The Alexander polynomial of a deform-spun knot in S^{4} is symmetric

Ryan Budney, Alexandra Mozgova
Mathematics and Statistics, University of Victoria, PO BOX 3045 STN CSC, Victoria, B.C., Canada V8W 3P4
IRMA Strasbourg,
7 rue René-Descartes, 67084 Strasbourg, France
Email: rybu@rybu.org, mozgova@mpim-bonn.mpg.de

Abstract

This paper proves that if a co-dimension 2 knot in S^{4} is deform-spun from a co-dimension 2 knot in S^{3}, then its Alexander polynomial is symmetric. Since there exist knots in S^{4} with non-symmetric Alexander polynomials, this proves not all knots in S^{4} are deform-spun. The proof of the main theorem uses nothing more than the definition of the Alexander polynomial, Poincare duality and elementary linear algebra.

AMS Classification numbers Primary: 57R40
Secondary: 57R50, 57M25, 55Q45
Keywords: 1-knot, 2-knot, deform spun, Alexander polynomial

1 Introduction

In co-dimension 2 knot theory, typically the term ' n-knot' denotes a manifold pair (S^{n+2}, K) where K is the image of a smooth embedding $f: S^{n} \rightarrow S^{n+2}$. A 'long' n-knot is a pair (D^{n+2}, J) where J is the image of a smooth embedding $f: D^{n} \rightarrow D^{n+2}$ such that $f^{-1}\left(\partial D^{n+2}\right)=$ ∂D^{n} and such that f, when restricted to $\partial D^{n}=S^{n-1}$ is the standard inclusion, where we consider $D^{n} \subset D^{n+2}$ in the standard way. Every n-knot K is isotopic to a union $\left(S^{n+2}, K\right)=$ $\left(D^{n+2}, J\right) \cup_{\partial}\left(D^{n+2}, D^{n}\right)$ for some unique isotopy class of long knot J provided we consider K to be oriented. Let $\operatorname{Diff}\left(D^{n+2}, J\right)$ denote the group of diffeomorphisms of D^{n+2} which restrict to the identity on $J \cup \partial D^{n+2}$. An $(n+1)$-knot $\left(S^{n+3}, K^{\prime}\right)$ is deform-spun from $\left(S^{n+2}, K\right)$ if there exists $g \in \operatorname{Diff}\left(D^{n+2}, J\right)$ such that the pair $\left(\left(D^{n+2}, J\right) \times_{g} S^{1}\right) \cup_{\partial}\left(\left(S^{n+1}, S^{n-1}\right) \times D^{2}\right)$ is diffeomorphic to the pair $\left(S^{n+3}, K^{\prime}\right)$.

To visualize the deform-spun knot, assume that the diffeomorphism $g \in \operatorname{Diff}\left(D^{n+2}, J\right)$ is isotopic to the identity when considered as a diffeomorphism of D^{n+2} (every deform-spun knot can be obtained using such a diffeomorphism, so this is no loss of generality [1]). Let g_{t} be the nullisotopy of g, ie: $g_{0}=g, g_{1}=I d_{D^{n+2}}$ and g_{t} is a diffeomorphism of D^{n+2} which restricts to the identity on ∂D^{n+2} for all $0 \leq t \leq 1$. Consider S^{n+3} to be the union of a great $(n+1)$ sphere S^{n+1} and a trivial vector bundle over S^{1}. Identify this trivial vector bundle over S^{1} with $S^{1} \times \operatorname{int}\left(D^{n+2}\right)$, and identify S^{1} with \mathbb{R} / \mathbb{Z}. We assume that the inclusion $S^{1} \times \operatorname{int}\left(D^{n+2}\right) \rightarrow S^{n+3}$ extends to a map $S^{1} \times D^{n+2} \rightarrow S^{n+3}$ such that the restriction $S^{1} \times S^{n+1} \rightarrow S^{n+3}$ factors as projection onto the great sphere S^{n+1} followed by inclusion $S^{n+1} \rightarrow S^{n+3}$. Then the set $\left\{(t, x) \in S^{1} \times \operatorname{int}\left(D^{n+2}\right): x=g_{t}(p), p \in \operatorname{int}(J)\right\}$ is a subset of S^{n+3} whose closure is an $(n+1)$-knot. This is the deform-spun knot.

A connect sum of two trefoils, being deform-spun to produce a 2 -knot in S^{4}
The main result of this paper is to show that not every 2 -knot is deform-spun from a 1 -knot. The obstruction is given by Theorem 2.4, which states that 2 -knots with asymmetric Alexander polynomials are not deform-spun. The set of polynomials realisable as Alexander polynomials of 1-knots is known [5] to be

$$
\left\{p(t) \in \mathbb{Z}[\mathbb{Z}]: p(1)= \pm 1, p\left(t^{-1}\right)=p(t)\right\}
$$

preprint

On the other hand, Kinoshita [7] has proved that the set of polynomials realisable as Alexander polynomials of 2 -knots is

$$
\{p(t) \in \mathbb{Z}[\mathbb{Z}]: p(1)= \pm 1\}
$$

Theorem 2.4 has as a consequence that the set of polynomials realizable as Alexander polynomials of deform-spun knots in S^{4} are precisely the Alexander polynomials of knots in S^{3}.

Litherland's deform-spinning construction has its origin in a paper of Zeeman's. Zeeman proved that the complements of certain co-dimension two 'twist-spun' knots fiber over S^{1} [10]. Litherland later went on to formulate a more general notion of spinning called 'deform-spinning,' further generalising Zeeman's theorem on when such knot complements fiber over S^{1} [8]. Specifically, Litherland proved that if the diffeomorphism f preserves a Seifert surface for the knot, then the deform-spun knot associated to the diffeomorphism $M f$ fibers over S^{1}, provided $M:\left(D^{n}, J\right) \rightarrow\left(D^{n}, J\right)$ is a non-zero multiple of the meridional Dehn twist about J.

This paper was largely motivated by a result in 'high' co-dimension knot theory. Let $\mathcal{K}_{n, j}$ denote the space of smooth embeddings $f: D^{j} \rightarrow D^{n}$ such that $f^{-1}\left(\partial D^{n}\right)=\partial D^{j}$ and the restriction of f to ∂D^{j} is the standard inclusion. In a previous paper [1] the first author showed that Litherland's deform-spun knot construction generalises to 'graphing' map gr ${ }_{1}: L \mathcal{K}_{n-1, j-1} \rightarrow$ $\mathcal{K}_{n, j}$ where $L \mathcal{K}_{n-1, j-1}$ denotes the free loop space on $\mathcal{K}_{n-1, j-1}$, this is the space of smooth maps from S^{1} to $\mathcal{K}_{n-1, j-1}$. A proof was given that the map $\pi_{0} L \mathcal{K}_{n-1, j-1} \rightarrow \pi_{0} \mathcal{K}_{n, j}$ is onto provided $n-j>2$. Further consider $\mathcal{K}_{n, j}$ to be a based-space with basepoint the unknot, then the graphing map gr_{1} restricts to a map $\mathrm{gr}_{1}: \Omega \mathcal{K}_{n-1, j-1} \rightarrow \mathcal{K}_{n, j}$. In [1] it was further shows that $\operatorname{gr}_{1 *}: \pi_{1} \mathcal{K}_{n-1, j-1} \rightarrow \pi_{0} \mathcal{K}_{n, j}$ is onto. By iterating the graphing construction, one gets a map $\operatorname{gr}_{i}: \Omega^{i} \mathcal{K}_{n-i, j-i} \rightarrow \mathcal{K}_{n, j}$. Goodwillie's dissertation was applied to show that the induced map $\mathrm{gr}_{i *}: \pi_{i} \mathcal{K}_{n-i, j-i} \rightarrow \pi_{0} \mathcal{K}_{n, j}$ is onto provided $i \leq 2 n-2 j-4$. This result is frequently sharp: for example, $\mathrm{gr}_{2}: \pi_{2} \mathcal{K}_{4,1} \rightarrow \pi_{0} \mathcal{K}_{6,3} \simeq \mathbb{Z}$ is an isomorphism. See [1] for a precise definition of gr_{i} and the above results.

The paper [2] gives a 'computation' of the groups $\pi_{0} \operatorname{Diff}\left(D^{3}, J\right)$. These groups turn out to be the fundamental groups of the components of $\mathcal{K}_{3,1}$, and are described in terms of the JSJdecomposition of the knot complement [3]. The group structure of $\pi_{0} \operatorname{Diff}\left(D^{3}, J\right)$ is fairly involved. For example, the classifying space $B\left(\pi_{0} \operatorname{Diff}\left(D^{3}, J\right)\right)$ has the homotopy-type of a compact manifold, which is a $K(\pi, 1)$. The dimension of this manifold is bounded below by the number of tori in the JSJ-decomposition of the complement of J in D^{3}. It was the complexity of the groups $\pi_{0} \operatorname{Diff}\left(D^{3}, J\right)$ that led the first author to think deform-spinning could be a way to produce many interesting higher-dimensional knots. The point of this paper is to say that, at least in S^{4}, deform-spinning does not produce all knots.

2 Asymmetry obstruction

Given a co-dimension 2 knot K in S^{n}, the complement of the knot, C_{K} is a homology S^{1}. Let \tilde{C}_{K} denote the universal abelian cover of C_{K}, ie: the cover corresponding to the abelianization map $\pi_{1} C_{K} \rightarrow \mathbb{Z}$, and consider $H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right)$ to be a module over the group-ring of covering transformations $\mathbb{Q}[\mathbb{Z}]$. It's known that $H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right)$ is a torsion $\mathbb{Q}[\mathbb{Z}]$-module [4], so $H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right) \simeq$ $\bigoplus_{i} \mathbb{Q}[\mathbb{Z}] / p_{i}$ for some collection of polynomials p_{i}. The product $\prod_{i} p_{i}$ is called the Alexander polynomial of K, or the order ideal of $H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right)$ (since $\mathbb{Q}[\mathbb{Z}]$ is a principal ideal domain, an
ideal is the same thing as a polynomial up to a multiple of a unit). The Alexander polynomial can be defined directly in terms of the $\mathbb{Z}[\mathbb{Z}]$-module structure of $H_{1}\left(\tilde{C}_{K} ; \mathbb{Z}\right)$, and so the Alexander polynomial admits a canonical normalisation to an element of $\mathbb{Z}[\mathbb{Z}]$. This normalization is easy to compute from the $\mathbb{Q}[\mathbb{Z}]$ polynomial as the $\mathbb{Z}[\mathbb{Z}]$ polynomial satisfies $p(1)= \pm 1$. Given a finitely-generated torsion $\mathbb{Q}[\mathbb{Z}]$-module H, the order ideal will be denoted $\Delta_{H}(t)$, similarly the Alexander polynomial of K is denoted $\Delta_{K}(t)=\Delta_{H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right)}(t)$.

Lemma 2.1 [6] (7.2.7) Given a short exact sequence of finitely generated torsion $\mathbb{Q}[\mathbb{Z}]$-modules

$$
0 \rightarrow H_{1} \rightarrow H \rightarrow H_{2} \rightarrow 0
$$

the order ideals satisfy $\Delta_{H_{1}}(t) \Delta_{H_{2}}(t)=\Delta_{H}(t)$.
Notice that the dimension of H as a \mathbb{Q}-module is the degree of the polynomial $\Delta_{H}(t)$, where 'degree' is interpreted as the difference between the exponent of the highest and lowest order non-zero terms in the polynomial.

As context for the next lemma, let G be a finite abelian group. We briefly mention the construction of the duality pairing $G \times \operatorname{Ext}_{\mathbb{Z}}(G, \mathbb{Z}) \rightarrow \mathbb{Q} / \mathbb{Z}$. The idea is to start with a presentation

$$
\mathbb{Z}^{n} \xrightarrow{M} \mathbb{Z}^{n} \xrightarrow{\pi_{G}} G
$$

and the induced presentation of Ext

$$
\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{Z}\right) \xrightarrow{M^{\perp}} \operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{Z}\right) \xrightarrow{\pi^{G}} \operatorname{Ext}_{\mathbb{Z}}(G, \mathbb{Z})
$$

The duality pairing sends a pair $\left(\pi_{G} g, \pi^{G} f\right)$ to $\frac{\left\langle g^{\prime}, f\right\rangle}{|g|}=\frac{\left\langle g, f^{\prime}\right\rangle}{|h|}$, where $|g| g=M\left(g^{\prime}\right)$ and $|h| h=$ $M^{\perp}\left(h^{\prime}\right)$. This gives a natural identification $\operatorname{Ext}_{\mathbb{Z}}(G, \mathbb{Z}) \simeq \operatorname{Hom}_{\mathbb{Z}}(G, \mathbb{Q} / \mathbb{Z})$.

Lemma 2.2 Let H be a finitely-generated torsion $\mathbb{Q}[\mathbb{Z}]$-module. Denote by $[\mathbb{Q}[\mathbb{Z}]]$ the field of fractions of $\mathbb{Q}[\mathbb{Z}]$. Consider $\mathbb{Q}[\mathbb{Z}]$ to be the submodule of $[\mathbb{Q}[\mathbb{Z}]]$ with denominator 1 .

There are canonical isomorphisms:

$$
\operatorname{Ext}_{\mathbb{Q}[\mathbb{Z}]}(H, \mathbb{Q}[\mathbb{Z}]) \simeq \operatorname{Hom}_{\mathbb{Q}[\mathbb{Z}]}(H,[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}]) \text { and } \operatorname{Hom}_{\mathbb{Q}[\mathbb{Z}]}(H,[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}]) \simeq \operatorname{Hom}_{\mathbb{Q}}(H, \mathbb{Q})
$$

where the first isomorphism is an isomorphism of $\mathbb{Q}[\mathbb{Z}]$-modules, while the last is only an isomorphism of \mathbb{Q}-vector spaces.

Proof The idea of the first part of the proof is to construct a duality pairing

$$
H \times \operatorname{Ext}_{\mathbb{Q}[\mathbb{Z}]}(H, \mathbb{Q}[\mathbb{Z}]) \rightarrow[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}]
$$

as before. Start with a presentation

$$
\mathbb{Q}[\mathbb{Z}]^{n} \xrightarrow{M} \mathbb{Q}[\mathbb{Z}]^{n} \xrightarrow{\pi_{H}} H
$$

which gives a dual presentation

$$
\mathbb{Q}[\mathbb{Z}]^{n} \xrightarrow{M^{\perp}} \mathbb{Q}[\mathbb{Z}]^{n} \xrightarrow{\pi^{H}} \operatorname{Ext}_{\mathbb{Q}[\mathbb{Z}]}(H, \mathbb{Q}[\mathbb{Z}])
$$

preprint

So given $\left(\pi_{H} h, \pi^{H} f\right) \in H \times \operatorname{Ext}_{\mathbb{Q}[\mathbb{Z}]}(H, \mathbb{Q}[\mathbb{Z}])$, if $|h| h=M\left(h^{\prime}\right)$ and $|f| f=M^{\perp}\left(f^{\prime}\right)$ for some $|h|,|f| \in \mathbb{Q}[\mathbb{Z}]$ define

$$
\left\langle\pi_{H} h, \pi^{H} f\right\rangle=\frac{\left\langle h^{\prime}, f\right\rangle}{|h|}=\frac{\left\langle h, f^{\prime}\right\rangle}{|f|} \in[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}]
$$

For the second claim, consider a rational polynomial $\frac{p(t)}{q(t)} \in[\mathbb{Q}[\mathbb{Z}]]$. By the division algorithm $p(t)=s(t) q(t)+r(t)$ for unique Laurent polynomials $s(t), r(t) \in \mathbb{Q}[\mathbb{Z}]$ such that $r(t) \in \mathbb{Q}[t]$ and $\operatorname{deg}(r(t))<\operatorname{deg}(q(t))$. Define a \mathbb{Q}-linear map $[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}] \rightarrow \mathbb{Q}$ by sending $\frac{p(t)}{q(t)}$ to the constant coefficient of $r(t)$. This gives a \mathbb{Q}-linear map:

$$
\operatorname{Hom}_{\mathbb{Q}[\mathbb{Z}]}(H,[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}]) \rightarrow \operatorname{Hom}_{\mathbb{Q}}(H, \mathbb{Q})
$$

which respects connect-sum decompositions of the domain H. Thus to verify that it is an isomorphism, we need to only check it on a torsion $\mathbb{Q}[\mathbb{Z}]$-module with one generator.

$$
\operatorname{Hom}_{\mathbb{Q}[\mathbb{Z}]}(\mathbb{Q}[\mathbb{Z}] / p,[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}]) \rightarrow \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}[\mathbb{Z}] / p, \mathbb{Q}) .
$$

In this case the target space is free of rank $\operatorname{deg}(p)$; the free generators are the dual classes to the polynomials t^{i} for $0 \leq i<\operatorname{deg}(p)$. The domain is a free \mathbb{Q}-module of rank $\operatorname{deg}(p)$ generated by the homomorphisms that send 1 to t^{i} / p where $0 \leq i<\operatorname{deg}(p)$. Hence the map is a bijection between these basis vectors.

Remark. As $[\mathbb{Q}[\mathbb{Z}]]$ is injective $\mathbb{Q}[\mathbb{Z}]$-module $[9]$, the first part of the above proof can also be seen by applying $\operatorname{Hom}(H, \star)$ to the short exact sequence $0 \rightarrow \mathbb{Q}[\mathbb{Z}] \rightarrow[\mathbb{Q}[\mathbb{Z}]] \rightarrow[\mathbb{Q}[\mathbb{Z}]] / \mathbb{Q}[\mathbb{Z}] \rightarrow 0$.

Lemma 2.3 Let $g: H \rightarrow H$ be a $\mathbb{Q}[\mathbb{Z}]$-linear map, where H is a finitely-generated torsion $\mathbb{Q}[\mathbb{Z}]$-module. Let $g^{*}: \operatorname{Ext}_{\mathbb{Q}[\mathbb{Z}]}(H, \mathbb{Q}[\mathbb{Z}]) \rightarrow \operatorname{Ext}_{\mathbb{Q}[\mathbb{Z}]}(H, \mathbb{Q}[\mathbb{Z}])$ the Ext-dual of g. Then $k e r(g)$ and $\operatorname{ker}\left(g^{*}\right)$ have the same order ideals (Alexander polynomials).

Proof The order ideal of H admits a prime factorisation, so let $P \subset \mathbb{Q}[\mathbb{Z}]$ be the set of primes used in the prime factorisation. Given $p(t) \in P$ let $H_{p(t)} \subset H$ be the sub-module of elements killed by a power of $p(t)$. Then there is a canonical isomorphism $\bigoplus_{p(t) \in P} H_{p(t)} \simeq H$. This splits g as a direct sum

$$
g=\bigoplus_{p(t) \in P} g_{p(t)}: H_{p(t)} \rightarrow H_{p(t)}
$$

Thus,

$$
\Delta_{k e r(g)}(t)=\prod_{p(t) \in P} \Delta_{k e r\left(g_{p(t)}\right)}(t)
$$

Let $d_{p(t)} \in \mathbb{Z}$ be defined so that $\Delta_{k e r\left(g_{p(t)}\right)}(t)=p(t)^{d_{p(t)}}$. By Lemma $2.2, g$ and g^{*} can be thought of as the $\operatorname{Hom}_{\mathbb{Q}}(\cdot, \mathbb{Q})$-duals of each other, thus $\operatorname{ker}(g)$ and $\operatorname{ker}\left(g^{*}\right)$ have the same dimension as \mathbb{Q}-vector spaces. But by the comments following Lemma 2.1, $\operatorname{dim}_{\mathbb{Q}}\left(\operatorname{ker}\left(g_{p(t)}\right)\right)=\operatorname{deg}(p(t)) d_{p(t)}$. Thus, $\Delta_{k e r\left(g_{p(t)}\right)}(t)$ is determined by the rank of $\operatorname{ker}\left(g_{p(t)}\right)$ as a \mathbb{Q}-vector space. Hence $\operatorname{ker}(g)$ and $\operatorname{ker}\left(g^{*}\right)$ have the same order ideals.
preprint

Remark. Although they have the same order ideals, in general the two kernels are not isomorphic as $\mathbb{Q}[\mathbb{Z}]$-modules. An example is given by $g: \mathbb{Q}[\mathbb{Z}] / p(t) \oplus \mathbb{Q}[\mathbb{Z}] / p(t)^{2} \rightarrow \mathbb{Q}[\mathbb{Z}] / p(t) \oplus \mathbb{Q}[\mathbb{Z}] / p(t)^{2}$ defined by $g(a(t), b(t))=(0, p(t) a(t))$. In this case, $\operatorname{ker}(g) \simeq \mathbb{Q}[\mathbb{Z}] / p(t)^{2}$, while $\operatorname{ker}\left(g^{*}\right) \simeq$ $\bigoplus_{2} \mathbb{Q}[\mathbb{Z}] / p(t)$.

Theorem 2.4 Let K^{\prime} be a 2-knot which is deform-spun, then $\Delta_{K^{\prime}}\left(t^{-1}\right)=\Delta_{K^{\prime}}(t)$.
Proof We use the notation in the introduction. Let $C_{K^{\prime}}$ be the complement of a tubular neighbourhood of K^{\prime}, and C_{K} the complement of a tubular neighbourhood of K. Let g be the diffeomorphism of C_{K} obtained by restricting the diffeomorphism in the definition of $C_{K^{\prime}}$. There is a homeomorphism

$$
C_{K^{\prime}} \simeq\left(C_{K} \rtimes_{g} S^{1}\right) \cup_{\nu S^{1} \times S^{1}}\left(\left(\nu S^{1}\right) \times D^{2}\right)
$$

where νS^{1} is a trivial I-bundle over S^{1}, considered to be a tubular neighbourhood of a meridian in ∂C_{K}. This gives a short exact sequence of Alexander modules

$$
0 \rightarrow i m g\left(g_{*}-I\right) \rightarrow H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right) \rightarrow H_{1}\left(\tilde{C}_{K^{\prime}} ; \mathbb{Q}\right) \rightarrow 0
$$

where $g_{*}: H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right) \rightarrow H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right)$ is the induced map of Alexander modules.
On the other hand, $g_{*}-I: H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right) \rightarrow H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right)$ gives rise to a short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(g_{*}-I\right) \rightarrow H_{1}\left(\tilde{C}_{K} ; \mathbb{Q}\right) \rightarrow \operatorname{img}\left(g_{*}-I\right) \rightarrow 0
$$

Apply Lemma 2.1 to both short exact sequences, giving $\Delta_{K^{\prime}}(t)=\Delta_{k e r\left(g_{*}-I\right)}(t)$. This reduces the problem to showing that $\Delta_{\operatorname{ker}\left(g_{*}-I\right)}(t)$ is a symmetric polynomial.
We reconsider the proof that $\Delta_{K}\left(t^{-1}\right)=\Delta_{K}(t)[4,6]$ paying special attention to naturality with respect to diffeomorphisms $g \in \operatorname{Diff}\left(C_{K}\right)$.
(1) $H_{1}\left(\tilde{C}_{K}\right) \simeq H_{1}\left(\tilde{C}_{K}, \partial\right)$: this is a natural isomorphism coming from the long exact sequence of a pair.
(2) $\overline{H^{2}\left(\tilde{C}_{K}\right)}$ denotes $\mathbb{Q}[\mathbb{Z}]$-module $\underline{H^{2}\left(\tilde{C}_{K}\right)}$ where the action of \mathbb{Z} is replaced by the inverse action. We have $H_{1}\left(\tilde{C}_{K}, \partial\right) \simeq \overline{H^{2}\left(\tilde{C}_{K}\right)}$: this is the isomorphism coming from Poincaré duality; it is also natural although it reverses arrows.
(3) $H^{2}\left(\tilde{C}_{K}\right) \simeq \operatorname{Ext}\left(H_{1}\left(\tilde{C}_{K}\right), \mathbb{Q}[\mathbb{Z}]\right)$: this is a natural isomorphism coming from the universal coefficient theorem, since $\operatorname{Hom}\left(H^{2}\left(\tilde{C}_{K}\right), \mathbb{Q}[\mathbb{Z}]\right)=0$.
(4) $\operatorname{Ext}\left(H_{1}\left(\tilde{C}_{K}\right), \mathbb{Q}[\mathbb{Z}]\right) \simeq H_{1}\left(\tilde{C}_{K}\right)$. This last result uses that both modules have a square presentation matrix, with one being the transpose of the other. Since $\mathbb{Q}[\mathbb{Z}]$ is a principal ideal domain, the presentation matrices are equivalent to the same diagonal matrices. This isomorphism is not natural.
Thus we have an isomorphism $H_{1}\left(\tilde{C}_{K}\right) \simeq \overline{H_{1}\left(\tilde{C}_{K}\right)}$ which gives the identity $\Delta_{K}\left(t^{-1}\right)=\Delta_{K}(t)$. Using the previous Lemma we get a commutative diagram where all the maps are $\mathbb{Q}[\mathbb{Z}]$-linear.

preprint

This gives us an isomorphism of $\mathbb{Q}[\mathbb{Z}]$-modules $\overline{\operatorname{ker}\left(I-g_{*}\right)} \simeq \operatorname{ker}\left(I-\left(g_{*}^{-1}\right)^{*}\right)$, so

$$
\overline{\operatorname{ker}\left(I-g_{*}\right)} \simeq \operatorname{ker}\left(I-\left(g_{*}^{-1}\right)^{*}\right)=\operatorname{ker}\left(I-\left(g_{*}\right)^{*}\right)
$$

By Lemma $2.3, \operatorname{ker}\left(I-\left(g_{*}\right)^{*}\right)$ and $\operatorname{ker}\left(I-g_{*}\right)$ have the same Alexander polynomials. Thus, $\Delta_{K^{\prime}}\left(t^{-1}\right)=\Delta_{K^{\prime}}(t)$.

3 Comments and questions

Alexander polynomials $p(t)$ of co-dimension 2 knots in S^{n} for $n \geq 4$ are known to only satisfy the restriction $p(1)= \pm 1[7]$, so there is no direct generalisation of Theorem 2.4 to higher dimensions.

Question 3.1 (1) Is the asymmetry of the Alexander polynomial the only obstruction to a 2-knot being deform-spun?
(2) Are there any obstructions to an n-knot being deform-spun for $n>2$?

References

[1] R. Budney, A family of embedding spaces, preprint arXiv.
[2] R. Budney, Topology of spaces of knots in dimension 3, preprint arXiv.
[3] R. Budney, JSJ-decompositions of knot and link complements in S^{3}, L'Enseignement Mathématique (2) 52 (2006), 319-359.
[4] C. Gordon, Some aspects of classical knot theory, in Knot theory, LNM 685, 1-60.
[5] F. Hosokawa, On ∇-polynomials of links, Osaka Math. J., 10: 273-282. (1958)
[6] A. Kawauchi, A survey of knot theory, Springer-Verlag, Tokyo (1990).
[7] S. Kinoshita, On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math. Vol. 74, No. 3 (1961)
[8] R.A. Litherland, Deforming twist-spun knots, Trans. Amer. Math. Soc. 250 (1979), 311-331.
[9] J.J Rotman, Advanced modern algebra, Prentice Hall, NJ, 2002.
[10] E. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 1151965 471-495.
Mathematics and Statistics, University of Victoria, PO BOX 3045 STN CSC, Victoria, B.C., Canada V8W 3P4
IRMA Strasbourg,
7 rue René-Descartes, 67084 Strasbourg, France
Email: rybu@rybu.org, mozgova@mpim-bonn.mpg.de

