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Notes on Varieties of Codimension 3 in PV
Christian Okonek (Ziirich)

Introduction. This article contains a slightly expanded version of notes for
an informal talk which I gave in Oberwolfach in August 1992. In this talk
I tried to stimulate the investigation of smooth subvarieties of codimension
3 in IPV or other ambient spaces by collecting known results, pointing out
some construction methods, and by raising some - hopefully interesting -
problems. Afterwards several people suggested to write down and distribute
the notes, which I do hereby.

In section 1 I review the construction of new smooth subvarieties from given
ones by general linking. This is a classical construction method which has
been applied very successfully in the codimension-2 case.

Here I want to stress the fact that linking allows to produce smooth subva-
rieties X C P of any codimension provided the dimension of X is at most
equal to 3. This fact is well known to the experts (I have learned it from A.
Van de Ven) and appeared at least implicitly in the fundamental paper by
Ch. Peskine and L. Szpiro [P/S], but - to the best of my knowledge - has
not been used systematically for the construction of smooth subvarieties of
codimension 3.

In section 2 I recall the construction of subvarieties Y C P as zero-sets of
general sections in smooth reflexive sheaves, and - closely related to this -
as degeneracy loci of general vector bundle morphisms over P.

Both methods allow to construct smooth codimnension-3 subvarieties Y C P
in projective N-folds P as long as N < 7.

This is a folklore fact for degeneracy loci; a useful filtered version has been
proved by M.-C. Chang [C]. The idea to consider zero-sets of suitable reflex-
ive sheaves is due to R. Hartshorne [H3}, and has later been generalized by
Ch. Okonek [01], A. Hirschowitz/R. Marlin {H/M], and C. Binici [B1].
The main novelty of this article is contained in section 3. Here I describe
the construction of codimension-3 subvarieties Z C P as Pfaffians of twisted
skew-symmetric morphisms f : £ — EV ® L of vector bundles of odd ranks
over P. A Bertini-type argument shows that this method yields smooth
subvarieties if the dimension of P is strictly less than 10. The Grassmannian
G(1,4) C IP? is the simplest example of this type.

Pfaffians occur naturally in many situations: As universal Pfaffians - like
e.g. G(1,4) C IP® -, or as intersections of certain linked subvarieties of
codimension 2; they can also be considered as natural generalizations of
zero-sets of regular sections in rank-3 vector bundles. The latter point of
view suggests an obvious question: Under which conditions is a submanifold
Z C P of codimension 3 a Pfaffian of a vector bundle morphisms f : £ —
EVQ® L,rkE = 1(mod2)?
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There is at least one necessary condition: Pfaffians are always subcanonical,
i.e. their canonical sheaves are restrictions of line bundles on the ambient
space P. It is not likely that this conditions is already sufficient; [ have, how-
ever, not been able to say very much about this problem except translating
it into a question about symplectic reflexive sheaves.

In section 4 I concentrate on the special case P = IPY and collect the known
results about submanifolds Z C IPY of codimension 3. If N > 10, then we
are in the Hartshorne range, so that all such submanifolds are expected
to be complete intersections. It turns out that in the range N = 8,9 all
known smooth examples are actually Pfaffians. Since - as a consequence
of the Barth-Lefschetz theorems - every smooth, codimension-3 subvariety
in IP® and IP? is automatically subcanonical, it makes sense to ask, if all
codimension-3 submanifolds in IP® and IP® are necessarily Pfaffians. If this
were true, we had a second range N = 8,9 below the Hartshorne range in
which only one construction method would produce all smooth subvarieties.
This is, of course, pure speculation at the moment.

For constructions in IP7 reflexive sheaves and degeneracy loci of general vec-
tor bundle morphisms can be used. These degeneracy loci in IP7 are simply-
connected, again by Barth-Lefschetz. It would be interesting to know if there
is a Barth-Lefschetz-type result for degeneracy loci of bundle morphisms over
arbitrary base spaces P. In IP® we have - in addition to the previous methods
- also general linking as a possible construction technique. I have written
down some examples with small invariants. Finally - for the benefit of the
reader - I have produced a list which contains the classification of all (fam-
ilies of) codimension-3 submanifolds in PV, N = 6,7,8,9 of degree d < 8.
This classification is due to F. Zak [Z], G. Scorza [S], T. Fujita [F], and P.
Tonescu [I1], [I2], [I3]; the degree-9 and degree-10 classification is presently
being worked out by M. Fania / L. Livorni [Fa/Lil}, {Fa/Li2] .

I'like to thank F. Catanese, A. Van de Ven, and in particular F. Schreyer for
very useful discussions about the subject of this article; in fact, originally it
was planned as a joint paper with F. Schreyer, but it did not quite materialize
in this way.

I also want to acknowledge support by the Science project "Geometry of
Algebraic Varieties” SCI - 0398 - C(A), by the Schweizer Nationalfond (Nr.
21 - 36111.92), and by the Max-Planck-Institut fiir Mathematik in Bonn.

1 Liaison

Let P be a complex-projective manifold of dimension N, X C P a smooth
subvariety of codimension ¢ defined by the ideal Ix. Consider line bundles
L; € Pic(P) and sections s; € H*(P;Ix @ L;),i = 1,-+-,c. The complete
intersection Z(s) has the form Z(s) = XUX’ for a closed subvariety X' C P.
X' is said to be linked to X via s = (81,---,8.) il X’ is of codimension ¢
and if X and X' have no common irreducible component.

1see ‘Note added in proof’



Proposition. Let X C P be a smooth subvariety of dimension n in a
projective N-fold P. Suppose L; € Pic(P) are line bundles such that Ix ® L;
is globally generated for each ¢ = 1,.--, N — n, and let X’ be linked to X
via a general section s € Ho(P; GB?S"IX ® L;). If n < 4, then X' is smooth.

Sketch of proof: Consider the blow-up o : P — P of P along X and denote
the restriction of o to the exceptional divisor £ C P by =:

E «» P
I lo
X — P

The sections s; € HO(P; Ix®L;) correspond to sections §; € HO(P; 0, s(—E)®
0”L;); the line bundles Op(-E) @ ¢*L; on P are globally generated as quo-
tients of 0*(Ix ® L;). Let X C P be the complete intersection X = Z(3)
in P defined by 3. The usual Bertini theorem on P shows X is smooth and
intersects the exceptional divisor E transversally in X N E.

Since Z(s) = X U X’ with X’ = o(X) we have to prove smoothness of o( X).
But this is obvious in P\ X, and by transversality it suffices to show that
the restriction 7r|f( N E is one-to-one.

Since the fibers of 7| X N E are linear subspaces of the fibers E(z) = 7~ (z),
we must guarantee that XN E contains no line of E(z) for every point z € X.
Let therefore G; := {I € G1(F)|L C Z(3;|E)} be the subvariety of lines in F
which are contained in the divisor Z(3;| E). The codimension of G; C G;(FE)
is 2, so that a dimension count shows X" G; = 0 if 2(N —n) > dimG, (E);
the latter conditions is equivalent to n < 4.

Corollary. Suppose X' linked to X via a general section s € HO(P; N Ix
®L;),n < 4. Then X N X' is subcanonical in P.

Proof: X N X' = n(X N E), and by adjunction Wing = wp @ Op(E) @
QNI (Os(-E)® 0 L;)|X N E. Since wp ¥ 0*wp ® Op(E)PN-=1) we
find wyny: & (wp ® QNI L)X n X',

This corollary is useful also when XN X" is not smooth, e.g. if n > 4. In this

case it allows to construct explicitly projective small resolutions for singular
subvarieties in P with “prescribed” canonical bundles [W].

Example.Let X = IP* C IP® be defined by X5 = Xg = 0. Choose suffi-
ciently general forms g;,h; € C[Xo,--- X¢s;,7 = 1,2, and let X’ C IPS be
linked to X via f:= (fi, f2), fi := Xsg9:i + Xghi.

The intersection X N X' is the hypersurface Z(A|IP*) ¢ IP* defined by

h
a=an( 2 1) oo Kelavs

X N X' is a complete intersection with (d,d2)? singular points, and the
construction above yields a small resolution



T XNE—XnX'

with wy - = 0*Op,(d) + d; — 5)X N E, in particular wgp & Ogpp iff
dl + d2 == 5.

Remark. In order to ca,lgu]ate the numericz_a,l invariants of X' one could
start with the formula ¢;(X) - c:(Ng,p) = c(P). ct(N g p) is determined by

the Chern classes of Os(—E) and the Lis ; ¢,(£) is given by the formula
ei(P) = o*c{ P) + ju(7*ci( X) - @) for blowing-up Chern classes [Fu2, p.300)].

The formula for the Segre class of X C P [Fu2, p.75] allows to express the
classes 7,(c1(Op(E))¥) in terms of ¢;(X) and c;(P). The computations for
X N X' are similar. J. Spandaw has explicit formulas for 3-folds in IP® [Sp].

2 Smooth reflexive sheaves and degeneracy loci

Let P be a projective maunifold of dimension N, F a reflexive sheaf of rank r
over P with hdF < 1. The singular set §ingF of F is in this case simply the
support of the sheaf £zt (F,Op); the ideal Ann (Eztbp(f, Op)) makes it
a subvariety of P.

F is said to be smooth (a more generally, to have hypersurface singularities),
if for every z € Sing(F') there exists a regular parameter system (¢;,---,tn)
of Op; such that

(‘:Itlop(]'-,OP)I = OP,I/“I‘.

"-tr+l)

(Exty, (F,0p)s = Opg/ ()t ) Where (41, -+, t,p) is a regular sequence
in Op ). This means that the singular set Sing(F) is smooth of codimension
r + 1(Sing(F) is a hypersurface in a smooth subvariety of codimension ),
and Exty (F,Op) is an invertible sheaf on Sing(F). ITn [B2} C. Binicd
shows:

Proposition.Let F be a globally generated reflexive sheaf of rank r over an
N-fold P. If F is smooth or has at most isolated hypersurface singularities,
and if N < 2r+1, then the zero-locus Z(s) of a general section s € HO(P; F)
is smooth of codimension r (or empty) with Sing(F) C Z(s).

Sketch of proof for a smooth reflexive sheaf: On P\Sing(F) the usual Bertini
theorem applies. Consider z € Sing(F): the zero-locus of a section s €
HO(P;F) is smooth around z if its value s(z) € F(z) is non-zero in the
vector space F(z). Since ev(z) : H(P;F) — F(z) is a surjection onto
a vector space of dimension r + 1, its kernel ev(z)~!(0) is of codimension
r 4 1in H°(P; F). There exists therefore a non-empty Zariski-open subset
U C H(P; F) of sections not vanishing in any point of Sing(F) as long as
dimSing(F) <r+1,ie for N < 2r 4 1.



It is not completely trivial to relate the Chern classes of F to the numerical
invariants of the zero-locus Z(s) for a general section. For r = 2, P = PV
one can use Hilbert polynomials and identify the coefficients [O1]. Another
method, which also produces formulas for r = 3, is to apply Riemann-Roch
without denominators [Fu2, p.297] to the structure sheal Oz(,). Explicit
formulas for the degree and sectional genus can be found in C. Bénicd’s
paper [B1].

There is essentially only one way to construct smooth reflexive sheaves,
namely as cokernels of suitable vector bundle morphisms.

Let F and F be vector bundles of ranks f and e respectively over the N-
fold P, and let u : FF — E be a bundle morphisms. For 0 < k < min(f,e)
the k-th degeneracy locus Dy(u) = {z € P|rku(z) < k} is the subspace
defined by the vanishing of A*+1u; locally its ideal is defined by the (k + 1)-
minors of a matrix representing u. The codimension of Di(u) C P is at most
(e—k)(f — k) if Dp(u) # 0. Set D(u) = Dy (u)if f <e.

Proposition.Let F and E be vector bundles of ranks f < e over a smooth
projective N-fold P, such that FV ® E is globally generated. Suppose N <
2(e—~ f+2). fe—~ f > 2, then the cokernel coker(u) of a general morphism
u € Hom(F, F) is a smooth reflexive sheaf of rank e — f with singular set

D(u).
Proof: [B1, p.26 - 29].

C. Banicd also shows that for ¥ < 2(e— f+2) and e~ f = 1 the cokernel of
a general morphism u € Hom(F, E)} has the form coker(u) = Iy ® detE ®
(detF)V for a smooth codimension-2 subvariety ¥ C P.

The previous two propositions allow to construct smooth codimension-r sub-
varieties in projective N-folds Pif N € 2r+1. The same range of dimensions
can be reached by the closely related technique of general degeneracy loci.

Proposition.Let F and E be vector bundles of ranks f < e over a projective
manifold P of dimension N, such that F¥ ® E is globally generated. If
N < (f =k + 1)(e = k + 1), then for a gencral morphism v € Hom(F), E)
the k-th degeneracy locus Dy (u) is smooth of codimension (f — k)(e — k) or
empty.

Proof: This is well known for k = f — 1, i.e. for D(u), a “filtered version”
is due to M.-C. Chang [C]. The proof in the general case 0 < k < f can be
found in [B1].

Remark.By taking for F a trivial bundle one recovers Kleiman’s theorem on
the smoothness of dependency loci of general sections in globally generated
vector bundles [K].

Remark. In the borderline case N = (f — k+ 1)(e — k£ + 1) the degeneracy
locus Di(u) of a general morphism is smooth of codimension (f — k)(e — k)
outside of finitely many points. The intersection of Dg(u) with a smooth,



transversally intersecting hypersurface not containing any of these singular
points yields therefore a smooth subvariety of codimension (f —k)(e—k)+1.

Example. Let £ and F be vector bundles of ranks ¢ and e — 1 over a
projective 6-fold P, such that FY @ E is globally generated. Let Y :=
D.—7(u) for a general morphism u, so that [y has the resolution

0= F3ESIy—0.

If now L € Pic(P) is very ample with h'(P;EY@ F® L) = 0,and if s €
HP(P; L) is sufficiently general, then Z := Y N Z(s) is a smooth subvariety
of codimension 3 in P whose ideal has a locally free resolution of the form

0= FQLY - FOEQLY - E®LY - Iz—0.

The Eagon-Northcott complexes associated with u yield explicit locally free
resolutions for the ideals of degeneracy loci [E/N].

Example.Let D(u) be the degeneracy locus of a general morphism u : F —
E,f=e-2,FV@® F globally generated. Then there is an exact sequence

0 A EY®S'F —N EY@F —A EY — Ipyy ® detFY — 0.

The cohomology classes of degeneracy loci are given by the Thom - Porteous
formula [Fu2]. An algorithm for calculating Chern numbers of Dg(u) can
be found in [P1], [P2] and [P/P]. To relate the invariants of degeneracy loci
to the Chern classes of the bundles involved one can either use Riemann -
Roch without denominators, or Hilbert polynomials if P = PV [B1].

It may happen that a degeneracy locus Dy(u) is empty even if the expected
dimension N — (f — k)(e — k) is non-negative. This cannot occur, how-
ever, if F¥ ® E is sufficiently positive. In [F/L2] W. Fulton / R. Lazars-
feld have shown that if FV ® E is ample, then D(u) is non-empty for
N —(f—-k)(e—k) >0, and connected when N —(f —k)(e—k) > 1. Further-
more, they remark [F/L2, p.277] that there is no obvious extension of this
result to a Lefschetz-type vanishing theorem {or higher relative homotopy
groups.

Nevertheless one may ask for a vanishing result for general degeneracy loci
- or zero-loci of general sections in smooth reflexive sheaves - which yields
the Barth-Lefschetz theorem when applied to P = IPV.

3 Pfaflians

Let P be a smooth projective variety of dimension N, L € Pi¢(P), and F a
vector bundle of rank 7 over P. A vector bundle morphism f: F — EVQL is
said to be skew-symmetricif f¥Y®idy = (—1)-f. A skew-symmetric morphism
f corresponds to an element f € HO(P;A*EY @ L); its determinant is a
section detf € HO(P;(detE)®~% @ L®). Therc are two essentially different
cases:



If r = 0(mod2), then there exists a root P(f) € HO(P;detEY @ L®%) of
det f, the Pfaffian of the morphism f. P(f) defines the degeneracy locus
D, (f)c P.

Example.Let V be a vector space of dimension 7 = 0(mod2), P := IP(A?VV)
the projective space associated to A2VV.

There is a tautological morphism f:V @ Op — VY @ Op(1) which corres-
ponds to td,2y under the identification

HO(P;A?VY @ Op(1)) = AVY @ A?V.

The associated Pfaffian P(f) € H(P;detVY ® Op(%) defines a hypersurface
of degree £ in a projective space of dimension (7) — 1, the universal Pfaffian
hypersurface of rank 7.

The simplest special case 7 = 4 yields the Grassmannian G(1,3) C IP® with
the equation Xo X5 — X1 X4+ X2X3=0.

The universal Pfaffian hypersurfaces are non-singular in codimensions < 4.

If f: F — EVYV®Lis a skew-symmetric morphism of a bundle of rank
r = 1(mod2), then detf = 0. In this case we consider the first non-trivial
degeneracy locus D(f) C P,D(f) := D;_a(f) = D,_3(f); the expected
codimension of D(f)in P is 3 [B/E].

Lemma. Let f: E—- EY® Lbea skew-symmetric morphism of a bundle
E of odd rank r, given by a section f € H(P;A?EY ® L). If Pic(P) has no
2-torsion, and if codimpD(f) = 3, then there exists an exact sequence

-

(x)0 - detE@ LB~ 984 p L, pv g [ 8 1) @ detEY @ LB - 0

Proof: Let j : K — E be the inclusion of the kernel of f into E; K is
reflexive of rank 1, hence invertible, and we obtain an exact sequence

0oKSEL VoL 2 9 kVeL -0,
where Z(7) denotes the zero-locus of j. Since detlz(;) ® KVRL=KVQL,
this exact sequence yields K ® detEY @ det(EY @ L)@ K ® LV = Op, i.e.
K®? 2 (detE @ LO(5F))82,

Remark.The section g := jY®id, € HO(P; E®detEV®L®rT_I‘) corresponds
to a global divided power f(55) € HO(P;A™"'EV® L8F") under the natural
identification E ® detEY = A"~ EV [B/E).

Definition.A codimension-3 subvariety Z C P in a smooth projective N-
fold P is a Pfaffian subvariety if there exist bundles L € Pic(P)}, E of rank
T & 1(mod2) over P, and a skew-symmetric morphism f: E - EV® L,
such that Z = D(f).



Example.Let V be a vector space of dimension r = 1(mod2), P := P(A?VY)
the projective space associated to A?VY. The universal Pfaffian subvari-
ety of P is the degeneracy locus D(f) C P of the tautological morphism
f:V®0p = VV®Op(1). D(f) is a codimension-3 subvariety of degree
1("+") which is non-singular in codimension < 6 [B/E]. The simplest special
case r = 5 yields the Grassmannian G(1,4) C IP? in its Pliicker embedding.

Lemma. Suppose Z C P is a smooth Pfaflian subvariety associated to a
morphism f: E — EVY® L.
i) The ideal Iz has the locally free resolution

Y@id
(+0) 0= Lo* 25 Eo £ By @ Ly 2 17— 0

with Lo := (detE)®? ® L®~" and Eo := E ® detE ® L3~ (),
1

furthermore: detEy = L,? 2

ii) Z C P is subcanonical with wz & L ® wz ® Oz.

Proof: i) follows by a simple calculation from (x);
ii) is a consequence of the local fundamental isomorphism.

Remark.The normalized resolution (%g) of a Pfaffian subvariety specializes
to the Koszul complex of a regular section in a rank-3 vector bundle when
r=23.

Remark. I the ideal of a submanifold Z C P of codimension ¢ In a smooth
projective N-fold P has a locally free resolution of the form

0=L—-FE. 2> E. 33— . 2 Fg—1iz—0,

then wz = LY @ wz ® Oz, i.e. Z must be subcanonical.

At this point it is quite natural to ask for an analogue of the Serre-corres-
pondence in codimension 3, i.e.: Given a submanifold Z of codimension 3
in a smooth projective N-fold P such that wz = LY @ wp ® Oz for a line
bundle L € Pic(P). Under which conditions is Z a Pfaffian of a suitable
morphism f: E - EV® L? I don’t have a solution to this problem, but
the following reformulation in terms of symplectic reflexive sheaves may be
useful.

Lemma. Suppose Z C P is the Pfaffian subvariety associated with a skew-
symmetric morphism fo: Eg —» EY ® Lo. Let Fy := Im fy. Then:

i) Fo is a reflexive sheaf with hd(Fp) < 1

it) £zty (Fy,0p) = Oz

iii) Fo is Lo-symplectic.

Proof: Property i) follows immediately {rom the normalized resolution (*g)
of I2.
To prove ii) one double dualizes the sequence



OqfoibES'@Lo&Iz—PO

and compares it with the resulting exact sequence

0= Fo'S EY ® Lo 2 Op — Exthy (FY,0p) — 0.

Property iii) means there exists an isomorphism a : Fo — Fy ® Lo with
a¥ @ idr, = —a. To see this we dualize the first sequence again and twist it
by Lo; this yields

gy ®id, 1¥®idy,
0—+L0°—>°E0 —*O:FSI®LD—P0

The skew-symmetric morphism fo : Eg — EJ ® Lo induces amap f§: Fy ®
Lo — Fo whose determinant detf : detFy @ L™~ — detFo corresponds
to the identity under the identification (detFp)®~2 @ L ™! = Op; clearly
a:= (f§)7! satisfies a¥ ® idL, = —e.

Remark. A reflexive sheaf F; which admits an Lg-symplectic structure
@ : Fo — FY ® Lo necessarily must have even rank s and (detFy)®% = LY.
Every reflexive sheaf Fp of rank 2 has a natural (detFp)-symplectic structure
induced by the second wedge-product.

The following is a partial converse of property iii).

Lemma. Let Fp be a reflexive sheaf with Ad(Fs) £ 1 on a projective
N-fold P, which admits an Lg-symplectic structure.

Suppose Exty  (Fy, Op) = Oz for a smooth codimension-3 subvariety Z. If

the identity section idz € HO(P;Oz)lifts to a global element € € Ezty, (Fy, Op),
then Sing(Fy) = Z is a Pfaffian subvariety of P.

Proof: Choose a global extension class ¢ € Eztf, ,(Fy,Op) which localizes
to idz € HO(P;0z) = HO(P;Exty (Fy,Op)).
The corresponding exact sequence

(€): 0-0p 3L FY 50
has a locally free middle term £ and dualizes to the exact sequence
tv v sV
0o Fo— 8" =0p—=0z7-90

Setting Ep := £@ Lo and using the Lo-symplectic structure a : Fo — Fy'® Lo
one pgets

) )
0— Lo 2o "8 pve i, —0

>| a”!

0 — R oL S, —0
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the composition fo := p¥ 0o a™! 0 p @ idy, is the required skew-symmetric
morphism which provides Z = Sing(Fp) with the structure of a Pfaffian
subvariety.

Corollary. Let Z C P be a disjoint union Z = []; Z; of smooth Pfaffian
subvarieties Z; associated to morphisms f; : E; — EY ® L;. If the normalized
line bundles (L;)o coincide for all ¢, then Z is also a Pfaffian in P.

Proof: Let (F;)o be the image of the normalized morphism (fi)o : (E;)o —
(E:i)s ® (Li)o. Since (L;)o X Lo for fixed line bundle Ly € Pic(P), every
(Fi)o is Lo-symplectic. The direct sum Fo := @;(F;)o is therefore also Lo-
symplectic, and the identity section idz € 1(P;0z) = @;H°(P; Ogz,) lifts
to a global extension class € since every component idz; has this property.

Example. Every subset Z = {z;,-++,2,,} of simple points in IP? is a Pfaffian
subvariety. In general, however, it is not possible to express Z as zero-set of
a regular section in a vector bundle of rank 3 [Kr].

There is one typical geometric situation in which Pfaflian subvarieties oc-
cur naturally, namely as divisors with induced adjoint line bundles in codi-
mension-2 subvarieties. More precisely, suppose V C P is a codimension-2
subvariety in P given as the degeneracy locus of a vector bundle morphism

h
() O0=FAESI, -0

Consider a divisor Z C V. If Z is a Pfaflian subvaricty in P, then there exists
a line bundle L € Pic(P) with wz = LY @wp ® Oz, so that wy @ Ov(Z) ®
Oz ILVQuwp® Oz.

Assume now that already the adjoint line bundle wy ® Oy(Z) of Z in V is
induced by LY ® wp, i.e. wy @ Ov(Z) = LY @ wp ® Oy. This equation can
be rewritten as Iz;y ¥ wy @ L ® wy, so that by dualizing and twisting (x)
we obtain a locally free Op-resolution

O—PL—PEV®L—>FV®L—>IZ'/V_P0

for the ideal /7,y of Z in V. The two exact sequences can be combined into
the following diagram:

0 - L ‘% pvor MY VoL o Iy - 0
!
0



11

Under certain vanishing conditions it is possible to fill in a middle row into
this diagram which is of the form

0= Lo FOE'QLLEGFY QL Iz —0,

and exhibits Z as the Pfaffian of a skew-symmetric morphism

0 | h
f=|:-—hv®2.dL|’d}]’

v e HY(P;AN’E® LY).

An important special case in which the assumption wy @ Ov(Z) = LY @
wp @ Oy automatically holds is when Z = V n V' is the intersection of
generally linked subvarieties V, V' of codimension 2.

Example. Let V C P be defined by
0-FLES Ty -0,

and suppose V is linked to a subvariety V' whose ideal can be resolved by
the cone of a morphism «

0 LV v (—?1 v v ("Y'J;’)

- Li®L, = L{®Lj Iyovr - 0
1o la 1

0 — F LA E — Iy - 0

i.e. Iy+ has alocally free resolution

(W ®idyaV@ids)

0—-EYelL FYeLo L@ L] - Iy =0,

where L := LY ® LY.

Then Iyay: = Iy ® Iy , and the following diagram can be con-
/Iv nly
structed:
0 - LY®LY — LYo LY = Iynlyy = 0
! ! |

0 - FOEYQRL - EoFrVeLlLeliely —» Iyodly, — 0

\:fo l l

EQFVQL - dvavr - 0
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Here fo is given by the block matrix

0o | h
-hV®id, |[aopoa’ ®idy |’

and ¢ is the natural L-symplectic structure on LY @ LY.

Concrete special cases are divisors Z(f,3) C V = IP!xIP?2 C IP® = P defined
by bihomogeneous polynomials f,  of bidegrees (a,b) = (—{—4,-1-3),I <
-4,

The next result is a Bertini-type theorem for Pfaflian subvarieties.

Proposition. Let P be a smooth projective N-fold, L € Pic(P), and E a
vector bundle of rank r = 1(mod2) over P. If A2EV® L is globally generated,
and if N <9, then the Pfaffian subvarieties associated with general sections
f e HYP; A2EY ® L) arc smooth of codimension 3 in P, or empty.

Sketch of proof: Consider the subcones D,_s(A’EY ® L) C D,_3(A2EY @
L) C A’EY ® L of skew-symmetric maps of ranks < r — 5(r — 3). These
subcones have codimensions 10 and 3 respectively in the total space of the
bundle A2EY ® L. The evaluation map

ev: HY(P;APEV Q@ LYx P — A'EV QL

is a submersion, so that the preimages A := ev ' (D,.s(A’EY ® L)) and
D = ev™Y(D,_3(A’EY @ L)) in H°(P;AEY @ L) x P are also subvarieties
of codimensions 10 and 3; furthermore, D\ A is non singular. Let

m:D — HYP;A*EV® L)

be the restriction of the first projection to D. 7 is a proper map, and 7(A) #
HOY(P;A'EVQ L)ifdimP = N < 10;U := H%(P;AEY ® L)\r(A) is there-
fore a non-empty Zariski-open subset of H%(P;A2EY ® L) and its inverse
image 7~ }(U) € D\A is smooth. Let f € U be a regular value of x|x=1(U);
the fiber over f is isomorphic to the degeneracy locus D(f) = D._s(fyc P
of the corresponding skew-symmetric morphism f: £ — EY ® L, which is
therefore smooth of codimension 3, or empty.

Remark. If A2EY @ L is ample, and dimP = N > 3, then D(f) is always
non-empty [Fu2, p.216].

Example. Consider a projective manifold P of dimension N < 9 and a
globally generated line bundle L over P. Fix a natural number r = 1{mod2)
and choose a general skew-symmetric 7 X r-matrix of sections in L. The
corresponding Pfaffian subvariety Z C P is then smooth of codimension 3;
its ideal Iz has a locally free resolution
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0— L® " 5 @}':1[,@—(%&) - @}‘=1L®—(";;1) —I; -0

The canonical sheaf of Z is wz 2 L% Q@ wp @ O3.

Remarks. i) The previous proposition has an obvious analogue for sym-
metric morphisms which has been used to construct hypersurfaces with
nodes in 3-folds [Ba]. The “second” degeneracy locus of a symmetric mor-
phism allows the construction of codimension-3 subvarieties which are non-
singular in codimensions < 2. The Veronesean surface in IP? is a simple
example of this type.

ii) I expect that there exists also a “filtered” version of the proposition
above allowing some elements “ncar the diagonal” to be zero ; the numer-
ics of such a version should “explain” the assumptions on the dimensions
which guarantee smoothness of interscctions of generally linked subvarieties
of codimension 2.

ili) One could also ask for a Lefschetz-type result for degeneracy loci of
skew-symmetric morphisms which gives the Barth-Lefschetz theorem when
applied to P = PV,

4 Submanifolds of codimension 3 in PV
Let X be a smooth projective subvariety of codimension 3 in PPV,

As usual, T denote the degree and the sectional genus of X C 1PV by d and
7 respectively; clearly d > 3 if X is non-degenerate, and © < @—ﬂ%ﬂ
[A/C/G/H].

The Barth-Lefschetz theorem - m(IPY, X) = 0 for ¢ < N ~ 5 - yields nec-
essary topological conditions: X must be simply-connected if N > 7, sub-
canonical for N > 8, and it must satisfly m3(X) = 0 when N > 9 [B/L].

If N > 10, then we are in the Hartschorne range, i.e. every codimension-3
submanifold X ¢ IPY, N > 10 is conjectured to be a complete intersection
[H1]. At present this has only been proven for arithmetically Gorenstein
subvarieties [H1], but of course, there are no other examples known.

The most interesting range of dimension is therefore N = 6,7,8,9, and |
will concentrate on this from now on.

By Zak’s fundamental theorem we know that a smooth X ¢ PV of codi-
mension 3 must be linearly normal if N > 8 [Z]. For N = 6,7 this does not
hold, however, the exceptions have already been classified.

If N = 7 there is essentially only one exception, namely the Severi variety
of degree 6 in IP7.

It is a projection of a Segre embedded IP? x IP? C IP® from a general point
p € P8\ IP? x IP? [Z). There arc three different (families of) not linearly
normal 3-folds in IP®; they have degrees 6,7, and 8, and can be described as
follows [F]:
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d = 6 : These 3-folds are general hyperplane sections of the Severi varieties
in IP7,

d = 7 : A Veronese embedded IP® ¢ IP® can be projected into IP® from
an inner point z, € IP3; the resulting 3-fold Ii’s(:co) C P8 can be further
projected from a general line L C IP® \1?3(:::0) into IP®. The embedding
IPs(zo) C IPS is given by a 6-dimensional system of quadrics through zg.

d = 8 : These 3-folds are projections of a Veronese embedded I’ C IP® from
a general plane E C IP? \ IP3.

In addition to these general results the explicit classification of all linearly
normal, non-degenerate submanifolds X C 1PV up to degree 8 has been
worked out [I1], [I2], [I3]. The basic ingredients used are standard formulas
for the intersection numbers like e.g. doublepoint formulas, adjunction the-
oretic methods for the description of possible subvarieties, and mostly ad
hoc constructions to prove their existence. I summarize the classification in
the table below:

The varieties marked with a (*) are the not linearly normal exceptions de-
scribed above.

1) X 2} IP! x 1P? denotes a double covering of IP! x IP? ramified along a
smooth divisor of bidegree (2,2). The embedding is given by the pullback
of Op1(1) ROpR2(1) to X.

2) IP¢(F) is a scroll over an elliptic curve. There exists only one other
3-dimensional scroll over a curve in IP®, namely IP' x IP3 N 1P® [T).

3) IPp2(E) is the tautologically embedded projectivization of a rank-2 vector
bundle E over IP?. E is given as extension 0 — Opz — E — Iy(4) — 0,
where Y = {p1,++-,po} C IP? consists of 9 simple points {I2].

4) Q C IP7 denotes a hyperquadric fibration; Q is a divisor in a IP*-bundle
IP over IP!, and the embedding is induced by a map IP — IP7 [[2].

5) IPp1 p1 (F) is the projective bundle associated to a rank-2 vector bundle
E over a quadric IP! x IP!; the embedding is tautological. P. Ionescu used a

slight modification of the Mumford/Fujita criterion to prove very ampleness
[13].
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Pé 1P? P8 1p? construction
P! xP3inP® | P! x IP3 Segre
G(1,4)n P8 G(1,4)NP7 | G(1,4)n1P® | G(1,4) | Pliicker
mp(IP2xIP?)NIPE | 7, (P x1P?) projection®
X B P! x 1p? 1)
Pc(E) 2)
er(Ii)a(:ng)) projection(*)
Ppa(E) 3)
QnIpe Q 1)
re(IP%) projection(*)
84 | Ppigpi () 5)
815 |v(229 V(2,2,2) | v(2,2,2) | V(22,2)] compl. int.

Now I will show that the linearly normal 3-folds X C IP® of degrees d < 8 -
with the exception of the elliptic scroll and the hyperquadric fibration of de-
gree 7 - can be constructed by general linking from simple known examples.
To this end we have to be able to relate the degrees and sectional genera
of linked 3-folds in IP®. Suppose X, X’ C IP® are smooth projective 3-folds
of degrees d,d’ with sectional genera =, 7’ respectively. If X and X' are
linked via a complete intersection Z( fi, fa, f3) with equations f; of degrees
deg f; = d;, then the following formulas hold [Fu2, p.159]:

d+d = di-dy-dy
1
T-n = 5((£1 +dy + d3 — 5)(([ - d)
Furthermore, the intersection X' N X’ has degree

degX NX' = (dl + dy + d3 — 5)(1 - (21T - 2)
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The following tables contain the degrees d’' and the sectional genera 7' of
smooth 3-folds X’ which are generally linked to “parent” 3-folds X via
complete intersections Z(f) of multidegrees d.

Example 1: X =P3; d=1,7=0

4 |&|v]
22,273
(2,2,3) [ 11| 10
(2,2,4) [ 15| 21
(2,3,3) 117 | 24

The 3-fold X’ with d' = 7, 7" = 3 is the projective bundle IPp2(F).
Example 2: X = Quadric;d=2,r =0

The 3-fold with d = 6,7’ = 2 is a ramified double cover of IP! x IP2. The
3-fold X' with d’ = 10,7’ = 8 is a del Pezzo fibration over IP! [Fa/Li2).

Example 3: X = P! xIP?; d=3,7 =0

d d’l7r'|
22,915 1
(2,2,3)| 9 | 6
(2,2,4) 11315
(2,3,3) | 15 | 18

The 3-fold with ' = 5,7' = 1is G(1,4) N 1PC.

The 3-fold X’ with &' = 9,7’ = 6 is quite interesting: X’ is isomorphic to
the blow-up of a point in a hyperquadric section of G(1,4)NIP7 [Fa/Lil]; the
embedding of X’ into IP® is given by the projection from this point. I know
only one other 3-fold in IP® which is embedded in this way, the blow-up of
a complete intersection of 4 general quadrics in IP7.

Presumably there are only finitely many families of 3-folds in IP® which are
such “inner projections” of 3-folds in 1P7.

Example 4: X = P! xIPNIP® ; d=4,7 =0
P! x P is the degeneracy locus of the tautological morphism on IP7 =

IP(Hom(C?, C")):

U Og’,? — Opr(1)®
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The associated Eagon-Northcott complex yields a locally free resolution of
Iplxpa .
0 — OPT(-'4)$3 d OPT(“‘3)®8 — OIP7(—2)@6 i IPJXIPJ — 0

Ipr p3nps(l) is therefore globally generated for [ > 2, and general linking
gives

| 4 |& ||
2,2,2)[ 4]0
(2,2,3) 8 | 4

The 3-fold X’ with d’ = 8,7’ = 4is the IP'-bundle P p1 , p1 ( £) over P} x IP*.

Example 5: X = G(1,4)NIP¢; d=5,r=1
G(1,4) C IP? is a universal Pfaflian, so that Ig,4ynpe has the following
resolution:

(¥0) 0 = Ops(=5) = Ops(=3)%° — Ope(-2)%° = Ig(; 4ynps = 0

By general linking we obtain the following 3-folds:

| d | d' I ! |
22230
(2,2,3)1 7|3

(2,3,3) | 13| 13
The 3-fold X’ with d' = 7,7" = 3 is again P p2(F).

In the following table I have listed the “new” 3-folds in IP® of degrees d’ <
15 which I could construct via general linking from known examples X of
degrees d < 6 (the symbol @ N Q' N 1P° means that X is a general complete
intersection of two hyperquadrics @, Q’ and a hyperplane).
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d |« | X d

9 16 |IPYxIP? (2,2,3)
10 [ 8 | Quadric (2,2,3)
11 |10 | IP3 (2,2,3)

12|11 | X B P xp? | (2,3,3)
12 |12 | P! xP3n1P® | (2,2,4)

121139 (2,2,3)
13 1 13 | G(1,4)nIP® | (2,3,3)
13 {15 | IP? x IP? (2,2,4)

14 | 15 | P* x IP3n1PC | (2,2,3)
1416{QnQ'NnIP® | (2,3,3)

14 | 18 | Quadric (2,2,4)
15 [ 18 | IP! x 1p? (2,3,3)
15 [ 21 | IP3 (2,2,4)

Remark. The 3-folds X’ C IP® in this list with invariants (¢',7") € {(10,8),
(12,11),(14,16),(14,18)} are hyperquadric sections of cones over 3-folds in
IP®. The same construction applied to a 3-fold X C IP® of degree 7 and
sectional genus 4 yields another 3-fold of degree 14 in IP®. This 3-fold has
sectional genus 14, and can not be constructed via general linking from a
3-fold of smaller degree. A similar example is the general hypercubic section
of the cone over a Castelnuovo 3-fold in IP%; this gives a 3-fold of degree 15
and sectional genus 19.

Remark. The construction of codimension ¢ 4+ 1 subvarieties in IPV+! as
general hypersurface sections of cones over codimension ¢ varieties in PV is
sometimes a specialization of the “borderline case” of section 2. If X ¢ IPV
is smooth of degree d with sectional genus 7, and if X ¢ PN+ is the
intersection of the cone over X with a general hypersurface of degree h, then
the degree of X is d = hd, and the sectional genus is given by 7 = h(7— 1)+
(5d+ 1 [B/N].

I leave it to the interested reader to construct smooth, codimension-3 sub-
varieties in IP7 as zero-loci of sections in smooth reflexive shecaves, or as
degeneracy loci of suitable vector bundle morphisms. There are no exam-
ples in degree 9 [Fa/Lil).

As far as submanifolds of codimension 3 in 1P® and IP® are concerned, the
only examples known-besides complete intersections- are G(1,4) C 1P?, hy-
perplane sections, and pullbacks under finite maps thereof. I like to con-
struct some new examples as Pfaflians of suitable vector bundles. The degree
of a Pfaffian subvariety can be calculated as follows:
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Lemma. Let Z C IPY be a Pfaffian submanifold defined by a skew-
symmetric morphism f : E —» EV® L. The degree of Z in IPY is determined
by the rank r and the Chern classes of £ and L:

degZ = cs(E) - Lea(E) - ei(1) + l-("z I)CI(L)B.

Proof: Tedious computation.

Example. Fix an odd integer » > 0, a natural number ! and choose a
general skew-symmetric 7 X 7-matrix Fy(I) of forms of degree ! on IP®. Let
Z.(I)  IP® be the Pfaffian defined by the morphism

O]%; PL(’!) O]])Q(l)@r.

Z.(l) is a submanifold of codimension 3 in IP% its degree is 3("t1)3, its

canonical sheaf is wz (1) = Oz, ()(r! — 10). The Plaffians with r/ < 10 yield
interesting Fano manifolds which I have listed below.

X d |nlt|ec
Zo(1) v[6[1]6
Z,(1) 46|34
Z;()NIPE (14 |5 |24
Zx()NIPT |14 |4 |1{4
Zs(1) 56|52
Zs(HNMP8 [ 5 |5(4]2
Zs(H)NWP” [ 5 |4 |3]2
Zs()NP® | 5 13 (22
Zs()nIP® [ 5 f211]2

In addition to the degree d of X I have also noted the dimension n, the
index ¢, and the coindex ¢ = n41 -1 of X. The sccond Betti number by(X)
is always equal to 1 for n > 3. The Pfaffian Z7(1) can also be constructed
from the tangent bundle of IP®,

The list of manifolds with trivial canonical bundle which can be obtained as
hyperplane sections of Z,()'s is rather short

X d
Z5(2) 40
Zo(1)NTIP® | 30
Z:(1)NTPS |14
Zs()nPt | 5

— W o S
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As W. Decker has pointed out to me, it is, however, possible to construct
further examples of Fano varieties or of manifolds with trivial canonical
bundles by using skew-symmetric r X r-matrices of forms whose degrees are
not all equal.
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Note added in proof: After this paper was written, [ received the new version
[Fa/Lil] of the degree 9 classification of n-folds in projective spaces. There
it is shown that one has only 2 families of 3-folds of degree 9 in IPS : those
mentioned in example 3, and the hypercubic sections of cones over IP* xIP% C
IP®. None of these 3-folds extend to a 4-fold in IP7 [Fa/Lit).



