MINIMAL ATLASES OF CLOSED SYMPLECTIC MANIFOLDS

YU. B. RUDYAK AND FELIX SCHLENK

ABSTRACT. We study the number of Darboux charts needed to cover a closed connected symplectic manifold (M,ω) and effectively estimate this number from below and from above in terms of the Lusternik–Schnirelmann category of M and the Gromov width of (M,ω) .

1. Introduction and main results

A symplectic manifold is a pair (M, ω) where M is a smooth manifold and ω is a non-degenerate and closed 2-form on M. The non-degeneracy of ω implies that M is even-dimensional, dim M=2n. (We refer to [11] and [23] for basic facts about symplectic manifolds.) The most important symplectic manifold is \mathbb{R}^{2n} equipped with its standard symplectic form

$$\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i.$$

Indeed, a basic fact about symplectic manifolds is Darboux's Theorem which states that locally every symplectic manifold (M^{2n}, ω) is diffeomorphic to $(\mathbb{R}^{2n}, \omega_0)$. More precisely, for each point $p \in M$ there exists a chart

$$\varphi \colon B^{2n}(a) \to M$$

from a ball

$$B^{2n}(a) := \left\{ z \in \mathbb{R}^{2n} \mid \pi |z|^2 < a \right\}$$

to M such that $\varphi(0) = p$ and $\varphi^* \omega = \omega_0$. We call such a chart $(B^{2n}(a), \varphi)$ a Darboux chart. In this paper we study the following question:

Given a closed symplectic manifold (M, ω) , how many Darboux charts does one need in order to parametrize (M, ω) ?

In other words, we study the number $S_B(M,\omega)$ defined as

$$S_B(M,\omega) := \min\{k \mid M = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k\}$$

where each \mathcal{B}_i is the image $\varphi_i\left(B^{2n}(a_i)\right)$ of a Darboux chart.

An obvious lower bound for $S_B(M,\omega)$ is the diffeomorphism invariant

$$B(M) := \min\{k \,|\, M = B_1 \cup \cdots \cup B_k\}$$

Date: July 21, 2005.

2000 Mathematics Subject Classification. Primary 53D35, Secondary 55M30,57R17.

where each B_i is diffeomorphic to the standard open ball in \mathbb{R}^{2n} . The volume associated with a symplectic manifold (M^{2n}, ω) is

$$\operatorname{Vol}(M,\omega) = \frac{1}{n!} \int_M \omega^n.$$

In particular, Vol $(B^{2n}(a)) = \frac{1}{n!} a^n$, as it should be. The volume of any symplectically embedded ball in (M,ω) is at most

$$\gamma(M,\omega) = \sup \{ \text{Vol}(B^{2n}(a)) \mid B^{2n}(a) \text{ symplectically embeds into } M \}.$$

Another lower bound for $S_B(M, \omega)$ is therefore

$$\Gamma(M,\omega) := \left| \frac{\operatorname{Vol}(M,\omega)}{\gamma(M,\omega)} \right| + 1$$

where $\lfloor x \rfloor$ denotes the maximal integer which is smaller than or equal to x. Notice that $\gamma(M,\omega) = \frac{1}{n!} (\operatorname{Gr}(M,\omega))^n$ where

$$Gr(M, \omega) = \sup \{ a \mid B^{2n}(a) \text{ symplectically embeds into } (M, \omega) \}$$

is the Gromov width of (M, ω) . The symplectic invariant $\Gamma(M, \omega)$ is therefore strongly related to the Gromov width. We abbreviate

$$\lambda(M,\omega) := \max \{ B(M), \Gamma(M,\omega) \}.$$

Summarizing we have that

(1)
$$\lambda(M,\omega) \le S_B(M,\omega).$$

Before we state our main result, we consider two examples.

1) For complex projective space n equipped with its standard Kähler form ω_{SF} we have $B(\mathbb{CP}^n) = n+1$ and $\Gamma(\mathbb{CP}^n, \omega_{SF}) = 2$. In particular,

$$\lambda(\mathbb{CP}^n, \omega_{SF}) = \mathrm{B}(\mathbb{CP}^n) > \Gamma(\mathbb{CP}^n, \omega_{SF}) \text{ if } n \geq 2.$$

It will turn out that $S_B(\mathbb{CP}^n, \omega_{SF}) = \lambda(\mathbb{CP}^n, \omega_{SF}) = n+1$ if $n \geq 2$.

2) We fix an area form σ on the 2-sphere \mathbb{S}^2 , and for $k \in \mathbb{N}$ we abbreviate $\mathbb{S}^2(k) = (\mathbb{S}^2, k\sigma)$. Then B $(\mathbb{S}^2 \times \mathbb{S}^2) = 3$ and $\Gamma(\mathbb{S}^2(1) \times \mathbb{S}^2(k)) = 2k + 1$. In particular,

$$\lambda\left(\mathbb{S}^2(1)\times\mathbb{S}^2(k)\right) = \Gamma\left(\mathbb{S}^2(1)\times\mathbb{S}^2(k)\right) > \mathrm{B}\left(\mathbb{S}^2\times\mathbb{S}^2\right) \quad \text{if } k\geq 2.$$

It will turn out that $S_B(\mathbb{S}^2(1) \times \mathbb{S}^2(k)) = \lambda(\mathbb{S}^2(1) \times \mathbb{S}^2(k)) = 2k + 1$ if $k \geq 2$.

We refer to Examples 2 and 4 in Section 5 for more details.

Our main result is

Theorem 1. Let (M, ω) be a closed connected 2n-dimensional symplectic manifold.

- (i) If $\lambda(M,\omega) \geq 2n+1$, then $S_B(M,\omega) = \lambda(M,\omega)$.
- (ii) If $\lambda(M,\omega) < 2n+1$, then $n+1 < \lambda(M,\omega) < S_B(M,\omega) < 2n+1$.

Remarks. 1. The assumption in (i) is met if $[\omega]|_{\pi_2(M)} = 0$, see Proposition 1 (ii) below. It is also met for various symplectic fibrations, see Section 5.

2. Theorem 1 implies that

$$n+1 \le \lambda(M,\omega) < S_B(M,\omega) \le 2n+1$$
 if $\lambda(M,\omega) \ne S_B(M,\omega)$.

The following question is based on the examples described in Section 5.

Question. Is it true that $\lambda(M,\omega) = S_B(M,\omega)$ for all closed symplectic manifolds (M,ω) ?

Theorem 1 essentially reduces the problem of computing the number $S_B(M,\omega)$ to two other problems, namely computing B(M) and $\Gamma(M,\omega)$. As we shall explain next, the diffeomorphism invariant B(M) can often be computed or estimated very well.

Recall that the Lusternik-Schnirelmann category of a finite CW-space X is defined as

$$\cot X := \min\{k \mid X = A_1 \cup \ldots \cup A_k\},\$$

where each A_i is open and contractible in X, [20, 4]. Clearly,

$$\cot M \leq B(M)$$

if M is a compact smooth manifold. It holds that $\operatorname{cat} X = \operatorname{cat} Y$ whenever X and Y are homotopy equivalent. However, the Lusternik–Schnirelmann category is very different from the usual homotopical invariants in algebraic topology and hence often difficult to compute. Nevertheless, $\operatorname{cat} X$ can be estimated from below in cohomological terms as follows. Let H^* be singular (or Čech, or Alexander–Spanier) cohomology theory, with any coefficient ring, and let \tilde{H}^* be the corresponding reduced cohomology. The $\operatorname{cup-length}$ of X is defined as

$$\operatorname{cl}(X) := \sup\{k \mid u_1 \cdots u_k \neq 0, u_i \in \tilde{H}^*(X)\}.$$

It then holds true that

$$\cot X \ge \operatorname{cl}(X) + 1,$$

see [7]. If X is connected, an estimate of $\operatorname{cat} X$ from above is given by

$$\cot X \le \dim X + 1.$$

This inequality can be substantially improved as follows. Recall that X is said to be p-connected if it is path connected and its homotopy groups $\pi_i(X)$ vanish for $1 \le i \le p$. It turns out that

(3)
$$\operatorname{cat} X \le \frac{\dim X}{p+1} + 1$$

for every p-connected and finite CW-space X. Another useful property of the LS-category is

(4)
$$\max\{\operatorname{cat} X, \operatorname{cat} Y\} < \operatorname{cat}(X \times Y) < \operatorname{cat} X + \operatorname{cat} Y$$

for any CW-spaces X and Y. Proofs of all the above statements and much additional information on LS-category can be found in [4, 12, 13]. \diamondsuit

Summarizing we have that

(5)
$$\operatorname{cl}(M) + 1 \le \operatorname{cat} M \le \operatorname{B}(M)$$

for any smooth manifold. Furthermore, if M^n is closed then $B(M) \le n+1$, see [19, 26, 36]. Hence,

(6)
$$\operatorname{cl}(M) + 1 \le \operatorname{cat} M \le \operatorname{B}(M) \le n + 1$$

for any closed n-dimensional manifold.

These inequalities may be substantially improved if M is symplectic.

Proposition 1. Let (M, ω) be a closed connected 2n-dimensional symplectic manifold. Then

$$n + 1 \le cl(M) + 1 \le cat M \le B(M) \le 2n + 1.$$

Moreover, the following assertions hold true.

- (i) If $\pi_1(M) = 0$, then n + 1 = cl(M) + 1 = cat M = B(M).
- (ii) If $[\omega]|_{\pi_2(M)} = 0$, then cat M = B(M) = 2n + 1.
- (iii) If $\cot M < B(M)$, then $n \ge 2$, n + 1 = cl(M) + 1 = cat M and B(M) = n + 2.

On the other hand, the computation of the Gromov width and hence of the number $\Gamma(M,\omega)$ is often a very delicate matter. Fortunately, there has recently been some remarkable progress in this problem, see Section 5.

The paper is organized as follows. In Section 2 we prove Theorem 1. In Section 3 we study the minimal number $S_B^=(M,\omega)$ of equal symplectic balls needed to cover (M,ω) as well as the minimal number $S(M,\omega)$ of symplectic charts diffeomorphic to a ball needed to parametrize (M,ω) . In Section 4 we prove Proposition 1, and in the last section we compute the numbers $S(M,\omega)$, $S_B(M,\omega)$ and $S_B^=(M,\omega)$ for various closed symplectic manifolds.

Acknowledgements. The idea behind the proof of Theorem 1 belongs to Gromov. We are very grateful to Leonid Polterovich for explaining it to us. The first author was supported by NSF, grant 0406311.

2. Proof of Theorem 1

In view of the inequalities (1) and (6), Theorem 1 is a consequence of

Theorem 2.1. Let (M,ω) be a closed 2n-dimensional symplectic manifold.

- (i) If $\Gamma(M,\omega) \geq 2n+2$, then $S_B(M,\omega) = \Gamma(M,\omega)$.
- (ii) If $\Gamma(M,\omega) \leq 2n+1$, then $S_B(M,\omega) \leq 2n+1$.

Proof. We start with describing the idea of the proof, which belongs to Gromov and is as simple as beautiful. For each Borel set A in M we abbreviate its volume

$$\mu(A) := \frac{1}{n!} \int_A \omega^n.$$

Moreover, we define the natural number k by

(7)
$$k = \begin{cases} \Gamma(M, \omega) & \text{if } \Gamma(M, \omega) \ge 2n + 2, \\ 2n + 1 & \text{if } \Gamma(M, \omega) \le 2n + 1. \end{cases}$$

By definition of $\Gamma(M,\omega)$,

(8)
$$\gamma(M,\omega) > \frac{\mu(M)}{k}.$$

By definition of $\gamma(M,\omega)$ we find a Darboux chart $\varphi\colon B^{2n}(a)\to \mathcal{B}\subset M$ such that

$$\mu(\mathcal{B}) > \frac{\mu(M)}{k}.$$

In view of this inequality, and since dim $M+1 \le k$, we shall find a cover of M by k sets $\mathcal{C}^1, \ldots, \mathcal{C}^k$ where each set \mathcal{C}^j is essentially a disjoint union of small cubes, and where

$$\mu\left(\mathbb{C}^{j}\right) < \mu\left(\mathbb{B}\right)$$
 for each j .

Using this and the specific choice of the sets \mathcal{C}^j we shall then be able to construct for each j a symplectomorphism Φ^j of M such that $\Phi^j(\mathcal{C}^j) \subset \mathcal{B}$. The k Darboux charts

$$(\Phi^j)^{-1} \circ \varphi \colon B^{2n}(a) \to M$$

will then cover M, and so Theorem 2.1 follows.

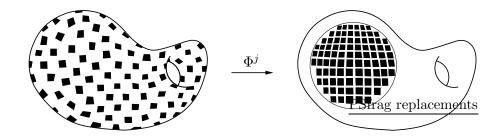


FIGURE 1. The idea behind the map Φ^{j} .

Notice that $\mu\left(\mathcal{C}^{j}\right)$ might be very close to $\mu\left(\mathcal{B}\right)$. In order that the "cubes" in \mathcal{C}^{j} all fit into the ball \mathcal{B} , the map Φ^{j} should therefore not distort the cubes too much. We shall be able to find such a map Φ^{j} by constructing an appropriate atlas for (M,ω) and by constructing the set \mathcal{C}^{j} carefully.

Step 1. Construction of a good atlas of (M, ω)

Let k be the natural number defined in (7). In view of the estimate (8) the real number ε defined by

$$\gamma(M,\omega) = \frac{\mu(M)}{k} + 2\varepsilon$$

is positive. By definition of $\gamma(M,\omega)$ we can choose a Darboux chart

$$\varphi_0 \colon B^{2n}(a_0) \to \mathcal{B}_0 \subset M$$

such that

$$\mu(\mathcal{B}_0) > \frac{\mu(M)}{k} + \varepsilon.$$

Since M is compact, we find m other Darboux charts $\varphi_i : B^{2n}(a_i) \to \mathcal{B}_i \subset M$ such that

$$(9) M = \bigcup_{i=0}^{m} \mathcal{B}_i.$$

We can assume that

(10)
$$\mathcal{B}_i \not\subset \bigcup_{j \neq i} \mathcal{B}_j, \quad i = 0, \dots, m.$$

Given open subsets $U \subset V$ of \mathbb{R}^{2n} we write $U \subseteq V$ if $\overline{U} \subset V$, and we say that a symplectic chart $(\widetilde{U}, \widetilde{\varphi})$ is larger than a symplectic chart (U, φ) if $U \subseteq \widetilde{U}$ and $\varphi = \widetilde{\varphi}|_U$. Using this terminology we can also assume that each chart $(B^{2n}(a_i), \varphi_i)$ is the restriction of a larger chart. Then the boundaries of the images $\mathcal{B}_0, \mathcal{B}_1, \ldots, \mathcal{B}_m$ are smooth. Using that M is a normal space we next choose for $i = 0, \ldots, m$ numbers $a_i' < a_i$ so large that with $\mathcal{B}_i' = \varphi_i \left(B^{2n}(a_i')\right)$ we have

(11)
$$\mu\left(\mathcal{B}_{0}'\right) > \frac{\mu(M)}{k} + \varepsilon$$

and

$$(12) M = \bigcup_{i=0}^{m} \mathcal{B}'_{i}.$$

After renumbering the charts $(B^{2n}(a_1), \varphi_1), \ldots, (B^{2n}(a_m), \varphi_m)$ we can then assume that $\mathcal{B}_1 \cap \mathcal{B}'_0 \neq \emptyset$. In view of (10) and since the boundaries of \mathcal{B}_1 and \mathcal{B}'_0 are smooth, the open set

$$\mathcal{B}_1 \setminus \overline{\mathcal{B}_0'} = \coprod_{i=1}^{I_1} \mathcal{U}_i$$

is non-empty and consists of finitely many connected components \mathcal{U}_i with piecewise smooth boundaries. For each $i \in \{1, \dots, I_1\}$ we choose a point

$$p_i \in \partial \mathcal{B}'_0 \cap \partial \mathcal{U}_i$$
.

Here, ∂A denotes the boundary of a subset A of M. We let \mathcal{T}_1 be the rooted tree whose vertices are the root p_0 and the points p_i and whose edges

are $[p_0, p_i]$, $i = 1, ..., I_1$. For notational convenience we set $\mathcal{U}_0 = \mathcal{B}_0$ and $\mathcal{U}'_0 = \mathcal{B}'_0$ as well as

$$\mathcal{U}_i' = \mathcal{U}_i \cap \mathcal{B}_1', \quad i = 1, \dots, I_1.$$

It might well be that $U_i' = \emptyset$ for some i. Clearly,

(13)
$$\bigcup_{i=0}^{1} \mathcal{B}_{i} = \bigcup_{i=0}^{I_{1}} \mathcal{U}_{i} \quad \text{and} \quad \bigcup_{i=0}^{1} \overline{\mathcal{B}'_{i}} = \bigcup_{i=0}^{I_{1}} \overline{\mathcal{U}'_{i}},$$

cf. Figure 2.

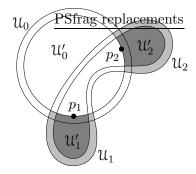


FIGURE 2. The sets $\mathcal{U}'_1 \subset \mathcal{U}_1$ and $\mathcal{U}'_2 \subset \mathcal{U}_2$ and the points $p_1 \in \partial \mathcal{U}'_0 \cap \partial \mathcal{U}_1$ and $p_2 \in \partial \mathcal{U}'_0 \cap \partial \mathcal{U}_2$.

The tree \mathcal{T}_1 corresponding to Figure 2 is depicted in Figure 4. We also set $U_0 = B^{2n}(a_0)$ and $\phi_0 = \varphi_0 \colon U_0 \to \mathcal{U}_0$ and define the symplectic charts

$$U_i = \varphi_1^{-1}(\mathfrak{U}_i), \quad \phi_i = \varphi_1|_{U_i} \colon U_i \to \mathfrak{U}_i, \quad i = 1, \dots, I_1.$$

Notice that each chart (U_i, ϕ_i) is the restriction of a larger chart.

If $m \geq 2$, the assumption (12) implies that we can renumber the charts $(B^{2n}(a_2), \varphi_2), \ldots, (B^{2n}(a_m), \varphi_m)$ such that $\mathcal{B}_2 \cap \bigcup_{i=0}^1 \mathcal{B}'_i \neq \emptyset$. In view of (10) and since the boundaries of \mathcal{B}_2 , \mathcal{B}'_0 and \mathcal{B}'_1 are smooth, the open set

(14)
$$\mathcal{B}_2 \setminus \bigcup_{i=0}^1 \overline{\mathcal{B}'_i} = \prod_{i=I_1+1}^{I_2} \mathcal{U}_i$$

is non-empty and consists of finitely many connected components \mathcal{U}_i with piecewise smooth boundaries. In view of the second identity in (13) and the definition (14) of \mathcal{U}_i we find for each $i \in \{I_1+1,\ldots,I_2\}$ an index $\underline{i} \in \{0,\ldots,I_1\}$ such that $\partial \mathcal{U}'_{\underline{i}} \cap \partial \mathcal{U}_i \neq \emptyset$, and we choose a point

$$p_i \in \partial \mathcal{U}'_{\underline{i}} \cap \partial \mathcal{U}_i.$$

We let \mathcal{T}_2 be the tree obtained from the tree \mathcal{T}_1 by adding the vertices p_i and the edges $[p_i, p_i]$, $i = I_1 + 1, \dots, I_2$. We set $\mathcal{U}'_i = \mathcal{U}_i \cap \mathcal{B}'_2$ for $i = I_1 + 1, \dots, I_2$.

Then

$$\bigcup_{i=0}^2 \mathcal{B}_i \, = \, \bigcup_{i=0}^{I_2} \mathcal{U}_i \qquad \text{and} \qquad \bigcup_{i=0}^2 \overline{\mathcal{B}_i'} \, = \, \bigcup_{i=0}^{I_2} \overline{\mathcal{U}_i'},$$

cf. Figure 3.

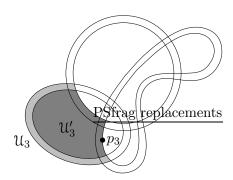


FIGURE 3. The sets $\mathcal{U}_3' \subset \mathcal{U}_3$ and the point $p_3 \in \partial \mathcal{U}_1' \cap \partial \mathcal{U}_3$.

The tree \mathcal{T}_2 corresponding to Figure 3 is depicted in Figure 4.

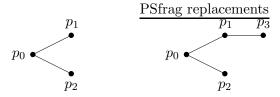


FIGURE 4. The trees \mathcal{T}_1 and \mathcal{T}_2 .

We define the symplectic charts

$$U_i = \varphi_2^{-1}(\mathcal{U}_i), \quad \phi_i = \varphi_2|_{U_i} \colon U_i \to \mathcal{U}_i, \quad i = I_1 + 1, \dots, I_2.$$

Notice again that each chart (U_i, ϕ_i) is the restriction of a larger chart.

Proceeding this way m-2 other times we find a sequence

$$0 =: I_0 < I_1 < \cdots < I_m$$

of integers and $l := I_m + 1$ open connected sets $\mathcal{U}_i \subset M$, i = 0, ..., l, with piecewise smooth boundaries such that for each $j \in \{0, ..., m-1\}$,

(15)
$$\mathcal{B}_{j+1} \setminus \bigcup_{i=0}^{j} \overline{\mathcal{B}'_i} = \prod_{i=I_j+1}^{I_{j+1}} \mathcal{U}_i.$$

Moreover, defining j(i) by the condition $i \in \{I_{j(i)} + 1, \dots, I_{j(i)+1}\}$ and setting $\mathcal{U}_i' = \mathcal{U}_i \cap \mathcal{B}_{j(i)+1}'$ we have found for each $i \in \{1, \dots, l\}$ an index $\underline{i} \in \{0, \dots, I_{j(i)}\}$ such that $\partial \mathcal{U}_{\underline{i}}' \cap \partial \mathcal{U}_i \neq \emptyset$ and have chosen a point

$$(16) p_i \in \partial \mathcal{U}_i' \cap \partial \mathcal{U}_i.$$

The vertices of the rooted tree $\mathcal{T} = \mathcal{T}_m$ consist of the root p_0 and the points p_i , and the edges of \mathcal{T} are $[p_i, p_i], i = 1, \ldots, l$.

The identities (9) and (15) imply that

$$(17) M = \bigcup_{i=0}^{l} \mathfrak{U}_i$$

and that $\sum_{i=0}^{l} \mu(\mathcal{U}_i) \to \mu(M)$ as $a'_j \to a_j$ for all $j = 0, \dots, m$. Choosing a'_0, \dots, a'_m larger if necessary we can therefore assume that

(18)
$$\sum_{i=0}^{l} \mu\left(\mathcal{U}_{i}\right) < \mu(M) + \varepsilon.$$

We replace the symplectic atlas $\{\varphi_i \colon B^{2n}(a_i) \to \mathcal{B}_i, i = 0, \dots, m\}$ by the symplectic atlas $\{\phi_i \colon U_i \to \mathcal{U}_i, i = 0, \dots, l\}$. Here, we still have $(U_0, \phi_0) = (B^{2n}(a_0), \varphi_0)$, and

$$U_i = \varphi_{j(i)+1}^{-1}\left(\mathcal{U}_i\right), \quad \phi_i = \varphi_{j(i)+1}|_{U_i} \colon U_i \to \mathcal{U}_i, \quad i = 1, \dots, l.$$

Each chart (U_i, ϕ_i) is the restriction of a larger chart $\widetilde{\phi}_i \colon \widetilde{U}_i \to \widetilde{\mathcal{U}}_i$. While $p_i \notin \mathcal{U}_i$ in view of (16), we have $p_i \in \widetilde{\mathcal{U}}_{\underline{i}} \cap \widetilde{\mathcal{U}}_i$ for $i = 1, \ldots, l$. Our next goal is to replace the charts $\widetilde{\phi}_i \colon \widetilde{U}_i \to \widetilde{\mathcal{U}}_i$ by charts $\widetilde{\psi}_i \colon \widetilde{V}_i \to \widetilde{\mathcal{U}}_i$ such that for each $i \geq 1$ the transition function

$$\widetilde{\psi}_{\underline{i}}^{-1} \circ \widetilde{\psi}_{i} \colon \ \widetilde{\psi}_{i}^{-1} \left(\widetilde{\mathfrak{U}}_{\underline{i}} \cap \widetilde{\mathfrak{U}}_{i} \right) \, \to \, \widetilde{\psi}_{\underline{i}}^{-1} \left(\widetilde{\mathfrak{U}}_{\underline{i}} \cap \widetilde{\mathfrak{U}}_{i} \right)$$

is the identity near $\widetilde{\psi}_{\underline{i}}^{-1}(p_i)$. We first of all set $(\widetilde{V}_0, \widetilde{\psi}_0) = (\widetilde{U}_0, \widetilde{\phi}_0)$. In order to construct $(\widetilde{V}_1, \widetilde{\psi}_1)$ we first define a symplectic chart $(\widehat{V}_1, \widehat{\psi}_1)$ by

$$\widehat{V}_1 = \left[d \left(\widetilde{\phi}_1^{-1} \circ \widetilde{\psi}_0 \right) (q_1) \right]^{-1} \left(\widetilde{U}_1 \right), \quad \widehat{\psi}_1 = \widetilde{\phi}_1 \circ d \left(\widetilde{\phi}_1^{-1} \circ \widetilde{\psi}_0 \right) (q_1) \colon \widehat{V}_1 \to \widetilde{U}_1$$

where we abbreviated $q_1 := \widetilde{\psi}_0^{-1}(p_1)$. We then find

(19)
$$\left(\widetilde{\psi}_0^{-1} \circ \widehat{\psi}_1\right)(q_1) = q_1 \quad \text{and} \quad d\left(\widetilde{\psi}_0^{-1} \circ \widehat{\psi}_1\right)(q_1) = id.$$

We obtain the desired chart $(\widetilde{V}_1, \widetilde{\psi}_1)$ from the chart $(\widehat{V}_1, \widehat{\psi}_1)$ with the help of the following lemma.

Lemma 2.2. Assume that $\varphi \colon U \to U'$ is a symplectomorphism between two domains U and U' in \mathbb{R}^{2n} such that $\varphi(q) = q$ and $d\varphi(q) = id$ at some point $q \in U$. Then there exist open neighbourhoods $W \subset \widetilde{W} \subseteq U$ of q and a symplectomorphism $\rho \colon U \to U'$ such that $\rho|_{W} = id$ and $\rho|_{U \setminus \widetilde{W}} = \varphi|_{U \setminus \widetilde{W}}$.

Proof. We can assume that q = 0. Following [11, Appendix A.1] we represent the map φ by

$$x = a(\xi, \eta)$$

$$y = b(\xi, \eta).$$

Since $d\varphi(0) = id$, we have $\det(a_{\xi}(0)) = 1 \neq 0$. According to Proposition 1 in [11, Appendix A.1] we therefore find a smooth function w defined on a neighbourhood $\mathbb{N} \subset \mathbb{R}^{2n}(x,\eta)$ of 0 such that

(20)
$$\begin{cases} \xi = x + w_{\eta}(x, \eta) \\ y = \eta + w_{x}(x, \eta). \end{cases}$$

We can assume that w(0) = 0. In view of the identities $\varphi(0) = 0$ and $d\varphi(0) = id$ and the relations (20) we find that all the derivatives of w up to order 2 vanish in 0, i.e.,

(21)
$$w(x,\eta) = O\left(\left|(x,\eta)\right|^3\right).$$

Choose a smooth function $f: [0, \infty[\to [0, 1]]]$ such that

$$f(s) = \begin{cases} 0, & s \le 1, \\ 1, & s \ge 2, \end{cases}$$

and denote the open ball of radius s in $\mathbb{R}^{2n}(x,\eta)$ by B_s . For each $\varepsilon > 0$ for which $B_{3\varepsilon} \subset \mathbb{N}$ we define the smooth function $w^{\varepsilon}(x,\eta) \colon B_{3\varepsilon} \to \mathbb{R}$ by

$$w^{\varepsilon}(x,\eta) = f\left(\frac{1}{\varepsilon}|(x,\eta)|\right)w(x,\eta).$$

Then

(22)
$$w^{\varepsilon}|_{B_{\varepsilon}} = 0$$
 and $w^{\varepsilon}|_{B_{3\varepsilon} \setminus B_{2\varepsilon}} = w|_{B_{3\varepsilon} \setminus B_{2\varepsilon}}$

Abbreviating $\zeta := (x, \eta)$ and $r := |\zeta|$ we compute

$$w_{\zeta_{i}}^{\varepsilon}(\zeta) = f'\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon} \frac{\zeta_{i}}{r} w(\zeta) + f\left(\frac{r}{\varepsilon}\right) w_{\zeta_{i}}(\zeta),$$

$$w_{\zeta_{i}\zeta_{j}}^{\varepsilon}(\zeta) = f''\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon^{2}} \frac{\zeta_{i}\zeta_{j}}{r^{2}} w(\zeta) + f'\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon} \left(\frac{\delta_{ij}}{r} - \frac{\zeta_{i}\zeta_{j}}{r^{3}}\right) w(\zeta)$$

$$+ f'\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon} \left(\frac{\zeta_{i}}{r} w_{\zeta_{j}}(\zeta) + \frac{\zeta_{j}}{r} w_{\zeta_{i}}(\zeta)\right)$$

$$+ f\left(\frac{r}{\varepsilon}\right) w_{\zeta_{i}\zeta_{j}}(\zeta)$$

where $i, j \in \{1, ..., 2n\}$ and where δ_{ij} denotes the Kronecker symbol. In view of the estimate (21) we therefore find that

$$w_{\zeta_i\zeta_i}^{\varepsilon}(\zeta) = \frac{1}{\varepsilon^2}O(r^3) + \frac{1}{\varepsilon}O(r^2) + O(r) = O(r), \quad \zeta \in B_{3\varepsilon},$$

and so

(23)
$$w^{\varepsilon}(x,\eta) = O\left(\left|(x,\eta)\right|^{3}\right), \quad (x,\eta) \in B_{3\varepsilon}.$$

We in particular conclude that $\det (\mathbb{1}_n + w_{x\eta}(x,\eta)) \neq 0$ for all $(x,\eta) \in B_{3\varepsilon}$ if $\varepsilon > 0$ is small enough. The relations

(24)
$$\begin{cases} \xi = x + w_{\eta}^{\varepsilon}(x, \eta) \\ y = \eta + w_{x}^{\varepsilon}(x, \eta) \end{cases}$$

therefore implicitly define a symplectic mapping φ^{ε} near 0, see again [11, Appendix A.1]. The C^2 -estimate (23) implies that φ^{ε} is C^1 -close to the

identity and that for $\varepsilon>0$ small enough, φ^{ε} is defined and injective on all of

$$U_{3\varepsilon}^{\varepsilon} = \left\{ (\xi, \eta) \in \mathbb{R}^{2n} \mid (24) \text{ holds for } (x, \eta) \in B_{3\varepsilon} \right\}.$$

In view of the estimate (23) each of the sets

$$U_s^{\varepsilon} = \{(\xi, \eta) \in \mathbb{R}^{2n} \mid (24) \text{ holds for } (x, \eta) \in B_s\}, \quad s \leq 3\varepsilon,$$

is contained in the domain U of φ and is diffeomorphic to an open ball provided that $\varepsilon>0$ is small enough. According to the identities (22), the map φ^{ε} is the identity on $U_{\varepsilon}^{\varepsilon}$ and coincides with φ on the "open annulus" $U_{3\varepsilon}^{\varepsilon} \setminus \overline{U_{2\varepsilon}^{\varepsilon}}$. It follows that $\varphi^{\varepsilon}(U_{3\varepsilon}^{\varepsilon}) = \varphi(U_{3\varepsilon}^{\varepsilon})$. We smoothly extend $\varphi^{\varepsilon} \colon U_{3\varepsilon}^{\varepsilon} \to \mathbb{R}^{2n}$ to a symplectic embedding $\rho \colon U \to \mathbb{R}^{2n}$ by setting $\rho(z) = \varphi(z), z \in U \setminus U_{3\varepsilon}^{\varepsilon}$. Then $\rho(U) = \varphi(U) = U'$, and setting $W = U_{\varepsilon}^{\varepsilon}$ and $\widetilde{W} = U_{2\varepsilon}^{\varepsilon} \in U_{3\varepsilon}^{\varepsilon} \subset U$ we find that $\rho|_{W} = \varphi^{\varepsilon}|_{U_{\varepsilon}^{\varepsilon}} = id$ and $\rho|_{U \setminus \widetilde{W}} = \varphi|_{U \setminus \widetilde{W}}$. The proof of Lemma 2.2 is complete.

In view of the identities (19) we can apply Lemma 2.2 to the symplectomorphism

$$\widetilde{\psi}_0^{-1} \circ \widehat{\psi}_1 \colon \ \widehat{\psi}_1^{-1} \left(\widetilde{\mathcal{U}}_0 \cap \widetilde{\mathcal{U}}_1 \right) \ \to \ \widetilde{\psi}_0^{-1} \left(\widetilde{\mathcal{U}}_0 \cap \widetilde{\mathcal{U}}_1 \right)$$

which fixes q_1 , and find open neighbourhoods $W_1 \subset \widetilde{W}_1 \in \widehat{\psi}_1^{-1} \left(\widetilde{\mathfrak{U}}_0 \cap \widetilde{\mathfrak{U}}_1 \right)$ and a symplectomorphism

$$\rho_1 \colon \widehat{\psi}_1^{-1} \left(\widetilde{\mathfrak{U}}_0 \cap \widetilde{\mathfrak{U}}_1 \right) \to \widetilde{\psi}_0^{-1} \left(\widetilde{\mathfrak{U}}_0 \cap \widetilde{\mathfrak{U}}_1 \right)$$

such that

(25)
$$\rho_1|_{W_1} = id \quad \text{and} \quad \rho_1|_{\widehat{\psi}_1^{-1}(\widetilde{\mathcal{U}}_0 \cap \widetilde{\mathcal{U}}_1) \setminus \widetilde{W}_1} = \widetilde{\psi}_0^{-1} \circ \widehat{\psi}_1.$$

Set $\widetilde{V}_1 = \widehat{V}_1$. In view of the properties (25) of ρ_1 the map $\widetilde{\psi}_1 \colon \widetilde{V}_1 \to \widetilde{\mathcal{U}}_1$ defined by

$$\widetilde{\psi}_1 = \left\{ \begin{array}{ll} \widetilde{\psi}_0 \circ \rho_1 & \text{on} & \widehat{\psi}_1^{-1} \left(\widetilde{\mathfrak{U}}_0 \cap \widetilde{\mathfrak{U}}_1 \right), \\ \widehat{\psi}_1 & \text{on} & \widetilde{V}_1 \setminus \widetilde{W}_1 \end{array} \right.$$

is a well-defined smooth symplectic chart such that

$$\widetilde{\psi}_0^{-1} \circ \widetilde{\psi}_1 \colon \ \widetilde{\psi}_1^{-1} \left(\widetilde{\mathfrak{U}}_0 \cap \widetilde{\mathfrak{U}}_1 \right) \to \widetilde{\psi}_0^{-1} \left(\widetilde{\mathfrak{U}}_0 \cap \widetilde{\mathfrak{U}}_1 \right)$$

is the identity on the open neighbourhood W_1 of $q_1 = \widetilde{\psi}_0^{-1}(p_1)$. Assume now by induction that we have already constructed new charts $\widetilde{\psi}_j \colon \widetilde{V}_j \to \widetilde{\mathcal{U}}_j$ for $j = 1, \ldots, i-1$. Since $\underline{i} < i$, the chart $(\widetilde{U}_{\underline{i}}, \widetilde{\phi}_{\underline{i}})$ is already replaced by the chart $(\widetilde{V}_{\underline{i}}, \widetilde{\psi}_{\underline{i}})$. Applying the two-step construction shown above to the pair $(\widetilde{V}_{\underline{i}}, \widetilde{\psi}_{\underline{i}})$, $(\widetilde{U}_i, \widetilde{\phi}_i)$ we find a new chart $\widetilde{\psi}_i \colon \widetilde{V}_i \to \widetilde{\mathcal{U}}_i$ such that the transition function

$$\widetilde{\psi}_{\underline{i}}^{-1} \circ \widetilde{\psi}_{i} \colon \ \widetilde{\psi}_{i}^{-1} \left(\widetilde{\mathfrak{U}}_{\underline{i}} \cap \widetilde{\mathfrak{U}}_{i} \right) \to \widetilde{\psi}_{\underline{i}}^{-1} \left(\widetilde{\mathfrak{U}}_{\underline{i}} \cap \widetilde{\mathfrak{U}}_{i} \right)$$

is the identity on an open neighbourhood W_i of $q_i = \widetilde{\psi}_i^{-1}(p_i)$. In this way we construct a new symplectic atlas

$$\widetilde{\mathfrak{A}} = \left\{ \widetilde{\psi}_i \colon \widetilde{V}_i \to \widetilde{\mathfrak{U}}_i, \ i = 0, \dots, l \right\}.$$

Recall that $U_i \subseteq \widetilde{U}_i$. The collection

$$\mathfrak{A} = \{ \psi_i \colon V_i \to \mathcal{U}_i, \ i = 0, \dots, l \}$$

of smaller charts defined by

$$V_i = \widetilde{\psi}_i^{-1} \left(\mathcal{U}_i \right), \quad \psi_i = \widetilde{\psi}_i|_{V_i} \colon V_i \to \mathcal{U}_i$$

is the good atlas of (M, ω) we were looking for. We still have $(V_0, \psi_0) = (B^{2n}(a_0), \varphi_0)$ and $\mathcal{U}_0 = \mathcal{B}_0$. We also recall that each set \mathcal{U}_i is connected and has piecewise smooth boundary.

Step 2. The dimension cover $\mathfrak{D}(2n,k)$

Let $k \geq 2n+1$ be the natural number defined in (7). In this step we shall construct a special cover $\mathfrak{D}(2n,k)$ of \mathbb{R}^{2n} by cubes. Our construction is inspired by an idea from elementary dimension theory, see e.g. [5, Figure 7].

We denote the coordinates in \mathbb{R}^{2n} by x_1, \ldots, x_{2n} , and we let $\{e_1, \ldots, e_{2n}\}$ be the standard basis of \mathbb{R}^{2n} . Given a point $q \in \mathbb{R}^{2n}$ and a subset A of \mathbb{R}^{2n} we denote the translate of A by q by

$$q + A = \{q + a \mid a \in A\}.$$

By a cube we mean a translate of the closed cube $C^{2n} = [0,1]^{2n} \subset \mathbb{R}^{2n}$. We define the $(2n \times 2n)$ -matrix M(2n,k) as the matrix whose diagonal is $(k,1,\ldots,1)$, whose upper-diagonal is

$$\left(\frac{k}{2n}, \frac{2n}{2n-1}, \frac{2n-1}{2n-2}, \dots, \frac{4}{3}, \frac{3}{2}\right)$$

and whose other matrix entries all vanish. E.g.,

$$M(2,3) = \begin{bmatrix} 3 & \frac{3}{2} \\ 0 & 1 \end{bmatrix}, \quad M(2,4) = \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}, \quad M(4,5) = \begin{bmatrix} 5 & \frac{5}{4} & 0 & 0 \\ 0 & 1 & \frac{4}{3} & 0 \\ 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

We consider the infinite union of cubes

$$\mathfrak{C}^{1}(2n,k) = \bigcup_{v \in \mathbb{Z}^{2n}} M(2n,k)v + C^{2n}$$

and its translates

$$\mathfrak{C}^{j}(2n,k) = (j-1)e_1 + \mathfrak{C}^{1}(2n,k), \quad j = 2,\dots,k,$$

and we abbreviate

$$\mathfrak{D}(2n,k) := \bigcup_{j=1}^{k} \mathfrak{C}^{j}(2n,k),$$

cf. Figure 5 and Figure 6.

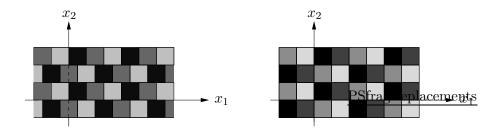


FIGURE 5. Parts of the dimension covers $\mathfrak{D}(2,3)$ and $\mathfrak{D}(2,4)$.

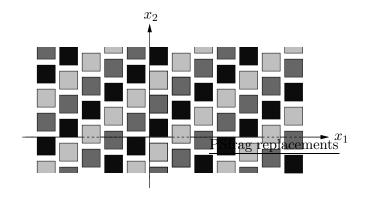


FIGURE 6. A part of the intersections $\mathfrak{C}^1(4,5) \cap \{(x_1,x_2,x_3,x_4) \mid x_3=i-\frac{1}{2},x_4=0\}, i=1,2,3.$

Finally, we define for each subset A of \mathbb{R}^{2n} and each $m \in \{1, \dots, 2n\}$ the cylinder $Z_m(A)$ over A by

$$Z_m(A) = \{a + \lambda e_m \mid a \in A, \lambda \in \mathbb{R}\}.$$

Recall that the distance between two subsets A and B of \mathbb{R}^{2n} is defined as

$${\rm dist}(A,B) \, = \, \inf \, \{ |a-b| \mid a \in A, \, b \in B \} \, .$$

Given $\nu > 0$ and a subset A of \mathbb{R}^{2n} we denote the ν -neighbourhood of A by

$$\mathcal{N}_{\nu}(A) = \left\{ z \in \mathbb{R}^{2n} \mid \operatorname{dist}(z, A) < \nu \right\}.$$

We abbreviate the positive number

(26)
$$\delta := \min\left(\frac{k-2n}{2n}, \frac{1}{2n-1}\right).$$

Lemma 2.3.

(i) For each $j \in \{1, ..., k\}$ and any cube C of $\mathfrak{C}^j(2n, k)$ we have $\operatorname{dist}(C, \mathfrak{C}^j(2n, k) \setminus C) = \delta.$

Moreover,

$$Z_1 (\operatorname{Int} C) \cap \mathfrak{C}^j(2n, k) = \bigcup_{l \in \mathbb{Z}} kle_1 + \operatorname{Int} C$$

and

$$Z_m\left(\mathcal{N}_{\delta}(C)\right) \cap \mathfrak{C}^j(2n,k) = \bigcup_{l \in \mathbb{Z}} (2n-m+2)le_m + C, \quad m = 2, \dots, 2n.$$

(ii) We have

$$\mathfrak{D}(2n,k) = \bigcup_{j=1}^{k} \mathfrak{C}^{j}(2n,k) = \mathbb{R}^{2n}$$

and the interiors of the sets $\mathfrak{C}^{j}(2n,k)$ are mutually disjoint.

The proof, which is elementary, is omitted.

Step 3. The cover of M by small cubes

Let $\mathfrak{A} = \{\psi_i \colon V_i \to \mathfrak{U}_i, \ i = 0, \dots, l\}$ be the symplectic atlas of (M, ω) constructed in Step 1 and let $\mathfrak{D}(2n, k) = \bigcup_{j=1}^k \mathfrak{C}^j(2n, k)$ be the dimension cover of \mathbb{R}^{2n} constructed in the previous step. For any r > 0 and any subset A of \mathbb{R}^{2n} we set

$$rA = \{rz \mid z \in A\}$$

and we denote by |A| the Lebesgue measure of A. Fix $i \in \{0, ..., l\}$. For $d_i > 0$ we define $\mathfrak{C}_i^j(d_i)$ as the set of those cubes C in $d_i\mathfrak{C}^j(2n, k)$ for which

(27)
$$C \subset V_i$$
 and $\operatorname{dist}(C, \partial V_i) \geq d_i$

and we abbreviate

$$\mathfrak{D}_i(d_i) := \bigcup_{i=1}^k \mathfrak{C}_i^j(d_i).$$

In view of the identity (17) and since M is a normal space we find open sets $\check{U}_i \subseteq U_i$ such that

$$M = \bigcup_{i=0}^{l} \mathcal{U}_i = \bigcup_{i=0}^{l} \breve{\mathcal{U}}_i.$$

Choose $d_i > 0$ so small that $\psi_i^{-1}(\check{\mathcal{U}}_i) \subset \mathfrak{D}_i(d_i)$. Then

(28)
$$M = \bigcup_{i=0}^{l} \psi_i(\mathfrak{D}_i(d_i)).$$

Also notice that the homogeneity of the sets $\mathfrak{C}_i^j(d_i)$ implies that

$$\left|\mathfrak{C}_{i}^{j}(d_{i})\right| \to \frac{1}{k}\left|V_{i}\right| \quad \text{as } d_{i} \to 0$$

for all $j \in \{1, ..., k\}$. Choosing $d_i > 0$ smaller if necessary we can therefore assume that

(29)
$$\left|\mathfrak{C}_{i}^{j}(d_{i})\right| < \frac{1}{k}\left(|V_{i}| + \frac{k-1}{l+1}\varepsilon\right)$$

for all $i \in \{0, ..., l\}$ and $j \in \{1, ..., k\}$.

We denote by $\mathcal{C}^j = \mathcal{C}^j(d_0, \dots, d_l)$ the union of cubes "of the same colour"

$$\mathfrak{C}^{j} = \bigcup_{i=0}^{l} \psi_{i}(\mathfrak{C}^{j}_{i}(d_{i})), \quad j = 1, \dots, k.$$

The cubes $\psi_i(C)$ in $\psi_i(\mathfrak{C}_i^j(d_i))$ are called *i*-cubes. For each connected component \mathcal{K} of \mathcal{C}^j we define the height of \mathcal{K} as the maximal $h \in \{0, \dots, l\}$ for which \mathcal{K} contains an h-cube. The set \mathcal{C}^j decomposes as

$$\mathfrak{C}^j = \coprod_{h=0}^l \mathfrak{C}_h^j$$

where \mathcal{C}_h^j is the union of the components of \mathcal{C}^j of height h. In view of (28) we have

(30)
$$M = \bigcup_{j=1}^{k} \bigcup_{h=0}^{l} \mathcal{C}_{h}^{j}.$$

According to the estimates (29) we can choose for each $i \in \{1, ..., l\}$ a number

$$(31) \nu_i \in \left]0, \frac{\delta}{2}\right[$$

such that

$$(32) \left(1 + 2\nu_i\right)^{2n} \left|\mathfrak{C}_i^j(d_i)\right| < \frac{1}{k} \left(|V_i| + \frac{k-1}{l+1}\varepsilon\right)$$

for all $j \in \{1, ..., k\}$. Since $\nu_i < \frac{\delta}{2} < 1$, the conditions (27) imply that

for any cube C in $\mathfrak{D}_i(d_i)$.

Lemma 2.4. If the numbers $d_0, \ldots, d_{l-1} > 0$ as well as the ratios d_i/d_{i+1} , $i = 0, \ldots, l-1$, are small enough, then the following assertions hold true.

- (i) $\mathcal{C}_h^j \subset \mathcal{U}_h$ for each $j \in \{1, \dots, k\}$ and $h \in \{0, \dots, l\}$. (ii) Any component \mathcal{K} of \mathcal{C}_h^j contains only one h-cube $\psi_h(C)$, and

$$\psi_h^{-1}(\mathfrak{K}) \subset \mathfrak{N}_{\nu_h d_h}(C), \quad h = 1, \dots, l.$$

Proof. We denote by $\mathcal{P}_i^j = \mathcal{P}_i^j(d_0, \dots, d_l)$ the partial union of cubes

$$\mathcal{P}_i^j = \bigcup_{g=i}^l \psi_i (\mathfrak{C}_i^j(d_i)), \quad i = 0, \dots, l; \ j = 1, \dots, k.$$

E.g., $\mathcal{P}_l^j = \psi_l(\mathfrak{C}_l^j(d_l))$ and $\mathcal{P}_0^j = \mathfrak{C}^j$. Generalizing the above definition we define the *height* of a connected component \mathcal{K} of \mathcal{P}_i^j as the maximal $h \in$

 $\{i,\ldots,l\}$ for which $\mathcal K$ contains an h-cube. The set $\mathcal P_i^j$ decomposes as

$$\mathcal{P}_{i}^{j} = \prod_{h=i}^{l} \mathcal{P}_{i,h}^{j}$$

where $\mathcal{P}_{i,h}^{j}$ is the union of components of \mathcal{P}_{i}^{j} of height h.

Since \mathcal{P}_l^j consists of finitely many disjoint closed cubes, we can choose $d_{l-1} > 0$ so small that each cube of $\psi_{l-1}(\mathfrak{C}_{l-1}^j(d_{l-1}))$ intersects at most one cube of \mathcal{P}_l^j for each j. Then each component \mathcal{K} of $\mathcal{P}_{l-1,l}^j$ contains only one l-cube. We denote the distinguished cube in \mathcal{K} by $\mathcal{C}(\mathcal{K})$. Since \mathcal{P}_l^j is a compact subset of the open set \mathcal{U}_l , we can choose d_{l-1} so small that $\mathcal{P}_{l-1,l}^j \subset \mathcal{U}_l$ for each j. Moreover, choosing d_{l-1} yet smaller if necessary we can assume that

(34)
$$\psi_l^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_l d_l} \left(\psi_l^{-1} \left(\mathcal{C}(\mathcal{K}) \right) \right)$$

for each component \mathcal{K} of $\mathcal{P}_{l-1,l}^{j}$ and each j.

Since \mathcal{P}_{l-1}^{j} consists of finitely many disjoint compact components, we can choose $d_{l-2}>0$ so small that each cube of $\psi_{l-2}(\mathfrak{C}_{l-2}^{j}(d_{l-2}))$ intersects at most one component of \mathcal{P}_{l-1}^{j} for each j. Then each component \mathcal{K} of $\mathcal{P}_{l-2,h}^{j}$ contains only one h-cube, h=l,l-1,l-2. We denote this distinguished cube again by $\mathcal{C}(\mathcal{K})$. If $h\in\{l,l-1\}$, then $\mathcal{C}(\mathcal{K})=\mathcal{C}(\underline{\mathcal{K}})$ where $\underline{\mathcal{K}}$ is the unique component of $\mathcal{P}_{l-1,h}^{j}$ contained in \mathcal{K} , and if h=l-2, then $\mathcal{C}(\mathcal{K})=\mathcal{K}$ is an (l-2)-cube. Since $\mathcal{P}_{l-1,l}^{j}$ is a compact subset of the open set \mathcal{U}_{l} and since $\mathcal{P}_{l-1,l-1}^{j}$ is a compact subset of the open set \mathcal{U}_{l-1} , we can choose d_{l-2} so small that $\mathcal{P}_{l-2,l}^{j}\subset\mathcal{U}_{l}$ and $\mathcal{P}_{l-2,l-1}^{j}\subset\mathcal{U}_{l-1}$ for each j. Moreover, the compact inclusions (34) imply that we can choose d_{l-2} so small that

$$\psi_l^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_l d_l} \left(\psi_l^{-1} \left(\mathcal{C}(\mathcal{K}) \right) \right)$$

for each component \mathcal{K} of $\mathcal{P}^{j}_{l-2,l}$ and each j. Choosing d_{l-2} yet smaller if necessary we can also assume that

$$\psi_{l-1}^{-1}(\mathfrak{K}) \subset \mathfrak{N}_{\nu_{l-1}d_{l-1}}\left(\psi_{l}^{-1}\left(\mathfrak{C}(\mathfrak{K})\right)\right)$$

for each component \mathcal{K} of $\mathcal{P}^{j}_{l-2,l-1}$ and each j.

Repeating this reasoning l-2 other times, we successively find d_{l-1}, \ldots, d_0 such that assertions (i) and (ii) of the lemma hold true for all $h \in \{1, \ldots, l\}$ and all j. Since $\mathcal{C}_0^j \subset \mathcal{U}_0$ by definition of \mathcal{C}_0^j , the proof of Lemma 2.4 is complete.

For $h \geq 1$ the sets $M \setminus \mathcal{C}_h^j$ do not need to be connected. Define the saturation $\mathcal{S}(A)$ of a closed subset A of \mathbb{R}^{2n} as the union of A with the bounded components of $\mathbb{R}^{2n} \setminus A$. For a closed subset \mathcal{A} of \mathcal{U}_h for which

 $S\left(\psi_{h}^{-1}\left(\mathcal{A}\right)\right)\subset V_{h}$ we set

$$S(A) = \psi_h \left(S\left(\psi_h^{-1}(A)\right) \right).$$

By Lemma 2.4 (ii) and the inclusions (33) we have $\mathbb{S}(\psi_h^{-1}(\mathbb{C}_h^j)) \subset V_h$ for all $j \in \{1, \ldots, k\}$ and $h \in \{0, \ldots, l\}$. For $j \in \{1, \ldots, k\}$ we can therefore recursively define compact subsets of \mathcal{U}_h by

$$\mathbf{S}_{l}^{j} = \mathbf{S}\left(\mathbf{C}_{l}^{j}\right),$$

$$\mathbf{S}_{h}^{j} = \mathbf{S}\left(\mathbf{C}_{h}^{j}\setminus\bigcup_{g=h+1}^{l}\mathbf{S}_{g}^{j}\right), \quad h=l-1,\ldots,0.$$

Then each set $M \setminus \mathbb{S}_h^j$ is connected. A component of \mathbb{S}_h^j is just the saturation of a component of \mathbb{C}_h^j which is not enclosed by any component of $\bigcup_{g=h+1}^l \mathbb{C}_g^j$. Each component \mathcal{K} of \mathbb{S}_h^j has piecewise smooth boundary, and according to Lemma 2.4 (ii) it contains only one h-cube $\psi_h(C)$, and

(35)
$$\psi_h^{-1}(\mathfrak{K}) \subset \mathfrak{N}_{\nu_h d_h}(C), \quad h = 1, \dots, l.$$

While a component of S_0^j is a cube of C_0^j and a component of S_1^j is the union of a cube of C_1^j and the overlapping cubes of C_0^j , a component of S_2^j might contain a cube of C_0^j which is disjoint from $C_1^j \cup C_2^j$, cf. Figure 7.

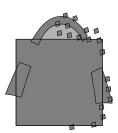


FIGURE 7. A component of \mathbb{S}_2^j .

If the ratios d_h/d_{h+1} , $h=0,\ldots,l-1$, are small enough, then Lemma 2.4 (ii) implies that a component of \mathcal{C}_h^j cannot be enclosed by a component of \mathcal{C}_g^j for some g < h, and so the sets \mathcal{S}_h^j , $h=0,\ldots,l$, are disjoint. We finally abbreviate

$$\mathbb{S}^j := \bigcup_{h=0}^l \mathbb{S}^j_h$$

and read off from (30) and the definition of the sets S_h^j that

$$(36) M = \bigcup_{j=0}^{k} \mathbb{S}^{j}.$$

Step 4. Moving the cubes of the same colour into \mathfrak{B}_0

In order to move the sets S^j into \mathcal{B}_0 we will have to choose the d_i yet smaller. We shall then be able to construct for each j a Hamiltonian isotopy Φ^j of M which first moves S^j_0 to a "dense cluster" around the center of \mathcal{B}_0 and then successively moves S^j_h to a "shell" around the already constructed cluster $\bigcup_{g=0}^{h-1} \Phi^j(S^j_g)$, $h=1,\ldots,l$.

The main tool for the construction of the maps Φ^j is the following elementary lemma.

Lemma 2.5. Let K be a compact subset of \mathbb{R}^{2n} and let q be a point in \mathbb{R}^{2n} . Denote by K the convex hull of the union $K \cup (q+K)$. For any open neighbourhood U of K there exists a symplectomorphism τ of \mathbb{R}^{2n} which is supported in U and which translates K to q+K.

Proof. We follow [11, p. 73]. We choose a smooth function $f: \mathbb{R}^{2n} \to \mathbb{R}$ such that $f|_{\mathcal{K}} = 1$ and $f|_{\mathbb{R}^{2n} \setminus U} = 0$. Define the Hamiltonian function $H: \mathbb{R}^{2n} \to \mathbb{R}$ by

$$H(z) = f(z)\langle z, -Jq \rangle$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean scalar product on \mathbb{R}^{2n} and where J denotes the standard complex structure on \mathbb{R}^{2n} defined by

$$\omega_0(z, w) = \langle z, -Jw \rangle, \quad z, w \in \mathbb{R}^{2n}.$$

Recall that the Hamiltonian vector field X_H of H is given by $X_H(z) = J\nabla H(z)$. We conclude that the time-1-map τ of the flow generated by X_H is a symplectomorphism of \mathbb{R}^{2n} which is supported in U. Moreover, for $z \in \mathcal{K}$ we have

$$X_H(z) = J\nabla H(z) = J(-Jq) = q,$$

and so $\tau(z) = z + q$ for all $z \in K$.

We denote by B_r the open ball of radius r in \mathbb{R}^{2n} . We recursively define the open ball B_{r_0} and the open "annuli" $A_{r_{h-1}}^{r_h} = B_{r_h} \setminus \overline{B_{r_{h-1}}}$ by

$$(37) |B_{r_0}| = \frac{1}{k} \left(|V_0| + \frac{k-1}{l+1} \varepsilon \right),$$

(38)
$$\left| A_{r_{h-1}}^{r_h} \right| = \frac{1}{k} \left(|V_h| + \frac{k-1}{l+1} \varepsilon \right), \quad h = 1, \dots, l.$$

The definitions (37) and (38), the identities $|V_h| = \mu(\mathcal{U}_h)$ and the estimate (18), and the estimate (11) and the identity $|B^{2n}(a_0')| = \mu(\mathcal{B}_0')$ imply that

$$|B_{r_0}| + \sum_{h=1}^{l} \left| A_{r_{h-1}}^{r_h} \right| = \frac{1}{k} \sum_{h=0}^{l} \left(|V_h| + \frac{k-1}{l+1} \varepsilon \right)$$

$$< \frac{\mu(M)}{k} + \frac{\varepsilon}{k} + \frac{k-1}{k} \varepsilon$$

$$= \frac{\mu(M)}{k} + \varepsilon$$

$$< |B^{2n}(a_0')|$$

and so

(40)
$$B_{r_0} \cup \bigcup_{h=1}^l A_{r_{h-1}}^{r_h} \subset B^{2n}(a_0').$$

Consider again the symplectic atlas $\mathfrak{A} = \{\psi_h \colon V_h \to \mathcal{U}_h, h = 0, \dots, l\}$ of (M, ω) . Recall that $\psi_0 \colon V_0 \to \mathcal{U}_0$ is the Darboux chart $\varphi_0 \colon B^{2n}(a_0) \to \mathcal{B}_0$ and that the sets \mathcal{U}_h and V_h are connected and have piecewise smooth boundaries. Also recall that there exist larger charts $\widetilde{\psi}_h \colon \widetilde{V}_h \to \widetilde{\mathcal{U}}_h$. We can assume that the sets $\widetilde{\mathcal{U}}_h$ and \widetilde{V}_h are also connected and have piecewise smooth boundaries. We fix $j \in \{1, \dots, k\}$. The construction of the map Φ_0^j will somewhat differ from the one of the maps Φ_h^j for $h \geq 1$ since $\Phi_0^j(\mathbb{S}_0^j)$ will not be disjoint from \mathbb{S}_0^j . We start with constructing Φ_0^j .

Proposition 2.6. If the numbers $d_0, \ldots, d_l > 0$ as well as the ratios d_i/d_{i+1} , $i = 0, \ldots, l-1$, are small enough, then there exists a symplectomorphism Φ_0^j of M whose support is disjoint from $\bigcup_{h=1}^l \mathbb{S}_h^j$ and such that $\Phi_0^j(\mathbb{S}_0^j) \subset \psi_0(B_{r_0})$.

Proof. We recall that S_0^j is the set of "free" cubes in C_0^j , i.e., each component of S_0^j is a cube of C_0^j which is not enclosed by any component of $\bigcup_{h=1}^l C_h^j$. We abbreviate $\mathfrak{S}_0 := \psi_0^{-1}(S_0^j)$. Since \mathfrak{S}_0 is contained in $\mathfrak{C}_0^j(d_0)$, we deduce from the estimate (29) for i=0 and the definition (37) that

$$|\mathfrak{S}_0| < |B_{r_0}|.$$

We denote by \mathfrak{Q} the standard decomposition of \mathbb{R}^{2n} into closed cubes,

$$\mathfrak{Q}:=\bigcup_{v\in\mathbb{Z}^{2n}}v+[0,1]^{2n},$$

and for each $\nu > 0$ and each subset A of \mathbb{R}^{2n} we denote by $\mathfrak{Q}(\nu, A)$ the set of cubes in $\nu \mathfrak{Q}$ which are contained in A. Let s_0 be the number of cubes in \mathfrak{S}_0 . The estimate (41) implies that after choosing $d_0 > 0$ smaller if necessary we find $\varepsilon_0 > 0$ such that $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0})$ contains at least s_0 cubes.

Recall that $k \ge 2n+1$ and recall from the estimate (39) that $r_0 < \sqrt{a_0'/\pi}$. We define $\widetilde{r}_0 > r_0$ by

(42)
$$\widetilde{r}_0 = \min \left\{ \frac{2k}{4n+1} r_0, \frac{1}{2} \left(r_0 + \sqrt{a'_0/\pi} \right) \right\}$$

and we denote by $\mathfrak{S}_0^{\text{int}}$ the set of cubes in \mathfrak{S}_0 contained in $B_{\tilde{r}_0}$. Since $B_{\tilde{r}_0} \subset B^{2n}(a_0')$ and since $\mathfrak{B}_0' = \psi_0\left(B^{2n}(a_0')\right)$ is disjoint from \mathfrak{U}_h and $\mathfrak{S}_h^j \subset \mathfrak{U}_h$, $h \geq 1$, the set $B_{\tilde{r}_0}$ is disjoint from $\psi_0^{-1}(\mathfrak{S}_h^j)$, $h \geq 1$. In particular, $\mathfrak{S}_0^{\text{int}}$ is the set of cubes in $\mathfrak{C}_0^j(d_0)$ contained in $B_{\tilde{r}_0}$, cf. Figure 9. We abbreviate the set of exterior cubes in \mathfrak{S}_0 by

$$\mathfrak{S}_0^{\mathrm{ext}} := \mathfrak{S}_0 \setminus \mathfrak{S}_0^{\mathrm{int}}.$$

Lemma 2.7. For d_0 and ε_0 small enough there exists a symplectomorphism θ of \widetilde{V}_0 such that

- (i) the support of θ is contained in $B_{\widetilde{r}_0}$ and disjoint from $\mathfrak{S}_0^{\mathrm{ext}}$;
- (ii) θ maps each cube of $\mathfrak{S}_0^{\text{int}}$ into a cube of $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0})$;
- (iii) the set of cubes in $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0})$ containing a cube of $\theta(\mathfrak{S}_0^{int})$ is contractible.

Proof. Using Lemmata 2.3 and 2.5 we successively construct symplectomorphisms $\theta_{2n}, \theta_{2n-1}, \ldots, \theta_1$ such that θ_{2n} "collapses" $\mathfrak{S}_0^{\text{int}}$ along the x_{2n} -axis and θ_i "collapses" $\theta_{i+1} \circ \cdots \circ \theta_{2n} \left(\mathfrak{S}_0^{\text{int}} \right)$ along the x_i -axis, $i = 2n - 1, \ldots, 1$, and such that the composite map

$$\theta = \theta_1 \circ \cdots \circ \theta_{2n}$$

meets assertion (i) as well as assertions (ii) and (iii) with $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0})$ replaced by $\mathfrak{Q}(d_0 + \varepsilon_0, B_{\widetilde{r}_0})$, cf. Figure 8.

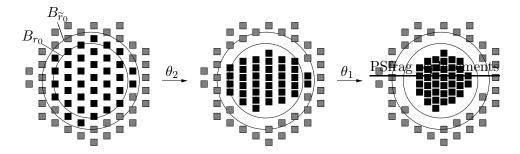


FIGURE 8. The map $\theta = \theta_1 \circ \theta_2$ for j = 1.

In order to see that assertions (ii) and (iii) can be fulfilled as stated, we infer from the definition of the set $d_0\mathfrak{C}^j(2n,k)\supset\mathfrak{S}_0^{\rm int}$ given in Step 2 that

$$\frac{\operatorname{diam} \mathfrak{S}_0^{\operatorname{int}}}{\operatorname{diam} \theta\left(\mathfrak{S}_0^{\operatorname{int}}\right)} \to \frac{k}{2n} \quad \text{as } d_0 \to 0 \text{ and } \varepsilon_0 \to 0.$$

In view of the choice (42) of \widetilde{r}_0 we can therefore choose d_0 and ε_0 so small that $\theta\left(\mathfrak{S}_0^{\text{int}}\right) \subset \mathfrak{Q}\left(d_0 + \varepsilon_0, B_{r_0}\right)$, as desired.

Lemma 2.8. If the numbers $d_0, \ldots, d_l > 0$ as well as the ratios d_i/d_{i+1} , $i = 0, \ldots, l-1$, are small enough, then there exists a symplectomorphism Θ_0 of \widetilde{V}_0 such that

(i) the support of Θ_0 is compact and disjoint from

$$\psi_0^{-1} \left(\bigcup_{h=1}^l \mathbb{S}_h^j \right) \cup \theta \left(\mathfrak{S}_0^{\text{int}} \right);$$

(ii) Θ_0 maps each cube of $\mathfrak{S}_0^{\text{ext}}$ into a cube of $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0})$.

Proof. The set $\mathcal{U}_0 \setminus \bigcup_{h=1}^l \mathbb{S}_h^j$ might not be connected for any choice of d_0, \ldots, d_l , in which case not every cube in \mathbb{S}_0^j can be moved into $\psi_0(B_{r_0})$ inside $\mathcal{U}_0 \setminus \bigcup_{h=1}^l \mathbb{S}_h^j$. This is the reason why we work in the extended chart $\widetilde{\psi}_0 \colon \widetilde{V}_0 \to \widetilde{\mathcal{U}}_0$. We choose the numbers d_0, \ldots, d_l so small that each component of $\bigcup_{h=1}^l \mathbb{S}_h^j$ which intersects \mathcal{U}_0 is contained in $\widetilde{\mathcal{U}}_0$. The component $\widehat{\mathcal{U}}_0$ of $\widetilde{\mathcal{U}}_0 \setminus \bigcup_{h=1}^l \mathbb{S}_h^j$ containing \mathcal{B}_0' then contains \mathbb{S}_0^j , and the set $\widehat{V}_0\widetilde{\psi}_0^{-1}(\widehat{\mathcal{U}}_0)$ is an open connected set with piecewise smooth boundary which contains \mathfrak{S}_0 .

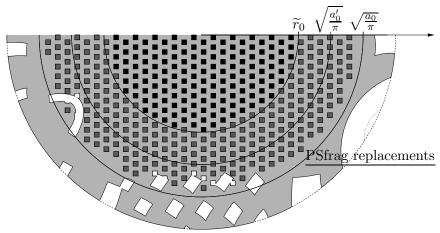


FIGURE 9. Half of the subset $\mathfrak{S}_0 = \mathfrak{S}_0^{\text{int}} \cup \mathfrak{S}_0^{\text{ext}}$ of \widehat{V}_0 .

In order to move the cubes in $\mathfrak{S}_0^{\text{ext}}$ into B_{r_0} we shall associate a tree with $\mathfrak{S}_0^{\text{ext}}$. Recall that $\mathfrak{S}_0^{\text{ext}}$ is a subset of $d_0\mathfrak{C}^j(2n,k)$. We enlarge $\mathfrak{S}_0^{\text{ext}}$ to the set $\widehat{\mathfrak{S}}_0^{\text{ext}}$ defined as the set of cubes in $d_0\mathfrak{C}^j(2n,k)\setminus\mathfrak{S}_0^{\text{int}}$ which are contained in \widehat{V}_0 . Abbreviate

$$\lambda_m := \left\{ \begin{array}{ll} k & \text{if } m = 1, \\ 2n - m + 2 & \text{if } m \in \{2, \dots, 2n\}. \end{array} \right.$$

We say that two cubes C and C' of $\widehat{\mathfrak{S}}_0^{\text{ext}}$ are m-neighbours if

$$C' = C \pm d_0 \lambda_m e_m$$

for some $m \in \{1, ..., 2n\}$ and if their convex hull is contained in \widehat{V}_0 . According to Lemma 2.3 (i) the (interior of) the convex hull of two neighbours does not intersect any third cube of $\widehat{\mathfrak{S}}_0^{\text{ext}}$, cf. Figure 5. We define \mathcal{G}'_0 to be the graph whose edges are the straight lines connecting the centers of neighbours in $\widehat{\mathfrak{S}}_0^{\text{ext}}$, and we define \mathcal{G}_0 to be the graph obtained from \mathcal{G}'_0 by declaring the intersections of edges to be vertices, cf. Figure 10.

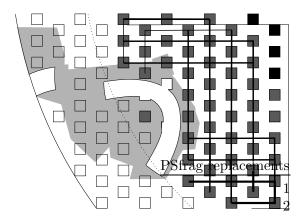


FIGURE 10. Part of the graph \mathcal{G}_0 associated with $\widehat{\mathfrak{S}}_0^{\text{ext}}$.

Since \widehat{V}_0 is an open connected relatively compact set with piecewise smooth boundary, we can choose d_0 so small that the graph \mathcal{G}_0 is connected. Choosing d_0 yet smaller if necessary, we can also assume that

and that the convex hull of any two neighbours in $\widehat{\mathfrak{S}}_0^{\mathrm{ext}}$ is contained in $\widehat{V}_0 \setminus \overline{B_{r_0}}$. We then in particular have that $\mathfrak{S}_0^{\mathrm{ext}}$ is disjoint from $\overline{B_{r_0}}$. Let C_1 be a cube of $\mathfrak{S}_0^{\mathrm{ext}}$ whose distance to B_{r_0} is minimal. We choose a maximal tree \mathcal{T}_0 in \mathcal{G}_0 which is rooted at the center of C_1 . Denote a vertex of \mathcal{T}_0 represented by the center of a cube C of $\mathfrak{S}_0^{\mathrm{ext}}$ by v(C) and write \prec for the partial ordering on $\mathfrak{S}_0^{\mathrm{ext}}$ induced by \mathcal{T}_0 . We number the s_0^{ext} many cubes in $\mathfrak{S}_0^{\mathrm{ext}}$ in such a way that

$$(44) v(C_i) \prec v(C_{i'}) \implies i < i'.$$

We finally recall that $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0})$ contains at least s_0 cubes. In view of Lemma 2.7 (iii) we can therefore choose cubes $Q_1, \ldots, Q_{s_0^{\text{ext}}}$ from the set $\mathfrak{Q}(d_0 + \varepsilon_0, B_{r_0}) \setminus \theta(\mathfrak{S}_0^{\text{int}})$ in such a way that each of the sets

(45)
$$\theta\left(\mathfrak{S}_{0}^{\mathrm{int}}\right) \cup \bigcup_{g=1}^{i} Q_{i},$$

 $i = 1, \dots, s_0^{\text{ext}}$, is contractible.

We are now in a position to move the cubes of $\mathfrak{S}_0^{\text{ext}}$ into B_{r_0} . We shall successively move C_i into Q_i , $i=1,\ldots,s_0^{\text{ext}}$. Define $\widehat{r}_0 \in]r_0,\widetilde{r}_0[$ by $\widehat{r}_0:=(r_0+\widetilde{r}_0)/2$. In view of the assumption (43) we can then estimate the diameter of a cube in $\mathfrak{S}_0^{\text{ext}}$ by

$$(46) \sqrt{2n} \, d_0 < \widehat{r}_0 - r_0.$$

We first use Lemma 2.5 to construct a symplectomorphism ϑ_1 of \widetilde{V}_0 whose support is contained in \widehat{V}_0 and disjoint from

$$\bigcup_{g=2}^{s_0^{ ext{ext}}} C_g \, \cup \, heta \left(\mathfrak{S}_0^{ ext{int}}
ight)$$

and which maps C_1 into Q_1 . Indeed, since C_1 is a cube of $\mathfrak{S}_0^{\text{ext}}$ closest to B_{r_0} and in view of the estimate (46) we can first move C_1 into the annulus $B_{\widehat{r}_0} \setminus B_{r_0}$ without touching $\bigcup_{g \geq 2} C_g$, and in view of Lemma 2.7 (iii) we can then move the image cube along a piecewise linear path inside $B_{\widehat{r}_0} \setminus B_{r_0}$ to a position from which it can be moved into B_{r_0} to its preassigned cube Q_1 without touching θ ($\mathfrak{S}_0^{\text{ext}}$).

Assume now by induction that we have already constructed symplectomorphisms ϑ_g which moved the cubes C_g into the cubes Q_g for $g = 1, \ldots, i-1$. We are going to construct a symplectomorphism ϑ_i of \widetilde{V}_0 whose support is contained in \widehat{V}_0 and disjoint from

(47)
$$\bigcup_{g=i+1}^{s_0^{\text{ext}}} C_g \cup \bigcup_{g=1}^{i-1} Q_g \cup \theta \left(\mathfrak{S}_0^{\text{int}}\right)$$

and which maps C_i into Q_i . Let γ be the piecewise linear path from $v(C_i)$ to $v(C_1)$ determined by the tree \mathcal{T}_0 . Because of (44), all the cubes of $\mathfrak{S}_0^{\rm ext}$ on γ except C_i have already been moved into B_{r_0} . Using Lemmata 2.3 (i) and 2.5 we can therefore move C_i along γ to (the "former locus" of) C_1 without touching $\bigcup_{g>i+1} C_g$. More precisely, let σ be a segment of γ , i.e., σ is a straight line which is parallel to a coordinate axis and connects two vertices v and v' of \mathcal{G}_0 . Let R be the convex hull of the cubes C_v and $C_{v'}$ congruent to C_i and centered at v and v', respectively. In view of Lemma 2.3 (i), the closed rectangle R either is disjoint from $\bigcup_{g>i+1} C_g$ or it touches some cubes $C_j, j \geq i+1$, along a face. In the first case, we can directly apply Lemma 2.5 to move C_v to $C_{v'}$ without touching $\bigcup_{g>i+1} C_g$. In the second case, we first move the touching cubes C_i a bit away from R, then move C_v to $C_{v'}$, and then move the displaced cubes back to their former locus, cf. Figure 11. We can do this in such a way that the support of the resulting map τ_{σ} which translates C_v to $C_{v'}$ is disjoint from $\bigcup_{g>i+1} C_g$. Since R is contained in $\widehat{V}_0 \setminus \overline{B_{r_0}}$ we can also arrange that the support of τ_{σ} is contained in $\widehat{V}_0 \setminus \overline{B_{r_0}}$. Composing the maps τ_{σ} corresponding to the segments of γ we obtain a symplectomorphism τ_i whose support is contained in V_0 and disjoint from the

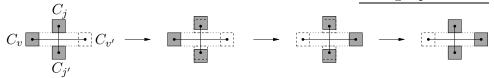


FIGURE 11. How to move C_v to $C_{v'}$ along a path blocked by C_j and $C_{j'}$.

set (47) and which maps C_i to C_1 . Since the set (45) is contractible, we can now proceed as in the construction of ϑ_1 and construct a symplectomorphism ϑ_i which moves the image of C_i at C_1 into Q_i without touching the set (47). The composition $\vartheta_i \circ \tau_i$ is as desired.

After all, the composite map

$$\Theta_0 \, = \, \left(\vartheta_{s_0^{\text{ext}}} \circ \tau_{s_0^{\text{ext}}} \right) \circ \dots \circ \left(\vartheta_2 \circ \tau_2 \right) \circ \vartheta_1$$

is a symplectomorphism of \widetilde{V}_0 which meets assertions (i) and (ii). \Box

Let θ and Θ_0 be the symplectomorphisms guaranteed by Lemmata 2.7 and 2.8. The symplectomorphism

$$\widetilde{\psi}_0 \circ \Theta_0 \circ \theta \circ \widetilde{\psi}_0^{-1}$$

of $\widetilde{\mathcal{U}}_0$ smoothly extends by the identity to a symplectomorphism Φ_0^j of M whose support is disjoint from $\bigcup_{h=1}^l \mathbb{S}_h^j$ and such that $\Phi_0^j(\mathbb{S}_0^j) \subset \psi_0(B_{r_0})$. The proof of Proposition 2.6 is complete.

Proposition 2.9. If the numbers $d_0, \ldots, d_l > 0$ as well as the ratios d_i/d_{i+1} , $i = 0, \ldots, l-1$, are small enough, then there exists for each $h = 1, \ldots, l$ a symplectomorphism Φ_h^j of M whose support is disjoint from

$$\bigcup_{g=0}^{h-1} \Phi_g^j \big(\mathbb{S}_g^j \big) \ \cup \bigcup_{g=h+1}^{l} \mathbb{S}_g^j$$

and such that $\Phi_h^j(S_h^j) \subset \psi_0(A_{r_{h-1}}^{r_h})$.

Proof. We first explain the construction of Φ_1^j . Recall from the end of Step 3 that $\mathbb{S}_1^j \subset \mathbb{U}_1$ is the union of those components of \mathbb{C}_1^j which are not enclosed by any component of $\bigcup_{h=2}^l \mathbb{C}_h^j$. Each component \mathcal{K} consists of a 1-cube $\psi_1(C)$ and some overlapping cubes of \mathbb{C}_0^j , and

$$\psi_1^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_1 d_1}(C) \subset V_1.$$

For any cube C of $\mathfrak{C}_1^j(d_1)$ we denote by C^{ν_1} the closed cube of width $(1 + 2\nu_1)d_1$ concentric to C. This is the smallest closed cube containing the

neighbourhood $\mathcal{N}_{\nu_1 d_1}(C)$ of C. We abbreviate

$$\mathfrak{S}_1 := \bigcup C^{\nu_1}$$

where the union is taken over those cubes C of $\mathfrak{C}_1^j(d_1)$ that lie in $\psi_1^{-1}(\mathbb{S}_1^j)$. In view of the choice (31) the cubes C^{ν_1} are disjoint. Since the compact subset $\psi_1^{-1}(\mathbb{S}_1^j)$ of V_1 is disjoint from the compact subset $\psi_1^{-1}(\mathbb{S}_1^j)$ of $\overline{V_1}$, we can choose $\nu_1 > 0$ (and for this $d_0 > 0$) so small that \mathfrak{S}_1 is disjoint from $\psi_1^{-1}(\mathbb{S}_1^j)$. Since for each cube C^{ν_1} in \mathfrak{S}_1 the cube C belongs to $\mathfrak{C}_1^j(d_1)$, we read off from the estimate (32) for i = 1 and the definition (38) for i = 1 that

$$\left|\mathfrak{S}_{1}\right| < \left|A_{r_{0}}^{r_{1}}\right|.$$

Let s_1 be the number of cubes in \mathfrak{S}_1 . The estimate (48) implies that after choosing $d_1 > 0$ and $\nu_1 > 0$ smaller if necessary we find $\varepsilon_1 > 0$ such that $\mathfrak{Q}\left((1+2\nu_1)d_1 + \varepsilon_1, A_{r_0}^{r_1}\right)$ contains at least s_1 cubes.

We next choose the numbers d_0, \ldots, d_l so small that each component of $\bigcup_{h=2}^{l} \mathbb{S}_h^j$ which intersects \mathcal{U}_1 is contained in $\widetilde{\mathcal{U}}_1$. The component $\widehat{\mathcal{U}}_1$ of $\widetilde{\mathcal{U}}_1 \setminus \bigcup_{h=2}^{l} \mathbb{S}_h^j$ containing \mathcal{B}_0' then contains \mathbb{S}_0^j , and the set $\widehat{V}_1\widetilde{\psi}_1^{-1}(\widehat{\mathcal{U}}_1)$ is an open connected set with piecewise smooth boundary which contains \mathfrak{S}_1 .

We enlarge $\mathfrak{S}_1^{\text{ext}}$ to the set $\widehat{\mathfrak{S}}_1^{\text{ext}}$ defined as the set of cubes in $d_1\mathfrak{C}^j(2n,k)$ which are contained in \widehat{V}_1 .

In order to complete the proof of Theorem 2 we choose $d_0, \ldots, d_l > 0$ such that the conclusions of Propositions 2.6 and 2.9 hold for each $j \in \{1, \ldots, k\}$, and we define the symplectomorphism Φ^j of M by

$$\Phi^j = \Phi^j_h \circ \cdots \circ \Phi^j_1 \circ \Phi^j_0.$$

In view of Propositions 2.6 and 2.9 and the inclusion (40) we then have

$$\Phi^{j}(\mathbb{S}^{j}) = \Phi^{j}\left(\bigcup_{h=0}^{l} \mathbb{S}_{h}^{j}\right)$$

$$= \bigcup_{h=0}^{l} \Phi_{h}^{j}\left(\mathbb{S}_{h}^{j}\right)$$

$$\subset \psi_{0}\left(B^{2n}(a_{0}')\right)$$

$$\subset \mathcal{B}_{0}.$$

This and the identity (36) imply that the k Darboux charts

$$(\Phi^j)^{-1} \circ \varphi_0 \colon B^{2n}(a) \to M$$

cover M. The proof of Theorem 2 is finally complete, and so Theorem 1 is also proved. \Box

3. Variations of the theme

Consider again a closed 2n-dimensional symplectic manifold (M, ω) . In the symplectic packing problem, one usually considers packings of (M, ω) by equal balls, see [10, 22, 35, 1, 2, 30]. In analogy to this we study the number

$$S_{\mathrm{B}}^{=}(M,\omega) = \min\{k \mid M = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k\}$$

where now each \mathcal{B}_i is the symplectic image $\varphi_i\left(B^{2n}(a)\right)$ of the same ball.

Theorem 3.1. Let (M, ω) be a closed 2n-dimensional symplectic manifold. Then Theorem 1 holds with $S_B(M, \omega)$ replaced by $S_B^=(M, \omega)$.

Proof. In the proof of Theorem 1 we have covered (M, ω) by equal balls and have thus proved Theorem 1 with $S_B(M, \omega)$ replaced by $S_B^=(M, \omega)$. \square

Clearly,

(49)
$$S_{B}(M,\omega) \leq S_{B}^{=}(M,\omega).$$

For every a > 0 we denote by $\operatorname{Emb}(B(a), M)$ the space of symplectic embeddings of $(\overline{B^{2n}(a)}, \omega_0) \hookrightarrow (M, \omega)$ endowed with the C^{∞} -topology.

Corollary 3.2. Assume that $\lambda(M,\omega) \geq 2n+1$ or that $\mathrm{Emb}\,(B(a),M)$ is path-connected for all a>0. Then $\mathrm{S}_{\mathrm{B}}(M,\omega)=\mathrm{S}_{\mathrm{B}}^{=}(M,\omega)$.

Proof. If $\lambda(M,\omega) \geq 2n+1$, then Theorem 1 and Theorem 3.1 yield $S_B(M,\omega) = \lambda(M,\omega)$ and $S_B^=(M,\omega) = \lambda(M,\omega)$.

Assume now that $\operatorname{Emb}(B(a), M)$ is path-connected for all a > 0, and choose $k = \operatorname{S}_{B}(M, \omega)$ symplectic embeddings $\varphi_{i} \colon \overline{B^{2n}(a_{i})} \hookrightarrow M$ such that $M = \bigcup_{i=1}^{k} \varphi_{i}\left(B^{2n}(a_{i})\right)$. We choose $\varepsilon > 0$ so small that

$$M = \bigcup_{i=1}^{k} \varphi_i \left(B^{2n} (a_i - \varepsilon) \right),\,$$

and set $a_i' = a_i - \varepsilon$. We can assume that $a_1' = \max_i a_i'$. The identity $S_B(M, \omega) = S_B^=(M, \omega)$ follows from

Lemma 3.3. For each $i \geq 2$ there exists a symplectic embedding

$$\widetilde{\varphi}_i \colon B^{2n}\left(a_1'\right) \hookrightarrow M$$

such that $\widetilde{\varphi}_i|_{B^{2n}(a_i')} = \varphi_i|_{B^{2n}(a_i')}$.

Proof. By assumption, there exists a smooth family of symplectomorphisms $\varphi_i^t : B^{2n}(a_i) \hookrightarrow M$ such that

$$\varphi_i^0 = \varphi_1|_{B^{2n}(a_i)}$$
 and $\varphi_i^1 = \varphi_i$.

Consider the subsets

$$A = \bigcup_{t \in [0,1]} \{t\} \times \varphi_i^t \left(B^{2n}(a_i) \right) \quad \text{ and } \quad B = \bigcup_{t \in [0,1]} \{t\} \times \varphi_i^t \left(B^{2n}(a_i') \right)$$

of $[0,1] \times M$. Since each set $\varphi_i^t\left(B^{2n}(a_i)\right)$ is contractible, there exists a smooth time-dependent Hamiltonian function $H\colon A\to\mathbb{R}$ generating the symplectic isotopy $\varphi_i^t\circ\left(\varphi_i^0\right)^{-1}\colon\varphi_1\left(B^{2n}(a_i)\right)\to M$. By Whitney's Theorem there exists a smooth function $f\colon [0,1]\times M\to [0,1]$ such that f=1 on B and f=0 on $M\setminus A$. Let Φ be the time-1-map $M\to M$ of the flow generated by Hamiltonian fH. Then

$$\Phi = \varphi_i^1 \circ (\varphi_i^0)^{-1}$$
 on $\varphi_1 (B^{2n}(a_i'))$.

We define the embedding $\widetilde{\varphi}_i := \Phi \circ \varphi_1|_{B^{2n}(a_i)} \colon B^{2n}(a_i) \hookrightarrow M$ and find that on $B^{2n}(a_i')$ we have

$$\widetilde{\varphi}_i = \Phi \circ \varphi_1 = \varphi_i^1 \circ (\varphi_i^0)^{-1} \circ \varphi_1 = \varphi_i^1 \circ \varphi_1^{-1} \circ \varphi_1 = \varphi_i^1.$$

The proof of Lemma 3.3 is complete, and so Corollary 3.2 is also proved. \Box

The spaces $\operatorname{Emb}(B(a),M)$ are known to be path-connected for all a>0 for n=1 and for a class of symplectic 4-manifolds containing (blow-ups of) rational and ruled manifolds, see [21]. No closed symplectic manifold is known for which $\operatorname{Emb}(B(a),M)$ is not path-connected for some a>0. We thus ask

Question 3.4. Is it true that $S_B(M,\omega) = S_B^=(M,\omega)$ for every closed symplectic manifold (M,ω) ?

We next study the "symplectic Lusternik–Schnirelmann category" $\mathbf{S}(M,\omega)$ defined as

$$S(M, \omega) = \min\{k \mid M = \mathcal{U}_1 \cup \cdots \cup \mathcal{U}_k\}$$

where each \mathcal{U}_i is the image $\varphi_i(U_i)$ of a symplectic embedding $\varphi_i: U_i \to \mathcal{U}_i \subset M$ of a bounded subset U_i of $(\mathbb{R}^{2n}, \omega_0)$ diffeomorphic to the open ball in \mathbb{R}^{2n} .

Theorem 3.5. Let (M, ω) be a closed 2n-dimensional symplectic manifold. Then $S(M, \omega) \leq 2n + 1$.

Theorem 3.5 will follow from a stronger result dealing with coverings by displaceable sets. We say that a subset \mathcal{U} of M is displaceable if there exists an autonomous Hamiltonian function $H \colon M \to \mathbb{R}$ whose time-1-map φ_H displaces \mathcal{U} , i.e., $\varphi_H(\mathcal{U}) \cap \mathcal{U} = \emptyset$. Define the invariant $S_{dis}(M, \omega)$ as

$$S_{dis}(M,\omega) = \min\{k \mid M = \mathcal{U}_1 \cup \cdots \cup \mathcal{U}_k\}$$

where each \mathcal{U}_i is as in the definition of the invariant $S(M,\omega)$ and is in addition displaceable. Coverings by such subsets \mathcal{U}_i play a role in the recent construction of Calabi quasimorphisms on the group of Hamiltonian diffeomorphisms of (M,ω) in [6], see also [3].

Theorem 3.6. Let (M, ω) be a closed 2n-dimensional symplectic manifold. Then $S_{dis}(M, \omega) \leq 2n + 1$.

Of course, $B(M) \leq S(M, \omega) \leq S_{dis}(M, \omega)$. Theorem 3.6 thus implies Theorem 3.5, and Proposition 1 and Theorem 3.6 yield

 $n+1 \leq \operatorname{cl}(M)+1 \leq \operatorname{cat} M \leq \operatorname{B}(M) \leq \operatorname{S}(M,\omega) \leq \operatorname{S}_{\operatorname{dis}}(M,\omega) \leq 2n+1$ and $\operatorname{B}(M) = \operatorname{S}(M,\omega) = \operatorname{S}_{\operatorname{dis}}(M,\omega) = 2n+1$ if $[\omega]|_{\pi_2(M)} = 0$. For the 2-sphere we have $2 = \operatorname{S}\left(\mathbb{S}^2\right) < \operatorname{S}_{\operatorname{dis}}\left(\mathbb{S}^2\right) = 3$.

Question 3.7. Is it true that $B(M) = S(M, \omega)$ for every closed symplectic manifold (M, ω) ?

Proof of Theorem 3.6: Theorem 3.6 is a consequence of the construction in the previous section and the following

Proposition 3.8. For every $\varepsilon > 0$ there exists a symplectic embedding $\psi \colon (U, \omega_0) \hookrightarrow (M, \omega)$ of a bounded subset U of \mathbb{R}^{2n} diffeomorphic to a ball such that $\psi(U)$ is displaceable and

$$|U| > \frac{\mu(M)}{2} - \varepsilon.$$

Indeed, choose $\varepsilon > 0$ so small that

$$\frac{\mu(M)}{2} - \varepsilon > \frac{\mu(M)}{2n+1}.$$

For the set $\psi(U) \subset M$ guaranteed by Proposition 3.8 we then have

$$\mu\left(\psi(U)\right) > \frac{\mu(M)}{2n+1}.$$

Repeating the construction in the proof of Theorem 2.1 with the ball $\mathcal{B} = \varphi\left(B^{2n}(a)\right)$ replaced by $\psi(U)$ and with k = 2n + 1, we find a covering $\bigcup \mathcal{U}_i$ of M by 2n + 1 domains $\mathcal{U}_i \subset M$ which are diffeomorphic to balls and displaceable.

Proof of Proposition 3.8: We fix $\varepsilon > 0$. Let $k \in \mathbb{N}$ and $d > \delta > 0$. For $j \in \mathbb{N} \cup \{0\}$ we denote by ξ_{jd} the translation by jd in the x_1 -direction and by $\eta_{-d/2}$ the translation by -d/2 in the y_1 -direction. Consider the open subsets $C_j(d) = \xi_{2j} \left(\eta_{-d/2} (]0, d[^{2n}) \right)$ and

$$\mathcal{N}(k, d, \delta) = \coprod_{j=0}^{k} C_{j}(d) \cup \left(\left[0, (2k+1)d \right] \times \left[-\delta, \delta \right]^{2n-1} \right)$$

of $(\mathbb{R}^{2n}, \omega_0)$.

Figure 12 shows a set $\mathcal{N}(k,d,\delta) \subset \mathbb{R}^{2n}$ for k=1.

According to [31, Section 6.1] there exist k, d and δ and a symplectic embedding $\psi \colon \mathcal{N}(k, d, \delta) \hookrightarrow (M, \omega)$ such that

(50)
$$\left| \coprod_{j=0}^{k} C_{j}(d) \right| > \mu(M) - \varepsilon.$$

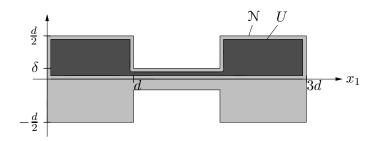


FIGURE 12. The sets \mathcal{N} and U for k=1.

Set $\mathcal{N}^+(k,d,\delta) = \mathcal{N}(k,d,\delta) \cap \{y_1 > 0\}$, and denote by $\partial \mathcal{N}^+(k,d,\delta)$ the boundary of this set. For $\nu > 0$ we set

$$U_{\nu} = \left\{ z \in \mathcal{N}^{+}(k, d, \delta) \mid \text{dist} \left(z, \partial \mathcal{N}^{+}(k, d, \delta) \right) > \nu \right\},$$

For $\nu < \delta$ the set U_{ν} is connected and diffeomorphic to a ball. In view of (50) we can choose $\nu < \delta$ so small that

$$|U_{\nu}| > \frac{\mu(M)}{2} - \varepsilon.$$

For such a choice of k, d, δ and ν we abbreviate $\mathcal{N} = \mathcal{N}(k, d, \delta)$ and $U = U_{\nu}$. We shall construct a Hamiltonian isotopy φ_t of \mathbb{R}^{2n} which is generated by an autonomous Hamiltonian function with support in \mathcal{N} and such that $\varphi_1(U) \cap U = \emptyset$. The autonomous Hamiltonian diffeomorphism Φ of (M, ω) defined by

$$\Phi(z) = \begin{cases} \psi \circ \varphi_1 \circ \psi^{-1}(z) & \text{if } z \in \psi(\mathcal{N}) \\ z & \text{if } z \notin \psi(\mathcal{N}) \end{cases}$$

then displaces $\psi(U)$. In order to construct the Hamiltonian isotopy φ_t , we choose a smooth function $f \colon \mathbb{R} \to \mathbb{R}$ such that on]0, (2k+1)d[the graph of f is contained in $\pi(\mathbb{N})$ and lies above $\pi(U)$. Then the Hamiltonian function $H \colon \mathbb{R}^{2n} \to \mathbb{R}$ defined by

$$H(x_1, y_1, x_2, \dots, y_n) = -\int_0^{x_1} f(s) ds$$

generates the isotopy

$$\phi_t : (x_1, y_1, x_2, \dots, y_n) \mapsto (x_1, y_1 - tf(x_1), x_2, \dots, y_n), \quad t \in [0, 1],$$

which satisfies $\phi_t(U) \subset \mathbb{N}$ for all $t \in [0,1]$ and $\phi_1(U) \cap U = \emptyset$. Choose now a smooth function $h \colon \mathbb{R}^{2n} \to [0,1]$ which is equal to 1 on $\bigcup_{t \in [0,1]} \phi_t(U)$ and vanishes outside \mathbb{N} . The Hamiltonian isotopy φ_t generated by the Hamiltonian function hH is then as required.

4. Proof of Proposition 1

Since (M, ω) is symplectic, $[\omega]^n \neq 0$, and so $n+1 \leq \operatorname{cl}(M)+1$. The first statement in Proposition 1 follows from this estimate and from (6).

A main ingredient in the remainder of the proof is the following theorem of W. Singhof, who thoroughly studied the relation between B(M) and cat M.

Theorem 4.1. (Singhof, [33, Corollary (6.4)]) Let M^m be a closed smooth p-connected manifold with $n \ge 4$ and $\cot M \ge 3$. Then

(a)
$$B(M) = \cot M \quad \text{if } \cot M \ge \frac{m+p+4}{2(p+1)};$$

(a)
$$B(M) = \cot M$$
 if $\cot M \ge \frac{m+p+4}{2(p+1)}$;
(b) $B(M) \le \left\lceil \frac{m+p+4}{2(p+1)} \right\rceil$ if $\cot M < \frac{m+p+4}{2(p+1)}$.

(Here, [x] denotes the minimal integer which is greater than or equal to x.)

Notice that if we consider only symplectic manifolds, the assumptions $\dim M \geq 4$ and $\cot M \geq 3$ in Theorem 4.1 can be dropped. Indeed, if $\dim M = 2$, it is easy to see that we are in the situation of (a) in Theorem 4.1; and if cat M=2, then $\frac{1}{2} \dim M \leq \operatorname{cl}(M) + 1 \leq \operatorname{cat} M = 2$ yields $\dim M = 2$.

- (i) If M is simply connected, (3) shows that $\cot M = n + 1$, and since p=1, we are in the situation of Theorem 4.1, item (a), so $B(M)=\cot M$.
- (ii) It has been proved in [28] that $[\omega]|_{\pi_2(M)} = 0$ implies cat M = 2n + 1, and so the claim follows together with $B(M) \leq 2n + 1$.
- (iii) As we remarked above, $B(M) = \operatorname{cat} M$ if n = 1. So let $n \geq 2$ and assume that $B(M) > \operatorname{cat} M$. By (i) we have p = 0. The claim now readily follows from Theorem 4.1.
- **Remarks 4.2.** 1. The inequality $cl(M) + 1 \le cat M$ can be strict: For the Thurston-Kodaira manifold described in [23, Example 3.8] we have $\pi_2(M) =$ 0 and hence cat M = 5, but cl(M) = 3, see [27]. More generally, cl(M) + 1 < 3 $\cot M = \dim M + 1$ for any symplectic non-toral nilmanifold, see [29].
- 2. It follows from [17, Prop. 13] and [4, Prop. 3.6] that there exist closed smooth manifolds with cat M < B(M). No symplectic examples are known, however.

Examples 4.3. 1. If (M^{2n}, ω) admits a Riemannian metric with nonnegative Ricci curvature and has infinite fundamental group, then

$$cat M \ge n + 1 + \frac{b_1(M)}{2} \quad \text{and} \quad b_1(M) > 0,$$

see [25, Theorem 4.3]. In particular, cat $M \ge n + 2$, and so cat M = B(M)by Proposition 1 (iii).

2. Assume that the homomorphism $[\omega]^{n-1}: H^1(M;\mathbb{R}) \to H^{2n-1}(M;\mathbb{R})$ (multiplication by the class $[\omega]^{n-1}$ is a non-zero map. Kähler manifolds with $H^1(M;\mathbb{R}) \neq 0$ have this property. Using Poincaré duality we see that $cl(M) \ge n + 1$, and so $n + 2 \le cat M = B(M)$.

5. Examples

In this section we compute or estimate the number $S_B(M,\omega)$ for various closed symplectic manifolds (M,ω) . In view of Theorem 1 and Proposition 1, understanding $S_B(M,\omega)$ is often equivalent to understanding the Gromov width $Gr(M,\omega)$. Our list of examples therefore resembles the list of manifolds whose Gromov widths are known.

We shall frequently use the following well-known fact.

Lemma 5.1. (Greene–Shiohama, [9]) Let U and V be bounded domains in $(\mathbb{R}^2, dx \wedge dy)$ which are diffeomorphic and have equal area. Then U and V are symplectomorphic.

1. Surfaces. A closed 2-dimensional symplectic manifold is a closed oriented surface equipped with an area form.

Corollary 5.2. Let (Σ_g, σ) be a closed oriented surface with area form σ . Then

$$S_B(\Sigma_g, \sigma) = \begin{cases} 2 & \text{if } g = 0, \\ 3 & \text{if } g \ge 1. \end{cases}$$

Proof. In view of Lemma 5.1 we have $S_B(\Sigma_g, \sigma) = B(\Sigma_g)$, and so the corollary follows in view of Proposition 1.

- **2. Minimal ruled 4-manifolds.** As before we denote by Σ_g the closed oriented surface of genus g. Recall that there are exactly two orientable \mathbb{S}^2 -bundles with base Σ_g , namely the trivial bundle $\Sigma_g \times \mathbb{S}^2 \to \Sigma_g$ and the nontrivial bundle $\Sigma_g \ltimes \mathbb{S}^2 \to \Sigma_g$ [23, Lemma 6.25].
- a) Trivial \mathbb{S}^2 -bundles. Fix area forms σ_{Σ_g} and $\sigma_{\mathbb{S}^2}$ of area 1 on Σ_g and \mathbb{S}^2 , respectively. By the work of Lalonde–Mc Duff and Li–Liu every symplectic form on $\Sigma_g \times \mathbb{S}^2$ is diffeomorphic to $a\sigma_{\Sigma_g} \oplus b\sigma_{\mathbb{S}^2}$ for some a, b > 0 (see [16]). We abbreviate $\Sigma_g(a) := (\Sigma_g, a\sigma_{\Sigma_g})$ and $\mathbb{S}^2(b) := (\mathbb{S}^2, b\sigma_{\mathbb{S}^2})$.

Corollary 5.3. For $\mathbb{S}^2(a) \times \mathbb{S}^2(b)$ with $a \geq b > 0$ we have

$$S_{B}\left(\mathbb{S}^{2}(a) \times \mathbb{S}^{2}(b)\right) \begin{cases} \in \{3, 4, 5\} & \text{if } 1 \leq \frac{a}{b} < \frac{3}{2}, \\ \in \{4, 5\} & \text{if } \frac{3}{2} \leq \frac{a}{b} < 2, \\ = \left\lfloor \frac{2a}{b} \right\rfloor + 1 & \text{if } \frac{a}{b} \geq 2, \end{cases}$$

cf. Figure 13, and for $\Sigma_g(a) \times \mathbb{S}^2(b)$ with $g \geq 1$ and a, b > 0 we have

$$S_{B}\left(\Sigma_{g}(a) \times \mathbb{S}^{2}(b)\right) \begin{cases} \in \{4,5\} & \text{if } 0 < \frac{a}{b} < 2, \\ = \left\lfloor \frac{2a}{b} \right\rfloor + 1 & \text{if } \frac{a}{b} \geq 2, \end{cases}$$

cf. Figure 14.

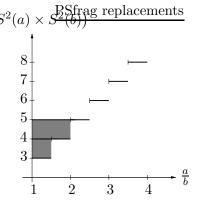


FIGURE 13. What is known about $S_B\left(\mathbb{S}^2(a)\times\mathbb{S}^2(b)\right)$ and $S_B\left(\mathbb{S}^2\ltimes\mathbb{S}^2,\omega_{ab}\right)$. PSfrag replacements

FIGURE 14. What is known about $S_B(\Sigma_g(a) \times \mathbb{S}^2(b))$ and $S_B(\Sigma_g \times \mathbb{S}^2, \omega_{ab})$.

Proof. Proposition 1, item (i) yields $B(\mathbb{S}^2 \times \mathbb{S}^2) = 3$. Moreover, the Non-Squeezing Theorem implies that $Gr(\mathbb{S}^2(a) \times \mathbb{S}^2(b)) = b$, and so

$$\Gamma\left(\mathbb{S}^2(a) \times \mathbb{S}^2(b)\right) = \left|\frac{2a}{b}\right| + 1.$$

The first half of the corollary now follows from Theorem 1.

Applying the inequality (2) and the estimate (4) we find that $\operatorname{cat}(\Sigma_g \times \mathbb{S}^2) = 4$, and so $\operatorname{B}(\Sigma_g \times \mathbb{S}^2) = 4$ in view of Proposition 1, item (iii). Moreover, it follows from Theorem 6.1.A in [1] that

$$\Gamma\left(\Sigma_g(a) \times \mathbb{S}^2(b)\right) = \left\lfloor \max\left(1, \frac{2a}{b}\right) \right\rfloor + 1.$$

The second half of the corollary now follows from Theorem 1.

b) Nontrivial \mathbb{S}^2 -bundles. Let $A \in H_2(\Sigma_g \ltimes \mathbb{S}^2; \mathbb{Z})$ be the class of a section with self intersection number -1, and let F be the homology class of the fiber. We set $B = A + \frac{1}{2}F$. Then $\{F, B\}$ is a basis of $H_2(\Sigma_g \ltimes \mathbb{S}^2; \mathbb{R})$. For a, b > 0 we fix a representative ω_{ab} of the Poincaré dual of aF + bB. By [23, Theorem 6.27] and the work of Lalonde–Mc Duff and Li–Liu (see [16]),

- 1. Every symplectic form on $\mathbb{S}^2 \ltimes \mathbb{S}^2$ is diffeomorphic to ω_{ab} for some $a > \frac{b}{2} > 0$.
- 2. Every symplectic form on $\Sigma_g \ltimes \mathbb{S}^2$, $g \geq 1$, is diffeomorphic to ω_{ab} for some a, b > 0.

Corollary 5.4. For $(\mathbb{S}^2 \ltimes \mathbb{S}^2, \omega_{ab})$ with $a > \frac{b}{2} > 0$ we have

$$S_{B} (\mathbb{S}^{2} \ltimes \mathbb{S}^{2}, \omega_{ab}) \begin{cases} \in \{3, 4, 5\} & \text{if } \frac{1}{2} \leq \frac{a}{b} < \frac{3}{2}, \\ \in \{4, 5\} & \text{if } \frac{3}{2} \leq \frac{a}{b} < 2, \\ = \lfloor \frac{2a}{b} \rfloor + 1 & \text{if } \frac{a}{b} \geq 2, \end{cases}$$

cf. Figure 13, and for $(\Sigma_g \ltimes \mathbb{S}^2, \omega_{ab})$ with $g \geq 1$ and a, b > 0 we have

$$S_{B}\left(\Sigma_{g} \ltimes \mathbb{S}^{2}, \omega_{ab}\right) \begin{cases} \in \{4, 5\} & \text{if } 0 < \frac{a}{b} < 2, \\ = \left|\frac{2a}{b}\right| + 1 & \text{if } \frac{a}{b} \geq 2, \end{cases}$$

cf. Figure 14.

Proof. Since $\mathbb{S}^2 \ltimes \mathbb{S}^2$ is simply connected, $B(\mathbb{S}^2 \ltimes \mathbb{S}^2) = 3$ in view of Proposition 1, item (i). Moreover, based on Biran's work [1] it has been computed in [30] that

$$\Gamma\left(\mathbb{S}^2 \ltimes \mathbb{S}^2, \omega_{ab}\right) = \left|\frac{2a}{b}\right| + 1.$$

The first half of the corollary now follows from Theorem 1.

Using the Leray–Hirsch Theorem, we find that $\operatorname{cl}(\Sigma_g \ltimes \mathbb{S}^2) = 3$, and so $\operatorname{cat}(\Sigma_g \ltimes \mathbb{S}^2) \geq 4$. On the other hand, $\Sigma_g \ltimes \mathbb{S}^2$ having a section, and it is not hard to see that $\operatorname{cat}(\Sigma_g \ltimes \mathbb{S}^2) \leq 4$ (cf. the proof of Proposition 3.3 in [32]). In view of Proposition 1, item (iii) we conclude that $\operatorname{B}(\Sigma_g \ltimes \mathbb{S}^2) = 4$. Moreover, it has been computed in [30] that

$$\Gamma\left(\Sigma_g \ltimes \mathbb{S}^2, \omega_{ab}\right) = \left|\max\left(1, \frac{2a}{b}\right)\right| + 1.$$

The second half of the corollary now follows from Theorem 1.

3. Products of surfaces. As before we denote by Σ_g the closed oriented surface of genus g. In view of the previous example we assume $g \geq 1$. If g = 1 we write $T^2 = \Sigma_1$. By a theorem of Moser [24], any two area forms on Σ_g of total area a are diffeomorphic. We write $\Sigma_g(a)$ for this symplectic manifold.

Corollary 5.5.

- (i) $S_B(T^2(a) \times \Sigma_g(b)) = 5$ if $\frac{a}{b} < \frac{5}{2}$.
- (ii) $S_B(\Sigma_g(a) \times \Sigma_h(b)) = 5$ if $\frac{2}{5} < \frac{a}{b} < \frac{5}{2}$.

Proof. By Proposition 1, item (ii) we have that

$$B(\Sigma_q \times \Sigma_h) = 5$$
 for all $g, h \ge 1$.

Using Lemma 5.1 we see that the discs $B^2(a)$ and $B^2(b)$ symplectically embed into $\Sigma_g(a)$ and $\Sigma_h(b)$, respectively. Therefore, the ball $B^4(\min(a,b)) \subset B^2(a) \times B^2(b)$ symplectically embeds into $\Sigma_g(a) \times \Sigma_h(b)$, and so

$$\Gamma\left(\Sigma_g(a) \times \Sigma_h(b)\right) \leq 5$$
 whenever $\frac{2}{5} < \frac{a}{b} < \frac{5}{2}$.

Claim (ii) now follows from Theorem 1.

We prove Claim (i) following [14]. For each c > 0 we consider the rectangle

$$R(c) = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 1, \ 0 < y < c\},\$$

and the linear symplectic map

$$\varphi \colon (R(c) \times R(c), \omega_0) \to (\mathbb{R}^2 \times \mathbb{R}^2, \omega_0)$$

 $(x_1, y_1, x_2, y_2) \mapsto (x_1 + y_2, y_1, -y_2, y_1 + x_2)$

where $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$. Let $T^2(1) = (\mathbb{R}^2/\mathbb{Z}^2, dx_1 \wedge dy_1)$ be the standard symplectic torus. Then the projection $p: (\mathbb{R}^2, dx_1 \wedge dy_1) \to T^2(1)$ is symplectic, and so the composition

$$(p \times id) \circ \varphi \colon R(c) \times R(c) \to T^2(1) \times \mathbb{R}^2$$

is also symplectic. It is easy to see that this map is an embedding and that

$$((p \times id) \circ \varphi) (R(c) \times R(c)) \subset T^2 \times] - c, 0[\times]0, c + 1[.$$

In view of Lemma 5.1 the ball $B^4(c)$ symplectically embeds into $R(c) \times R(c)$, and $]-c,0[\times]0,c+1[$ symplectically embeds into $\Sigma_g(c(c+1))$. We conclude that the ball $B^4(c)$ symplectically embeds into $T^2(1) \times \Sigma_g(c(c+1))$ for each c>0, i.e.,

Gr
$$(T^2(1) \times \Sigma_g(d)) \ge \frac{1}{2} (\sqrt{4d+1} - 1)$$
 for each $d > 0$.

This estimate and a computation yield

$$\Gamma\left(T^2(a) \times \Sigma_g(b)\right) = \Gamma\left(T^2(1) \times \Sigma_g\left(\frac{b}{a}\right)\right) \le 5$$
 whenever $\frac{a}{b} < \frac{9}{10}$.

Now, the already proved Claim (ii) and Theorem 1 imply Claim (i). \Box

Remark 5.6. Assume that $g \ge 1$, $h \ge 2$ and $\frac{a}{b} \ge \frac{5}{2}$. The method used in the proof of 2) in Corollary 5.5 only yields the linear estimate

$$S_B(\Sigma_g(a) \times \Sigma_h(b)) \le \left| \frac{2a}{h} \right| + 1.$$

A variant of the method used in the proof of 1), however, yields the estimate

$$S_B(\Sigma_g(a) \times \Sigma_h(b)) \le C(h) \frac{\frac{a}{b}}{\left(\log \frac{a}{b}\right)^2}$$

where C(h) > 0 is a constant depending only on h (see [14]).

4. Complex projective space. Let \mathbb{CP}^n be the complex projective space and let ω_{SF} be the unique $\mathrm{U}(n+1)$ -invariant Kähler form on \mathbb{CP}^n whose integral over \mathbb{CP}^1 equals 1.

Corollary 5.7. $S_B(\mathbb{CP}^n, \omega_{SF}) = n+1.$

Proof. In view of Proposition 1, we have

$$S_B(\mathbb{CP}^n, \omega_{SF}) \ge B((\mathbb{CP}^n) \ge n+1.$$

On the other hand, we define for $0 \le i \le n$ maps $f_i : B^{2n}(1) \to \mathbb{CP}^n$ by

$$f_i : \mathbf{z} = (z_1, \dots, z_n) \mapsto \left[z_1 : \dots : z_{i-1} : \sqrt{1 - |\mathbf{z}|^2} : z_{i+1} : \dots : z_n \right].$$

It is well known that f_i is a symplectomorphism between $B^{2n}(1)$ and $\mathbb{CP}^n \setminus S_i$, where $S_i = \{[u_1 : \ldots : u_{i-1} : 0 : u_{i+1} : \ldots : u_n]\} \cong \mathbb{CP}^{n-1}$ is the *i*-th coordinate hypersurface (see e.g. [15]). Since

$$\mathbb{CP}^n \subset \bigcup_{i=0}^n f_i\left(B^{2n}(1)\right),\,$$

we conclude that also $S_B(\mathbb{CP}^n, \omega_{SF}) \leq n+1$, and so the corollary follows. \square

Remark 5.8. By a theorem of Taubes [34], any symplectic form on \mathbb{CP}^2 is diffeomorphic to $a \omega_{SF}$ for some $a \neq 0$. In view of Corollary 5.7 we thus have

$$S_B(\mathbb{CP}^2, \omega) = 3$$
 for any symplectic form ω on $\mathbb{C}P^2$.

5. Complex Grassmann manifolds. Let $G_{k,n}$ be the Grassmann manifold of k-planes in \mathbb{C}^n , and let $\sigma_{k,n}$ be the standard Kähler form on $G_{k,n}$ normalized such that $\sigma_{k,n}$ is Poincaré dual to the generator of $H_2(G_{k,n};\mathbb{Z}) = \mathbb{Z}$. Since $(G_{n-k,n}, \sigma_{n-k,n}) = (G_{k,n}, \sigma_{k,n})$, we can assume that

$$k \in \{1, \dots, \lfloor \frac{n}{2} \rfloor \}$$
.

We define the number $p_{k,n}$ by

(51)
$$p_{k,n} = \frac{(k-1)! \cdots 2! \, 1! \cdot (k(n-k))!}{(n-1)! \cdots (n-k+1)! (n-k)!}.$$

Notice that $p_{k,n} = \deg(p(G_{k,n}))$ where

$$p: G_{k,n} \hookrightarrow \mathbb{CP}^{\binom{n}{k}-1}$$

is the Plücker map [8, Example 14.7.11], and so $p_{k,n}$ is indeed an integer. Since $(G_{1,n}, \sigma_{1,n}) = (\mathbb{CP}^{n-1}, \omega_{SF})$, we assume $k \geq 2$.

Corollary 5.9.

Proof. Since $G_{k,n}$ is simply connected and since

$$\dim G_{k,n} = 2k(n-k),$$

we read off from Proposition 1, item (i) that

(53)
$$B(G_{k,n}) = k(n-k) + 1.$$

Moreover,

(54)
$$\operatorname{Vol}(G_{k,n}, \sigma_{k,n}) = \frac{p_{k,n}}{(k(n-k))!}$$

(see [8, Example 14.7.11]), and it has been proved in [18] that

$$Gr(G_{k,n}, \sigma_{k,n}) = 1.$$

Therefore,

(55)
$$\Gamma\left(G_{k,n},\sigma_{k,n}\right) = p_{k,n} + 1.$$

The corollary now follow from the identities (52), (53) and (55), Theorem 1 and a straightforward computation.

References

- [1] P. Biran. Symplectic packing in dimension 4. Geom. Funct. Anal. 7 (1997) 420–437.
- [2] P. Biran. A stability property of symplectic packing. Invent. Math. 136 (1999) 123– 155
- [3] P. Biran, M. Entov and L. Polterovich. Calabi quasimorphisms for the symplectic ball. *Commun. Contemp. Math.* 6 (2004), no. 5, 793–802.
- [4] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik-Schnirelmann category. Mathematical Surveys and Monographs, 103. American Mathematical Society, Providence, RI, 2003.
- [5] R. Engelking. Dimension theory. North-Holland Mathematical Library 19. North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978.
- [6] M. Entov and L. Polterovich. Calabi quasimorphism and quantum homology. Int. Math. Res. Not. 2003, no. 30, 1635–1676.
- [7] S. Froloff and L. Elsholz. Limite inférieure pour le nombre des valeurs critiques d'une fonction, donnée sur une variété. Mat. Sbornik 42(5) (1935) 637-643.
- [8] W. Fulton. *Intersection Theory*. Second edition. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1998.
- [9] R. Greene and K. Shiohama. Diffeomorphisms and volume preserving embeddings of non-compact manifolds. Trans. Amer. Math. Soc. 255 (1979) 403-414.
- [10] M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. *Invent. math.* 82 (1985) 307-347.
- [11] H. Hofer and E. Zehnder. Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser 1994.
- [12] I. M. James. On Category, in the sense of Lusternik and Schnirelman. Topology 17 (1978) 331-348.
- [13] I. M. James. Lusternik-Schnirelmann category. In *Handbook of algebraic topology*. Ed. by I. James, Elsevier Science B. V., Amsterdam, 1995, 1293-1310.
- [14] M.-Y. Jiang. Symplectic embeddings from R²ⁿ into some manifolds. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 53–61.
- [15] Y. Karshon. Appendix to [22].

- [16] F. Lalonde and D. McDuff. J-curves and the classification of rational and ruled symplectic 4-manifolds. Contact and symplectic geometry (Cambridge, 1994), 3–42, Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge, 1996.
- [17] P. Lambrechts, D. Stanley and L. Vandembroucq. Embeddings up to homotopy of two-cones in Euclidean space. Trans. Amer. Math. Soc. 354 (2002) 3973–4013.
- [18] G. Lu. Gromov-Witten invariants and pseudo symplectic capacities. *Israel J. math* (to appear). Preprint dg-ga 0103195.
- [19] E. Luft. Covering manifolds with open discs. Illinois J. Math. 13 (1969) 321-326.
- [20] L. Lusternik and L. Schnirelmann. Méthodes Topologiques dans les Problèmes Variationelles. Hermann, Paris 1934.
- [21] D. Mc Duff. From symplectic deformation to isotopy. Topics in symplectic 4-manifolds (Irvine, CA, 1996), 85–99, First Int. Press Lect. Ser., I, Internat. Press, Cambridge 1998.
- [22] D. McDuff and L. Polterovich. Symplectic packings and algebraic geometry. *Invent.* math. 115 (1994) 405–429.
- [23] D. McDuff and D. Salamon. Introduction to Symplectic Topology. Second edition. Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York 1998.
- [24] J. Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965) 286-294.
- [25] J. Oprea. Category bounds for nonnegative Ricci curvature manifolds with infinite fundamental group. Proc. Amer. Math. Soc. 130 (2002) 833–839.
- [26] P. P. Osborne and J. L. Stern. Covering manifolds with cells. Pacific. J. Math. 30 (1969) 201-207.
- [27] Yu. B. Rudyak. On analytical applications of stable homotopy (the Arnold conjecture, critical points). Math. Z. 230 (1999) 659–672.
- [28] Yu. B. Rudyak and J. Oprea. On the Lusternik-Schnirelmann Category of Symplectic Manifolds and the Arnold Conjecture Math. Z. 230 (1999) 673-678.
- [29] Yu. Rudyak and A. Tralle. On symplectic manifolds with aspherical symplectic form. Topol. Methods Nonlinear Anal. 14 (1999) 353–362.
- [30] F. Schlenk. Packing symplectic manifolds by hand. To appear in J. Symplectic Geom.
- [31] F. Schlenk. Embedding problems in symplectic geometry. De Gruyter Expositions in Mathematics. Walter de Gruyter Verlag, Berlin. 2005.
- [32] W. Singhof. Generalized higher order cohomology operations induced by the diagonal mapping. *Math. Z.* **162** (1978), 7–26.
- [33] W. Singhof. Minimal coverings of manifolds with balls. Manuscripta Math. 29 (1979), 385-415.
- [34] C. Taubes. $SW \Rightarrow Gr$: from the Seiberg-Witten equations to pseudo-holomorphic curves. J. Amer. Math. Soc. **9(3)** (1996) 845-918.
- [35] L. Traynor. Symplectic packing constructions. J. Differential Geom. 42 (1995) 411–429.
- [36] E. C. Zeeman, The Poincaré conjecture for $n \geq 5$. Topology of 3-manifolds and related topics. Prentice Hall, Englewood Cliffs, N.J., 1962, 198-204.
- (Yu. B. Rudyak) University of Florida, Department of Math., 358 Little Hall, PO Box 118105, Gainesville, FL 32611-8105, USA

E-mail address: rudyak@math.ufl.edu

(F. Schlenk) Mathematisches Institut, Universität Leipzig, 04109 Leipzig, Germany

 $E ext{-}mail\ address: schlenk@math.uni-leipzig.de}$