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Abstract
We present a universal procedure of quantization based on a certain integral
transform named by the authors a Fourier-Gauss transform. This procedure co-
incides with Schrédinger quantization for observables, with Maslov’s quantiza-
tion for Lagrangian modules and with Fock quantization for canonic transforms
of the phase space.

1 Introduction

1. As it follows from the title, the theme of this paper is quantization. Let us first try
to explain this notion in more detailed manner.

As it is well-known, in physics by quantization of the classical mechanics one mean
the assignment of quantum objects to the corresponding classical ones. The main of
these notions are state of the system and observables. We recall that the state of a
system in classical mechanics is determined by a point in the phase space (¢,p) (the
space of coordinates and momenta), and observables are functions f(g,p) on this space
(for example, Hamiltonians). In the same time in quantum mechanics the state of the
system is described by the so-called ¥-function (or wave function) and observables are
described by operators acting in the state space. For Schrodinger quantization the
correspondence of classical and quantum objects (on the level of observables) is given
in the following way:

g §=q,
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so that the (pseudodifferential) operator corresponding to the observable f(q,p) reads
-~ 2 L
f=f(m@ M

(the indices over the operators determine the order of action of these operators — the
so-called Feynman ordering).

However, the correspondence between classical and quantum states is not so simple.
The matter is that the measurements of coordinates and momenta of a quantum
particle can be give different result with certain probability for one and the same
quantum state. Thus, there exist states in which the quantum particle can be found
during some experiment (in the semi-classical limit) with the probability equal to
zero. The set of classical states in which the particle can be found with ’positive’
probabilitiy occurs to be the so-called isotropic submanifold of the phase space, that
is, the submanifold on which the Cartan form pdq is closed.

iFrom the viewpoint of a quantum particle, such submanifolds will be nothing more
than the front of oscillations corresponding to the #-function. Now the quantization
rule for state space becomes quite evident: quantization must assign a -function
(more precisely, a class of ¥-functions) to the given isotropic manifold in such a way
that these functions have their fronts of oscillations in this isotropic manifold.

It can be shown that the dimension of any isotropic submanifold cannot exceed the
dimension of the corresponding configuration space. In this paper we restrict ourselves
to the case of 1sotropic manifolds of maximal dimension named Lagrangian manifolds.

Let us present now the mathematical treatment of the above physical reasons. It
will be convenient for us to use the language of the category theory.

Let us fix a phase space, for example, the cotangent space to a smooth real manifold
M with the canonical symplectic structure dp A dq.

i) Consider the category C whose objects are modules C®(A) of smooth complex-
valued functions on Lagrangian manifolds A over the ring of classical observables.
Thus, an object in this category is the abelian group C*°(A) for some Lagrangian
manifold (Lagrangian module) with the following action of the ring C*(T*M) of
classical observables:

fro=1 Dy e
where in the right-hand side of the latter equality the usual pointwise multiplication
1s used.

Morphisms in this category are determined by symplectic transforms of the phase
space. Namely, if for two given Lagrangian manifolds A, and A,

g: T°M = T°M (2)



is a symplectic transform such that A, = g(Ay), then we assign to (2) the module
homomorphism

g C®(A) —» C™(Ay)

over the ring homomorphism

g": C®(T"M) — C®(T"M).

ii) Consider also the category @ whose objects are modules Cp°(M, A) of smooth
functions (¢, %) depending on a parameter i with the fronts of oscillations in A over
the ring of quantum observables (that is, pseudodifferential operators). We remark
that pseudodifferential operators preserve fronts of oscillations and, hence, the above
definition is a correct one.

Morphisms in this category are given by mappings

T . CP(M,A)) — CP(M,A,)

such that the operator THT-' is a pseudodifferential operator for any pseudodiffer-
ential operator H.

More precisely we consider the mapping T as the mapping of quotient spaces
C2(M, A;)/S' modulo the group of complex numbers A with [A] = 1. It is natural for
quantum mechanics, because states corresponding to ¥-functions which differ by such
a factor are physically identical.

iii) The semi-classical quantization is a contravariant functor from the category C
to the category Q:
F:C—- ¢

such that the module of smooth functions on M with front of oscillations on the given
Lagrangian manifold is assigned to the module of smooth functions on this Lagrangian
manifold, and observables correspond to pseudodifferential operators on M obtained,
for example!, by Schrédinger quantization (1).

As it is shown in the paper, such a functor exists and, what is more, we present its
explicit construction based on a new integral transform which we call Fourier-Gauss
transform. This is an invertible transform taking flinCtiOI]S f(z,h) determined on the

physical space R" to some subspace of functions f(z,p,%) determined on the phase

I'We use, for such a correspondence, the Schrodinger quantization. Certainly, it is possible to use
another quantization, for example

1 2
Hap) — f (q,ﬁ)

or the Weil quantization. All these rules coincide in principal terms, so, from the viewpoint of the
leading terms the corresponding semi-classical approximations will coincide.



space T*R". As we shall see below, using such a transform one can carry out a unified
construction of quantization of all classical objects (at least, in principal terms).

Moreover, this procedure coincides with the Schrédinger quantization for observ-
ables [1], with the Fock quantization for canonical (symplectic) transforms [2] and with
the Maslov quantization for Lagrangian modules [3].

Realizing this construction we obtain 1/%-pseudodifferential operators as quantiza-
tion of observables, Fourier integral operators as quantization of symplectic transforms
and Maslov’s canonical operator as quantization of Lagrangian modules (the reader
can find the notions used here, for example, in [4]).

2. To conclude these preliminary considerations we shall make some remarks. First
of all, it is clear that to obtain the correspondence between classical and quantum
objects, that is, to construct a quantization procedure, we shall try to decompose
any quantum state f(z,%) into the sum’ of elements corresponding to points (z, p)
of the phase space T*R", that is, to the classical states. Such a decomposition is a
microlocalization procedure.

The localization of the function f(z,%) in the phase space can be decomposed in
the localization along fibers of T*R™ and the localization along the base space. The
localization along the base space can be done in different ways. First (and simplest) of
these ways is multiplying the initial function f({z,%) by a cut-off function supported in
a sufficiently small neighbourhood of the point zo. Unfortunately, this method gives
localization not at point o itself but in a neighbourhood (though small) of this point.
That is why we use here another localization procedure based on the ’integral partiton

of unity’ of the form
nf2
7h

The localization along the base space is therefore obtained with the help of multiplica-

tion by
| nf2 ¥ 2
. = — — 5 (z=29)%.
6h(3/ :1;0) (21rﬁ> e 2h ;
note that
On(z — xo) — 8(x — xg)
as h — 0.

The localization along the fibers can be done with the help of the quantum Fourier
transform, in other words, by means of p-representation, at the point zg:

1!/2 )
! —tpp(z—x
Foepo [f] = (21rih> /e »Pol o)f(:L.) dz.

By composition of these two localizations we obtain the microlocal element correspond-




ing to the function f(z,h) in the form

1 nf2 1 nf2
feopo) = Fr—»po{Sh(m—ro)f(fc,h)}:(z—WE) (Mﬁ) y

X /exp {% [—po(a: — Zo) + %(:c - mo)z] } f(z)dz.

The latter formula determines an integral transform? which we call the Fourier-
Gauss transform of the function f(z,%). As it will be shown below, the inverse trans-
form is given by

~ ; n/2 K . ~
f(mo, Po) = ('2_> /ex[potr_x°)+§(r_z°)7]f(l‘oaPo) dxo dpo.

7h

It is convenient to renormalize the obtained transform in such a way that the Parseval
identity takes place for this transform. This normalization is presented below.

Acknowledgement. This paper was written in the Laboratory of Jean Alexandre
Dieudonné, University Nice-Sophia Antipolis during our stay there in summer of 1994.
We are grateful to Prof. Frédéric Pham for very fruitful discussions on the topic of
the paper.

2 Front of Oscillations

The notion of wave front describes the localization of a function in the phase space
in a way similar to that in which the notion of support describes the localization of a
function in the configuration space.

Consider first the latter notion. Given a function u(z), its support is the closure
of the set of points where u(z) does not vanish,

suppu = {z € R"|u(z) # 0}.

Evidently, the support supp # may be defined also as follows: a point zo belongs to
supp u if and only if for any smooth finite function ¢(z) the identity o(z)u(z) = 0
implies ¢(zo) = 0. (This variant of definition works for distributions as well.)

For functions depending on the small parameter 2 we may introduce also the notion
of asymptotic support. We say that a function

u(z,h) = O(h*®) or u(z,h)=0 (modh)

2This transform can be considered as the “quantum” version of integral transform introduced in
the paper [5)].

o



if
VaVN IC,n : [PPufz)| < Canh™.

Later on, we write

u(z,h) =0 (mod k¥)

if the inequalities
177l < Cah

are valid for any multiindex « with some constant C,.
Definition 1 The point zq belongs to an oscillatory support of the function u,
Tp € osc-supp u

if and only if for any smooth finite function ¢(z) the estimate pu = O(h%®) implies
(o) = 0.

Equivalently, the point zo does not belong to osc-suppu if and only if there exists
a smooth finite function ¢(z) such that ¢(zo) # 0 and pu = O(~h*).

Let H(:c,lf;) be an pseudodiflerential operator.

Proposition 1
a) If H(z,p) = 0 over U C RZ then H(z,lf;)u = Q(h®) in arbitrary U' C U for

any u salisfying the estimales
I5°u(@)l,, < Cob™ (¥

for some m.
b) Pseudodifferential operators respect osc-supports, i.e.

A
osc-supp H{(z,P)u C osc-supp u
for any u satisfying estimates (3).

Proof. a) When z € U’, y € suppH(y, p), we have |z — y| > € > 0. Consequently,

1 " i
Ha = (57) [ it dpey

! " —1h d i
- (z) [ o {gZipe—nge v

..........................



b) Exercise.

Now let us define a front of oscillations. Since we intend to localize in the phase
space, it is not surprising that pscudodiflerential operators with finite symbols appear
instead of finite cutoff functions.

Definition 2 A point (o, po) of the phase space belongs to the front of oscillations
OF [u] of the function wu,
(IOV pO) € OF[“’])

if and only if for any pseudodifferential operator H(z, ?’) with finite symbol the estimate
H(z,P)u = O(h™) implies H(zo, po) = 0.

This definition may be reformulated as follows: the point (zo,po) does not belong

to O F[u] if for some finite symbol H{(z,p) such that H(zq,po) # 0 we have H(m,f’)u =
O(h>).

We may give another description of OF. Namely, (zo,po) ¢ OF[u] if and only if
there exist finite functions ¢(z), ¥(p) such that

p(z0) # 0, $(po) # 0, [9(p) Fosplip(z)u(2)}| < Cnh™

for any N; in other words,
Feoplp(z)u(z)] = O(R%)

in a neighbourhood of the point py. Since

B(p) Faplio(@)u(@)] = Fomp [ (P)o()ul,

it is clear that in comparison with original definition we restrict ourselves to pseudod-
iffertential operators whose symbols are products of the form ¥ (p)e(z).

Both descriptions are in fact equivalent. To show this, suppose that for some
H(z,p) we have

H(zo,po) #0, H(z,P)u = O(h®).
Find G(z,p) such that

Gz, D) H(z, D) = $(P)o(z) (modh™),

where suppy x suppe C {H # 0} and ¢(z0)¥(po) # 0 (by composition theorem the

principal symbol of G(:c,]g) should be equal to

Y(p)e(z)
H(z,p)’

-1



we leave further details to the reader as an exercise). Then

A A

G(z,P)H(z,P)u = O(h™) = $(P)p(z)u + O(h™),

Thus we obtain
P(P)p(z)u = O(h%),

which completes the proof.
Conversely, if

B(P)p(z)u = O(h™), ¥(po) # 0, (o) # 0

then (zo,po) ¢ OF[u] in the sense of our definition (it suffices to take H(z,p) =
p(p)e(=))-

Theorem 1 (localization) If H(z,p) = 0 in a neighbourhood of the point (zq, po)
then (zo,po) ¢ OF[[‘[(:C,?’)H].

Proof. 1f
suppG(z,p) C {H(z,p) = 0}

then the symbol of G(:r:,?’)H(m,?}) vanishes identically and by Proposition 1

Gz, DY H (2, P)u} = O(h®).

One may choose G such that G(zo,po) = 1 since H = 0 in the neighbourhood of
(zo, Po)-

Now we present the asymptotic formula for rapidly oscillating integrals with com-
plex phase functions. This formula (referred below as a stationary phase formula) will
be of use, in particular, for calculations fo oscillatory fronts.

Let us consider the integral

. mf2 .
Hh= () [ et @)

Here z = (z!,...,z") is a point of the space R™, y = (y',...,y™) is a point of R™.

We suppose that:
1) The function ®(z,y) is a smooth complex-valued function determined in a neigh-
bourhood of the support of the function ¢(z,y) such that

Im®(z,y) >0

everywhere on suppe.
2) The function ¢{z,y) is a smooth complex-valued function with compact support.

8



We denote by Q the (not empty) set of points 2 € R™ such that there exists a
point y € R™ for which the equations

Im®(z,y) =0,

00(my) _ (5)
w)

hold. A point y € R™, satis{ying these equations will be called a real stationary point
of the phase function ¢. We suppose, for simplicity, that equations (5) have exactly
one solution

y =y(z)

on ) Nsupp ¢ and that the point ¥ = y(z) is nondegenerate. The latter requirement
means that

det Hess, ®(z,y)|,_ () # 0

at any point z € ).
For any natural s we introduce the functions

ol 2
d(z,z) = 3 L 220V (e (6)

|| < 0‘! ayo
; 1 Flo(z,y) .
o(x,z) = |Z|<: o o (i)”, (7)

determined for z € R, z € C™, z = y + . Then from the implicit function theorem
it follows that in some neighbourhood of {2 there exists a unique solution

z = z(z)

of the equations
9 *P(z,z) =0

Dz

where the operator d/0z is defined in a usual way:

9_1(2 -ﬁ)
dz 2 ay_zar) ‘

The following statement is valid.

Theorem 2 Under the above assumptions the following asymplotic ezpansion of in-
tegral (4)

I(z,h) = eF @D N prp(a) (mod hEV/2) (8)

0<k<(s—1)/2



is valid for any natural s. Here ¥i(z) are smooth finite functions,

~lo(z, 2(z))
\/det Hess (—*®(z, Z))Iz:z(z)

Yo(z) =

and in the above formula we assume
arg det {Hess (= ®(z, z))|z=z(r_)} = Z arg A,
k

where Ay are eigenvalues of the matriz Hess; (—'®(z, 2))|,, (s,

3= 7w
a.rg/\k € (-—é*, §:| .

In formula (8) (and later on) the comparison (mod A*~1/?) means that the remain-
der R(z,h) can be estimated in the following way:

I1P* Bz, b)]|, < C. hls—1/2

for any multiindex «.
We do not present here the proof of this Theorem, which is rather a cumbersome
one. The reader can find this proof, for example, in the book [4].

Remark 1 In the case when the function ¢ can be analytically continued up to the
function ®(z,z), z € C™ to a neighbourhood of the real space R™, one can use this
analytic continuation in (8), (9) instead of *®.

Remark 2 In the case when the function ¢ is a real-valued function, formula (8) can
be also used with ¢, ¢ instead of *®, *¢ given by (G) (7).

Examples

Example 1 Consider a plane wave,

u(z,h) =e REPO

We have

i nf2 ._xp_po 1 ~' (D — pg
Fplo@u@ i) = (577 [ebmola)de = £z @ (2522,

10



~t
where ¥ (p) is the usual (not quantum) Fourier transform of the function ¢. For any

N

as p — oo provided that ¢(z) € C§°. Thus Fi_,{pu} = O(h*) for p # po , while
Fop{pu}(po) ~ h~™/%. We conclude that

OF{G’I;‘IP"} ={p=p} CR"OR,.

The direction pg is a (co)normal direction to surfaces zpo = const (surfaces of constant
phase), and the vector pg = grad zpy itself is the velocity of phase change.

Example 2 Now let consider a function of the form

u(z, h) = ei's(”)tp(x)

(a wave with non-plane front). Note that multiplication by finite functions doesn’t

change the form of u(z, h).
We have

H(z,P)u(z, h) = (“237;) /e’i""”’)”(y)ff(y,p)tp(y)dpdy-

Let us apply the stationary phase formula to this integral. Its phase equals

®(z,y,p) = plz —y) + S(y).
Thus the equations for stationary points read

o

gylmyp) =z—y=0,
%%(m,y,;ﬂ) =—-p+ %% =0,
SO that
Y=,
p= %%(T)
Next, we have
0 1
Hessp_y(_¢)|y=r.;‘l=%§(:) 1 325
~ gzt (@)

11



this yields
det Hess(—®) = (—1)" # 0.

Finally, we obtain

H(z,;’;)u(z, h) = e K5 (:t:, 3;5:3:)) w(z) (mod h).

Consequently, if
H(a, Pyu(s, h) = O(h),

then
dS(z)

H(z,p) =0 on {p: o }

suppH N {p = &ZS:)} =0

On the other hand, if

then .
H(z,P)u(z,h) = O(h™)

(the proof employs integration by parts, as in Proposition 1). Thus

OF{ei;'S(”)(p(:c)} = {p = 3_;(;)} N suppe.

Again the direction

- _ 95(=)

P= "o
is a {co)normal to surfaces S = const of constant phase, and the vector itself is the
velocity of phase change.

Example 3 Consider a wave packet of the Gaussian form (Gaussian beam in the
sequel}, given by

u(z, k) = exp{ 1[50 + (& — zo)po + 5(z — o) ]}p(e),

where ¢(z0) # 0, So = coust.

We have
H(z,p)u(z,h) =
= (2;—}) fem{ %[(I —y)p+ So+ (¥ — zo)po + %(y — 70)°]}
x  H(z,p)e(y)dy dp. (10)



Using the stationary phase formula, we obtain for the phase function

®=(z—-y)p+ So+ (y — zo)po + %(y — zo)”

of integral (10) the equations of the (complex) stationary point:

%%:m—y:(),
%%:—p-i—pg-}-i(y—xo):().

The principal term of the asymptotic expansion of integral (10) is

)

H(z,p)u(z,h) = exp{{So+ (z — zo)po + 2(:1: — 1:0)2]}
x *"UH(z,po + i(z — 20))p(x) (mod h).

Expanding the function *~'H(z,po + i(z — zo)) into Taylor’s series in (z — zo) and
taking into account that for any natural & we have

(.’E _ mo)ke-—ﬁlﬁ(.‘c—xo)? — O(hkﬂ),
we obtain the relation

H(z,pu(z,h) = .
= exp{[So + (z — To)po + %(:c — 20)2]} H (2o, po)eo(z0) (mod VR).

It follows that if

zo & suppy or (zo,po) ¢ suppH(z,p)
then .
H{z,p)u = O(h%).
On the other hand, if
©(zo) # 0, H(zo,po) # 0
then .
|H (2, PYu(zo)| = O(1).

Thus . .
OF{exp{ 7150 + (v — o) + (@ = z0)*}p(2)) = {(20, 7o)}

We see that the Gaussian beam is a function with OF consisting of a single point.

13



3 Fourier-Gauss Transform and its Properties

Let us consider the family of functions

Glomy(e's 1) = exp {% [?(m' —x)+ (e :5)2] } (11)

of the variables {z’, &) with parameters (z,p) € T*R™.
Definition 3 The function

- 1 -
f(z,p,h) =Uf(z,p,h) = W/G(:.p)(w’,ﬁ)f(w',ﬁ) dz’ (12)

is called a Fourier-Gauss transform (or, briefly, U-transform) of the function f(z,k).
Here the bar means complex conjugation.

The first remarkable fact is that transform (12) is invertible from the left (that
is, on its image) and, what is more, the (left) inverse for (12) is given by the explicit
formula

-~ o~

- ! v ro g oy
U 'f(;]:,ﬁ,): WJG(If'p:)(I,ﬁ)f(m,p,h)dm dp (13)

The following statement is valid.

Theorem 3 The inversion formula
UtoUf=f (14)
takes place.

Proof. Due to formulas (12} and (13) the left-hand side of formula (14) can be repre-
sented in the form3

- 1 70 " " ’ t
U 1 o] Uf(:l,') = W / G(Ir'pr)(I) /G(:r‘pr)(x )f(I )d.’E dz dp,

or, taking into account the definition (11) of the function Gz (),

UloUf(z) =

— 1 i 1 o n t "ne 1 " "2
_QH(Wﬁ)Snﬁ/cxp{ﬁ [p(:c z )+2(m z') +2($ ——a;)]}

x f(z")dz" dz’ dp'.

3Here and below , for shortness, we omit the explicit indication of the dependence on % of functions
under consideration if it does not lead to misunderstanding.

14



In the latter formula the integral over the variable z’ can be computed explicitely and
we are led to the formula

YoUf(z) = (21 h) / kP (z=") {e-ﬂs(z-r")“ f(a:”)} dz" dp'. (15)

;From the other hand, the inversion formula for (quantum) Fourier transform gives

(zl—a) f b= {emihlm== f(2") ) da” dpf = €m0 1 ()
(Y

for any zo € R™. Substituting 2o = 2 into the latter formula, we see that formula (15)
can be rewritten in the form

o Uf(z) = f(=).

The latter equality proves the theorem.
The next important property of the introduced transform is the fact that the
Parseval identity is valid for it.

Theorem 4 For each two funcltions f(x) and g(x) the equality

Uf,Ug9)=1(f9)

is valid. Here the scalar products on the phase and the physical spaces are given by the
formulas

( f(z,p), 4(=, P /fIP z,p)dzdp

and

(f(x),9(x)) = ] f(2)9(z) dz

correspondingly.

Proof 1s given by the straightforward calculation:

(Uf,Ug) =

1 Y ' T N
=] W/G(r.p)(m’)f(w)dw Ug(=,p) dz dp

/ /= W/ Cap)(z)Ug(z, p)dz dp 3 do’

15



- [ 1T Us) o

B / f(#)9(a") dz' = (f,9)-

Unfortunately, the formula
UoU™'=id (16)
is not valid for the introduced transform. This fact can be easily understood if one
remembers that the transform U takes functions of n variables z to functions of 2n

variables (z,p). Thus, there arises a problem of description of the image of the trans-
form U.

Theorem 5 The image of transform (12) considered on functions f(z) € Ly (R") is
the set of functions F(z,p) possessing the following two properties:

1) [|F(z,p)|" dzdp < oo;

2) the function exp [£-p?] F(z,p) is an antianalytic function of the variable

z =z +1p, that is, 5 )
. .2

——— i — RP [ =
(8.7: zap)eT F(z,p)=0.

Proof. First, let us check that the function

o~

f(I,P) = Uf(IB,p)

possesses the properties 1) and 2), if f € Ly (R™). Evidently, the first property is
a consequence of the Parseval identity. To prove that the function f possesses the
second property, we remark that

Ly 7 _ 1 __1..(;.:‘_2) ' ’
e#P f(z,p) = 2n/2(f)3n/4 /e " J(=) dz’,

where 7 = x — tp, which proves the required assertion.

To finish the proof, one must check that formula (16) is valid on the set of func-
tions possessing properties 1) and 2). The proof of this fact, based on the Bargman
representation of an analytic function (see [6]) has purely technical character and we
omit 1t.

Remark 3 The transform U~! can be extended in a usual way to generalized func-
tions (distributions) of variables (z,p). We leave to the reader the verification of this
procedure.



4 Quantization of Observables and
Lagrangian Modules

To begin with, we show that any pseudodifferential operator can be written down as
a conjugation with the help of the transform U of the multiplication by its symbol
H(z,p). More exactly, the following statement takes place.

Theorem 6 For any smooth function H(z,p) with the compact support the compari-
son

U~V H(z,p)U = H (z,p) (mod Vh) (17)

is valid.

Proof. Let us write down the value of the left-hand side of formula (17) on the function
f(z) in the form of the integral

U~ H(z,p)U f(s) = (18)
S /e%( > : Pz — ") + i(IL‘ —-a')* 4 1( " —a')?

= on(ahypr | PR | ' gt T T T

x H(z',p) f(z")dz" dz’ dp

(the calculations leading to this formula are quite similar to those used in the proof of
Theorem 3 and we omit them). Later on, expanding H(z’,p’) to the Taylor series in
powers of (¢’ — z) and using the estimate

(z' — :z:)e_ilf - = O(\/E)
we obtain

U™ H{(z,

(77 ) MP{;[ (=) + o - ") | x

X H(z,p) f(z")da" dp' = H (, D) f(z) + ﬁf(:z,) (mod \/771),

1l

where the operator Ris given by

- 1 " [ I 1 1
Rf(z) = (27”_1) /ef” (z==") {e'rh(z'x - 1} H(z,p") f(z")dz" dp'.

The integral over z’ included into the right-hand part of (18) was computed similar to
the proof of Theorem 3.
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Let us now estimate the remainder ﬁf on the right of (19). Integrating by parts,
we obtain
H) C-TIF(E_I")Q | 6[[

D — '(z-z v / "oy
Rf(z) = zh/e o c,)p'(:x:,p)afzz: dp'.

Since
e~ r (x__rn)'z _ 1

 C

N

with some positive constant C' > 0, the operator R included into the right-hand part
of relation (19) has order v, q.e.d.

The proved statement together with the Parseval identity leads to the following
description of the front of oscillations in terms of the U-transform.

:B—:l:”

Proposition 2 A point (zo,po) of the phase space does not belong to the front of
oscillations OF [f] of a function f(x) iff

Uf(z,p) =0 (mod %)
in a neighbourhood of the point (zo, po).
Proof. Actually, due to Theorem 6 for any DO H (z,p) we have

UH (,p)] (z,p) = H(z,p)U f(z,p) (mod Vh).

Taking into account the Parseval identity, we see that the function H (z,p) f is of
order O(h*) iff the support of the function H(z,p) does not intersect osc-supp(U f].
The latter affirmation proves the Proposition.

Thus, we had obtained the description of the front of oscillations of a function f(z)
as the oscillatory support of its U-transform U f(z,p):

OF [f] = osc-supp [U f]. (20)

Hence, to construct a function f(z,h) with its front of oscillations on a given (La-
grangian) manifold, it is natural to apply the transform U~! to a special function of
the form

fz,p) = (Th)™* eA°08(a ao) (@, ) (21)

where S and ¢ are smooth functions on the Lagrangian (or, more generally, isotropic)
manifold A, and 4 40y is the delta function corresponding to the measure do and
concentrated on the manifold A.

18



The function S in expression (21) must be chosen equal to a non-singular action
on A, since only in this case the front of oscillations of function (21) exactly coincides
with the support of the function ¢ on the manifold A.

To prove this affirmation, we write down the expression of the operator

I{(A,da)((ro) = U_l {6}";5(,96(‘\@0)(1},}3)}

in the form of an integral

nf2
1 N\ iS(a
Kaan(@) = (555) [ Glsonlehet (a,a, i)da(a
A

. njf2
! fo(z.0)
— Fo(z.o Y )
(57) [ e#=tnamiista) (22)
A

where a — (z,{«a), p(a)) is the embedding A C R™ x R, and we used the notation
9(z,0) = S(0) + (= — 2(a)) pla) + 5(z — 2(a))*. (23)

Now we shall investigate the front of oscillations of the function u(z, h) given by (22).
Since the front of oscillations of Gz(a)p(ay) is the point {(z(a), p(a))}, it is clear (and
will be proved rigorously below) that one has

OF[u(z, k)] C A ﬂ supp @ (24)

and generally the equality in (24) does not hold since the oscillations might be “can-
celled out” by the integration. Let us derive the necessary conditions for the point
(zo,p0) to belong to OF[u]. TFor this purpose, take a pseudodofferential operator
H(z,p) with the finite symbol vanishing outside a small neighborhood of the point
(zo0,po) and apply it to the function u. We have

H(z,p)u = (25)
1 In/2 ;
- (W) f f / eHPE DN (y 0)o(z, o, h)dpu(ar) dy dp.
)

The phase in the integral (25) is equal to

U(a,0,p,0) = plz — 9) + (y — ())ple) + (@) + 5y — (@)’ (26)



The stationary point equations for the phase (26) have the form

B;:x—y:o,

BY — pla) —p+ily — () =

da¥ = dS(a) + (y — 2(a))dp(a) — p(a)dz(a) - ify — z())dz(a) = 0,
so in the stationary point one has

{ z =y =z(a), p=pa),

27
dS(a) = pla)dz(a). 0

Should the equalities (27) be violated for y = zg, p = po and every a € suppy, they
will not be valid for close (y,p) as well (recall that suppe is compact), so the integral
(32) equals O(A*) provided that the diameter of the support of the function H(z,p)
is small enough (integrating by parts yields the proof).

Therefore, the following assertion is valid.

Lemma 1 For (zo,po) € OF[u] to be valid it is necessary that (zo, po) = (z(), p(ax))
for some a € suppy (i. e., that (zo,po) € A[)suppy) and the relation (27) be salisfied.

Thus, if we want (24) to be a precise equality for any finite function ¢, we must
require that (27) be satisfied everywhere on A. Hence, the form

plo)dz(a) = pdz|,

must be exact. In particular, it must be closed, i. e., its differential must be equal to
2€10:
dp A dz|, = 0.

The proved affirmation shows that, first, A must be a Lagrangian manifold and,
second, that the function S must coincide with the action on the manifold A for (24)
to be a precise equality.

Remark 4 The constructed operator
Knaoy: G5 (A) = CF7(R™, A) (28)

in mod h coincides with Masolv’s canonical operator on the Lagrangian manifold A
with the measure do.



The simple proof of this fact can be carried out, for example, by the stationary
phase method; this proof can be found in [7]. The representation (22) of operator {28)
is often very useful (see, for example, [8]).

Thus, the quantization of a Lagrangian module C§° (A) can be carried out into two
stages. First, for any function ¢ € C§° (A) we construct the function of the form (21)
and then apply to the obtained function the transform U=,

In what follows we shall see also that the kernel of the quantized (with the help
of the U-transform) symplectic transform is also automatically representable as appli-
cation of the canonical operator to some function on the graph of the corresponding
symplectic transform, that is, as a Fourier integral operator in the usual sense (see,
for example, [4]).

5 Quantization of Symplectic Transforms

In this section we shall show that the quantization of some symplectic transform
g: T"R* - T"R™ (29)

1s essentially the conjugation with the help of the U-transform of canonical change of
variables (29). More exactly, the following affirmation is valid.

Theorem 7 The operator _
113 - U—lcl,‘;S(r,p)g-U’

or, in another form,

nfz
f@)k*ﬁfl{(%) d6“”0fwwﬂn}um (30)

where the function S(z,p) is determined by the relation
dS = pdx — ¢ (qdy),

is the Fourier integral operator T(g,1) with the symbol equal to 1 corresponding to
symplectic transform (29).

Remark 5 We emphasize that for each symplectic transform (29) the mapping
0 [ e erSyf
1s a module homomorphism
g D4(T"R", A2) — Dy (T'R™,A,)
if the Lagrangian manifolds A; and A, are due to the relation
g(Ay) = A,

This clarifies the appearence of the factor exS in formula (30).
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Remark 6 The same assertion (as in Theorem 7) is valid for the operator

nj2
fe U {(;—J b =Pz, p)U f [g(y,q)]} (z)

which coincides with the Fourier integral operator T'(g, ¢) defined with the help of the
canonical operator K(a, 40)%-

Proof of Theorem 7. Let the functions

y= y(r,p), q= (](I,p)

determine symplectic transform (29). We write down operator (30) in the integral
form using definitions {12) and (13) of the transforms U and U~

U—l

(21_1) nﬂe-;’—swUf(g(y,q))] (z) =

in/? iS(::' p')
= W / G(I-‘p:)(m)e’? !

! [ T iy
y=y(z'p'),q=q(z".p")

Using formula (11), one can rewrite the latter formula in the form

7

—)"/? :
T(g, 1) f= ﬁl—/—z /exp {E [S(I’,pr) +p'(z—2") + E(:B — ')’

]

5 = @] S

. n/2
i - ' ' '
= (“ﬁ) /1\($,y)f(y)d' ;

where the kernel K (z,y’) is given by

— q(=", )y —y(', ")) +

1

7 1 " i ! 7 / ’ !
K(z,y") = (Qw_fi) /exp{ﬁ|:S(:1:,p)+p(:.~:—$)+§(a:-:s)2

! ’ i i [ z i ! 1 !
— q(&',p) Y =y p')) + §(y —y(z ,p))Q]} dz' dp'.

O]
o



The latter expression exactly coincides with the expression for the canonically repre-
sented function

K(z,y') = Ka,.d0)(1)
on the Lagrangian manifold A, = graph g with the measure do = (dp A dz)**, written
in the coordinates (z’,p') of the manifold A;. This follows from the fact that the
non-singular action S on the Lagrangian manifold A, is determined by the formula

5= f (pd:z:—qdy)lM = /pd:t: - g (qdy).

6 Main Theorems

Let us summarize the constructions of this paper. We had defined above the integral
transform U and its inverse U~'. With the help of these transforms the following
objects can be easily interpreted.

1) Pseudodifferential operators (that is, quantization of observables) are described
as the conjugation of multiplication by the symbol with respect to the transform U:

H (z,9) = Ady H(z,p) = U™ H(z,p)U (mod V).

This means that these operators can be determined via the commutative diagram

H(zp)
C (T"R™) C(T"R")
U ‘ U
H(z.p)
Cre (R) Cy (R™)

2) Canonical operator (that is, the quantization of the module of smooth functions
on a Lagrangian manifold A), can be described as the application of the transform
U~! to functions of the special lorm

Kaioy () = U7 {‘3%5‘95(:\.@)} )
that is, as the composition

<(a) 22, (1"R™) U o (R).

3) Fourier integral operators (that is, quantization of symplectic transforms), are
given as the conjugation of the variable change with multiplication by ex®:

nf2

| i

Tg — U—l (2_) eFS(IrP)gtU’
[3
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that is, can be determined by the commutative diagram

eks *
Cs° (T"R™) —  C(T*RY)
U U
Tg
C (RM) Ce (R™)

Thus, all main classical objects mentioned in points 1) and 2) in the beginning
of this paper occur to be quantized in the framework of one and the same approach
connected with the U-transform.

Let us formulate now some statements which can be easily proved with the help of
U-transform.

Theorem 8 The commutation formula
H (2,p) Kiado)(9) = Kiado)( H|, ¢) (mod V)
s valid.

The affirmation of this theorem can be expressed with the help of the following com-
mutative diagram?

H{z.p)

C° (R, A) C (R, A)

K(a do) Ka,do)

H (20},

Ce(A)  —  C&(A).

Here by Cg° (R, A) we denote the space of smooth functions with front of oscillations
in A.

Theorem 9 The composition formula
H, (z,7)0 Hy (z,p) = Hy (z,7) (mod VA)
is valid, where Hs(z,p) = H((x,p)Ha(z,p).

Theorem 10 Valid 1s the following formula
T,-i H (2,9) T, = Hy (z,p) (mod V),
where Hy(z,p) = ¢*H(z,p).

4All diagrams below commute mod V.



The statement of this theorem can be illustrated with the help of the following com-
mutative diagram

AdT,

PSD (R") PSD (R™)
Ady Ady
C* (T*R™) C* (T*R™)

where by PSD (R") we denote the set of yDO’s in R™.
Theorem 11 The following formula

T,y K (rgdon)(2) = Kia, dony(97¢) (mod V1)
is valid.

This means that the following diagram

Ci (R", As) CE (R™ AY)
K(A;.daz) K(A).9*(dea))
C& (A2) C§° (A4)

where A; = g (A;), commutes.

Theorem 12 The following composition formula

T (g2, 2) o T(g1,1) = T(g2 0 91,97 (w2)1) (mod ‘/Ft)

is valid for the corresponding choice of the base point and the signs of square roots in
the operator on the right in the latter formula.

Remark 7 The theorems formulated above, being the main ones in the theory of
¥ DO’s and Fourier integral operators, have very hard proves. The comparisons in them
are established up to the arbitrary order of . The technique of U-transform allows
one to obtain these results as easy consequences of the properties of this transforms,
however, only (at the moment) in principal terms (up to terms of order V/#).

Let us formulate this results in slightly other redaction.



Theorem 13 (quantization of observables). For any Hamilton function H(z,p) the
operator

ﬁ’z U™"H(z,p)U

coincides up to O(h) with the quantum ovservable

A ., 0
H(z,p), p= —zf’zé;
determined by the Schrodinger quantization.
Moreover, the correspondence
H(z,p) n—»ﬁ'

is (in the leading term) the ring homomorphism, that is,

A A A
(HyH)=H\ - H2 (mod k).

Theorem 14 (quantization of Lagrangian modules). Let A be a Lagrangian manifold
and C(A) is the module of smooth functions over the ring of (classical) observables.
Let S be a nonsingular action on A and (4 40y be the é-function concentrated on A
with a measure do. Then the operator

Krao)(9) = U7 {eh08(n 40)(=, p)}.
is the Maslov canonical operator on the Lagrangian manifold A with the measure do.

Moreover, the operator K4 4,) is a module homomorphism over the above men-
tioned ring homomorphism:

K a oy (H(2,p)0) ZH Knaoy() (mod 1),
Theorem 15 (quantization of canonical transforms). Let
g: T"R" > T"R" (31)
be a canonical transform and lel S(z,p) be a solulion to the equation
dS = pdx — g*(q dy),

where (y,q) are coordinates in the image of mapping (31). Then the operator

1\"?
T,=U"! ('2?) ek 5@ g (32)

determines the quantization of transform (31), that is, this operator is a Fourier inte-
gral operator corresponding to canonical transform (31).
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Moreover, operator (32) determines a module homomorphisin

BT =T,6"H) f

over the ring homomorphism

A :\ rr—1 A
H- (gHY=T, HT,

The detailed exposition of the above notions the reader can find in 7], as well as
the main statements and the bibliography.

7 Concluding Remarks

Here we shall present in a more explicit way the connection between the introduced
transform and the notion of microlocalization.

For any (zo,po) € T"R™ we denote by J\/t‘()f;_po) the quotient of H (R") by the space
of functions whose front of oscillations does not contain the point (zo, po) of the phase
space. The space MUZ" \ we call lhe space of oscillatory microfunctions at (o, po)-
Since the projection into R™ of the front of oscillations of a function is exactly its osc-
support, one can see that any function f(z,%) is uniquely determined modulo O(A*)
by its image in all M{Z® ) as (2o, po) runs over T*R™.

With this observation one can identify the space H (R")/O(R*) with the global
sections of the sheaf M€ of oscillatory microfunctions over T*R". Then there arises
a problem of description of the sheaf M¢ by representing its sections as smooth
functions on the space T*R". The solution of this problem carried out by means of
Fourier-Gauss transform was described above.

Namely, the space of oscillatory microfunclions M‘()j:_po) at a point (zo,po) € T*R™
of the phase space is isomorphic to the space of germs of functions F(z,p,h) on the

phase space T*R" lying in the image of lransform U, that is, such that

(a_i - z%) eilFPQF(a:,p, k) =0.

The proof of this affirmation which is an easy consequence of the Parseval identity
and the description of the front of oscillations in terms of U-transform (Proposition
2) is left to the reader. We only remark that, due to this fact, the Fourier-Gauss
transform U deliveres us a solution of ihe problem of description of M°¢ mentioned
above.

We remark here that in smooth situation the problem of description of the sheaf
M of microfunctions was solved in a pioneer paper by A. Weinstein [9] on the order
and symbol of distribution. In this paper, with the help of a different localization
procedure, the author gives a description of the sheaf of microfunctions as the sheaf
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of sections of the so-called symbols of distributions and proves that for Hormander’s
Fourier integral distributions [10] sections of M can be treated as sections of the
corresponding bundle of symbols.
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