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INIROPUCTORX LECTVRE

Michael At1yah

I. General Remarks

In the past daeade thera has been aremarkable interaetion between

Geometry and Physies. This has been due mainly to the development of Gauge

Theorles as a model for Elementary Partiele Physies and the diseovery that

Topologieal ideas ara very important in these non-linear models. The

advantages of this interaetion have been two-way and mathematles has

greatly benefited from ehe new ideas, eoneepts and teehniques eoming from

Physics. The most notable results in this direction have been the striking

new phenomena in 4-dimensional Geometry discovered by Donaldson using

instantons.

When this meeting was planned a eouple of years ago thera ware many

aspacts of this interaction still in full devalopment, hut it was hard to

predict two years into the future. In fact in ehe intervening period there

have been several new developments including quite different links between

Geometry and Physies so that the timing of this meeting is very topieal.

2. New Developments

I will now list briefly some of the new topies whieh should be

dlscussed during the meeting.

1. ~ Elliptic Cohomology Witten has shoWn how the index of the

Dirac-Ramond operator of the super-symmetrie non-linear sigma-model gives

the elliptic genus recently discovered by Landweber, Stong and others.

2. Floer Cohomology Using ideas from Yang-Mills theory Floer has

Introdueed new cohomology groups for a 3-dimensional manlfold snd Donaldson

has related these to his Invariants in 4-dimensions.

3. Koot Polynomlais Vaughan Jones has produced a new polynomial

invariant for knoes and links in a3 . His method i8 based on idea8 from

Statistieal Meehanic8.
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4. Quasi·CkYstals The aperiodic tilings of the plane discovered by

R. Penrose appear to be closely related to recently discovered

"quasi·crystals n of alluminium·manganese alloys.

5. String Tbeo.kr The theory of Riemann surfaces is intimate1y invo1ved

in eonformal fie1d theories whieh are at the basis of string theory.

These and many other topies will be discussed during ehe meeting and I am

pleased we have experts in all these areas.
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Knots aud the Yang-Baxter 8quation

V.F.R. Jones

I.H.E.5.

In statistical mechanics one considers a system defined by a set of

'states a, to each of which is assigned an energy E(a) . The partition

'function Z is then defiued by Z = L e-ßE(a) . It is important to find
a

an explicit expression for Z as a function of ß and any parameters

involved in E(a). The real problem in statistical mechanics is that'there

are infinitely many states so Z is expressed as a limit of sums over

finite regions. For what we have in mind in knot theory we will only have

to consider finite systems.

satisfied a certain equatien,w(a,b[c,d)(8)

each vertex. Baxter found that he could eften

L ( n w(a,b lc,d) (8)) • The model
states vertices

different functions W(a,b!s,d)(8) (which aremay be varied by choosing

supposed to be the same at

salve models in which the

The most frequently considered examples in statistical meachnics are

defined o~ the lattice Z e Z ~~2 . We look at systemw where the states

are defined by assigning one of a finite set ~ of real numbers ("spinslI)

to each edge of the lattice. Thus, given astate ., each vertex is

surrounded by four "spins" as in the figure +. The energy of the

siate will then b~ 'L W(a,blc,d)(0). So if w a e-ßW we may WTite
vertices

.:the partition function as Z! =

known as the "star-triangle" er Yang-Baxter equation. It is most suggestively

written as a matrix equation. One identifies w(a,blc,d)(0) with an element

R(8) of End(V 8 V), V being a vector space with basis indexed by 6.
The Yang.Baxter equation is then the equation in End(V 8 V 8 V)

R12(0)R13(Y+8)R23(Y) :::I ~3(Y)R13(0+Y)R12(0) where Rij (0) is the natural

action of R(G) on V 8 V 8 V .on the ich aud jth places.

In knot theory, one frequently pictures (oriented) knots aud links in

~3 by smooth immersed circles in ~2 wich crossing data, ego



- 6 -

is translated into an. f l' . 3• The equ1valence 0 1nks 10 ~

equiva1ence relation on pictures using the Reidemeister

moves (and 2-dimensiona1 isotopy) of types I, 11, 111 which are as fo1lows

type I .Y-...:.. <--> ~

~
)

~
with all possible orientationstype 11,

\
-<-->

I aud reversed crossing changes

x- JXl in the obvious ways.

type 111 <--> \~

!wo pictures' of the same link can be changed from one to the other by a

sequence of Reidemeister moves.

One can look for topo1ogical invariants of links by"devising combinatorial

formulas from pictures which are invariant under Reidemeister moves. The

Alexander polynomial was first defined in this way. Another possible approach

is to treat the picture as a statistical mechanical system where the states

are defined by assigning elements of ~ to each edge. One allows

w(a,blc,d) to be different for positive and negative crossings. The

question ia then: for what choices of R is the partition function invariant

under Reidemeister moves? Here it seem8 necessary to define the partition

function by

-h J a d· e
I (n w (a,b!c,d)(a»e link

E
. ±astates crossLngs

:~,~~where the situation at a crossing is ~~.~

c b

,a being the angie.

The Yang-Baxter equation turns up as the condition for invariance under

type 111 Reidemeister moves. Further conditions are imposed by the types I

aud II moves.

Solution8 to the Yang-Baxter equation can be faund by the "Quantum

group" formalism of Drinfeld, Fadeev et al. It 8eems that to every

irreducible representation of every simple Lie algebra there is a knot­

polynomial, the result having been firmly established (by myself Wenzl
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and Turaev) ~n the cases of s12 in all its representations and the

A, B, C, D algebras in their "natural" representation. One recovers

the recently discovered two-variable polynomialsof Lickorish, Millett,

Hoste, Ocreanu, Przyzctki, Traczyk, Freyd, Yetter, and of Kauffman. In

these cases there are simple inductive formulae for calculating the

invariants. In general it seems hard to calculate the polynomials.
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QUASI-CRYSTALS

R. Penrose

Mathematica1 Institute

24-29 St. Glles

Oxford, U.K.

In 1966, Robert Berger proved a result which implies that there is no

general algorithm for deciding whether or not a given finite set of

polygonal shapes will tile the Euclidean plane. In the course of this work

he exhibited a set of 20,426 tiles which are aperiodic,i.e. t they will

tile the plane but only in ways that are not periodic. This number was

reduced to 6 by Raphael Robinson in 1971. Robinson's aperiodic set

produces ti1ings which are hierarchica1 in nature, and in 1973, fo11owing

quite different 11nes, I produced another set of six aperiodic t1les which

also tile on1y according Co a hierarchica1 schema. Unlike Robinson's set,

which were based on squares, mine ware based on regular pentagons. There

Fig. S. Pattern with fivefold quasi-5ymmetry

Fig. 5,6,9 reprinted from the author'. lecture in: Hermann Weyl 1885-1985,

edited by K.Chandra••kharan. ETH ZUrich and Springer-Verlag Berlin Heidelberg 1986
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A
M

Fig.6. Six tiles which can be assembled onty according to the pattern of Fig. 5

H'o
are 2 distinct tilings with these shapes, and each of thern exhibits a

5~fold quasi-crystallographic structure: there exist infinitely many

points about whlch each tiling exhibits 5~fold symmetry to any preassigned

degree of accuracy less than unity, and there are arbitrarl1y large

regions with exact 5~fold symmetry; moreover every finite region of each

tiling is repeated infinitely many times elsewhere in every tiling with

these same shapes. In 1974 I reduced my set of 6 to a set of 2, referred

to aB "kites" and "darts", and also to another aperiodic pair based on
....:-

Fig.9. Kites and darts - a non-periodic pair
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rhombuses. The tilings are again all S-fold quasi-crystollographie in the

same sense, and exhibit other striking properties. For example, in the

kite-dart tilings, the darts form ehains whieh, when they elose, always da

~
so in a preeisely S-fold symmet~ie way. In almost all of the 2 tilings

all ehains elose. At most two ehains ean fail to elose, and in anly ane

tiling are there two whieh do not elose. The patterns exhibit alignments

o
in terms of broad and narrow strips angled at 36 to one another, the

width of the broad being 1
T - -(1 + JS)2 times that of the narrow. In eaeh

direetion, the pattern of broad and narrow is in aeeordanee with a

Fibonaeei sequenee

... lT1TT1TT1T1TTIT ...

generated hierarehieally aeeording to the scheme

1~T

The different tiling patterns (and also the different Flbonacci sequences)

ean be labe11ed by infinite sequences of Os and

appear sueessive1y, e.g.

0100101000101001 ... ,

ls , where no 1s

where two such sequences are regarded as equivalent if they differ only in

a ~inite number of places.

In Deeember 1984, Shechtman and his associates at the National Bureau

of Standards in Yashington announeed a quasi-crystallographic ieosahedral

phase of aluminimum-manganese a110y. The electron diffraction patterns
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closely resembled the Fourier transforms of the patterns deseribed abov6,

as obtained by MacKay in 1982 and Levine and Steinhardt in 1984. Electron

mierograph piet~res of thin portions of these materials (and also of other

similar materials found subsequently) bear a signifieant resemblanee to

the above patterns. A useful test of this is to examine the pattern of

broad and narrow strips that appear in the micrograpph pietures and to

compare thern with Fibonacci sequences, which, indeed, they closely follow.

This is most easily seen using a description due to de Brujn and Pleasants

involving higher-dirnensional cubic (square) lattiees. For the Fibonaeci

sequence the lattiee points in 2-dimensions in a strip angled at 1 : T

are taken, while for the above-mentioned (rhombus) plane tilings , they are

the lattiee points in a suitably angled (snd positioned) slab in

5-dirnensions. A suitable slab 1n 6-dimens10ns y1eIds an ieosahedral

quasi-erystallographie pattern apparentIy resembling that of the

substances studied by Shechtman.

A set of four solids wh1ch appear to be 1cosahedrally aperiod1e were

found by Rohert Ammann in 1977 and eould serve as a model for these

substanees. Ammann also found other aper1od1e sets of plane tiles, one of

wh1eh t1les aeeording to an 8-fold quasi-erystallograph1e scheme. Nissen

and colleagues in Zürich have seen an apparently I2-fold

quasi-erystallographie phase of nickel-chrom1um alloy. Tilings with such

I2-fold quasi-symmetry can be exhibited, but I do not know of an

appropriate aperiodie set of tiles.

A puzzling feature of the p~sical existenee of quasi-erystals in

nature is that their assembly would appear to be necessarily non-loeal. Ta

assemble such a tiling correctly it 1s neeessary, from time to time, to

examine regions of the assembled pattern whieh may be arbitrarily far from

the assembly point. My impression 1s that the growth of such substances

must be an essentially quantum-meehanieal process.
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!HE DEFINITIONS OF CONFOBMAL FIELP IHEORX

Graeme Segal

I shall propose adefinition of conformal field theory in two

dimensions which I believe is equivalent to that used by Friedan and

others.

§ 1. Tbe definition

The category e is defined as follows. There is a sequence of

objects {Cn}~ ,where Cn 1s the d1sjoint union of a set of n

parametrized circles. A morph1sm C ~ C 1s aRiemann surface X withn m
boundary ax , together with an 1dentif1cation i: C ~ C ~ ax. (Wem n
identify morphisms (X,i), (X' ,1') 1f there 1s an 1somorphism f: X ~ X'

such that f 0 i-i'.)

Examp1e

(i) The semigroup of morphisms· Cl ~ Cl falls into connected components

correspondlng co the genus and the number of connected components of X.

The identity component e can be ident1f1ed with the space of

real-analytic simple' c10sed curves in the disc D - {z E ~ : Izl < I}. E­
is a bounded domain in the complex vector space of of real-analytic maps

sl .... t: , and the Shilov boundary of'e 18 the group Di~f(Sl) of

orientation..:-preserv1ng diffeomorphisIDS of 51. (cf. that the sem1group

2
Ilg~ < 1) is a bounded domain 1n cn whose Shilov boundary

Diff(Sl) has no compiexifications: E is the best

(g E GL
n

(C) :

is U
n

.) (The group

substitute available.)

(ii) The connected component of the space of morphisms Co ~ Cl

which are represented by topological d1scs can be identified wich

Diff(SI).

(iii) The semlgroup of morphisms CO .... Co 1s the space of

1somorphism classes of not-necessarily-connected Rlemann surfaces, the

operation bei~g disjoint union.
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Definition (1,1)

A conformal field theory is a representatlon of e, 1, e, .a continuous

functor T from e to complax Hilbart spaces such that

(1) T(Cn) - T(C1)@n (- H0n ,say) for n ~ 0;

HQn -+ H0nthe operatorC .... C
m ne :(11) for aach morphlsm

ls of trace class;

(lil) T i8 a *-functor In the sense that for each morphlsm

e : Cm -+ Cu we have T(e)* - T(~), where ~ : Cn .... Cm 1s deflned by the

5urface complex conjugate to e ;
(iv) T has the collapsins property that if a morphlsm

e : C -+ C
m+r n+r 15 made into a morphism ~ : C -+ C by attachingm n r

outgolng circles to r ingoing ones, then T(e) - traee T(€), where the

trace is taken over H~r,

If q E C 'with 0 < (q( < 1 let p~ denote the morphism Cl .... Cl

represented by the annulus (z E t : (q) S (z( SI), where the inner

i8boundary circle 1s parametrized by 8 -+ qe , The Pq form of a

sub-semigroup of e p p - p.
ql q2 q1q2

Definition (1,2) The partition function ~ of the theory 1s defined by

Z-(q) - trace T("~' ).-T . q
Condition (iv) ahove imp1ies trivially

Proposition (1.3) For any theory T the partition function ZT ls

2'Jfir
modular, 1.9. if q - e with im(r) > 0, then ~(q) ls invariant

when r 1s transformed by PSL2(l).

§ 2 Motivation: Wiek rotation

Gonslder a ewo-dimensional Minkowskian space-tlme X in which space

1s a circle. (Thus topolog1cally X - S1 x R,) The group of eonformal
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diffeomorphisms of X is a E-fold eovering group of

i- Diff(Sl) x D1ff(Sl). We expeet a conformal f1eld theory to be at least

a projeetive unitary representation H of tt\ Let us 'restriet attention

for the moment to the subgroup G x G of it, where G - PSLZOR). We expeet

Ohepositivity of energy to be expressed by the fact that the unitary action

of G X G on H 1s the boundary value of a holomorphie representation by

eontraction operators of the semlgroup G: x G~ eontalned in the

eomplexifleatlon of G x G. Here G~ - (g E Ge : 11~11 < I). This holomorphic

eontractlon representation restriets to a representation T of the

i i 1 + « ) + G+ - } with theant d agona Gt - gl,gZ E Ge xc: SI - gz

refleetion-positivity property that T(g) - T(g)*. Conversely a

reflection-positive contraction representation of G; on H

"Yiek-rotates" to a unitary action of G x G on H.

In our situation G x G

E. We have

is replaeed by ~ and by the semigroup

Proposition (Z.l) For any theory T the action of e, on H ean be

eontinued analytically to a projective unitary representation of

Dlff(Sl) x Diff(Sl) on H.

§3 Holomorphie theories: examples

It would be natural to deflne a ho10morphic field theory aa a

holomorphic representation of the eategory ~. That, however, would be too

restrictive. The eategory e has a fundamental eentral extension e. The

objects are the same, but a morphism C ~ C is e is a morphism (X,i)
m n

, in e together with a ehoice of a point in the determinant 1ine bund1e of the

ä-operator on X with its natural ingoing snd outgoing boundary

eonditions.

Definition (3.1) A holomorphie field theory is a ho10morphic
.....

representation T of e~
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acts on T(CO)

morphism Co ~ Co
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The level of T is the power of det(€) by which

t, where e is a morphism Co ~ CO' (Observe that a

is simply a compact Riemann surface.)

T(e)

Remark We must allow representations with fractional level.

The partition function of a holomorphic theory of level c will be a

modular form of weight c in the usual sense, for some subgroup of finite

index in the modular group PSL
2

(Z).

If T is a holomorphic theory then T ~ T is a theory in the

original sense. It is conjectured that any irreducible theory is a finite

5um ~ Si ~ Ti' where Si and Ti are holomorphic theories which are

permuted by the modular group.

Example

Let LG denote the loop group of a compact group G. If HA is the

irreducible projective representation of LG with highest we1ght _ Athen

there is a eanonical holomorphic theory TA with T.\(CT) - HA' If HA is

the basic representation of LG then T.\ ~ TA is the non-linear sigma

model (with Wess-Zumino term) based on G.

From this example we see the sense in wich an 1rreducible theory can

give rise to some "physical space". For ehe action of LG on HA e HA
will be uniquely determined by lts intertwinlng propertles with e, and so

we automatlcally obtain operators parametr1zed by ehe "phys1cal space" G.

§4 PrimatY fields aud f1ald operators

Definition (4.1) For any theory T a vector ~ E H i5 a primary field if

1t 1s an eigenvector of ehe semigroup f+ of elements fEE which axtend

to holomorphic maps f ö ~ Ö such that f(O) - O.

T~ h h T(p
q
), ~ q-aq-b~ f i 1 1 bwe t an ave ~ ~ or some pos t ve rea num ers

(atb) such that a - b E~. We call (8 tb) the bidegree of ~ .

Consider aRiemann surface X whose boundary consists of two circles:

ax - c' - C. Thus X is a morphism e : Cl ~ Cl' For aach triple

(~,z,dz), where X E X -.axt dz 19 a holomorphlc differential st z, and

~ E H 1s a prlmary field of bidegrae (atb), we can define a trace-cla9s

creation operator l/J(z) : H ... H such that ~(z)dza--dZtf 18 an
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operator~valued differential form on X.

To construet ~(z), choose a loeal parameter! at z such that

dS(z) - dz. Let D - (x EX: I€(x)l< l). Then X ~ D is a morphism
l l

~ : C2 ~ Cl' so it induces T(~) : H 0 H ~ H. Define ~(z) : H ~ H by

~(z)·· v - T(~)(~ 0 v). This is independent of ~ because ~ is primary.

(Note that my ~(z) is usually called T(€) 0 ~(z).),

§5 Modul! 9paces of surfaces

on

1 . 1
The 9pace s:."\.DiffCS) of non-vanishing smooth probability measures

SI is generally believed to be a complex manlfold beeause it can be

+identlfied with E 'E. Let us accept this.

Let lR~ be the moduli spaee of closed Riemann surfaces of genus g

with a distinguished point. Let X be such a surface. Choose a holomorphic

·embedding Ö ~ X of the d1sc, centred st the base-point, with boundarY a

simple cloged curve C. There 1s a surjectiye holomorphic map

defined by cutting X along C and ingerting an element of E.,.

It 19 known tbat every positive energy representation H of DiffCS1)

extends to E· .', and 19 the space of holomorphic sectlons of the bundle

(€ x HO)!E+ on €+<E, whose fibre 1s the subspace HO of primary fields

in H. This bundle comes from a holomorphie bundle on ~ , for the bundle. g

e~ e:,e, 1s pulled back from the bundle on ~ whose total space 1s the
g

space of po1nted curves with embedded discs. Friedan has argued that

holomorphic field theories correspond precisely to those holomorphic

bundles on the modul! space of all dlsconnected surfaces with nodes which

are nequivar1ant~ under the action of removing Dodes by normalization. I

conjecture that such bundles are just the holomorphic representations of C·
which extend to holomorphic ·representations of the category 6.
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Floerlg homology groups

5.K. Donaldson

This talk described some new, unpublished, constructions of A. Floer

(Courant Institute) and their application to Yang-Mills instantons over

4-manifolds.

Consider a compact manifold X devided into two pieces by a

hypersurface Y

0)
If we have a linear differential equation (1st order) on X we can define

lIHardy spaces 11 H+, H_ .: the subspaces of the fields over Y which extend

to solutions of the equation over Xl' X2 repectively. Global solutions

on X correspond to intersection points in H+ n H_ • For example take

the a operator over X = 52 ~ ~ U {oo} • Then

H+ o { L
.0 }a z

n~O
n

H+ n H = constants.-
H o { L

n }a Z- n
n~O

For a non-linear equation we can imagioe a curved version of this: aspace

of fields over Y containing "Hardy submanifolds" h+, h locally modelied

on the "~ sized ll spaces above.
--------
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has a Riemannian metric and the equations

are the anti-self-dual equations for a" Yang-Mills field over X,

The gauge equivalence classes of solutions have a moduli spaee of dimension.

(k • top. charge). Suppose, for simplicity, that" this number is zero. Then

under"mild conditions we can define a differential topological invariant

qx E Z - the number of points in the moduli spaee, counted with signs. This

is independent of the metric on X.

Suppose Y c X is a homology 3-sphere. Floerts theory'defines groups

HF(J.,y cx=o, 1, , 7

- fortn.?lly the "middle dimensional" homology groups of the space t! of all
" y

connections over Y. The Hardy sub-manifolds h+, h c ey carry "fundamental

classes ll

qx ICII [h+] € HF "
1 o..,y

qx • [h_l € HF ..
2 ß,y

There is a dual pairing between HF , HFe,y and the fOrnD.lla
cx,Y

hoLds. That is, the matching problem for ASn connections alang Y is

abstracted into the intersection pairing in Floer homology.

The groups

function:

HF are defined by generalising the Morse theory to ao.,y

oe· -> lR/Z
Y
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~(A) is the Chern-Simons invariant of a connection A over Y, itts

gradient vector field is *FA and the integral curves of this - the

"steepest descent paths" are solutions A(t) of:

3A"ll\"::"'=-*F.
ot A

The key observation is that this is exactly the Asn equation for A(t)

regarded as a connection over Y x ~ •

The critical points of ~ are the flat connections, corresponding to

representations

p 'IT
1

(Y) -> 8U(2) •

We assume these form a discrete set. Floer defines a complex

with generators the isomorphism classes of irreducible representations. To

each pair p, cr we attach a relative index in Z/8Z . This is the Fredholm

index of the linearisation of the ASD connections ~n the topological sector

consisting of connections over Y x ~ asymptotic to p at -·00 , to cr at

·00. If p, cr have relative index 1 the component of d fram < p'> to

< cr > is defined to be the (signed) number, of ASD solutions in this sector.

Floer proves that d2
= 0 and the homology groups HF of this complexa,y

are independent of the metric on Y.

The invariants

X. as shown:
~

qx. are defined by choosing complete metrics on the
~

.-...~ ~ . .-....- .. _- _.-

----~:\i- -----~.·~i':.,(S::------ -;:v
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Let np be the nu~er of solutions to the ASD equations on Xl asymptotic

to p at 00. Then

Ln< p >
p

is a cycle in the complex whose

on Xl • This is defined to be

formally related to the

pulling out the neck:

+ -h , h

class in HF is independent of the metric
CJ.,y

qx Similarly for Xz . The definitions are
1

as fallows: deform the metric on X by

8=---.........8
< ---u --~>

U --> co

In e· this corresponds to flowing h+ down the gradient field of ~ and
y

h up the flow. This localises the intersection points h+ n h at the

critical points p:

+
h
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The Modular Geometry of· String Theory

snd Conformal Field Theory

Daniel Friedan

We (S.H. Shenker and myself) have reformulated two dimensional

conformal field theory, and thus string theory, as a certain kind of

geometry on the universal moduli 5pace M of stable projective curves.

From the intrinsic algebraic geometry of M we construct a natural

collection of noncommutative algebras A.·., without identity, indexed
c

by one rational number c • The modular group ~l(M) acts naturally

by automorphisms of each algebra A • A modular geometry is defined to
c

be abilinear functional H E (Ä ~ A)* (Ä being the complex conjugate
c c c

algebra), which is (1) multiplieative, i.e., H(;b, cd) = H(ä,e) H(b,e)

(faetorization); (2) invariant under-· ~1(M) (modular invariance) and

(3) satisfies H(a,a)' ~ 0 whenever a" ~ {refleetion positivity). The

conformal field theories with conformal central .charge c are identified

with the modular geometries on A • The ground states of bosonie stringe
theory are the modular geometries with c a 26 • Fermionic string theory

and superconformal field theory are formulated as perfectly analogous

supermodular geometry as the supermoduli space of super Riemann·surfaces.

We are motivated by two types. We want to do nonperturbative string

theory by extending the modular geometries to some space of infinite genus

Riemann surface. This might.be accomplished by completing the algebra

(Ac' rr 1(M)) using the geometry H . The uniqueness of the string ground

state might then be expressed as the weak equivalence of all such completions

(for c· 2~:). We also hope to find an arithmetic version of modular

geometry over the rational field and its loealizations. The algebras A
e

are constructed algebraically from the maduli spaee M, and M i5 an

arithmetic variety, so the Aare defined over the algebraie integers
c

and an arithmetie version of modular geometry should be possible. It would

then be possible to do the real (archimedean) string theory in terms of the
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global rational theory and its loca1izations at the finite primes.

Construction of the modular algehras A
c

Let mg be the modu1i space of nonsingular, connected projective

curves (compact, connected Riemann surfaces) of genus g . Let m be
g

the modu1i space of stab1e connected projective curves of genus g. m
g

{s'a~oJeu~iv~eompact) arithmetic variety. The compactification divisor

~ = m - m consists of the curves whose on1y singu1arities are nodesg g g
such that if the nodes are removed all the resulting components of genus 0

have at least three punctures. For a curve S €% the norma1izing curve
g

v(s) is the nonsingular curve which ia made by removing all the oodes

from Sand then erasing all the resu1tiog puoctures. A conforma1 fie1d

theory cannot distinguish S from v(S) so we wou1d 1ike to identify S

with v(S) • But v(S) need not be conneeted, we must expaod the modu1i

space to inc1ude the curves with more than one connected,component.

The topo1ogies of curves are described by the sequeoces of nonnegative..
integers n = (nO' 0

1
, ••• ) where by 0g is th,e'~number of connec ted componeots

~ . '\of geous g. The sequences n :,'nnJst sat~sfy 0 < l. n < co •
g g

-JJ
n .

be the modu1i space of smooth curves of

being the n-fo1d symmetrie product. Let

be the moduli space of stab1e curves of topo1ogy

co

- ~(~) ia the compactification divisor. Write ~ D U ~(~). -+
and ~::::I U11(~) • Norma1ization is the~ a natural maC-+

o
R • We will define the universal moduli space M to be the

i --> M obtained by identifying .~ with ~ via v.

n
lIl(Ir) IQ n Sym g(m)

ga() g

, SymO ( .)

SymOg (üi )
g

Let

quotient

~

topology 0
-+ co

i (0) = n
gaO

kt(~) a i(~)
- - -+
R. ::::I U )t(n)

-JJ
o

V : .{1._>

Let Q. (-+m.. -+0) = Q.,_~ (-JJn) n ,,-1 "(-+m) . b h . 1 f 1~, ~ v ~ , e t e s~ngu ar curves a tapa agy

~ whose narma1izing curves have tapo1ogy ~. Write ~ ---> ~ iff
.a. .... -+
y(m,n) * ~ . This makes the tapo1ogies iota a directed system, over which

we will take limits.
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i' (~) = i (~) u i,(~) ,.)( I (~) EI U R(~) , 'R' (~) • ~ (~) u R. (ii~)
~~ ~~ ~~

ID-"f"U 1l}-iI'fi rn-tn

Then v(~(~)) = R'(~) so it makes sense to make the quotient
-~ ~ ~~ ~ ~

R' (n) --:> M(n) by identifying "{1;' (n) with a<' (n) via v . M(n) is
.... ~ ~ ....

compact, and there is a natural map M(m) ---:> M(n) whenever m ---:> n
. ....

so we can define the universal moduli space M· l~m M(o) aa a direct
~

n..-c

limit of compact varieties. M is connected because each
- -to
R(0) is

connected aud for any
~, -to
m --:> n •

~ -tot
m, tIl there exists

-to
o such that

-to ~

m --> n and

The universal moduli space M is a commutative semigroup without

identity, where multiplication is giveo by the disjoint union of curves.
-to -. -to -+ ...

Clearly M(n) M(n') I:a M(n + n') • Write ° = (1, 0, 0, •.• ) • The single

point M(O) a, Mo ia a distinguished element io M, the unique curve of

genus 0, the Riemann sphere.

Next, we define the finite coverings of M. By a finite covering
p -+ ~

M ~ M we· mean a directed system of finite coverings M (0) --:> M(n)
p p

with M = lim M (~) such that M is a semigroup (not necessarily
p Ü-.oo p p

commutative) and p i~ of a homomorphism at semigroups. This amounts to a
- -+ - ~

collection of finite coverings i (0) --:> R(n) by connected spaces
p

i (;-) , ramified only at ,g..(;,) and at the singular locus (the curves in
-p~
R(n) with nontrivial automorphisms), along with lifts

'J
p

p-l(~:(~)) _> p-l(R'(~)) of the normalization map v

The universal finite eovering space ia the inverse limit

M = lim M over the finite coverings. The inverse limit of the
eov <:_<_ p

covering groups is the fundamental group '1T 1(M) , which we might ,ca!l

the universal modular group. M ia a connected noncommutative semigroupcov
without 'identity. It is noncommutative because the covering group of

co

.(~) includes the.permutation group r-r S • Going to the eovering
ngaO g

space unwinds the symmetrie produets symngcm )
g



- 25 -

Let ~ be the Hodge line bundle on M, i.e. the determinant of the

vector bundle of holomorphic differentials on the curves. It can be checked

that ~ is well-defined on M, because it behaves weIl with respect to
2

V • In fact, c1(~J generates H (M) so all line bundles on Mare

f A - (A) C /
2 f . I mb ' 1powers 0 .~. Let Lc -.~ or c a rat10na ou er. For genera

c , L is not actually a line bundle on M, but it is well-defiued on
c

suitable coverings at M, so it lifts to a line bundle L on Mc cov
Since A behaves weIl under disjoint union of curves, Lc ---> M is a·11 cov
homomorphism of noncommutative semigroups without identity •

over the covering
-t

M (u) isp
and define the modular algebra to

L
c

a finite dimensional space because
-t

• reM (n),L )*p c

.....
f(Mp(n),L) be the holomorphic sections of

, c
of M(O) • This is

.....
A (n,O)

c
be the double limit

Let
.....

M (u)
p

compact. Define

A
c • lim

<­p

a r (M , L ) * .cov c

hecomes a

a
c

map

A is a noncommutative algebra without identity because the semigroup
c

structure of .L. makes r(L, M ) ioto a dual algebra. That is, thec c cov
multiplication L x L ---> Lover M x M ---> M

C c c cov cov cov
dual multiplication r(L, M ) ---> r(L , M )@r(L,M)whichc cov c cov c cov
becomes an (associative) multiplicatioo law A 8 A ---> A • A

c c c c
bifiltered by the finite dimensional spaces A (;,p) where

c
..... ..... ""''''''')A (n,p) A (u,p) cA (0 + n,p • The modular group . n

1
(M) acts on reM , L )

c c c cov c
(by permuting the .sheets of the covering) so n

1
(M) acts on Ac hyalgebra

automorphisms. There is a natural element a E A given by the restriction_ c c
reM , L ) ---> r(M(O), L ) • Multiplication of sectionscov c c

(Lc +c = L 8 L ) provides natural homomorphisms A + ---> A
1 2 c 1 c 2 C 1 c 2 c 1

The algebras A , with action of rr
1

(M), provide all the data needed
c

to describe modular geometry and thus conformal field theory. A modular

geometry is abilinear function H E (A 8 A )* satisfying:c c
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1. (Factorization) H(äb,cd) = H(a,c) H(b,d)

2. (Modular invariance) H(yä,yb) m H(a,b) for y E ~l(M)

3. (Positivity) H(ä,a) ~ 0 whenever a ~ ä

4. (Normalization on P' ) H(ä , a ) = 1
c c

Note that H ia not assumed hermitian or' positive (except on the real

corresponding to the modular geometry

imp1ies the factorization of theH
. .

H . The factorization condition 00

-elements a = ä E A ). There is a natural comp1ex conjugation A ---> A
c c c

because there is a natural comp1ex conjugation on moduli space. (but over

the rationals comp1ex conjugation is on1y determined up to conjugation in

the Galois group Ga1(Q/Q) • A modular geometry H can be regarded as an

element in r(M ,L) 8 f(M ,L) so, by multiplication of sections,cov c cov c
determines a section Z (H) E r (M , L 8' L) But invariance of Hunder' :cov c c

implies that Z(H) really lives on M, i.e. Z(H) E r(M,L 8 L ) .
c c

is a well-defined real line bundle over M. Z(H) ia the partition

7T 1(M)

L 8 L
c c

functioo of the conformal fie1d theory

partition function Zs ZS' = ZSUS for curves S, S' . The norma1ization

condition on H is needed because the partition function in the sphere

should be Zp' ~ 1 • The positivity condition on H is equivalent to

unitarity of the corresponding conformal field theory.

It is known that conformal field theories and the modular geometries

exist on1y for certain values of c • For example, if c < 1 then c must

be of the form c ~ 1-6/m(m+l) for mEZ, m ~ 2 . Examples are known for

all of these values of c in the discrete series, and for many values of

c ~ 1 • (All known conformal field theories have c rational.) The set of

c for which modular geometries exist form an additive semigroup of the

nonnegative rational numbers (including the above discrete series). The

L ~ L 8 L ,make the
c 1+c Z cl c2

semigroup. This is just the tensor product

rather ambitious project is to find

maps A ---> A 8' A ,coming fram
cl +c 2 cl C:c

set of modular geometries also a

of conformal field theories. One
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generators and relations for the semigroup of modular geometries. In

addition to the discrete series, examples of modular geometry are given

by the conformal field theory made from the Calabi-Yau spaces with vanishing

first Chern class and those made from representations of affine algebras.

The modular geometry formulated here should be called rational modular

geometry because only finite coverings of moduli space are allowed. The

corresponding "rational" conformal field-.. theories are dense in the space

of all known conformal field theories, except possibly those made from ..

smooth Calabi-Yau spaces. This motivates the following conjecture:

Conjecture: The space of rational modular geometries is an arithmetic

space whose completion over the real numbers is the space of all real

conformal field theories.

References
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STRINGS ON 0ßBIFOLPS

C. Vafa

In attempts to reconcile string theory with experiments ane approach 1s

to consider a compactification scheme. Toroidal orbifolds, whieh are

quotients of a torus by finite groups, provide examples of essentially flat

compact spaces on whieh the string theory can be solved exactly. These

provide toy models for string compactifieation, which eould potentially

describe ehe real world.

One ean eompute some interesting topologieal invariants for orbifolds.

For example the Euler Characteristic of an orbifold i8 given by (eomputed

using string theory):

1
X(M/G) - TGT

Where M h is the subspace of M fixed by both g and h. This agreesg,
with the Euler eharacteristic of the Elliptie Cohomology computed by

Hopkins and Ravenel. It is in fact the equivariant Euler eharacteristic of

1the loop space with respect to ehe 5 -action on the loop space which

reparametrizes the loop.

In string eomputations on orbifolds, at the torus level, one naturally

encounters interesting modular forms, such as the Klein form. These can be

used to construct modular units for higher level subgroups of SL(2). It 1s

known that certain quadratic relations are needed in this construction.

These relations can be understood as ehe eondition for the vanishing of

(l/2)Pl of the corresponding representation of the orbifold group (in the

ease where the group is cyclie), by relating it to absence of global 2-d

anomalies.

Probably the most interesting orbifolds are asymmetrie orbifolds, for

which roughly speaking, the left-movers are on ane orbifold, and

right-movers on a different orbifold. Strietly speaking. these eorrespond

to string theories whieh eannot be thought of as propagating in a

background target spaee. This ean be shown by constructing examples in

which the eharacter valued index of Rarita-Schwinger (and similar
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operators) is not a eonstant, whereas in the target spaee ease the

eharaeter is a eonstant. Also, it is interesting to note that the moonshine

module is the Hilbert spaee of an asymmetrie orbifold based on the Leeeh

lattiee.

Ye also note that orbifolds provide examples in whieh one ean

explieitly evaluate the elliptie genus.
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Non commutative differential geometry

A. Connes'

We first discuss the example of a non commutative topologieal space

Y whieh arises aa the space of labels for the Penrose tilings: Y ia

the quotient of K = {(av) a E {O, 1} with· a\l+l
~ 0 if a :llI 1}

\l , vv€IN

by the equivalence relation a ~ b iff a a b for all v but finitely\l \l
many. The algebra C(y) of continuo~s functions-on Y is now replaeed by a

non commutative C* algebra A, we eompute its K theory as an ordered

group aod find ZZ ordered by {(n,m)j n·+~ma > O} where a is the golden

number. This space is O-dimensional aud by the results of Bratteli, Chen,

Effros, Handelman and Elliott it ia elassified by the above K theory group.

We next discuss the non eommutative torus with phase 8, whose algebra A0
is presented by two unitaries U and V satisfying the relation

VU Cl exp 2ni e UV • The Rieffel-Powers projeetion is of the form
-1 '

e :llI f_
1

(U)V + fO(U) + f
1

(U)V and the first ehern class formula

cl (e) • 2111' T(e (Ö 1(e) Öz(e) - Ö2 (e) 01 (e)) ) gives an integer; where 0
1

and 02

are the differentiations 0J(UOvm) = 21Tin Unvm
, Ö2(U~m) = 21Tim unvm and

whare T is, .the trace T(U V
m

) :eil 0 if (n,m) * 0 , T (1) :eil 0 • Vie discuss

the link, due to Bellissard, between the integrality result and the integrality

of the eonduetivity in the Quantum Hall effect. This non eommutative spaee

has a "manifold shadow" obtained by looking at the moduli spaee for eonnexions.

00 hundles whieh minimize the fuoctional T (@z) where~' is the eurvature.

The result is:

then

for minimalirreducible

Thm. (M. Ri'effel , A.C.) 1) Let E be a projeetive module over Ag

such that e.:'_~~f ••• e ~-1. • 2) The moduli space
~,

n times
eonnexions on E·· modulo the gauge group ia the quotient of the torus

by the action of the symmetrie group.

Vie then explain how the basic data .(h, F, s) in K homology gives rise to

quantized differential forms, where ordinary differentials da are replaced
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by operator commutators da a i[Fta] . We then discus~ the muliiplieative

analogue of K homology as a possible mathematical formulation of quantum

field theory. We give evidence for that in the low dimensional ease where

the spaee is s' and where we eonstruct using the V. Jones algebras
2 1l'

associated with the numbers 4 eos ~J an analogue of the second

quantization (based on Clifford algebras). The basic formulae there are

the following, the Fourier components of a current are obtained by setting

T to be the derivation of the c* algebra generated by the e. '8 t defined
n ~

by: (*)

(0)
where ~ is defined by induetion t as

(1) 1 (0)
~ = 2 ek(ek+~ - ~)ek+1 t ~ • ~

(n+1) [ (n)]
~ a ~t ~+1 aud

(*) here the e. 's are the v. Jones projections J i E ! Z
J with

1. 2

e.e. ±'1 e. :::I T e. J e.e. :::I e.e. if ]i-j! ~ 1 .
1. 1. 2: 1. 1. 1. J J 1.
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-an the Iocal euclldean path connectlYlty of conflguratlon apacea

tor quantum gravl~

O. Raula

Max-Planck-Institut fOr Astrophysik

Karl-Schwarzschlld-Str. 1

8046 Garehing b. München. FRG

Abstract:

It 19 argued that local euclldean path connectlvlty for the conflguratlon space

of a quantum theory. namely the property that two sufflclently close points can

ba connected by a solution to the auclldean fleld equatlons havlng them as

boundary values. Is Importsnt for 8 path Integral formulatlon of tha theory and

thUB should be checked 10r any candldate conflguratlon space.

It Is shown the exlstence of at least one candldate conflguratlon 8paca for

quantum gravlty wlth the above property. Thls 18 not only done to Indleate the

type 01 analysis that should be carrled out for asch eandldate. but also to

study same of the propertles we eXp9ct to b9 99n9rlc for con11guratlon spac9S

wlth the above property.



- 33 -

I. lotrgdyctloo:

Insplte 01 Intensive work for seversl decadea we stili lack a quantum theory of

gravlty. personally blame for thls fallure the lack of any experimental

evldence to gulde us. but reallzlng that thls 18 a very unproductlve stand I

shall advocate here that perhaps ws should blame the lack of some deeper

understanding of space-tlme and that perhaps by trylng different ways 01

de8crlblng It we could find one where quantlzatlon la posslble. U81ng our

pre8ent understanding of the quantlzatlon process I shall advocate then that It

Is 8 question 01 chooslng the rlght con11guratlon space. In thls spirit It 18

then Importsnt to find sultable propertles to Impose on the posslble

conflguratlon spaces and thus to [educe tha membar 01 bellable candldat9s.

In the path Integral formulatlon 01 quantum fleld theorle8 the probabIlIty 01 a

system to evolve from a point A In conflguratlon space to 8 point B 18 glven

by an -Integral- of the exponentlai of the action functlonal over all path

connectlng A wlth B. In general such an Integral Is not weil de11ned and so

a related one. where the usual action 18 replaced by the euclldean ooe. Is

employed. Calculatlons are then usually performed uslng a saddle point

approximation whlch assentlally conslsts of an expansion around a classlcal

euclldean path connectlng A wlth 8. (that 18 a solution to the classlcal

euclldean fleld equatlons wlth points A and B 8S boundary condltlons).

provlded such a path exlsts.

The exlstence of such a path Is not only Important for computatlonal purp08e8

but also for the formal aspects of the theory sloce In general ws know how

to make sense of the euclldesn path Integral only In the sense 01 the above

approximation. Thus we would IIke to Impose the exlstence of such paths as

a prlmaryproperty to be satlsfled for the candldate conflguratlon spaces. As It

stands thls property Is probably too strong (For non-linear theorles we expect.

for large enough fleld conflguratlons. the 8ppearance of slngularltles.) and so

we ahall Impose a weaker one. namely the local euclldean path connectlvlty.

whlch only demands the exlstence of such paths for close enough points In

conflguratlon spac9.

In what follows we explore thls property for a partlcular conflguratlon space 10r

quantum gravlty. The alm 18 not so much to advocate for thls partlcular

conflguratlon space as the approprlate one for quantlzatlon but rather to

Indlcate the type of analysis that should be carrled out for aach candidate. In
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sectlon 11 wa deflne a set of confIguration variables and usa them to reduce

th 9 fiel d equatI 0 ns to an eil Iptlc systern . Wa then. In sectlon 11I. apply the

theory 01 eillptic equatlons to show existence 01 solutlons wlth these variables

as boundary data. We only conslder boundary data sufflclently close to the

trlvlaI one. ( that Is we are onIy conslderl n9 the aboye property fo r a 8ma 11

enough nelghborhood 01 the flat conllguratlon). other cases requlre a more

elaborated treatment but tha same fundamental analysis.
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11. ElllptlC Bedyct100 (gr the Eyclldean EInstei" EgyatioDs

Followlng a slmllar procedure to the UsuslODe for the Lorentzlan case we fix

a flat positive' definite four-metrle eab In M. a slab region (w. r. t. eab) In 4R •

and deflne for aDy other matrle gab In M; ~ab : = eab - v§'" gab and ",S :::Il

Vb~ab. where V9" 18 deflned by eabcd(g) = v§' eabcd(a). and Vc Is the

eovarlant derivative 8ssoelated wlth eab~ Vceab = O.

In terms of ~ab and ~ the Elastein tensor beeomes.

The advantage of thls deeompoaltlon 18 that eab 18 an slllptie map. and as we

shall see by Imposlng certaln boundary condltlons on ~ab WB can make \&Ib to

vanlsh on M whlch Implles that any solution 10 ~(~) = 0 satlsfylng certaln

boundary condltlons la also a solution to the Eucllds8n EInstein equatlon8.

8educUoo Th90cem':

Let (M. sab) be an Euelldean slab region of 4R. Then there exl8ts a

nelghborhood. v. of zero. In H3• -1 (M). such that for any 4>abC3V satlstylng. In

s' weak sense. eC(~) :; O. T( nanb9a",b) = O. and T( hab\&lb) = 0 we also

have aab(g(4») ::I O.

Here T denotes restrlctloo of flelds In M to flelds In 8M. The vector na 18

the translation w. r. t aab normal to aM. and hab : = eab-nsnb' H3• -1 (M)

denot8s a welghted Sobolsv 8paee [Y. Choquet-Bruhat & O. Chrlstodoulou].

Prgot:

We must show that the terms In \11. and V\&I In (1) vanlsh. Thls 18 dona by

showlng that \11 11891f vanlshes In M. Ualng Blanehrs Identlty and the vanlshlng

of ~(4)) we obtaln a linear. elilptie equatlon for \IIb. Lb(4)) (\11) = O. Sinee

(.ab. "'c) _) Lb
(4)>) C'11> Is a contlnuous map from H3• -1 ( M) x H~ 0' M) to

Ho. 2( M). Lb (.~) ('iI) = ~e\llb Is an Infeetlve map for the boundary condltlons

T( 0bn'v.",b) = TC hsb",b) = O. and the space of InJectlve operators 18 open.

we conclude there exlst a nelghborhood of zero. V C H3 -1 (M) such that It
•

<IusV. then 4 Is also InJectlv9 and therefore ",b = 0 on M.

We could heve choosen for the above theorem any other boundary condltlon

ensurlng the InJactlvlty of the flat Laplaclan. The relevanee of thls eholce will

be appreclated In the naxt 8ectlon.
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III! Ext8tence pf 80lutl008

Here we use the Impllclt lunctlon theorem and the theory of linear elllptic

equatlons to show exlstence of solutlons to the reduced system for small

enough boundary data.

ExISts0C9 Th9Qc9m;

Let (M. eab) be an Euclldean slab region of R4 . There exlats a nelghborhood

01 zero. VdHS/2,-1(8M) such that for any ~abc9V. a symmetrlc 2-tensor In aM.

wlth D.4tab = O. there exlsts a unlque $abeH3._1 (M) satlsfylng.

( 2) a) eG($) 2 0

b) T( 0 nav \IIb) = 0b •

c) T( ha
b'4lb) = 0

d) T(ha hb $cd) "ab O.- $ =c d

Here Da 18 the Invariant derivative In aM assoclated wlth the flat Induced

matrlc hab' In equatlon 2. b) all second order normal derivatives have been

substItuted uslng 2. a). Condltlon Da• ab = 0 Is 00 lass 01 generallty.

The set of 811 symmetrlc two-tensors ~ab In HS/2.-1 (8). where 8 18 ODe of the

sldes 01 the slab. such that D.tab = 0 '8 the partlcular cooflgur8tlon space

we mentloned In the Introductlon.

Here we merely sketch the praol of the above theorem. A detalled proof can

be found In [0. Asula] . Conslder the system of equatlons (2) as a

runctlon 01 $ ab and ~ab. F( ., ;,) Into a certaln product of H11bert spacss Y.

We have F(O.O) = 0 and It 18 not dffflcult to show. u810g certaln propertles

of welghted Sobolev spaces that F Is a c 1 runctlon 01 both arguments. It

can also be shown. uslng the theory of linear elllptic equatloos that the,.,
differential of F wlth respect to 4» at $ = $ = O. DF$ (0. 0). 18 an

Isomorphlsm betwgen Ha,-1 (M) and Y. 8ut than tha Impllclt runclton theorem

accerts the axlstence of a n81ghborhood of HS/2, _1 ( aM). V. 8uch that there
1 A A ,.. A

exlst a C tunetion $ ~ $( $) tram V to Ha.-1 (M) satl8fylng F( $<~) • $> = O.

and the theorem 18 proveo.
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IV. Cooclusloo

We have preseoted a eonflguratloo spaee that at least In a nelghborhood of

the trivial eonflguratlon satlsfy loeal euelldean path conneetlvlty. Can thls result

be generallzed to arbltrary points In eonflguratlon space? Thls eonflguratlon

space 18 In same sense the tangent spae8 to the one of Interest and It Is for

thls seeond one that the question should be formulated. For thls one ws

belleve that the answer Is aflrmatlve. Is thls eonflguratlon spaee blg enough.

10 the sense that any sufflelently small solution to the euelldean fleld equ8tloos

can be obtaloed aa a path eonnectlog two points 00 It? 11 we r88trlct the

elass of solutlons to be asymptotleally SchwarzschIld up to order 1Ir then that

Is the ease. 00 the other hand. If we 8ssume that ~ur solutlons admlt 8

·powers 01 r· asymptotlc expansion then one ean show they have thls

asymptotlc SchwarzschIld behavlour. Thls fact also suggest that we cannot

eonneet to three-metrlcs wlth different masses. In th8 AOM 88nS8. end so 10r

a eonflguratlon spaee to be a bellable eandldate It must be that Its elements

do not have adefInite mass.

Thls conflguratlon variables. oamely the set of 811 dlvergence free. symmetrie

2-t80sors In H15/2,-1(S). have beeo strlpP8d of almost 811 Its gauge freedom.

and so It Is a gauge dependent space. The remalolng gauge freedom can be

flxed by rsqulrlng for example that the tensors be trace fre8. Thls fixing

requlres gauge transformations (dlffeomorphlsms) whleh also move the

boundarles and so they are related to the time sllelng or parametrlzatlon of

the theory. It does not seem to bs posslble to obtaln. from these variables.

gauge Independent. I. s. fully geometrleal quantltles. They ean be obtalned

onee a whole classleal solution Is eomputed. but 10r that ws need two points

In eonflguratlon space. It Is elear then that In the quantum domaln we eould

obtaln them only In a semiclaaaleal approximation. It would be nlee to obtaln

8 eooflguratlon spaee eonslstlog of geometrlcal obJeets and wlth slmllar

propertles to the one above.

In the exlstenee theorems above we have Ignored the eonstralnts.

what happened wlth them? The equatlons that we eall eon8tralnts In the

hyperbolle ease stili are there 10 the elllptie ease. but they are not

constralnts anymore. They can constraln Initial data. for they have up to first

order normal derivatives. but not boundary values. As In the hyperbolle ease

they ean be obtalned In the redueed pleture as normal derivatives of \IIb.

ThUS • T ( nanCvc~a) Is the sealar constralnt 8 nd i ( 0ch~Vc\lld) the vectorial one.
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The scslar one .11 part ot the reduced system~ equatlon 2. b). whlle the

satlsfledl Note that the raason ona can solve at all tor the scalar constralnt Is

that It contalns only quadratlc terms In the normal derivates (no linear ones).

and slnce we take the differential at zero normal derivative they do not

appear. Thl8 point Is Important. tor It we would try to show existence tor

other regions where we eould not choose zero normal derivatives (88 Is the

ease tor a balD. we would have to Ch0089 different boundary variables.
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Remarks- on the Landweber-Stong elliptic genus

Don Zagier

In algebraic topology one studies genera, which are ring homomorphisms from the

oriented bordism ring 0;0 to a Q-algebra R (commutative, with 1). To a genus

<,p: 0;0 ~ R one assoc:lates the following three power series with coefficients in R:

(i) g (x), an odd power series with leading term x, the logarithm of the formal group

law of <,p (this means that the formal group, whose definition we do not rep~at here,
1 ca 2 2n +1

equals g- (g(x) + g(y» ). It is given explicitly by g(x) = L ""'0 4'(~]p n) x
2

1 and
2 SO n n+

hence, since the classes of the tp n generate 0* ~ ~, determines tp completely.

(ii) p(u), an even power series with leading term 1, the Hirzebruch charac teristic

power series of <.p. This means that Lf lP denotes the stab le H*(·; R) -valued expo­

nential characteristic class on oriented bundles characterized by cp(~) = P(c1(~» if

~ is a complex line bundle (regarded as areal 2-plane bundle), then the genus of an

arbitrary oriented manifold M is obtained by evaluating @(TM)' on the homology funda­

mental class of M.

(iii) F(y), apower series with leading term 1, the KO-theory characteristic power

series of <.p. This means that if '7 denotes the stable KO(·) ~R-valued exponential

characteristic class on ariented btindles characterized by T(~) = F(~ - [2]) for

'as above (this makes sense because ~ - [2] is nil potent in KO(B~) co R, as ane sees by

applying the complexified ehern character), then the genus of an arbitrary Spin mani­

fold is obtained by evaluating 7(TM) on the KO-homology fundamental class of M.

These three power series determine one another by the formolas

u/2 u-u
F(e +e -2)

sinh u/2=p(u)=u
( 1)

g-1 (u)
-1where g denotes the inverse power series of g.

Recently, a particular class of genera has come into prominence through the work

of Landweber, Stang, Ochanine, Witten and others. These genera are characterized topo-

logically by the property that <,p(M) vanishes if M is the total· space of the complex

projective bundle associated to an even-dimensional complex vector bundle over a closed
-2oriented manifold, and numerically by the property that the power series g'(x) is

a polynomial of degree ::i4, i ~ e., tha t



(2) g(x) .. x

f
o
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dt
for some Ö,E: ER.

(nie equivalenee of these two definitions is due to Oehanine [')].) sinee this is an

elliptie integral, such ~ are called elliptic genera. Landweber and Stong [2] dis­

covered that there is a particular elliptic genus with values in the power serieB ring

R :::I ~[[ql] satisfying:

(a) For r ii: 1 the coeffieient of yr in F(y) belongs to q2r-:l R

(This, or rather the weaker statement that the eoeffieient of yr is divisible by qr+l

for r ~ 2, arises from a certain natural property of the above-mentioned KO-character­

istie elass ~ which we do not formulate here.) Based on numerical eomputations, they

conjectured that condition (a) characterizes the genus in question up to a reparametri­

zation (i. e •. , up to replacing q by aq + bq.2 + .. ;, with a of 0) and that with a suitable

ehoice of parameter one has

(b) F(y) has coeffieients in Z[[q]].

By what was said in (iii), this means that the genus takes on values in Z[[q]] for all

Spin manifolds. These facts were proved by D. and G. Chudnovsky [1], whose formulas

show that with a suitable normalization one also has

(e) The leading term of the coefficient of yr 1U F(y) for r s: 1 is _q2r-l, and

(d) The genus takes values in the subring M~(ro(2» c: ~[[q]] of modular forms on

r o(2) with rational Fourie~ coefficients.

eWe recall basic definitions about modular fonns below.) In particular, the eS and E:

of equation (2) are certain modular forms (of weights 2 and 4); since M~(r 0 (2» is

known to be the free polynomial algebra on 6 and E:, it. follows that the Landweber­

Stang genus is universal for all elliptic genera. This universal, modular form-valued

elliptic genus has beeu the object of eonsiderable interest; it gives rise to new

eohomology theories (the "elliptic cohomology" of Landweber, Stong, and Ravenel) and

to connections with index theory, string theory, ete. The purpose of the

lecture was to describe a variety of formulas for the power series g, P, and F

associated to the Landweber-Stong genus (and in particular, easy praofs of the properties

(a)-(d». The . praofs use ideas from the theory of elliptic functions and modular

farms·.

R=~[[q]]. !hen the following five formulas define the same power seriesTHEOREM. Let

p(u.) ER[[u]]:

(3) P(u)

(4) P(u)

= 2 G~ uk

k>O 2 k-Z(k-l) !

21k

( ~ k)exp I k 1 U
k>O
21k
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(5)

(6)

p(u)

P(u)

=

=

u with g ~iven by (2)

(7) P(u) = u/2 [
-s""in~h-u""'7~2· 1

l» ]u -u rI a (e + e - 2)
r Cl l r

where * .....G
k

, G
k

, 6, e and arER are defined by

* *
Zk-l - 1 ... I ( I d

k
-

1
)

nG
k

. CI Gk(q) CI Bk q2k ns:l dln
Z.rd

......
\(q)

1

Jl Ctn (_nn/d dk - 1 ) qnGk
a :=

2k Bk +

nL Ctn d) qn

2~d

d3 ) qn

=

1
ä - 3

=

=

L [(1(d-l) +r) +(f(d-3) +r)] n
dln 2r-l 2r-l q

2.fd·

are Bernoulli numbers and }' denotes a surn over
dYn

The genus with characteristic power series P(u) satis-

m(2r-l) (12m)r q + q
mii: 1 (1 _ q 2m) 2r

= -e

a CI
r

6

(8)

. 1 . 1
(here B2 = 6"' B4 = - 3D '
positive divisors of n).

fies properties (a)-(d) ..

Each of the five formulas in the theorem describes some aspect of the genus with

characteristic powe~ series P(u): (3) and (4) describe the genus in cohomology aud
* ......make the modularity property (d) clear (since Gk and Gk are the Fourier expansions

of well-known Eisenstein series, as recalled below), (5) shows that the genus is

elliptic, and (6) and (7) describe the genus in K-theory and (both) make the properties

(a)-(c) evident. (To deduce (a) and (c) from (6) one has to split off the terms n:l 1

aud n a 2 fram the inf inite praduct.) Formula (6) was given by the Chudnovsky' s, hut

with a different proof. 'It has been generalized by Witten [4] to get other genera

whose coefficients are modular forms, and in this form interpreted by hirn, using ideas

from quantum field theory, as the equivariant index formula.(Atiyah-Bott-Singer fixed

point theorem) for a Dirae operator on the free loop space of a manifold.
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Same remarks on elliptic genera of almost

parallelizable manifolds

F. Hirzebruch

Let M4k (k ~ 2) be a compact comb.inatorial almost-smooth and almost­

parallelizable manifold, i.e. M4k is smooth and parallelizable outside

a point. Then the Pontrjagin numbers are well-defined as rational numbers,
4k 4kthey vanish except possibly Pk[M ] . There exists an M with signature

:t 8a (using E8-plumbing) or one can use

Z
2
1 + ••• +

L Z.Z. ~ 1
J J

2 3 6a-1
ZZk-1 + ZZk + ZZk+1 a € , € * 0 and small

whose boundary is a topological sphere which can be collapsed to a point

(see E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten,

Invent. mathe Z (1966), 1-14, compare F. Hirzebruch und K.H. Mayer,

O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture

Notes in Math. 57, Springer-Verlag 1968). We have

(see F. Hirzebruch, Neue topologische Methoden •.• 1956, § 1).

The elliptic genus (Landweber-Stong, Ochanin~, E. Witten) of M4k can be

calculated. We take the one of E. Witten which relates to modular forms

with respect to the full modular group (cf. preceding lecture of D. Zagier)

and obtain (for the non-stable genus)

-k/6
q

... 00

A(M
4k

, TI
0=1

00

L
r=O

where T is the complex extension of the tangent bundle of
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co
( l_

Q
n)Z4and 11 'J::II qTI , E

Zk
:: 1 - B4k r'( 1: d

Zk
- 1)qn If

n=l 2k n d]n

sign M4k a _22k+1(22k-1_ 1) and hence ~(M4k) = 1 , we get

The smallest signature 8a (in absolute value) for which the el1iptic genus

or equivalently ~(M4k) • E
Zk

has integral coefficients is

numerator
B

( 2k)
4k

In fact the A-genus is integral and divisible by ~ Ca 2 if k is odd,

=1 if k is even) if M4k is smooth. The boundary sphere is standard if

and onIy if

The numher on the right side of the congruence equals the order of the
. . 1 b 4k f h . wh •Kerva1re-Mi nor group Pot ose exot1c spheres 1ch bound a

parallelizable manifold. If we take a = Ibp
4k l , then we obtain the

Kervaire-Milnor manifold ~k (smooth, almest parallelizable with

smallest Isignature I * 0) • We have

.... 4k
A(Ma ) = :t~ numerater

B
( 2k)

4k

4k
(first occurrence of MO in John W. Milnor and Michel A. Kervaire, Bernoulli

numhers, homotopy groups, and a theorem of Rohlin, Proc. Intern. Congress

Math. 1958).

For ~ with ~(M~) ~ 1 the above elliptic genus equals

~ .~

Vr = q~1/3(1 + 2~8q + 4124q2 + ••. )

= 1 ,
.... 8
A(MO,T) - 248 ,



result on the order of bP4k
smoothable if and ooly if the

k is odd). ThuB M4k has an

(even coefficients, if k ia
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The elliptie genus for M
4k

has integral eoeffieients if and only if

A.... ( 4k) cl'" (4k) . I Th' . h . d "M an A M ,T are 1ntegra. 1S 1S teease 1f an only 1f

A(M4k) and eh(T)[M
4k

]. are integral where eh is the Chern eharacter.

For smooth almost-parallelizable manifo1ds, the numbers A(M4k ) and

ch(T) [M4k
] are integral (for k odd,·both numbers are even). For

ch(T) [M4k
] this follows from Bott periodicity. Kervaire's and Milnor's

" 1" I h 4k.1mp 1e5, converse y, t at M 18

two numbers are integral (and even, if

elliptic genus with integral coefficients

odd) if and only if M4k is smoothable.

Schloß Ringberg, Bavaria, March 1987
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Virasoro Representations and Modular Invariance

P. Goddard

The critical behavior of two-dimensional statistical systems is

described (in suitable cases) by a two-dimensional Euclidean conformal

quantum field theory [BPZ]. Acting in the space of states of such a

theory we have two commuting copies {L}, {L} of the Wiras~r_oalgebra
n n

V possessing the same value of the central charge c

c 2[L , L ] = (m-n)L + -- m(m -1)0
m n m+n 12 m, -n '

(m,n E Z) with L+ = Land the spectrum of L bounded below. The
n -n 0

value of c is characteristic of the theory. The representation.of
A

V

is a direct sum of highest weight representations built up from states 1& >

satisfying

L r& > = hlß >o L IR > = 0 , n > 0
n

Such representations are 1abe11ed by (c,h) . The analysis of for which

(c,h) uoitary representatioos exiat started with the Kac determinant

formu1a. From this it was shown [FQS] that for a unitary representation (in

a positive inner product space) it is necessary that either c ~ 1, h ~ 0

or

6
c = 1 - (m+2)(m+3) ,m=O,1,2, •.• h = hp,q

2
• [(m+3)p-(m+2)q] -1

4 Ün+2) (m+3)

p = 1, ••. ,m+1; q a 1, .•• ,p . The former (continuous) series are easi1y seen

to exist and the construction·of the-1atter (discrete) aeries is sketched

be1ow.

In a conformal field theory we have states IA >

weight states for both {Ln}' {Ln} , with Pt = RA' K
A

'

all states are generated by {L}, {L } . Corresponding
n n

La a primary field ~AI z > satisfying

which are highest

resp., from which

to aach such state



- 47 -

(n+1)hAZ°'PA' lim <+>A(Z) 10 > CI jA >
z-t{}

(The vacuum 10 > has L jo > CI L jo > = 0, n ~ -1 ,and <+> (z) $ 1')
n n 0:

hA + hA • sca1ing dimension.of 'PA and hA - hA = spin of 'PA' Experi-

menta11y recovered (or theoretica1 ca1cu1ated) critica1 exponents are

simple linear combinations ofthese sca1ing Q-faJAns.iau~_. In a given

theory (with given c) a ceTtain set of (hA,hA) wi11- occur, with

hA,h
A

chosen from the permitted list if c < 1 , possib1y with nonzero
1mu1tip1icity. Which sets are possib1e? E.g. the Isiug model has c = -

1 1 1 1 2
aud the 3 primary fie1ds correspond to (0,0), (16' 16)' (2:' 2:) • The

criterion for determining possib1e sets is modular invariance [cl. By

considering the theory on a torus, it is argued that
LO-c/24 LO-c/24 2niT

g(-r) CI Tr(q (q*) ), q = e- should be invariant under

the modular transformations T ~ aT+b (a b)
cT+d' c d

evidence for the conjecture that, for each c

E SL(2, Z) • There is

in the discrete 'series, there

h •possible

exist on1y 1,2 or 3 possib1e independent sets of (h,h) .such that the
\' -e /24 L' .: '.

surn 13(-r) = L. X ch (T)Xcfi:T)* ,with X
ch

(T) = q Tr(q 0) '.~, , possibly

with nonzero multiplicities for the (h,h) , is modular invariant [crz].
There is always the trivial invariant LX" (T)X -(1')* summed over all

h ch ch

To construct the diserete series (aud henee show the FQS conditions

are too suffieient) [GKO] start with a four-dirn. Lie algebra g (assumed
· 1 f ) [a b] . fabe e d' . ...S1.mp e or ease - t, t :cl ~ t an eons~der the aff1.ne algebra g,

[Ta ,. Tb] = ifsberc + km öab ö • A unitary highest weight irreducible
rn n m+n 2 m,-n

rep. of this has x 1:1 2k/lJI € Z, '= 0 where 1JJ =--a--100g root of g . Then

h S 1 / S f g 1 \' x Ta Ta x [wh Q d't e ega ugawara operators n a 2k+Q L x m n-m x ere - = qua rat1.C
g m g

Casimir of g in adjoint repre~entation] satisfy Virasora a1g. with

e CI
cg = 2k dim g CI x dim g

2h+Q x+hg g
h a ·dua1.coxeter number •

g

dim g .~ eg ~ rank g ~. 1 • To get c·g < cona ider subalgebra h c g
... g h' a a'"h c g'" • Then as [f Ta]:lII [f T-a]::I -n Tm+n if t E h we have

~ n m' n
= 0 if K • t g - t and K satisfies Virasora a1gebras with

h m m n m _-_
- c . This extenda easily to the ease~~ wi.-t:h-~;:.::..Q~~siuiple,__,_.,.'_.-.-----

We cau get all the diserete series fram cons idering g CI su (2) x su (2) ,

...
[K , h]

m
c :::111 c - c

g
K

h' compact.

Then

and so



- 48 -

characters, reproducing a result first obtained
....

'v:.' invariant forby inspection [G]. It also follows that we get a
b

c Q 1 - (",.+2) (m+3) from level ,~,m+1. ~;.' s'U(2) invariants. [CIZ,',] conjecture

that all V'-:' invariants come thi~' way.
...

If ~ = 0 we can relate the transformation of h characters to that

of g characters. A "trivial invariant" for g characters (i.e. the sum of

h a su(2) (diagonal). (All cases with cK < 1 are listed [BG]). Ta check

we get all values of h from this construction we compare characters,

writing the characters of a unitary highest weight. rep~. of g as a sum of

characters of representations of h x v~. (This decomposition is finite iff
...

reducible with respect to h iff cK = 0 .)

= su(2), we relate the transformation of y
cK < 1 and g is finitely

Using g ~ su(2) x su(2), h

characters to that of su(2)

...
the squares of the moduli) at a given level may produce non-trivial h

invariants. It has been shown [N] that all of a list of su(2) invariants

given by [CIZ]~ and conjectured to be complete, can be obtained this way.

[BG] P. Bowcock and P. Goddard, ITP preprint Santa Barbara Dec. 1986.
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Einstein metrics

S.T. Yau

I will report on some recent progress on constructing Einstein

metries . on Kähler manifolds M. An obvious necessary condition for the

existence of such metric on M is either c
1

(M) < 0, = 0 or > 0 . It

turns out that the first two conditions are sufficient. The last condition

is not sufficient • There are two known obstructions.

(1) The automorphism group of M has to be reductive. Fuhaka also

defined a character on Aut(M) which has to be trivial.

(2) The tangent bundle of M is stab1e.

It is not clear that these are the only obstructions. The equation

for the existence of Käh1er Einstein metric is

2
det(g .. + ~ <.Da ). =1.J %. Z.

1. J

~Fe det(g .. )
1.J

In general, the solution is not unique, it was proved by Futaki and

Berger that they are unique up to an automorphism.

Recent1y Tian made a breakthrough on this equation. He defined an

invariant in the fo110wing way. Let P(g .. ) CII {<.pI g .. + <'p •• > 0 ,," Sl.l;PM~} •
1.J ~J 1.J

Let ~ > 0 be defined such ehat ~ e~ < 00 for all <.p E P(gij) • Let

cx(M,w) be sup Ci. •.It depends on1y 00 the Kähler class of M. Tian

proved that if - w=<:.t.(M) and if ct > :1 where n'" dim M , then M
, n

admits a Kähler Einstein metric. In general oue can prove that a positive

lower estimate of ct cao give rise to a lower estimate of the Ricci curvature
nof M. (In particular an estimate of Cl ).
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Relative Index Theorems

Supersymmetrie Scattering Theory

R. Schrader

(Freie Universität Berlin)

This talk reports on results obtained ~n joint collaboration with N.V. Borisov

and W. Müller [1].

A general formulation of a supersymmetrie scattering theory is given which

allows to derive relative index theorems on open manifolds. Consider a

Hilbert space K with a unitary involution T and a selfadjoint operator

Q , ealled a supercharge and whieh anticommutes with T . The ± eigen­

spacea ~~. of _-_" T are"·catled" the bosonie snd fermionic: sector respeetively.

H a Q2 is called a supersymmetrie Hamiltonian [2]. If exp - tH is of "._

trace elass, then the supertraee .Traee T exp - tH ia t-independent

(t > 0) and an integer, the so ealled Witten index. Standard index problems

on eompaet spaces may be obtained in this way: Given an operator
+ -L : K ---> K mapping square integrable sections of one bundle ioto

another such space, simply set Q ~ (~~*) on H 3 K+ a K- .
On open 8~aees one coosiders pairs Q, QO of supercharges such that

(exp - tQ2)-(exp - tQ~) ia of trace elass. The question arises for what
•• II 1 2)). . .s1tuat10ns Traee T "exp - tQ ) - (exp - tQo 18 1ndependent of t and 1n

fact an integer. In that ease this quantity may be interpreted as a relative

index in the sense of Gromov and Lawson [3]. Supersymmetrie scattering

theory, which gives an answer to this question, is defined by the following
± . itH -itHOeondition: The M(6ller operators n (H ,H ) :ca S .-- 11m e e exist on

o t .... ±oo
the absolute eontinuous subspaee of HO = Q~ , are unitary there and are

intertwining operators for Q and QO. A sufficient condition for this

to be satiafied ia that (Q exp - tH) -(QO exp - tHO) is of trace elass. On

the energy shell E the S-matrix S - (n+) *n- has a deeomposition S±(E)

into bosonie and fermionie part and by the above intertwining relation the

total phase shifts Ö±(E) , defined by det S±(El = exp 2i 8±(E) , satisfy
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~-l(Ö+(E) - Ö-(E)) = u(E) E Z . If the left hand side is continuous 1n

E , this integer is E-independent on each conneeted eomponent of the

absolute eontinuous spectrum of HO . 'Using Krein' s spectral shift

function [4], which is essentially equal to the phase shift, this may

be exploited to diseuss Trace T «exp - 'tH): - (exp - tHO)). As an example

we diseuss the de Rham complex. For the ease of an obstaele in Rn , it

is shown that the absolute or relative Euler characteristie ..can_ be. obtained

form the scattering data if the Hamiltonian is chosen to be the Laplace

operator with relative or absolute boundary conditions respectively. Also

our method may be applied to manifolds which are flat at infinity, leading

to a sharpened version of the Chern-Gauss-Bonnet theorem due to Stern for

the LZ-Euler charaeteristie of spaees which are asymtotically flat [5].
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Quantum_Hall. .Effect: - .

Ruedi Seiler

Fachbereich Mathematik

Technische Universität Berlin

In 1980 v. Klitzing measured the Hall conductivity a in a two­

dimensional interface at low temperature and high magnetic field B. He

discovered that 2~a is an integer and decreases as a function of B

monotonically (Figure 1). The high accuracy came as surprise (1:108). The

plateaus seemed to get wider with increasing density of impurities. In

clean material however the frac tional Quantum Hall Effect ."was discovered;

for certain values of B conductivity is rational, 2~a = p/q ,p aud q

small integers, q add.

The theory which I want to present here (2] iso :formulated in the

framewark of non relativistic quantum mechanics." The main ingredient is

of topological nature: Configuration space A of the partieles has two

holes (Figure 2a). This is an abstraction of ehe experimental situation

including the measuring devices (Figure 2b). The battery is replaced by

a time dependent magnetic flux ~1 a -Vt (Faraday l s law). The Ampere

meter ia aubstituted by a second flux through loop 2. It stands for the

magnetic flux induced by the current around the second loop. The theory

does not depend on auy particular form of the interacti?~ between the

particles or the particles and ehe impurities. The external magnetic

field acts as a U(l)-gauge field.

The main result is the following: Lf the groundatate of the Schrödinger

operator H which describes the dynamies of the system ia q-fold degenerate

then the flux averaged conductivity < a > is __.1_: times an integer.
2rrq ".

(Averaging over $ has a good physical interpretation).

Generically H has a non-degenerate groundstate due to a theorem of

Wigner and v. Neumann. If however configuration space is a two torus and

the interaction translationally invariant (no impurities) H ia non generie.
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In fact if the fil~ing factor V is rational, V ~ pI ,the groundstate
q

ia q-fold degenerate [3]. (The filling factor is defined by

~ := 2n · N~mber of particies/~~neti~_~luxthrough the torus).

The main line of proof is as foliows: The Schrödinger operator H
2acts on aections of the trivial Hilbert bundle :IR x f{ ., where H denotes

the spaee of square integrable functions of the particle coordinates

(x1 ••.••~) E AN • H(~) - the operator which aets on the fiber over ~­

turns out to be periodic in bath variables with respect to the lattiee
. 2

r cm . If P(~) denotes the spectral·projeetor of the q-fold degenerate

discrete groundstate, then 2~ J Trace P dP dP is an· integer" (PdPdPP is

the curvature of the canonical ~annection PdP). T denotes the twa torus

:IR
2Ir. It turns out that t~is number is q times < 27l'O > • This is Kuba t S

farmula which eao be established rigorously in this cantext using the

·adiabatic theorem [4]. This ia natural because conductivity ia defined

as the derivative .. of current with respect to valtage V for V a 0 .

Hence the limit of large time.scale l/v is relevant.

If this theory ia specialized to a aue parcicle theory wich a torus as

configuration space one recovers the results of Thouless, Kohomoto,

Nightingale aud de Nijs [5]. The fractional Hall effect cannot be under­

stood in a Qne particle theory. Correlation between particles are necessary.

Laughlin made a clever guess of multi-particle wave functions which suggests

a q-fold degeneracy of the groundstate [6].
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Bosonization on Compaet Riemann Surfaees

L. Alvarez-Gaume

J.-B. Bast

G. Moore

P. Nelson

C. Vafa

Bosonization is a property of twe-dimensional eonformal quantum

field theory. Rough1y it is the assertion that all the eorre1ation

funetions of a fermionie fie1d theory with fie1ds of any spin ean be

exaet1y reprodueed by those of a suitab1e bosonie theory. We formu1ate

the appropriate bosonie theory on a eompaet Riemann surface X aod express

the mathematiea1 eontent of bosonization in a set of identities involving

various special functions assoeiated to X.

Let ~ be a ho1omorphie bund1e of degree 2A(g-1) on aRiemann

surface X. Consider the fermionic fie1d theory with fie1ds b, etaking

values in ~, K 8 ~-1 respectively. K is the canonieal bund1e. We also
-introduee fields b, c in the_comp1ex-conjugate bundles, and an action

The fermionic moments of

Sf m fx(bäc + bac) •

Sf
e are called "eorre1ation funetions". Computing

them' by manipulations of fermionic Gaussian integrals we have

-+­
det'a~aE;

:I. det.(u. ,u.)
1: J

~ (p 1) G(P 1 ,Q 1) ••• G(p 1 ' Qq) 1
.•••••••••••••.•••••••• G(Pp,Qq)

2

Here~we assume that the Cauehy-Riemann operator a~ eoup1ed to ~ has k
o -+

zero modes_:: ul' •••~ span H (X;E;) , whi1e a~ ~has no zero modes:

Ht(X;~) a 0 . The integers p, q satisfy p-q = k a (2A-l)(g-1) where

g is the genus of X, det' denotes the zeta-regu1ated determinant.

(u.,u.) is the matrix of L2 inner produets of u.. G(p,Q) is a Green
.1 J 1
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function for a~. These three constructions require that we place ametrie

on X. We can also use this metric to convert both sides of the expression

to real functions of X, ~ , the metric, and P
1

, ••• ,Qq.

Bosonization ia the assertion that (*) equals a '~osonic correlation

function". The appropriate theory has areal field ~ defined modulo ! Z
2

and action

g.

Sb =3 41l'i I a a + 2 I R.J.D + 41Ti ~ [~b d~(a. ;f) - <} dqjl(b. ;f,)]x ~ ~ x -x~ . l' l. a. l.
l.aI 1. l.

Here LO is any even spin bundle on X . F(~) is the flat bundle corresponding

to the c1ass of d~ in Hl(X;~) . o(L) is the parity of a spin bund1e L.

~ is the bundle

-1f = ,~. 8 L
O

H(y;!) is the holooomy of ~ in its hermitian connection about the curve

y . {a
1

, ••• ,a , .•. ,b} is a set of curves representing a canonical homology
g g

basis and all intersect~ng ·aJ: one point.•.-These curves dissect X ioto.a polygon,

on which ~ is continuous. R! is the hermitian curvature of f inherited from

the given metric on X. Taking moments as before, a standard Gaussian integral

gives

-4'ITi~(Q )
e q >

(**)

(
det'ß ,-1/2

.. (det ImQ)·A)

nG(p.,p.) nG(Q.,Q.)
... 1. J .. 1. J

N(z) l.,J -1.,J 2

n G(P. ,Q.)
•• 1. J
1. ,.J

Here n is the period matrix of X in the given marking and A ia the

area in the given metric. z is the image by. the Jacobi map given by the

marking of the degree-zero bundle
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P q

~ 8 LO-
1

S ~ ( L P. - L Q.)
1 1. 1 1.

L
O

is now ehe Riemann c1ass in pie -1 associated to the marking.

N(z) Q exp[-2TI(Im z)(Im Q)-1(Im Z)]·rt(z)n) 1
2 , so that in fact (**) is

independent of the choice of marking. G is a Green function satisfying

-1
where ~ = [4TIi(1-g)] ~ and 0Q 1.S the delta-function, both (1,1) forms.

We also require f ~(p) • log G(p,Q) = 0 .x

(**) is zero as it stands due to factors of G(P.,P.) • We must rep1ace
1. 1.

these coincident factors by "regulated" oues. If we make a convenient choice

for the metric on X, however, the coincident factors will be equa1 to one

and can be dropped. This choice is the Arakelov metric characterized by the

following property: ehe canonical isomorphism

is an isometry when K has the Arakelov metric and U(P) has the metric

(*) I1 10'(p) I1 (Q) z; G(P,Q) ,

where G is defined by (+) with the Arakelov curvature.

Basonization states that (*) = (**), up to an overall constant dependant

only on the integers g, deg ~ , aud p • For example when deg ~ • g-1
- -+

then generical1y a~ and a~ each have uo zero modes and one has the

"spin A· 1/2 bosonization farmula ll

(++)
. -1/2

-+ - (, det'6 )
det a~ a~ =' C(g) edet Imn)A

-1
• N(~ S L

O
) •

This formula ia well-known in genus g a 1 •

, The bosonization formulae (*) = (**) can be proved (up to an overall

multip1icative constant) using the nation of Quillen metric (cf. ehe talk
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of BisDD.lt). Indeed t they ean be reformulated as asserting that some "natural ll

isomorphisms of determinant line bundles are isometriest when these line

bundles are equipped with the right Quillen metries. The two basic facts

used to prove these isometries are:

(1) the spin-l/2 bosonization formula (++)t'which asserts that the
.. ~ d ( ;:) 8 ( -2) . b h l' l' .
~somorph~sm between DET o~ an ,OE! oe g~ven y t e mu t~p ~eat~on

by the theta function e(zt Q)2 is an isometry when these spaces are equipped

with Quillen's metries.

(2) the insertion theoremt which relates, for any line bundle ~ on X

and any point P in X, the Quillen metrics on DEI a~ and DET a~ 8 o-(~P)

These facts are direct consequences of the expression, ci 1a Riemann-Roch­

Grothendieck, of'.the curvature of determinant line bundles equipped with

Quillen metries (at least when g > 2 ).

The properties (1) and (2) are closely related to the work of Faltings

on arithmetic surfaces. The property (2) asserts for instance that the metric

I1 • 11 F on det a~ def ined by Fal tings i8 related to the Quillen metric

11 .' 11 Qby the formula:

(g = genus of X;' d = degree of' l; ).

The " sp in-1/2 bosonization formula"(++) allows then to prove that the

invariant ö(X) introduced by Faltings is related to the analytic torsion

of X equipped with the Arakelov metric by:

det' 6.ö(X) a C(g)' - ~- log A

The bosonization formulae are also related to the classieal werk ef

Klein on prime forms and to the theory of abelian functions on Riemann

surfaces (Fay's trisecant identities, ete ••. ).
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ANALYTIC TORSION AND HOLQMORPHIC

DETEßMINANTS

J.H. Bismut

Universite Paris XI

Kathematics, Orsay

This is an aceount of a joint work with C. Soule (IHES) and H. Gillet

(Chieago) [BGS].

Let M ~ B a fibration of eomplex manifolds with holomorphic map,
w

with smooth compact connected fiber Z.

Let ~ be a holomorphie veetor bundle on M.

Let AKM be the determinant bundle on B obtained by the direet

image eonstruction. By a construction of,Grothendieek, Knudsen and Humford,

AKM is eanonieally defined as a holomorphie line bundle on B. The fiber

A KM is canonieally isomorphie to
y

On the other hand, when the fibers Z and the bundle E are endowed

KMwith metrics, the fibers A ean be endowed with the Quillen metric usingy
the Ray-Singer analytic torsion.

In this situation, it is apriori not elear that AKM ean be endowed

with the Quillen metric aB a c~ metric.

From now on, I assume the fibres to be endowed with KAhler metries

Z
g

Dur first re5ult in [BGS] is

Theorem 1. The Quil1en metrie on A~ i5 smooth. The eurvature of AKM

is glven by

J Td(TZ)ehE
Z

where Td and eh are ealeulated with the holomorphie Hermitian

connections on r(l,O)z and E.
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Our second series of result 1s related to exact sequences. Let

be an exact sequence of holomorphic Hermitian vector bundles on M. Let

KM KM KMA
Q

,Al ... Am be the corresponding determinants. Then by Knudsen-Mumford,

A~ ~ (A~)-l ~ has a non zero holomorphic canonical section u (which

depends on v).

Theorem 2 [BGS]: The following identity holds

IIul1
2

- exp( J Td(Z) (eh e)l
Z

where ch(e) i8 the Bott-ehern Secondary invariant associated with the

exact sequence.

Assume now that (gZ,he ) and (g' Z,h'€) are two different cocy~les- of

metries on (T(l.O)z,e) where gZ,g'Z are KAhler.

Theorem 3 [BGS] If 1I 11 and 11 11-" are the Quillen metries associated

with (gZ,he ) and (g' z,h,e), then

11 11,2_ Z Z Z
~ exp I [Td(g ,g' )eh € + Td(g' (ch(e)}
~ 11

2
Z

where again are secondary Bott-ehern classes.

The proofs rely on a formalism whieh combines Qul1len's

superconneetions, Bott-ebern elasses and Ray-Singer torsion. They are much

in the spirit of the Atiyah-Singerlndex Theorem, 'where one equals a

quantity eoming from analysis to a geometrie objeet.

[BGS] Bismut-Gil1et-Soule: Analytie torsion and holomorphic determiant

bundles.
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OPERATOR rOB.M.ALISM IN HIGHER GENUS SURl'ACES
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Physics Departmen:t

Boston Universiiy

590 Commonwealih Ave.

Boston Mass. 02215 , U.S.A.

ABSTlUCT

ODe ofthe mosi fruitful approaches to sinng theory has been ihe use of comormal B.eld

theory. The resulis of Belavin- Polyakov and Za.molodchikov , a.nd of Friedan Marlinec

and Shenker rely heavily on the, use oi operator methods on the twice puneture sphere (

the Wiek rotated. version oi 51· x R ). The study oi sinng perturbation theory however

requires thai ODe analyzes coniormal neld theories on RiemanD suriaces of arbitrary genus.

So rar the methods employed. use'!unctional integration and algebraic geometry . In order

to extend the operator method to this setting, we have mund that the infinite dimensional

grusmannia.n. used iD. the study of the KP bierarchy [1] provides the natural Eramework to

exten.d operator techniques to bigher genus surfaees . The basic idea [2] involves working

always on & punetured dise where at the ce:D.ter one places the standard vacuum!er thc

neid theory being considered. , and on teh boundary circle , astate of the Fock space

which carries all thc geometrieal information concenUng tho surface and the bundles used

; Tbis is just & Bogoliubov transformation of the standard vacuum . The grassmann;an ,

through thc Krichever map give a rather precise characterizaiion of thc Fock space states

thai convey all the geometriea1 information. So rar tbis iormalismhas been used to obtain

a proof' of' chiral bosonization on higher genus niemann surfaces ., and to undersiand thc

action of' the Vtruoro algebra in bigher orders 01 sinng perturbation theory. The use

of the operator formaJism also provides a rather simple way of' obtaining the Polyakov

measure ror bosame sirings in terms of the Mumiord form and the decoupling of' spurious

siates . Further details and re!eren.ces can be mund in [3]

1
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CONCLupING REMARKS

Michael AtiYah

1. General observations

This has been a very stimulating conference with a great deal of

interaction between different subjects. Perhaps the following brief

overview may be helpful. Most topies centered on a relation between two

conseeutive dimensions. Thus conformal field theory (and elliptic

eohomology) dealt with circles (dim 1) on Riemann surfaces (dirn 2).

Vaughan Jones' work on knot polynomia1s produced invariants of knots (in

dim 3) from a·plane projection (dim 2). Moreover the 2-dimensional

theories used by Jones were elosely related (via statistical mechanical

models ete.) to eonformal field theories. F1nally Donaldson related

instanton invariants in dimension 4 to Floer homology in dimension 3. Again

the 3-dlmensional situations studied by Floer and Jones both eentered on

the fundamental group. An obvious challenge 1s to find adefinition of the

Jones polynomia1 whieh i8 directly 3-dimensional. One might reasonably

speculate that this should come from a field theory approach relative to

Floer's homology.

2. 2-dimensional Floer tbe0tY

It may be helpful to string theorists to explain a 2-dimensicnal

counterpart cf the Floer-Donaldson story. In fact this i5 a variant

(different boundary conditions - closed strings) of Floer'5 main work on

symplectic geometry.

Consider the supersymmetric non-linear (P -model. Instantans in this
n

2theory are given by holomorphic (i.e. rational) maps of tP
l

- S to tP
n

More generally we can consider rational maps cf aRiemann surface cf genus

g to (P . A classical question in algebraic geometry ls to understand
n

curves of genus g and degree k In (P . Consider for simplicity those
n

values of g and k for which this number is essentially finite (l.e. up

to automorphisms of ~P). Computlng this number, say N(g,k), 1s the
n

analogue of the problem Donaldson described of finding the number cf

Instantons (Yang-Mi1ls) on a given 4-manifold.



- 64 -

Consider now the free Ioop space L(CPn). If ~ is a R1emann surface

with boundary the circle SI we get a subspace EI C L(CPn) representing

I
boundary va1ues of ho1omorphie maps ~ ~ ~Pn' If Xz has boundary - S

(i.e. with orientation reversed) we get similarly a subspace EZ C L(~Pn)'

Clearly, if X - ~ U Xz 1s the elosed surfaee def1ned by glu1ng Xl and

IXz along S , then LI n LZ 1s a set of points on L whose cardiality

is N(g,k), where g - genus X and k the degrae of the resuiting map

[Actually WB have to be earefu1 to pick the right points in LI n LZ to

give this degree].

Sinee the definition of N(g,k) should be invariant under deformation

of the conformal strueture of X we look for a homology theory in whieh

EI and LZ represent homology elasses. Now EI .and LZ are both

infinite-dimensional but have so to-speak "half" the dimension of L . The

right homology theory is the Floer version of the Morse theory bullt on the

funetion L ~ U(I) given by the holonomy (of the standard 11ne bundle on

CP ) around a'loop. The eritieal points of this funetion are just the point
n

loops represented by ~P C L(~P ). The situation here differs from thatn n
eonsidered in Donaldson's lecture beeause the eritieal points are not

isolated but is oeherwise similar. The Floer homology should now be

identified with the homology of ~P . Given a cyele u in ~p we ean
n n

"grow" a Floer cyele E C L by moving off ehe point loops in the "positive

energy" or holomorphie direetions, i.e. eaeh point loop grows into a sma11

holomorphle disco An interesting and important feature of the Floer

homology is ehat E will return and intersect L aga1n in higher

dimensional cycles after having wound the "hole" in L (representing the

generator of wl(L) - wZ(~Pn) - l).

The Dona1dson procedure for eomputing EI n E
Z

consists in a

degeneration process shrinking SI to a point in X so as to decompose it

- - - Iin the limit into ~ u Xz where ~i - Xi/S is a closed surface of genus

gi t(gl + gz g). This corresponds to bringing Li into the standard

position of a L associated to u C ~P described above. Thus fina1ly
n

N(g,k) 1s computed by an intersection number u
l

. u
2

in (P
n

.

The conclusion of this process is now easi1y recognizable as the

classica1 procedure to ca1culate such numbers in algebraic geometry by

degenerating curves into simpler (reducible) curves, i.e. by going to the

bounclary of the moduli space •.
g
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The point of describing this example was to explain, by analogy, the

more difficult and interesting 4-dimensional Donaldson case. It also may

have some re1evance to string theory, but that I 1eave to the relevant

experts. I·just point out that the Hodge-deRham version of the F10er

cohomology is just the supersymmetrie Hami1tonian studied by Witten.


