 is given by

o 1 0 0 0 0 000 000 000

101 100 1 0 0 0 0 0 0 0 0 0
o 100 I 0 0 001 0 0 0 0 000
010 100 000 1 0 0 000 1 0 0

001 000 1 1 0 0 0 0 0 0 0 0 0 0 1
000 0 0 0 0 0 0 1 0 I 001 0 0 000

o 1 0 0 1 0 0 001 000 1 0 1 0 000 0
o 0 0 0 1 0 0 0 0 1 000 1 1 0 0 0 0 0 0 1

o 0 0 0 0 0 0 0 I 000 I 0 100 000 1 0

001 1 Oll 100 0 0 0 0 0 I 001 100

000 0 0 0 0 0 0 0 0 1 101 0 0 1 0 0 0 1

00000 1 000 0 1 0 0 0 0 I 000 I 1 0

o 000 000 0 1 010 I 000 1 100 1 0
000 0 001 I ü 0 000 0 0 0 101 101

o 000 0 1 0 1 1 0 1 0 0 000 1 0 1 1 1 0

o 0 1 0 0 1 001 0 1 000 I 001 101
o 0 0 0 0 0 0 0 001 1 1 0 1 100 1 1

000 000 0 1 0 1 000 1 101 1 1

100001000111001011

o 0 0 0 1 0 1 0 1 1 1 O' 1 0 1 1 1
0010011010111111

lUülOOlOlllllll

The fusion graphs eorresponding to the fusion 111atrices Art ean be found 011 the
next page.
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• = vacuum ("0"), e = first field ("1"). • = all other fields ("j", j=2, ...•n-l)

Z2 • e
"(3,4)" • e •
"(2,q)" • e • • - - --D
B

9

B
II

G
17

I

'Ve have o111ittecl the fusion graph of the fusion algebra of type E23 since it is
not possible to clraw it without intersectiolls in a plane.
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