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ODUCTO

I. Geperal Remarks

In the past decade there has been a remarkable interaction between
Geometry and Physics. This has been due mainly to the development of Gauge
Theories as a model for Elementary Particle Physics and the discovery that
Topological ideas are very important in these non-linear models. The
advantages of this interaction have been two-way and mathematics has
greatly benefited from the new ideas, concepts and techniques coming from
Physics. The most notable results in this direction have been the striking
new phenomena in 4-dimensional Geometry discovered by Donaldson using
instantons.

When this meeting was planned a couple of years ago there were many
aspects of thils interaction still in full development, but 1t was hard to
predict two years Into the future. In fact in the intervening period there
have been several new developments including quite different links between

Geometry and Physics so that the timing of this meeting is very topical.

2. w Deve e
I will now list briefly some of the new topics which should be
discussed during the meeting.

1. . Elliptie Cohomology Witten has shown how the index of the

Dirac-Ramond operator of the super-symmetric non-linear sigma-model gives

the elliptic genus recently discovered by Landweber, Stong and others.

2. Floer Cohomeology Using ideas from Yang-Mills theory Floer has
introduced new cohomology groups for a 3-dimensional manifold and Donaldson

has related these to his invariants in 4-dimensions.

3. ot Po a Vaughan Jones has produced a new polynomial

invariant for knots and links in R;. His method is based on ldeas from
Statistical Mechanics.



4, Quasj-Crystals The aperiodic tilings of the plane discovered by
R. Penrose appear to be closely related to recently discovered

"quasi-crystals” of alluminium-manganese alloys.

5. String Theory The theory of Riemann surfaces is intimately involved
in conformal field theories which are at the basis of string theory.

These and many other toplcs will be discussed during the meeting and I am

pleased we have experts in all these areas.



Knots and the Yang-Baxter equation

V.F.R. Jones

I.H.E.S.

In statistical mechanics one considers a system defined by a set of

‘states O , to each of which is assigned an energy E(0) . The partition

'function Z is then defined by 2 = | o ~BE(0)

o}
an explicit expression for Z as a function of B and any parameters

. It is important to find

involved in E(g). The real problem in statistical mechanics is that there
are infinitely many states so Z 1is expressed as a limit of sums over
finite regions. For what we have in mind in knot theory we will only have
to consider finite systems.

The most frequently considered examples in statistical meachnics are
defined on the lattice Z & Z g]Rz . We look at systems where the states
are defined by assigning one of a finite set @& of real numbers ('spins')
to each edge of the lattice. Thus, given a state & , each vertex is

a
surrounded by four "spins' as in the figure ¢ . The energy of the

b
state will then be 2 w(a,blc,d)(®) . So if w = e-Bw we may write
vertices
‘the partition functionas E= J ( | ] w(a,blc,d)(0)) . The model
: states vertices
may be varied by choosing different functions W(a,bls,d)(®) (which are

supposed to be the same at each vertex. Baxter found that he could often
solve models in which the w(a,b|c,d)(@) satisfied a certain equation,
known as the ''star—triangle" or Yang-Baxter equation. It is most suggestively
written as a matrix equation. One identifies w(a,b{c,d)(®) with an element
R(®) of End(V ® V), V being a vector space with basis indexed by & .
The Yang Baxter equation is then the equation in End(V 8 V ® V) :
R12(9)R13(Y+G)R23(Y) = R23(Y)R13(@+Y)R12C@) where Rij(e) is the natural
action of R(Q) on VOV 8V .onthe ith and jth places.

In knot theory, one frequently pictures (oriented) knots and links in

R; by smooth immersed circles in ZRZ with crossing data, eg.



. . . 3 ., .
. The equivalence of links in IR™ 1is translated into an

equivalence relation on pictures using the Reidemeister

moves (and 2-dimensional isotopy) of types I, II, III which are as follows

type I "/S;Z;_ > N )
/N

with all possible orientations

and reversed crossing changes

in the obvious ways.

Two pictures of the same link can be changed from one to the other by a
sequence of Reidemeister moves.

One can look for topological invariants of links by devising combinatorial
formulas from pictures which are invariant under Reidemeister moves. The
Alexander polynomial was first defined in this way. Another possible approach
is to treat the picture as a statistical mechanical system where the states
are defined by assigning elements of & to each edge. One allows
w(a,b|c,d) to be different for positive and negative crossings. The
question is then: for what choices of R 1is the partition function invariant
under Reidemeister moves? Here it seems necessary to define the partitiom
function by o

- -h [ 0d@
I (TT  w(able,d@e M

g€states crossings

. AN .
where the situation at a crossing 1is o . , & being the angle.
b

c
The Yang-Baxter equation turns up as the condition for invariance under
type III Reidemeister moves. Further conditions are imposed by the types I
and IT moves.

Solutions to the Yang-Baxter equation can be found by the "Quantum

group"

formalism of Drinfeld, Fadeev et al. It seems that to every
irreducible representation of every simple Lie algebra there is a knot-

polynomial, the result having been firmly established (by myself Wenzl



and Turazev) in the cases of 512 in all its representations and the
A, B, C, D algebras in their "natural" representation. One recovers
the recently discovered two-variable polynomialgof Lickorish, Millett,
Hogte, Ocreanu, Przyzetki, Traczyk, Freyd, Yetter, and of Kauffman. In
these cases there are simple inductive formulae for calculating the

invariants. In general it seems hard to calculate the polynomials.



R. Penrose -
Mathematical Institute
24-29 St. Giles

Oxford, U.K.

In 1966, Robert Berger proved a result which implies that there 1s no
general algorithm for decliding whether or not a given finite set of
polygonal shapes will tile the Euclidean plane. In the course of this work
he exhibited a set of 20,426 tiles which are gperiodic,i.e., they will
tile the plane but only in ways that are not periodic. This number was
reduced to 6 by Raphael Robinson in 1971. Robinson’s aperiodic set
produces tilings which are hierarchical in nature, and in 1973, following
quite different lines, I produced another set of six aperiodic tiles which
also tile only according to a hierarchical scheme. Unlike Robinson’s set,

which were based on squares, mine were based on regular pentagons. There

Fig. 5. Pattern with fivefold quasi-symmetry

Fig. 5,6,9 reprinted from the author's lecture in: Hermann Weyl 1885-1985,
edited by K.Chandrasekharan, ETH Zlirich and Springer-Verlag Berliin Heidelberg 1986



Fig. 6. Six tiles which can be assembled only according to the pattern of Fig. 5

N
are 2 ° distinct tilings with these shapes, and each of them exhibits a

5-fold quasi-crystallographic structure: there exist infinitely many
points about which each tiling exhibits 5-fold symmetry to any preassigned
degree of accuracy less than unity, and there are arbitrarily large
regions with exact 5-fold symmetry; moreover every finlite region of each
tiling is repeated infinitely many times elsewhere in every tiling with
these sama.shapes. In 1974 I reduced my set of 6 to a set of 2, referred

to as "kites" and "darts", and also to another aperiodic pair based on

Fig. 9. Kites and darts — a non-periodic pair



rhombuses. The tilings are again all 5-fold quasi-crystollographic in the
same sense, and exhibit other striking properties. For example, in the
kite-dart tilings, the darts form chains which, when thej close, always do
so in a precisely 5-fold symmetric way. In almost all of the ZR; tilings
all chains close. At most two chains can fail to close, and 1n only one
tiling are there two which do not close. The patterms exhibit alignments
in terms of broad and narrow strips angled at 36o to one another, the
width of the broad being T = %(1 + J/5) times that of the narrow. In each
direction, the pattern of broad and narrow is in accordance with a

Fibonacel sequence
. lTlrrlrrlTlTrlr. .
generated hierarchically according to the scheme

s T i=— 1T .
The different tiling patterns (and also the different Fibonacci sequences)
can be labelled by infinite sequences of 0s and 1s , where no ls

appear sucessively, e.g.
0100101000101001... ,

where two such sequences are regarded as equivalent if they differ only in
a finite number of places.

In December 1984, Shechtman and his associates at the National Bureau
of Standards in Washington announced a quasi-crystallographic icosahedral

phase of aluminimum-manganese alloy. The electron diffraction patterns
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closely resembled the Fourier transforms of the patterns described above,
as obtained by MacKay in 1982 and Levine and Steinhardt in 1984. Electron
micrograph pictures of thin portions of these materlals (and also of other
similar materials found subsequently) bear a significant resemblance to
the above patterns. A useful test of this is to examine the pattern of
broad and narrow strips that appear in the micrograpph pilctures and to
compare them with Fibonacci sequences, which, indeed, they closely follow.
This is most easlly seen using a description due to de Brujn and Pleasants
involving higher-dimensional cuble (square) lattices. For the Fibonacci
sequence the lattice points in 2-dimensions in a strip angled at 1 : T
are taken, while for the above-mentioned (rhombus) plane tilings, they are
the lattice points in a suitably angled (and positioned) slab in
S5-dimensions. A suitable slab in 6-dimensions yields an icosahedral
quasi-crystallographic pattern apparently resembling that of the
substances studied by Shechtman.

A set of four solids which appear to be icosahedrally aperiodic were
found by Robert Ammann in 1977 and could serve as a model for these
substances. Ammann also found other aperiodic sets of plane tilesg, one of
which tiles according to an 8-fold duasi;crystallographic scheme. Nissen
and colleagues in Zirich have seen an apparently 12-fold
quasi-crystallographic phase of nickel-chromium alloy. Tilings with such
12-fold quasi-symmetry can be exhibited, but I do not know of an
appropriate aperiodic set of tiles.

A puzzling feature of the physical existence of quasi-crystals in
nature 1is thaﬁ their assembly would appear to be necessarily non-local. To
assemble such a tiling correctly it is necessary, from time to time, to
examine regions of the assembled pattern which may be arbitrarily far from
the assembly point. My impression is that the growth of such substances

must be an essentially quantum-mechanical process.
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IHE DEFINITIONS OF CONFORMAL FIELD THFORY
Graeme Segal

I shall propose a definition of conformal field theory in two
dimensions which I believe is equivalent to that used by Friedan and

others.

§ 1. e de tio

The category @ 1is defined as follows. There is a sequence of
objects [Cn]nzo , where Cn is the disjoint union of a set of n
parametrized circles. A morphism Cn - Cm 1s a Riemann surface X with
boundary 4dX, together with an identification 1 : Cm - Cn -+ 3X. (Ve
identify morphisms (X,i), (X',1') if there 1s an isomorphism f : X - X’
such that f o i = 1'.)

Exemple

(1) The semigroup of morphisms. Cl‘» Cl falls into connected components
corresponding to the genus and the number of connected components of X.
The identity component € can be identified with the space of
real-analytic simple closed curves in the disc D = (z € € : |z| < 1}. E_
is a bounded domain in the complex vector space of of real-analytic maps

Sl + € , and the Shilov boundary of & is the group Diﬁf(Sl) of

orientation..-preserving diffeomorphisms of Sl. (cf. that the semigroup
2
(s € GL_(€) : |g| < 1) 1is a bounded domain in C" whose Shilov boundary

is Un.) (The group Diff(Sl) has no complexifications: € 1is the best
substitute avallable.)

(i1) The connected component of the space of morphisms C0 - C1

which are represented by topological discs can be identified with
Diff(Sl).

(111) The semigroup of morphisms C0 - C0 is the space of
isomorphism classes of not-necessarily-connected Riemann surfaces, the

operation being disjoint union.



Definition (1.1)
A conformal field theory is a representation of € , i.e. .a continuous
functor T from € to complex Hilbert spaces such that

n

(1) T(C) - T(cl)®n (= %" say) for n = 0;

(11) for each morphism ¢ ; Gm - Cn the operator T(&) : H@m - H®n

is of trace class;

(1i1) T 1s a *-functor In the sense that for each morphism

€ :C_~C, we have T(£)* = T(é), where £ : C, ~ C, 1is defined by the

surface complex conjugate to £ ;

(iv) T has the gollapsing property that i1f a morphism

£ : Crir ™ Cn+r is made into a morphism ! : Cm -+ Cn by attaching r
outgoing circles to r ingoing ones, then T(?) = trace T(£), where the

or
trace 1s taken over H .

If qe € with 0 < |q| <1 let £ denote the morphism C1 -+ C
represented by the annulus (z € € : |q] < |z| < 1), where the inner

boundary circle is parametrized by 4 - qaia. The pq form of a

1

sub-gsemigroupof € : p_p = .
" PaPq, T Paga,

Definition (1.2) The partition function ZT of the theory is defined by
zT(q) - trace T(p&). '
Condition (1v) above implies trivially

Propogition (1.3) For any theory T the partition function Z is

T
modular, L.e. 1f q = ™" with 1im(r) > O, then Z.(q) 1is invariant

when r 13 transformed by PSLZ(Z).

§ 2 Motivatjon: Wick rotation
Congider a two-dimensional Minkowskian space-time X 1in which space

is a cirecle. (Thus topologically X = S1 X R.) The group of conformal



diffeomorphisms of X 1s a Z-fold covering group of

&?.. Diff(Sl) x Diff(Sl). We expect a conformal field theory to be at least
a projective unitary representation H of 3" Let us restrict attention

for the moment to the subgroup G X G of §} where G = PSL (R). We expect
the positivity of energy to be expressed by the fact that the unitary action
of GXG on H is the boundary value of a holomorphic representation by

+
contraction operators of the semigroup GC x G. contained in the

C
complexification of G X G. Here G; - {g € GC : "g“ < 1}. This holomorphic

contraction representation restricts to a representation T of the

+ + + -
antidiagonal Gc - {(gl,gz) € GC X Gc - g2] with the

reflection-positivity property that T(g) = T(g)*. Conversely a

+
reflection-positive contraction representation of GC on H

"Wick-rotates" to a unitary action of G X G on H.

In our situation G X G 1is replaced by S} and Gc by the semigroup
E We have

Propogition (2.1) For any theory T the action of E/ on H can be

continued analytically to a projective unitary representation of

pL£F(SY) x DIff(SY) on H.

§3  Holomorphic theories: examples

It would be natural to define a holomorphic field theory as a

holomorphic representation of the category @ . That, however, would be too

restrictive. The category € has a fundamental central extension ¥ . The

-

objects are the same, but a morphism Cm - Cn is @ 1s a morphism (X,1)

* in € together with a choice of a point in the determinant line bundle of the

d-operator on X with its natural ingoing and outgoing boundary
conditions.

Definition (3.1 A holomorphic field theory is a holomorphic

-~

representation T of €.
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Definition (3,2) The level of T is the power of det(£) by which T(¢)
acts on T(Co) = €, where £ 1s a morphism Co -+ Co. (Observe that a

morphism C0 - Co is simply a compact Riemann surface.)

Remark We must allow representations with fractional level.
The partition function of a holomorphic theory of level ¢ will be a
modular form of weight ¢ in the usual sense, for some subgroup of finite

.

index in the modular group PSLZ(Z).

If T 1is a holomorphic theory then T ® T 1is a theory in the
original sense. It is conjectured that any irreducible theory is a finite

sum & Si ® 'i'i, where S1 and '1'1 are holomorphic theories which are

permuted by the modular group.

Example
Let LG denote the loop group of a compact group G. If HA is the
irreducible projective representation of LG with highest weight XA then

there is a canonical holomorphic theory TA with TA(C1) - HA' If HA is

the basic representation of LG then TA ® TA is the non-linear sigma

model (with Wess-Zumino term) based on G.

From this example we see the sense in wich an irreducible theory can

give rise to some "physical space". For the action of LG on HA @ l:lA
will be uniquely determined by its intertwining properties with ¥, and so

we automatically obtain operators parametrized by the "physical space" G.

§4 Primary flelds and field operators

Refinition (4.]1) For any theory T a vector % € H 1s a primary field if
it is an eigenvector of the semigroup E+ of elements f € € which extend

to holomorphic maps f : D - D such that £(0) = 0.

We then have T(pq) c o= q'aq'bw for some positive real numbers
(a,b) such that a - b € €. We call (a,b) the bidegree of ¢ .

Consider a Riemann surface X whose boundary consists of two circles:
dX = C' - C. Thus X ig a morphism £ : C1 - Cl' For each triple
(¥,z,dz), where X € X - 89X, dz 1is a holomorphic differential at 2z, and
¥ € H 1is a primary fileld of bidegree (a,b), we can define a trace-class

creation operator v(z) : H - H such that ¢(z)dza‘d§b‘ is an
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operator-valued differential form on X.

To construct #(z), choose a local parameter J at z such that
al(z) = dz. Let DE - {(xe€X: |6(x)|< e}. Then X - D, 1is a morphism
n : 62 - Cl, so 1t induces T(n) : H® H + H. Define #¥(z) : H+ H by
¥(z) - v=T(n)(»p ® v). This is independent of I because P 1s primary.
(Note that my #(z) 1is usually called T({) o ¥(z).)

§5 Moduli spaces of gurfaces

The space 51¥Diff(sl) of non-vanishing smooth probability measures

on S1 1s generally believed to be a complex manifold because it can be

identified with E+\€. Let us accept this.
Let HR; be the moduli space of closed Riemann surfaces of genus g
with a distinguished point. Let X be such a surface. Choose a holomorphic

.embedding D -+ X of the disc, centred at the base-point, with boundary a
simple closed curve C. There 1s a guriective holomorphic map

shoies(sh) - ENE -~

defined by cutting X along C and inserting an element of §£..

It is known that every positive energy representation H of Diff(Sl)
extends to £ ', and is the space of holomorphic sections of the bundle

(& x HO)/E+ on E+\E;. whose fibre 1s the subspace Ho of primary fields
in H. This bundle comes from a holomorphic bundle on !ng, for the bundle

g~ E+\€, is pulled back from the bundle on m-- whose total space 1s the
space of pointed curves with embedded discs. ngedan has argued that
holomorphic field theories correspond precisely to those holomorphic
bundles on the modull space of all disconnected surfaces with nodes which
are "equivariant” under the action of removing nodes by normalization. I
conjecture that such bundles are just the holomorphic representations of E:

which extend to holomorphic representations of the category 8.
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Floer's homology groups

S.K. Donaldson

This talk described some new, unpublished, constructions of A. Floer
(Courant Institute) and their application to Yang-Mills imnstantons over
4-manifolds.

Consider a compact manifold X devided into tWO pieces by a

hypersurface Y :

X, X,

If we have a linear differential equation (1st order) on X we can define
"Hardy spaces' H, , H_ : the subspaces of the fields over Y which extend

to solutions of the equation over Xl, Xz repectively. Global solutions

on X correspond to intersection points in H N H_ . For example take

the 9 operator over X = 82 = C U {} . Then

B o={ § az"}
a0 P
H N H_ = constants.
H ={ ] az2"}
nso

For a non-linear equation we can imagine a curved version of this: a space

of fields over Y containing "Hardy submanifolds" h , h_ locally modelled

1 .
on the "E sized" spaces above.

e




4

We congsider the case when X =X has a Riemannian metric and the equations

are the anti-self-dual equations for a Yang-Mills field over X ,
F=-*xF.

The gauge equivalence classes of solutions have a moduli space of dimension
8k =3 = 3 (b,(X) - b (X))

(k = top. charge). Suppose, for simplicity, that this number is zero. Then
under mild conditions we can define a differential topological invariant
dy € Z - the number of points in the moduli space, counted with signs. This
is independent of the metric on X .

Suppose Y < X 1is a homology J-sphere. Floer's theory defines groups

HF, a=0, 1, e 7

- formally the "middle dimensional" homology groups of the space €y of all

connections over Y . The Hardy sub-manifolds h_, h_< E} carry '"'fundamental

classes”
qx1 = [h,] € HFa;y
= |h HF,
clx2 (h_ ] € 8.5
There is a dual pairing between HF » HF, _ and the formula
o,y 8,y
q = q , €Z
X XI Xz

holds. That is, the matching problem for ASD connections along Y 1is

abstracted into the intersection pairing in Floer homology.

The groups HFa y are defined by generalising the Morse theory to a

function:

0] :'€§ —> R/Z .



w(A) 1is the Chern~Simons invariant of a connection A over Y , it's
gradient vector field is *FA and the integral curves of this ~ the

"steepest descent paths" are solutions A(t) of :

9A
ST U7 E

The key observation is that this is exactly the ASD equation for A(t)
regarded as a connection over Y X R .
The critical points of ¢ are the flat connections, corresponding to

representations
p: TI'1(Y) —> SU(2) .

We assume these fo?m a discrete set. Floer defines a complex
(8zZ.<p> 4d)

with generators the isomorphism classes of irreducible representations. To

each pair p, 0 we attach a relative index in Z/8Z . This is the Fredholm

index of the linearisation of the ASD connections in the topological sector
consisting of connections over Y X R asymptotic to p at =® , te ¢ at
o , If p, 0 have relative index ! the component of d from < p> to

< 0 > 1is defined to be the (signed) number of ASD solutions in this sector.
Floer proves that d2 = 0 and the homology groups HFa of this complex

?
are independent of the metric on Y .

The invariants 9y~ are defined by choosing complete metrics on the
i

Xi as shown:




Let n, be the number of solutions to the ASD equations on X, asymptotic

to p at o . Then

E np <p>

is a cycle in the complex whose class in HFa y is independent of the metric

on X, . This is defined to be . Similarly for X, - The definitions are

q
X

. + - .
formally related to the h , h as follows: deform the metric om X by

pulling out the neck:

Uy —=—> ©

In 'ey this corresponds to flowing h, down the gradient field of ¢ and
h_ up the flow. This localises the intersection points h, N h_ at the

critical points p :




The Modular Geometry of String Theory

and Conformal Field Theory

Daniel Friedan

We (S.H. Shenker and myself) have reformulated two dimensional
conformal field theory, and thus string theory, as a certain kind of
geometry on the universal moduli space M of stable projective curves.
From the intrinsic algebraic geometry of M we construct a natural
collection of noncommutative algebras Aé , without identity, indexed
by one rational number ¢ . The modular group ﬂ1(M) acts naturally
by automorphisms of each algebra AC . A modular geometry is defined to
be a bilinear functional H € (Ac 8 Ac)* _(Ac being the complex conjugate
algebra), which is (1) multiplicative, i.e., H(ab, cd) = H(a,c) H(b,c)
(factorization); (2) invariant under- w1(M) (modular invariance) and
(3) satisfies H(a,a) 2 0 whenever a = a {(reflection positivity). The
conformal field theories with conformal central charge c are idemtified
with the modular geometries on A, - The ground states of bosonic string
theory are the modular geometries with c¢ = 26 . Fermionic string theory
and superconformal field theory are formulated as perfectly analogous

supermodular geometry as the supermoduli space of super Riemann surfaces.

We are motivated by two types. We want to do nonperturbative string
theory by extending the modular geometries to some space of infinite genus
Riemann surface. This might.be accomplished by completing the algebra
(Ac, w1(M)) using the geometry H . The uniqueness of the string ground
state might then be expressed as the weak equivalence of all such completions
(for c = 26.). We also hope to find an arithmetic version of modular
geometry over the ratiomal field and its localizations. The algebras Ac
are constructed algebraically from the maduli space M , and M 1is an
arithmetic variety, so the At are defined over the algebraic integers
and an arithmetic version of modular geometry should be possible. It would

then be possible to do the real (archimedean) string theory in terms of the



global rational theory and its localizatioms at the finite primes.

Construction of the modular algehras Ac

Let 111g be the moduli space of nonsingular, connected projective
curves (compact, connected Riemann surfaces) of genus g . Let ﬁg be

—

the moduli space of stable connected projective curves of genus g . llIg
is a pnojeatjivé(compact) arithmetic variety. The compactification divisor

Sg = fl-'lg - mg consists of the curves whose only singularities are nodes

such that if the nodes are removed all the resulting components of genus 0
have at least three punctures. For a curve § Ez%é the normalizing curve
v(8) 1is the nonsingular curve which is made by removing all the nodes
from S and then erasing all the resulting punctures. A conformal field
theory cannot distinguish S from v(S) so we would like to identify S
with v(S) . But V(S) need not be connected, we must expand the moduli

space to include the curves with more than one connected component.

The topologies of curves are described by the sequences of nonnegative

-

integers n = (no, n, ...) where by n_ is the-number of connected components

of genus g . The sequences ;1. ~must satisfy 0 < E ng < o,

g
- 2 n
Let ®(n) =] | Sym
g=0
- ;

topology 0 , Sym (+) being the n—-fold symmetric product. Let

g(11’[3) be the moduli space of smooth curves of

- © o, - .
R (@) = ' T Sym & (ﬂlg) be the moduli space of stable curves of topology a .
g=0 ' '

‘&(1_1’) = i(;l’) - R(H) is the compactification divisor. Write &R = g R(ﬁ’) y

i

R() and & = 29(;) . Normalization is then a natural maf)1
n
v : % —> ® . We will define the universal moduli space M to be the

= U
-
n

quotient ®—> M obtained by identifying ¥ with R via v .

Let 8‘-(3,3) =§'—(E) n \)-1 R () , be the singular curves of topology
7 whose normalizing curves have topology D . Write m ——> n  iff
-
{8‘(1:1,;) # ¢ . This makes the topologies into a directed system, over which

we will take limits.
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write R'@) =R@_U,&@ , R'(M) = U R@ , R'{@ =~R@_U, R@
m=n mn m-n

Then V®R(D)) = R'(R) so it makes sense to make the quotient
R'(@) —> M(n) by identifying §' (@) with R'(2) via v . M) is
_compact, and there is a natural map M(g) —_— M(H) whenever m —> 1 .

- - - » -’ .
so we can define the universal moduli space M = L;m M(n) as a direct
T)1~=00

- - » . - - - *
limit of compact varieties. M 1is connected because each R(n) 1is

- - . - - -
connected and for any m, m' there exists n such that m —> n and

-, -+
m —>n .

The universal moduli space M is a commutative semigroup without
identity, where multiplication is given by the disjoint union of curves.
Clearly M(n) M(n') = M(@ + n') . Write 0 = (1, 0, 0, ...) . The single
point M(D) = M, 1is a digstinguished element in M , the unique curve of

genus O , the Riemann sphere.

Next, we define the finite coverings of M . By a finite covering
Mp L5 M we mean a directed system of finite coverings Mp(l-;) —> M)

with M_ = lim M (@) such that M_ is a semigroup (not necessarily
P P P p —
commtative) and p is of a homomorphism at semigroups. This amounts to a

collection of finite coverings ip(g) —s 2@ by connected spaces
R (@ , ramified only at'&(gj and at the singular locus {(the curves in
ﬁ(g) with nontrivial automorphisms), along with lifts
vp : p“(%@ﬁ))  — p-I(R'(H)) of the normalization map V .
The universal finite covering space is the inverse limit

M.ov = lim Mp over the finite coverings. The inverse limit of the
Do

covering groups is the fundamental group WI(M) » which we might call
the universal modular group. Mcov is a connected noncommutative semigroup
without identity. It is noncommutative because the covering group of

o9
R(2) includes the permutation group | | Sn . Going to the covering
g=0 g
. . Ng
space unwinds the symmetric products Sym Gﬁg) .
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Let XH be the Hodge line bundle on M , i.e. the determinant of the
vector bundle of holomorphic differentials on the curves. It can be checked
that AH is well-defined on M , because it behaves well with respect to
V . In fact, C1(kH) generates HZ(M) so all line bundles on M are

c/2
powers of A, . Let L, (RH)

c , LC is not actually a line bundle on M , but it is well~defined on

for ¢ a rational number. For general

suitable coverings at M , so it lifts to a line bundle Lc on Mcov .
Since AH behaves well under disjoint union of curves, L, —> M is a

homomorphism of noncommutative semigroups without identity.

Let F(Mp(ﬁ),Lc) be the holomorphic sections of L, over the covering
Mp(g) of M(d) . This is a finite dimensional space because Mp(;) is
compact. Define AC(E,O) - F(Mp(g),Lc)* and define the modular algebra to

be the double limit

. . -
Ac = lim 1lim Ac(n,p)

< >
P o

N I‘(Mccw" Lc)* *

Ac is a noncommutative algebra without identity because the semigroup

structure of .Lc makes F(Lc, Mcov) into a dual algebra. That is, the

multiplication L XL —-—> L over M X M —> M becomes a
¢ ¢ (3 cov cov cov

dual multiplication F(Lc, Mcov) _ F(Lc, Mcov) ® F(Lc’ Mﬁov) which

becomes an (associative) multiplication law Ac 8 Ac —_ Ac . Ac is

bifiltered by the finite dimensional spaces Ac(g,p) where .

Ac(g,p) AC(K,Q)': AC(E + H',p) . The modular group 'WI(M) acts on F(Mcov’
(by permuting the sheets of the covering) so ﬂ1(M) acts on AC by algebra
automorphisms. There is a natural element a, € Ac given by the restriction

map a_ : (M Lc) —_— F(M(a), Lc) . Multiplication of sections

cov’

(Lc e = LC 2] Lc ) provides natural homomorphisms Ac e, —> Ac ] Ac .
1 72 1 2 1 72 1 2
The algebras Ac , with action of ﬁ1(M), provide all the data needed

to describe modular geometry and thus conformal field theory. A modular

geometry is a bilinear function H € (Kc 8 Ac)* satisfying:
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1. (Factorization) H(ab,cd) = H(F,c) H(F,d)
2. (Modular invariance) H(?&in) = H(é;b) for Yy € w1(M)
3. (Poéitivity) H(ﬁ,a) 2 0 whenever a = 3

4, (Normalization on P' ) H(ac,ac) =1

Note that H 1is not assumed hermitian or positive (except omn the real
elements a = é’e Ab ). There is a natural complex conjugation Ac —_ Kc
because there is a natural complex conjugation on moduli space.(but over

the rationals complex conjugation is only determined up to conjugation in
the Galois group Gal(Q/Q) . A modular geometry H can be regarded as an
element in TTE:;;:Z;) 8 T(M__ ,L) so, by mltiplication of sections,
determines a section Z(H) € F(Mcov’ E:IG Lc) . But invariance of H under:
w1(M) implies that Z(H) really lives on M, i.e. Z(H) € F(M,Lc 8 Lc)

Lc 8 Lc is a well-defined real line bundle over M . Z(H) 1is the partition

function of the conformal field theory corresponding to the modular geometry
H . The factorization condition on H implies the factorization of the

partition function 2 =2 for curves S, S' . The normalization

S zS' sus
condition on H is needed because the partition function in the sphere
should be ZP'

unitarity of the corresponding conformal field theory.

= 1 . The positivity condition on H 1is equivalent to

It is known that conformal field theories and the modular geometries
exist only for certain values of ¢ . For example, if ¢ <1 then ¢ must
be of the form ¢ = 1-6/m(m+1) for m€ Z, m 3 2 . Examples are known for
all of these values of ¢ 1in the discrete series, and for many values of
c 21 . (All known conformal field theories have ¢ rational.) The set of
c for which modular geometries exist form an additi§e semigroup of the
nonnegative rational numbers (including the above discrete series). The

maps Ac e > Ac 8 Ac , coming from Lc . L 8L , make the
172 1 2 172 %1 ©
set of modular geometries also a semigroup. This is just the tensor product

of conformal field theories. One rather ambitious project is to find



generators and relations for the semigroup of modular geometries. In
addition to the discrete series, examples of modular geometry are given
by the conformal field theory made from the Calabi-Yau spaces with vanishing

first Chern class and those made from representations of affine algebras.

The modular geometry formulated here should be called rational modular
geometry because only finite coverings of moduli space are allowed. The
corresponding "rational" conformal field-theories are dense in the space
of all known conformal field theories, except possibly those made from.

smooth Calabi-Yau spaces. This motivates the following conjecture:

Conjecture: The space of rational modular geometries is an arithmetic
space whose completion over the real numbers is the space of all real

conformal field theories.
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STRINGS ON ORBIFQLDS
C. Vafa

In attempts to reconcile string theory with experiments one approach is
to consider a compactification scheme. Toroidal orbifolds, which are
quotients of a torus by finite groups, provide examples of essentially flat
compact spaces on which the string theory can be solved exactly. These
provide toy models for string compactification, which could potentially
describe the real world. i

One can compute some interesting topological invariants for orbifolds.
For example the Euler Characteristic of an orbifold is given by (computed
using string theory):

X(/O) = Thr ) X0 )
gh=hg

Where Mg h is the subspace of M fixed by both g and h. This agrees
with the Euler characteristic of the Elliptic Cohomology computed by
Hopkins and Ravenel. It 1s in fact the equivariant Euler characteristic of

the loop space with respect to the Sl-action on the loop space which
reparametrizes the loop. .

In string computations on orbifolds, at the torus level, one naturally
encounters Interesting modular forms, such as the Klein form. These can be
used to construct modular units for higher level subgroups of SL(2). It is
known that certain quadratic relations are needed in this construction,.
These relations can be understood as the condition for the vanishing of
(1/2)p1 of the corresponding representation of the orbifold group (in the
case where the group is cyclic), by relating it to absence of global 2-d
anomalies.

Probably the most interesting orbifolds are asymmetric orbifolds, for
which roughly speaking, the left-movers are on one orbifold, and
right-movers on a different orbifold. Strictly speaking, these correspond
to string theories which cannot be thought of as propagating in a
background target space. This can be shown by constructing examples in

which the character valued index of Rarita-Schwinger (and similar
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operators) is not a constant, whereas in the target space case the
character is a constant. Also, it is interesting to note that the moonshine
module is the Hilbert space of an asymmetric orbifold based on the Leech
lattice.

We also note that orbifolds provide examples in which one can

explicitly evaluate the elliptic genus.
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Non commutative differential geometry

A, Connesg’

We first discuss the example of a non commutative topological space
Y which arises as the space of labels for the Penrose tilings: Y 1is

the quotient of K = {(a\))\)elN > 8, € {0,1} , with- aq = 0 if a, = 1}

by the equivalence relation a ~b 1iff a, = bv for all v but finitely
many. The algebra C(Y) of continuous functions on Y 1s now replaced by a
non commutative C* algebra A , we compute its K theory as an ordered
group and find 22 ordered by {(n,m); n-+.mx > 0} where o is the golden
number. This space is O-dimensional and by the results of Bratteli, Chen,
Effros, Handelman and Elliott it is classified by the above K theory group.
We next discuss the non commutative torus with phase © whose algebra Ag

is presented by two unitaries U and V satisfying the relation

VU = exp 2110 UV . The Rigffel-Powers projectionAis of the form

e = f_1(U)V-.1 + fo(U) + f1(U)V and the first Chern class formula

ci(e) = 7%? T(e(61(e)62(e) - Gz(e)51(e))) gives an integer; where 61and 62
are the differentiations &, (U"V™) = 2min U"V" . SZ(Uan) = 2mim U™V"  and
where T 1is.the trace T(U v =0 if (n,m) # 0, T(1) = 0 . We discuss

the link, due to Bellissard, between the integrality result and the integrality
of the conductivity in the Quantum Hall effect. This non commutative space

has a "manifold shadow” obtained by looking at the moduli space for connexions.
on bundles which minimize the functiomal <t G@z) where @ is the curvature.

The result is:

Thm. (M. Rieffel | A.C.) 1) Let €& be a projective module over Ay then

3€; irreducible such that €=€8 ... 88&y . 2) The moduli space for minimal
n timés - )
connexions on £° modulo the gauge group is the quotient of the torus (II !

by the action of the symmetric group.

We then explain how the basic data (h, F, €) in K homology gives rise to

quantized differential forms, where ordinary differentials da are replaced



by operator commutators da = i{F,a] . We then discuss the multiplicative
analogue of X homology as a possible mathematical formulation of quantum
field theory. We give evidence for that in the low dimensional case where

the space is s! and where we construct using the V. Jones algebras
associated with the numbers & cos2 si, an analogue of the second
quantization (based on Clifford algebfas). The basic formulae there are

the following, the Fourier components of a current are obtained by setting

Tn to be the derivation of the C* algebra generated by the ei's , defined

by: (%)

T =] ™, ]

where xén) is defined by induction, as x£n+1) = [xk, xﬁfi] and
(1) _ 1 (0)
a IS TS DL VORI M

2

(*) here the ei's are the V. Jones projections, i € % Z , with

e.e, le =Te, ee, =ee,  if |i-j| 21 .
1 lti 1 1 1] ]1
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*On the local euciidean path connectivity of configuration spaces
for quantum gravity®

0. Reula
Max-Planck-Institut fir Astrophysik
Kari-Schwarzschild-Str. 1
8046 Garching b. Mlnchen, FRG

Abstract:

It is argued that local euclidean path connectlvity for the configuration space
of a quantum theory. namely the property that two sufficiently close points can
be connected by a solutlon to the eucildean field equations having them as
boundary values. is Important for a path Integral formulation of the theory and
thus should be checked for any candidate configuration space.

It is shown the existence of at least one candidate configuration space for
quantum gravity with the above property. This Is not only done to Indicate the
type of analysis that should be carried out for each candidate. but alse to
study some of the propertles we expect to be generic for conflguration spaces
with the above property.
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L_Introduction:

inspite of Intensive work for several decades we still lack a quantum theory of
gravity. | personally blame for this fallure the lack of any experimental
evidence to gqulde us, but reallzing that this is a very unproductive stand |
shall advocate here that perhaps we should blame the lack of some deeper
understanding of space-time and that perhaps by trying different ways of
describing It we could find one where quantization I8 possible. Using our
present understanding of the quantization process | shall advocate then that It
Is a question of choosing the right configuration space. in this spirit it Is
then Important to find suitable properties to Imposa on the possible
conflguration spaces and thus to reduce the member of bailable candidates.

In the‘ path Integral formutation of quantum fleld theories the probability of a
system to evolve from a point A in configuration space to a point B Is given
by an ‘Integral® of the exponential of the actlon functional over all path
connecting A with B. In general such an Integral Is not weli defined and so
a related one. where the usual action Is replaced by the euclidean one. Is
employed. Calculations are then usually performed using a saddle point
approximation which essentially consists of an expansion around a classical
eucildean path connecting A with B, (that is a solution to the classical
euclldean fleld equations with points A and B as boundary conditions).
provided such a path exists,

The existence of such a path Is not only important for computational purposes
but also for the formal aspects of the theory since in general we know how
to make sense of the eucildean path integral only In the sense of the above
approximation. Thus we would llke to Impose the existence of such paths as
a primary property to be satisfled for the candidate configuration spaces. As it
stands this property Is probably too strong (For non-linear theories we axpect.
for large enough field configurations, the appearance of singularities.) and so
we shall Impose a weaker one., namely the local euciidean path connectivity.
which only demands the existence of such paths for close enough points In
conflguration space.

In what follows we explore this property for a partii:ular configuration space for
quantum gravity. The aim Iis not so much to advocate for this particular
conflguration space as the appropriate one for quantization but rather to
indicate the type of analysis that should be carried out for sach candidate. In
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sectlon || we deflne a set of configuration variables and use them to reduce
the field equations to an elliptic system. We then. In section Hl, apply the
theory of elliptic equations to show eaxistence of solutions with these variables
as boundary data. We only consider boundary data sufficlantly ciose to the
trivial one. (that Is we are only considering the above property for a small
enocugh neighborhood of the flat conflguration), other cases require a more
olaborated treatment but the same fundamental analysis.
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IL.__Elliptic Reduction for the Euclidean Eingtein Egquations

Followl‘ng a similar procedure to the usual one for the Lorentzian case we fix

a flat positive definite four-metric e,, In M, a slab region (w.r.t. a,) In ‘R,
and define for any other metric gy, In M: &% := &® - v§"g® and ¢* :=
vy6°2. where V@' ls defined by emcg(@) = VI egpeg(@. and ¥, Is the

covariant derlvative associated with e,,. V.o,, = 0.

in terms of ¢°° and ¥® the Einstein tensor becomes.
(Y Vg G®(g) := E®(e) + (terms In T w°. ¢

The advantage of this decomposition Is that E® i3 an elliptic map, and as we
shall see by Imposing certain boundary conditions on ¢‘b we can make ¥° to
vanish on M which Implies that any solution to E‘b(tp) = 0 satisfying certain
boundary conditions is aiso a solution to the Euclidean Einstein aequatlons.

Let (M.,e,,) be an Euctldean slab region of . Then there exists a
neighborhood. v. of zero In Hy _{(M). such that for any ¢*®av satisfying. in
a weak sense, E®(¢) = 0. T(n%nyve®
have G*®(g(e)) = 0.

= 0, and T(h%w® = 0 we also

Here T denotes restriction of fialds In M to fields in aM. The vector n® Is
the transiation w.r.t ey, normal to 8M. and hy, = @gy=NaNy. Hj (M)
denotes a welghted Sobolev space [Y. Choquet-8ruhat & D. Christodoulou].

Braof;

We must show that the terms in ¢. and vy In (1) vanish. This Is done by
showing that ¢ itself vanishes in M. Using Blanchi's Identity and the vanishing
of E®(6) we obtain a linear. alliptic equation for ¢°. L% (¥ = 0. Since

(6. v% > wa)(w) I8 a continuous map from H, (M) x H, o(M) to
Hg,2(M). Lb(¢=0)(“” = Aawb is an Infective map for the boundary conditions
r(nbn"v.wb) = -r(h‘bwb) = 0. and the space of Injective operators is open.

we conclude there exist a neighborhood of zero., V C Hj _4(M) such that i
¢aV. then L¢ ias ailso Injective and therefore wb = 0 on M,

We could have choosen for the above theorem any other boundary condition
ensuring the Injectivity of the flat Laplaclan. The relevance of this cholce willl
be appreclated In the next section.
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ll__Existence of Sotutions

Here we use the Implicit function theorem and the theory of linear elliptic
equations to show existence of solutions to the reduced system for smalil
enough boundary data.

Existence Theorem.

Let (M.e,,) be an Euclidean slab region of R?. There exists a neighborhood
of zero, VeHs,p .1(3M) such that for any +®Pev. a symmetric 2-tensor in aM,
with D.&“’ = 0, there exists a unique ¢‘°=H3'_1(M) satistying.

(2) ay E%¢) =0

B)  TC(nyntvaw®

0
e Thw® = o0

@ T(h®hPe%H - &% = 0.

Here D, is the Invarlant derivative in 8M assoclated with the flat Iinduced
metric h,,. In equation 2.b) all second order normal derivatives have been
substituted using 2.a). Conditlon Das‘“’ = 0 is no loss of generality.

A .

The set of all symmetric two-tensors ¢ in Hg/2,-1(S). where S is one of the
A

sides of the slab. such that D,ct‘b = 0 Is the particuiar configuration space

we mentloned in the introduction.

Here we merely sketch the proof of the above theorem. A detailed proof can
be found Iin [O. Reula]. Consider the system of equations (2) as a
function of ¢*® and 3"’. F(¢.$) into a certain product of Hilbert spaces Y.
We have F(0.0) = 0 and it Is not difficult to show, using certain properties
of weighted Sobolev spaces that F s a ¢' function of both arguments. It
can aiso be shown, using the theory of linear oelliptic equations that the
- differential of F with respect to ¢ at ¢ = 3 = 0. DFy(0.0). is an
Isomorphism between Hy _y(M) and Y. But then the Impiicit function theorem
accerts the existence of a neighborhood of Hg,, _1(8M). V. such that there
exist a C! function & > 6($) from V to Hy _;(M) satistying F(6($).8) = 0.
and the theorem l|s proven.
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I¥. _Conclusion

We have presented a conflguration space that at least In a neighborhood of
the trivial configuration satisfy local eucildean path connectlvity. Can this resuit
be generallzed to arbitrary points In configuration space? This conflguration
space is In some sense the tangent space to the one of Interest and it is for
this second one that the question should be formuiated. For this one we
belleve that the answer Is aflrmative. is this conflguration space big enough.
in the sense that any sufflclently small solution to the euclidean fleid equations
can be obtalned as a path connecting two points on t? I we restrict the
ciass of solutions to be asymptotically Schwarzschild up to order 1/r then that
Is the case. On the other hand, [t we assume that our solutions admit a
*powers of r" asymptotic expansion then one can show they have this
asymptotic Schwarzschild behaviour. This fact also suggest that we cannot
connect to three—metrics with different masses, in the ADM sense. and so for
a configuration space to be a bailable candldate it must be that Its elements
do not have a definite mass.

This configuration variables. namely the set of all divergence free. symmetric
2-tensors In Hg,p 41(S). have been stripped of almost all its gauge freedom.
and so it Is a gauge dependent space. The reamaining gauge freedom can be
fixed by requiring for example that the tensors be trace free. This fixing
requires gauge transformations (dltfeomorphlsms)' which also move the
boundaries and so they are related to the time slicing or parametrization of
the theory. It does not seem to be possible to obtain. from these variables,
gauge Independent. 1.e. fully geometrical quantities. They can be obtalned
once a whole classical solutlon is computed. but for that we need two points
in configuration space. It is clear then that in the quantum domain we could
obtain them only In a semiclassical approximation. !t would be nice to obtain
a configuration space consisting of geometrical objects and with simitar
propertles to the one above.

In the existence theorems above we have Ignored the constraints,
what happenad with them? The equations that we cal! constraints In the
hyperbolic case still are there In the elliptic case. but they are not
constraints anymore. Thaey can constrain Initial data. for they have up to first
order normal derlvativas. but not boundary values. As In the hyperboilc case
they can be obtalned in the reduced plcture as normal derivatives of wb.
Thus. T(ngn°9,¥® Is the scalar constraint and t(n°h§v.w?) the vectorlal one.
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The scalar one |3 part of the reduced system. equation 2.b). while the
satisfied! Note that the reason one can solve at all for the scalar constraint is
that It contains only quadratic terms in the normal derivates (no linear ones).
and since we take the differential at zero normal derivative they do not
appear. This point Is Important. for it we would'try to show existence for
other regions where we could not choose zero normal derivatives (as is the
case for a ball), we would have to choose different boundary variabies.
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Remarks on the Landweber-Stong elliptic genus

Don Zagier

In algebraic topology one studies genera, which are ring homomorphisms from the
oriented bordism ring Qio to a Q-algebra R (commutative, with 1). To a genus

<o:ﬂio - R one associates the following three power series with coefficients in R :

(i) g(x), an odd power series with leading term x, the logarithm of the formal group

law of @ (this means that the formal group, whose definition we do not rep§a$1here,
2n, x“M
2n S0 ) 20+
hence, since the classes of the CP generate Q. ®Q, determines ¢ completely.

equals g-1(g(x) +g(y)) ). It is given explicitly by g(x) = ano(p(CP and

(ii) P(u), an even power series with leading term 1, the Hirzebruch characteristic °

power series of . This means that if (” denotes the stable H#*(:;R) -valued expo-

nential characteristic class on oriented bundles characterized by (P(£) = P(c1(£)) if
& is a complex line bundle (regarded as a real 2-plane bundle), then the genus of an
arbitrary oriented manifold M is obtained by evaluating @(P(TM)' on the homology funda-

mental class of M.

(iii) F(y), a power series with leading term 1, the KO-theory characteristic power

series of . This means that if “F denotes the stable KO(-) ® R-valued exponential

characteristic class on oriented bundles characterized by F(£) = F(§ -[2]) for

"as above (this makes sense because & -[2] 1is nilpotent in KO(BE)GII, as one sees by
applying the complexified Chern character), then the genus of an arbitrary Spin mani-

fold is obtained by evaluating “F(TM) on the KO-homology fundamental class of M.

These three power series determine one another by the formulas

u u/2 u, -u
M m P(u) = PR F(e +e -2) ,

where g-1 denotes the inverse power series of g.

Recently, a particular class of genera has come into prominence through the work
of Landweber, Stong, Ochanine, Witten and others. These genera are characterized topo-
logically by the property that @(M) vanishes if M is the total space of the complex
projective bundle associated to an even-dimensional complex vector bundle over a-closed
oriented manifold, and numerically by the property that the power series g'(x)-2 is

a polynomial of degree sS4, i.e., that
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x d
(2) g(x) = f :

7 TS for some &6,¢ € R .
0 = £

(The equivalence of these two definitions is due to Ochanine [3].) Since this is an

elliptic integral, such @ are called elliptic genera. Landweber and Stong [2] dis-

covered that there is a particular elliptic genus with values in the power series ring
R = Q[[q)] satisfying:

(a) For rz21 the coefficient of yr in F(y) belongs to qzrf1R .

(This, or rather the weaker statement that the coefficient of yr is divisible by qr !

for r22, arises from a certain natural property of the above-mentioned KO-character-

istic class “F which we do not formulate here.) Based on numerical computations, they
conjectured that condition (a) characterizes the genus in question up to a reparametri-
zation (i.e., up to replacing q by aq+bgq? +... with a#0) and that with a suitable

choice of parameter one has
(b) F(y) has coefficients in Z[[q]].

By what was said in (iii), this means that the genus takes on values in Z{{q]] for all
Spin manifolds. These facts were proved by D. and G. Chudnovsky [1], whose formulas
show that with a suitable normalization one also has

(¢) The leading term of the coefficient of‘yr in F(y) for r21 is _q2r-1 , and

(d) The genus takes values in the subring ME(FD(Z)) < ¢({q]] of modular forms on

r,(2) with rational Fourier coefficients.

(We recall basic definitions about modular forms below.) In particular, the & and ¢
of equation (2) are certain modular forms (of weights 2 and 4); since Mg(TO(Z)) is
known to be the free polynomial algebra on 6 and €, it follows that the Landweber-
Stong genus is universal for all elliptic genera. This universal, modular form-valued
elliptic genus has been the object of considerable interest; it gives rise to new
cohomology theories (the "elliptic cchomology" of Landweber, Stong, and Ravenel) and

to connections with index theory, string theory, etc. The purpose of the

lecture was to describe & varie;y of formulas for the power series g, P, and F
associated to the Landweber-Stong genus (and in particular, easy proofs of the properties
(a)-(d)). The . proofs use ideas from the theory of elliptic functions and modular

forms.

THEOREM. Let R=Q[[q]]. Then the following five formulas define the same power series
P(u) €R([ul]:

Gf K
(3) P(u) = 1 - — u
k>0 2 k-1)!
21k
) P = exp( ) zg}iuk) ,
k>0

2|k
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(5) P(u) = _u with g given by (2) ,
g™ (u) '

® a2 -nt
u/2 TT-[ (1-q ) ]
sinh u/2 q=1 L(1-q eu)(1-q e ’

(6) P(u)

u/2 T u ., -u r
(7) P(u) m'[ 1 - rzq ar (e +e ‘2) ] s

where Glt’ Ek’ 8, ¢ and arE R are defined by
k-1

* * 2 -1 k-1 n
c.nc(q)=—fa+2(2d)q,
k k e N PR

: 24d

- . n/d k -1 n
G = G 7 B L ( % (=1 ) ’
na!l ‘din

24d
£ = -é{cz+754) = ] ( y d3)qn,
n21 * din
. 24n/d
(8) . _ z qm(2r-1) (1 +q2m) - Z z [(‘é’(d""l)"‘t) + (%(d~3)+r)] qn
r - (1 _qu)Zr a1 dln 2r-1 2r=-1
24d

(here Bé = %-, B4.= - 5%-,... aré Bernoulli numbers and { denotes a sum over
n

positive divisors of n). The genus with characteristic power series P(u) satis-

fies properties (a)~(d).

Each of the five formulas in the theorem describes some aspect of the genus with
characteristic power series P(u): (3) and (4) describe the genus in cohomology and
make the modularity property (d) clear (since Gﬁ and Ek are the Fourier expansions
of well-known Eisenstein series, as recalled below), (5) shows that the genus is
elliptic, and (6) and (7) describe the genus in K-theory and (both) make the properties
(a)=(c) evident. (To deduce (a) and (c) from (6) one has to split off the terms n=1
and n=2 from the infinite product.) Formula (6) was given by the Chudnovsky's, but
with a different proof. ‘It has been generalized by Witten [4] to get other genera
whose coefficients are modular forms, and in this form interpreted by him, using ideas
from quantum field theory, as the equivariant index formula (Atiyah-Bott-Singer fixed

point theorem) for a Dirac operator on the free loop space of a manifold.



[1]

{2]

(3]

(4]

- 42 -

References

D.V. Chudnovsky, G.V. Chudnovsky:
Elliptic modular functions and elliptic genera
to appear in Topology

P.S. Landweber, R.E. Stong:
Circle actions on Spin manifolds and characteristic numbers
To appear in Topology .

Serge Ochanine:
Sur les genres multiplicatifs définis par des intégrales elliptiques
Topology 26 (1987), 143-151

E. Witten:
The index of the Dirac operator in loop space
To appear in Lecture Notes in Mathematics



- 43 -

Some remarks on elliptic genera of almost

parallelizable manifolds

F. Hirzebruch

Let Mak (k 2 2) be a compact combinatorial almost-smooth and almost-
parallelizable manifold, i.e. Mﬁk is smooth and parallelizable outside

a point. Then the Pontrjagin numbers are well-defined as rational numbers,
they vanish except possibly pk[MAk] . There exists an Mﬁk with signature
t8a (using Ea-plumbing) or one can use

(*) 2 .es 2 + 23 + 268-1 =¢ , € %0 and small

N zjij S
whose boundary is a topological sphere which can be collapsed to a point
(see.E. Brieskorn, Beispiele zur Differentialtopologie von Singularitdten,
Invent. math. 2 (1966), 1-14, compare F. Hirzebruch und K.H. Mayer,
O(n)-Mannigfaltigkeiten, exotische Sphdren und Singularititen, Lecture

Notes in Math. 57, Springer-Verlag 1968). We have
A(Mak) - 2-4kA(M4k) -

2k+1 22k-1

- —sign(*®y 22K -1)

(see F. Hirzebruch, Neue topologische Methoden ... 1956, § 1).

The elliptic genus (Landweber-Stong, Ochéning, E. Witten) of Mék can be
calculated. We take the one of E. Witten which relates to modular forms
with respect to the full modular group (cf. preceding lecture of D. Zagier)

and obtain (for the non-stable genus)

k/6 4k — = - 4 B
a6 L apd®, T T q"sr) = ad’) - ~£%%

n=1 r=0 A

4k

where T 1is the complex extension of the tangent bundle of M



=2
2 O -
and A= q ] (1= ‘“, Epe =1 - gﬂi-i ) a et L
n=1 2k n d|n
sign Mak = -22k+1(22k-1-1) and hence A(Mak) =1, we get

- ® E

-k/6 4k ar.r 2k

q / - AMTT, I 2 g ST) = Y3
n=1 r=0 A

The smallest signature 8a (in absolute value) for which the elliptic genus

or equivalently A(MAk) . EZk has integral coefficients is
2k+1 . 2k-1 Bax
2 (2 -1) numerator (73:9

In fact the A-genus is integral and divisible by a, (=2 if k 1is odd,
=1 1if k is even) if MAk is smooth. The boundary sphere is standard if
and only if

2k-2

a =0 md a2 (22Kt

B
(2%

1) numerator "

The number on the right side of the congruence equals the order of the\
Kervaire-Milnor group l:nPl}k of those exotic spheres which bound a
‘parallelizable manifold. If we take a = |bP4k| , then we obtain the
Kervaire-Milnor manifold Mgk (smooth, almost parallelizable with
smallest |signature| # 0) . We have

- B
A(Mgk) = ta  numerator Gf%b

(first accurrence of Mgk in John W. Milnor and Michel A. Kervaire, Bernoulli
numbers, homotopy groups, and a theorem of Rohlin, Proc. Intern. Congress
Math. 1958).

For Mg with A(Mg) = | the above elliptic genus equals
V5 = @30 + 248q + 612607 + ..0)
aa) = 1, aad,m - 28,

A(Mg,SZT) = 3876 = 1 + 3875 .



The elliptic genus for Mak has integral coefficients if and only if

E(MAk) and R(M4k,T) are integral. This is the case if and omnly if
R(Mék) and ch(T)[Mﬁk]. are integral where ch 1is the Chern character.
For smooth almost-parallelizable manifolds, the numbers R(Mék) and
ch(T)[Mak] are integral (for k odd, both numbers are even). For

ch(T) [MAk] this follows from Bott periodicity. Kervaire's and Milnor's
result on the order of bP4k implies, conversely, that MAk is
smoothable if and only if the two numbers are integral (and even, if

k 1s odd). Thus th has an elliptic genus with integral coefficients

(even coefficients, if k 1is odd) if and only if MAk is smoothable.

Schlof Ringberg, Bavaria, March 1987
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Virasoro Representations and Modular Invariance

P. Goddard

The critical behavior of two-dimensional statistical systems is
described (in suitable cases) by a two-dimensional Euclidean conformal
quantum field theory [BPZ]. Acting in the space of states of such a
theory we have two commuting copies {Ln}, {in} of the Virasoroalgebra

¥ possessing the same value of the central charge c

c 2
[Lm’ Ln] (m,-n)Lm+n + Tz-m(m 1)6m'_n ,
(m,n € Z) with L: = L_n and the spectrum of L, bounded below. The _
value of ¢ 1is characteristic of the theory. The representation. of v
is a direct sum of highest weight representations built up from states |k >

satisfying
L/A>=hda> ;L |A>=0,n0>0.
o n

Such representations are labelled by {c,h) . The analysis of for which
(c,h) wunitary representations exist started with the Kac determinant
formula. From this it was shown [FQS] that for a unitary representation (in
a positive inner product space) it is necessary that either ¢ 2 1, h 20

or

2
=1 - 6 - C o= o L(m+3)p-(m+2)q] -1
c 1 TE;ETTE:ET ,m=0,1,2,... ; h hp.q NCTHICTE)

p=1,...,m1; ¢ = 1,...,p . The former (continuous) series are easily seen
to exist and the construction of the latter (discrete) series is sketched
below.

In a conformal field theory we have states |A > which are highest

weight states for both {Ln}, {fn} , with & =R

K EA , resp., from which
all states are generated by {Ln}, {Ln} . Corresponding to each such state

is a primary field wA|z > satisfying
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n+t d n .
[Ln,wA(z)] =2z P ®, * (n+hh,z @, iig wA(z)|o >= |A> .

(The vacuum |0 > has inlo > = Ln|0 >=0,n2-1, and woﬁf) < 1)

hA + hA = gcaling dimension. of @, and hA - hA

mentally recovered (or theoretical calculated) critical exponents are

= gpin of 9, - Experi-

simple linear combinations of these scaling dimensiocns:=. In a given

theory (with givem ¢ ) a certain set of (h ) will occur, with

ATTA
hA’hA chosen from the permitted list if ¢ < 1 , possibly with nonzero
multiplicity. Which sets are possible? E.g. the Ising model has ¢ = %
11 11
_1-6-’?‘-)’ (232) . The
criterion for determining possible sets is modular invariance [C]. By

and the 3 primary fields correspond to (0,0), (

considering the theory on a torus, it is argued that
L.—c/24 L.=-¢c/24

" Z(t) = Tr(q 0 (q*) 0 ), q = e2n11 should be invariant under
the modular transformations T *~%%E%-, (2 2) € sL(2, Z) . There is

‘evidence for the conjecture that, for each ¢ in the discrete 'series, there
exist only 1,2 or 3 possible independent sets of (h,h) .such that the

sum 2Z(T) = z X ch(T)Xéﬁ{T)* , with xch(T) = q‘c/z4 Tr(qLojiL » possibly

with nonzero multiplicities for the (h,h) , is modular invariant [CTZ].
There is always the trivial invariant 2 Xéh(T)Xcﬁ(T)* summed over all

possible h . h

To construct the discrete series (and hence show the FQS conditions

are too sufficient) [GKO] start with a four-dim. Lie algebra g (assumed

. .abc ¢
t

simple for ease) [ta,tb] = if and consider the affine algebra § ,

a b . cabec ab . . , . .
[Tm' Tn] if Tm+n + km § Sm - A unitary highest weight irreducible

rep. of this has x = 2k/1p2 €Z, 20 where yY=-along root of g . Then

£8 = 1 X a8 X

the Segal/Sugawara operators 2k+Qg Ly T Tom x

{where Qg = quadratic

Casimir of g in adjoint representation] satisfy Virasoro alg. with

- g=2kdimg=xdimg o _
c=¢c T ¥ Qg —— , hg -dual coxeter number .

g

Then dim g 2 c8 2 rank g2 1. Toget c®< 1 consider subalgebra hcg
~ - g a] . reh w31 a . a ~

gnd so h < § . Then asg [£°, Tn] {ﬂm, Tn] u T . if t €h we have

[K, hl =0 if K = fm - fh and K satisfies Virasoro algebras with

c=c, ™ c® - ch . This extends easily to the cases with..g~ ﬁéﬁigimple»i__ﬂ,

L = s

b compact. We can get all the discrete series from considering g = su(2) xsu(2),
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h = su(2) (diagonal). (ALl cases with cy < 1 are listed [BG]). To check

we get all values of h from this construction we compare characters,

writing the characters of a unitary highest weight. repp. of g as a sum of
characters of representations of AxV:. (This decomposition is finite iff

& <1 and _§ is finitely reducible with respect to h iff cg = 0.
Using g = su(2) x su(2), h = su(2), we relate the transformation of ¥

characters to that of su{(2) characters, reproducing a result first obtained

-

by inspection [G]. It also follows that we get a V' invariant for
c =1 - TﬁFE%Tﬁii) from level _$?m+1 > su(2) 1invariants. [CIZ] conjecture
that all V> invariants come this way.

If = 0 we can relate the transformation of h characters to that
of g characters. A "trivial invariant" for § characters (i.e. the sum of
the squares of the moduli) at a given level may produce non-trivial h
invariants. It has been shown [N] that all of a list of §u(2) invariants

given by [CIZ], and conjectured to be complete, can be obtained this way.

[BG] P. Bowcock and P. Goddard, ITP preprint Santa Barbara Dec. 1986.

[BPZ] A.A.Belavin, A.M. Polyakov; A.B. Zamolodchikov, Nucl. Phys. B241
(1984) 353. S

[c] J.L. Cardy, Nucl. Phys. B270 (1986), 186.

[cIz] A. Cappelli, C. ﬁt;xkson and J-B. Zuber, Nucl. Phys. to appear.

[FQS] D. Friedan, Z. Qiu and S. SHenker, Phys. Rev. Lett. 52 (19—132{) 1‘575.

[G] D. Grepner, Princeton preprint June 1986, Nucl. Phys. to appear.

[GKO] P. Goddard, A. Kent, D.Olive,Phys.Lett. 1528 (1985) 88, Commun. Math.
Phys. 103°¢1986)105.

[N] W. Nahm, SUNY preprint ITP-SB-87-7 (1987).

Review Articles:

fGO] P. Goddard and D. Olive, Int. J. Mod. Phys. A1 (1986) 303.

[c'] J. Cardy "Conformal Invariance" to appear in Phase Transitions and
Critical Phenomena (ed. C. Domb, J.L. Lebowitz, Academic Press)
Vol. 11.
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Einsteln metrics

S.T. Yau

I will report on some recent progress on constructing Einstein
metrics.on Kihler manifolds M . An obvious nécessary condition for the
existence of such metric om M 1is either c1(M) <0, =0 or >0 . It
turns out that the first two conditions are sufficient. The last condition

is not sufficient . There are two known obstructions.

(1) The automorphism group of M has to be reductive. Fuhaka also

defined a character on Aut{(M) which has to be trivial.
(2) The tangent bundle of M 1is stable.

It is not clear that these are the only obstructions. The equation
for the existence of Kihler Einstein metric is

2

3 = o OF
det(gij + 52-1._-5—2?) e det(gij) .

In general, the solution i3 not unique, it was proved by Futaki and

Berger that they are unique up to an automorphism.

Recently Tian made a breakthrough on this equation. He defined an

invariant in the following way. Let P(gij) © {<p|gij + @ij > O,fsupr=0} .

s U

Let a > 0 be defined such that e ¢ for all ¢ € P(gij) . Let

a(M,w) be sup & . It depends only on the Kihler class of M . Tian

proved that if -w=cT(M) and if o > E%T where n = dim M , then M

admits a Kidhler Einstein metric. In general one can prove that a positive

lower estimate of @ can give rise to a lower estimate of the Ricci curvature

of M . (In particular an estimate of c? ).
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Relative Index Theorems

and

Sﬁbersymmetric Scattering Theory

R. Schrader

(Freie Universitit Berlin)_i

This talk reports on results obtained in joint collaboration with N.V. Borisov
and W. Miller [1].

A general formulation of a supersymmetric'scattering theory is given which
allows to derive relative index thecrems on open manifolds. Consider a
Hilbert space H with a unitary involution T and a selfadjoint operator

Q , called a supercharge and which anticommutes with T . The # eigen-
spaces i oF .1 ErETEEIIed'the bosoniec and fermionic sector respectively.
H = Q2 is cailed a suﬁersymmetric Hamiltonian [2]. If exp - tH 1is of ..
trace class, then the supertrace .Trace T exp — tH 1is t-independent

(t > 0) and an integer, the so called Witten index. Standard index problems
on compact spaces may be obtained in this way: Given an operator

L: H —s mapping square integrable sections of one bundle into

g‘g*) on K=K oH

On open snaces one considers pairs Q, Q of supercharges such that

another such space, simply set Q = (

(exp-tQ Y- (exp-th) ig of trace class. The question arises for what
situations Trace T (exp - tQ ) (exp - tQO)) is independent of t and in
fact an integer. In that case this quantity may be interpreted as a relative
index in the sense of Gromov and Lawson [3]. Supersymmetric scattering .
theory, which gives an answer to this question, is defined by the following

1tHe-1tH0

condition: The Mgller operators Qi(H ’HO) = g —1lim e exist on

-t ®
the absolute continuous subspace of HO = Q0 f arz unitary there and are
intertwining operators for Q and QO . A sufficient condition for this
to be satisfied is that (Q exp - tH)- (QO exp = tHy ) 1s of trace class. On
the energy shell E the S—matrlx S = (Q+)* has a decomposition S (E)
into bosonic and fermionic part and by the above intertwining relation the

. * . .- .
total phase shifts ¢ (E) , defined by det Si(E) = exp 21 & (E) , satisfy



n_1(6+(E) - 8§ (E)) = u(E) € Z . If the left hand side is continuous in

E , this integer is E-independent on each connected component of the
absolute continuous spectrum of HO . Using Krein's spectral shift
function [4], which is essentially equal to the phase shift, this may

be exploited to discuss Trace T ((exp - tH) - (exp - cHO)). As an example

we discuss the de Rham complex. For the case of an obstacle in R" , it

is shown that the absolute or relative Euler characteristic..can.be. obtained
form the scattering data if the Hamiltonian is chosen to be the Laplace
operator with relative or absolute boundary conditions respectively. Also
our method may be applied to manifolds which are flat at infinity, leading
to a sharpened version of the Chern-Gauss-Bonnet theorem due to Stern for

the Lz—Euler characteristic of spaces which are asymtotically flat [5].
References:
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Quantum.Hall. Effect.- -

Ruedi Seiler

Fachbereich Mathematik

Technische Universitit Berlin

In 1980 v. Klitzing measured the Hall conductivity ¢ in a two—
dimensional interface at low temperature and high magnetic field B . He
discovered that 270 is an integer and decreases as a function of B
monotonically (Figure 1). The high accuracy came as surprise (1:108). The
plateaus seemed to get wider with increasing density of impurities. In
clean material however the fractional Quantum Hall Effect._was discovered;
for certain values of B conductivity is rational, 270 =p/q , P and q

sm#ll integers, q odd.

The theory which I want to present here [2] is..formulated in the
framework of non relativistic quantum mechanics. The main ingredient is
of topological nature: Configuration space A of the particles has two
holes (Figure 2a). This is an abstraction of the experimental situation
-including the measuring devices (Figure 2b). The battery is replaced by
a time dependent magnetic flux ¢1 = -Vt (Faraday's law). The Ampére
meter is substituted by a second flux through locp 2. It stands for the
magnetic flux induced by the current around the second loop. The theory
does not depend on any particular form of the interaction between the
particles or the particles and the impgtities. The extefnal magnetic

field acts as a U(1)-gauge field.

The main result is the following: If the groundstate of the Schrddinger
operator H which describes the dynamics of the system is q-fold degenerate
then the flux averaged conductivity < g > 1is §%+_ times an integer.

(Averaging over ¢ has a good physical interpretation).

Generically H has a non-degenerate groundstate due to a theorem of
Wigner and v. Neumann. If however configuration space is a two torus and

the interaction translationally invariant (no impurities) H 1is non generic.
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In fact if the filling factor v 1is rational, v = p/q , the groundstate
is q~fold degenerate [3]. (The filling factor is defined by

V := 27 - Number of Particies/magnetic flux through the torus).

The main line of proof is as follows: The Schrddinger operator H
acts on gections of the trivial Hilbert bundle :mz x H , where H denotes
the space of square integrable functions of the particle coordinates
011.....xN) £ AN . H(¢) = the operator which acts on the fiber over ¢ -
tu?nszout to be periodic in both variables with respect to the lattice
'cR

discrete groundstate, then f% | Trace P dPdP is an integer.(PdPdPP is

. If P(¢) denotes the spectral projector of the q-fold degenerate

the curvature of the canonical connection PdP ). T denotes the two torus
m?/r . It turns out that this number is q times <2mo> . This is Kubo's
formula which dan be established rigorously in this context using the
‘adiabatic theorem [4]. This is natural because conductivity is defined

ag the derivative.of current with respect to voltage V for V =0 ,

Hence the limit of large time.scale 1/v is relevant,

If this theory is specialized to a one particle theory with a torus as
configuration space one recovers the results of Thouless, Kohomoto,
Nightingale and de Nijs [5]. The fractional Hall effect cannot be under-
stocd in a one particle theory. Correlation between particles are mnecessary.
Laughlin made a clever guess of multi-particle wave functions which suggests

a q-fold degeneracy of the groundstate [6].
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Bosonization on Compact Riemann Surfaces

L. Alvarez-Gaumé
J.-B. Bost

G. Moore

P. Nelson

C. Vafa

Bosonization is a property of two-dimensional conformal quantum
field theory. Roughly it is the assertion that all the correlation
functions of a fermionic field theory with fields of any spin can be
exactly reproduced by those of a suitable bosonic theory. We formulate
the appropriate bosonic theory on a compact Riemann surface X and express
the mathematical content of bosonization in a set of identities involving

various special functions associated to X .

Let &£ be a holomorphic bundle of degree 2A(g-1) on a Riemann
surface X . Consider the fermionic field theory with fields b, ¢ taking
values in £, K 8 E respectively. K 1is the canonical bundle. We also

introduce fields b, c in the .complex-conjugate bundles, and an action

Sg = Ix(bac + bac)

S
. . f . . .
The fermionic moments of e are called "correlation functions'". Computing

them by manipulations of fermionic Gaussian integrals we have

(%) < b(P1)b(P1).f.b(Pp)b(Pp)C(Q1)C(Q1)...C(Qq)C(Qq) >e

2
det' agag st u1(P1) v uk(PI) G(P1.Q1) .es G(P1,Qq)
detZu‘ .) .

% € (B s e rerneeaaeen G(P ,Qq)

Here .we assume that the Cauchy~Riemann operator 55 coupled to £ has &k
zero modes .:: u1,...uk span HO(X;E) , while EE "has no zero modes:
HI(X;E) = 0 . The integers p, ¢ satisfy p-q =k = (2A-1)(g=1) where
g 1s the genus of X , det' denotes the zeta-regulated determinant.

(ui’uj) is the matrix of L, inner products of ug - G(P,Q) 1is a Green



function for 55 . These three constructions require that we place a metric
on X . We can also use this metric to convert both sides of the expression
to real functions of X, § , the metric, and P1,...,Q

Bosonization is the assertion that (*) equals a "bosonic correlatiom

. . . . 1
function". The appropriate theory has a real field ¢ defined modulo = Z

2
and action

g
S, = 4mi [, awaw *2 [ Rgp + 4i i§1[§bidmﬂ(ai;£) - §aid¢H(bi;£)]

+ imo (L, 8 F(d9))

Here L0 is any even spin bundle on X . F(dp) 1is the flat bundle corresponding
to the class of dY in H1(X;fm) . o(L) 1is the parity of a spin bundle L .
€ is the bundle
£ =.£-;‘ B.L .
0

H(y;2) 1is the holonomy of £ 1in its hermitian connection about the curve

{'&1,...,38,...,bg} is a set of curves representing a canonical homology
basis and all intersecting -at one point. These curves dissect X into.a polygoen,
on which ¢ 1is continuous. 38 is the hermitian curvature of £ inherited from

the given metric on X . Taking moments as before, a standard Gaussian integral

gives
brie(r) 4mig(P ) -4mie(Q,) -4mip(Q )
<e oo € Pe ..o e T
() i TT ey Tt
= ( __det'A \ N(z) i,j
(det Im2) A/ T—l- G(P Q ) C

Here §} 1is the period matrix of X in the given marking and A 1is the
area in the given metric. z 1is the image by the Jacobi map given by the

marking of the degree-zero bundle
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EBL-IEU(EP -%Q)
0 RS T A

L0 is now the Riemann class in Pic associated to the marking.
N(z) = expl-2m(Im 2z)(Im Q) (Im z)]- TB(;)Q)| , so that in fact (**) is

independent of the choice of marking. G 1is a Green function satisfying
(+) 3p3p log G(P,Q) = inlu(®)=§,(A] ,

where U = [4ﬂi(1-g)]-1RK and GQ is the delta-function, both (1,1) forms.
We also require Ix u(P) * log G(P,Q) =0 . '

(**) is zero as it stands due to factors of G(Pi’Pi) . We must replace
these coincident factors by 'regulated" ones. If we make a convenient choice
for the metric on X , however, the coincident factors will be equal to ome
and can be dropped. This choice is the Arakelov metric characterized by the

following property: the canonical isomorphism
[k 8 O&)] ], =
is an isometry when K has the Arakelov metric and O(P) has the metric
O | gyl (@ = 62,0 ,
where G 1is defined by (+) with the Arakelov curvature.
Bosonization states that (*) = (**), up to an overall constant dependant
only on the integers g, deg £ , and p . For example when deg £ = g—1

then generically 55 and 52 each have no zero modes and one has the

"spin X = 1/2 bosonization formula"
- -1/2
=+ =z - det'A . =1
(++) det 35 BE = C(g)(TEEE_Tﬁﬁyx) N(E 8 Ly )
This formula is well-known in genus g = 1 .

The bosonization formulae (*) = (**) can be proved (up to an overall

multiplicative constant) using the notion of Quillen metric (cf. the talk



- 58 =

of Bismut). Indeed, they can be reformulated as asserting that some "natural"
isomorphisms of determinant line bundles are isometries, when these line
bundles are equipped with the right Quiilen metrics. The two basic facts
used to prove these isometries are:

(1) the spin-1/2 bosonization formula (++), which asserts that the

8(-2) given by the multiplication

isomorphism between DET‘5a and (DEI?e)
by the theta function é(z,Q)2 is an isometry when these spaces are equipped
with Quillen's metrics.

(2) the insertion theorem, which relates, for any line bundle £ on X

and any point P in X , the Quillen metrics on DET 3, and DETJ

g £ 8 0(-P)

These facts are direct consequences of the expression, 4 la Riemann-Roch-
Grothendieck, of.the curvature of determinant line bundles equipped with

Quillen metrics (at least when g > 2 ).

The properties (1) and (2) are closely related to the work of Faltings

on arithmetic surfaces. The property (2) asserts for instance that the metric

|

“--HQby the formula:

/
Il = et (22 A)1 I I

(g = genus of X3 d = degree of E ).

. ”Fon det 3, defined by Faltings is related to the Quillen metric

The ''spin-1/2 bosonization formula"(++) allows then to prove that the
invariant G&(X) introduced by Faltings is related to the analytic torsiom

of X equipped with the Arakelov metric by:

det' A

§(X) = C(g) - 6 log =

The bosonization formulae are also related to the classical work of
Klein on prime forms and to the theory of abelian functions on Riemann

" surfaces (Fay's trisecant identities, etc...).
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This is an account of a joint work with C. Soule (THES) and H. Gillet
(Chicago) [BGS].

Let M e B a fibration of complex manifolds with holomorphic map,
with smooth compact connected fiber Z.

Let & be a holomorphic vector bundle on M.

Let AKH be the determinant bundle on B obtained by the direct

image construction. By a construction of Grothendieck, Knudsen and Mumford,

AKM is canonically defined as a holomorphic line bundle on B. The fiber

AYKH is canonically isomorphic to

(det B! @ det ule ...
y y

On the other hand, when the fibers Z and the bundle £ are endowed

with metrics, the fibers A§M can be endowed with the Quillen metric using
the Ray-Singer analytic torsiom.

In this situation, it is a priori not clear that AKM can be endowed

with the Quillen metric as a ¢® metric.

From now on, I assume the fibres to be endowed with Kahler metrics

Our first result in [BGS] is

Theorem ). The Quillen metric on AKM is smooth. The curvature of AKM

is given by

J Td(TZ)ché
A

where Td and ch are calculated with the holomorphic Hermitian

connections on T(l’o)Z and ¢£.
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Qur second series of result is related to exact sequences. Let

0 - 50 I3 Em -0

be an exact sequence of holomorphic Hermitian vector bundles on M. Let

AgM,Aim... XEM be the corresponding determinants. Then by Knudsen-Mumford,
KM KM, -1
Ao @ (Al ) ® ... has a non zero holomorphic canonical section ¢ (which

depends on V).

Theorem 2 [BGS]: The following identity holds

lol? = expt  Td(2)(Zh &)
A

where ch(€) 1is the Bott-Chern Secondary invariant associated with the

exact sequence.

Assume now that (gz,he) and (g'z,h'f) are two different cdcygles.of

(1.0)

metrics on (T Z,§) where gz,g'z are Kahler,

Theorem 3 [BGS] If I | and || |7 are the Quillen metrics associated

with (gZ2,8%) and (g'Zh'%), then

)2 - -
ﬁ_ﬂE“" - exp £ (Tag, g Dch ¢ + Td(g 2(3n(&)]

where again =~ are secondary Bott-Chern classes.

The proofs rely on a formalism which combines Quillen’s
superconnections, Bott-Chern classes and Ray-Singer torsion. They are much
in the spirit of the Atlyah-Singer Index Theorem, where one equals a

quantity coming from analysis to a geometric object.

[BGS}] Bismut-Gillet-Soule: Analytic torsion and holomorphic determiant
bundles.
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OPERATOR FORMALISM IN HIGHER GENUS SURFACES

Luis Alvares-Gaums

Physics Department

Boston University

590 Commonwealth Ave.
Boston Mass. 02215 , U.S.A.

ABSTRACT

One of the most fruitful approaches to string theory has been the use of conformal field
theory . The results of Belavin Polyakov and Zamolodchikov , and of Friedan Martinec
and Shenker rely heavily on the use of operator methods on the twice puncture sphere (
the Wick rotated version of S x R ). The study of string perturbation theory however
requires that one analyzes conformal field theories on Riemann surfaces of arbitrary genus.
So far the methods employed use functional integration and algebraic geometry . In order
to extend the operator method to this setting , we have found that the infinite dimensional
grassmannian used in the study of the KP hierarchy [1] provides the natural framework to
extend operator techniques to higher genus surfaces . The basic idea [2| involves working
always on a punctured disc where at the center one places the standard vacwum for the
field theory being considered , and on teh boundary circle , a state of the Fock space
which carries all the geometrical information concerning the surface and the bundles used
. This is just a Bogoliubov transformation of the standard vacuum . The grassmannian ,
through the Krichever map give a rather precise characterization of the Fock space states
that convey all the geometrical information . So far this formalism has been used to obtain
a proof of chiral bosonization on higher genus Riemann surfaces , and to understand the
action of the Virasoro algebra in higher orders of string perturbation theory . The use
of the operator formalism also provides a rather simple way of obtaining the Polyakov
measure for bosonic strings in terms of the Mumford form and the decoupling of spurious
states . Further details and references can be found in [3]

1
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1. Gepexal observations

This has been a very stimulating conference with a great deal of
interaction between different subjects. Perhaps the following brief
overview may be helpful. Most toplcs centered on a relation between two
consecutive dimensions. Thus conformal field theory (and ellipti&
cohomology) dealt with circles (dim 1) on Riemann surfaces (dim 2).
Vaughan Jones' work on knot polynomials produced invariants of knots (in
dim 3) from a plane projection (dim 2). Moreover the 2-dimensional
theories used by Jones were closely related (via statistical mechanical
models etc.) to conformal field theories. Finally Donaldson related
inséanton invariants in dimension 4 to Floer homology in dimension 3. Again
the 3-dimensional situations studied by Floer and Jones both centered on
the fundamental group. An obvious challenge is to find a>defin1tion of the
Jones polynomial which is directly 3-dimensional. One might reasonably
speculate that this should come from a field theory approach relative to
Floer’s homology.

2. 2-dimensional Floer theoxry

It may be helpful to string theorists to explain a 2—dimensioﬁél.
counterpart of the Floer-Donaldson story. In fact this is a variant
(different boundary conditions - closed strings) of Floer’s main work on
" symplectic geometry. .

Consider the supersymmetric non-linear CPn-model. Instantons in this

theory are given by holomorphic (i.e. rational) maps of CPl - 52 to CPn.
More generally we can consider rational maps of a Riemann surface of genus
g to CPn . A classical question in algebraic geometry is to understand
curves of genus g and degree k in CPn . Consider for simplicity those
values of g and k for which this number is essentially finite (i.e. up
to automorphisms of GPn). Computing this number, say N(g,k), is the
analogue of the problem Donaldson described of finding the number of

instantons (Yang-Mills) on a given 4-manifold.
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Consider now the free loop space L(CPn). If Xl is a Riemann surface

with boundary the circle S1 wa get a subspace El C L(CPn) representing
boundary values of holomorphic maps Xl - GPn. 1f X2 has boundary - Sl
s C L(GPn).

Clearly, if X = X1 V] X2 is the closed surface defined by gluing Xl and

X2 along S1 , then Zl n 22 is a set of points on L whose cardiality

is N(g,k), where g = genus X and k the degree of the resulting map

(i.e. with orientation reversed) we get similarly a subspace I

[Actually we have to be careful to pick the right points in I, N I, to

1 2
glve this degree].

Since the definition of N(g,k) should be invariant under deformation
of the conformal structure of X we look for a homology theory in which

21 and 22 represent homology classes. Now Z., and 22 are both

infinite-dimensional but have so to-speak "half% the dimension of L . The
right homology theory is the Floer version of the Morse theory built on the
function L - U(l) given by the holonomy (of the standard line bundle on
CPn) around a loop. The critical points of this function are just Fhe point
loops represented by CPn c L(¢Pn). The situation here differs from that
considered in Donaldson’s lecture because the critical points are not
fsolaﬁad but 1s otherwise similar. The Floer homology should now be
identified with the homology of CPn. Given a cycle o 1in CPn we can
"grow" a Floer cycle I C L by moving off the point loops In the "positive
energy” or holomorphic directions, i.e. each point loop grows into a small
holomorphic disc. An interesting and important feature of the Floer
homology is that I will return and intersect L again in higher
dimensional cycles after having wound the "hole"” in L (representing the
generator of wl(L) - wz(CPn) -Z). ) '

The Donaldson procedure for computing 21 n 22 consists in a

degeneration process shrinking S1 to a point in X so as to decompose it

in the limit into 21 v iz where ii - xi/sl i1s a closed surface of genus
g4 ,(g1 + g, - g). This corresponds to bringing Ei into the standard

position of a X associated to ¢ C CPn described above. Thus finally

1 2 in CPn.
The conclusion of this process is now easily recognizable as the

N(g,k) 1is computed by an intersection number o, - o
classical procedure to calculate such numbers in algebraic geometry by

degenerating curves into simpler (reducible) curves, i.e. by going to the
boundary of the modulil space Ekg.
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The point of describing this example was to explain, by analogy, the
more difficult and interesting 4-dimensional Donaldson case. It also may
have some relevance to string theory, but that I leave to the relevant
experts. I just point out that the Hodge-deRham version of the Floer

cohomology is just the supersymmetric Hamiltonian studied by Witten.



