MINIMAL ATLASES OF CLOSED SYMPLECTIC MANIFOLDS

YU. B. RUDYAK AND FELIX SCHLENK

Abstract

We study the number of Darboux charts needed to cover a closed connected symplectic manifold (M, ω) and effectively estimate this number from below and from above in terms of the LusternikSchnirelmann category of M and the Gromov width of (M, ω).

1. Introduction and main results

A symplectic manifold is a pair (M, ω) where M is a smooth manifold and ω is a non-degenerate and closed 2-form on M. The non-degeneracy of ω implies that M is even-dimensional, $\operatorname{dim} M=2 n$. (We refer to [11] and [23] for basic facts about symplectic manifolds.) The most important symplectic manifold is $\mathbb{R}^{2 n}$ equipped with its standard symplectic form

$$
\omega_{0}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}
$$

Indeed, a basic fact about symplectic manifolds is Darboux's Theorem which states that locally every symplectic manifold $\left(M^{2 n}, \omega\right)$ is diffeomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. More precisely, for each point $p \in M$ there exists a chart

$$
\varphi: B^{2 n}(a) \rightarrow M
$$

from a ball

$$
B^{2 n}(a):=\left\{\left.z \in \mathbb{R}^{2 n}|\pi| z\right|^{2}<a\right\}
$$

to M such that $\varphi(0)=p$ and $\varphi^{*} \omega=\omega_{0}$. We call such a chart $\left(B^{2 n}(a), \varphi\right)$ a Darboux chart. In this paper we study the following question:

> Given a closed symplectic manifold (M, ω), how many Darboux charts does one need in order to parametrize (M, ω) ?

In other words, we study the number $\mathrm{S}_{\mathrm{B}}(M, \omega)$ defined as

$$
\mathrm{S}_{\mathrm{B}}(M, \omega):=\min \left\{k \mid M=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{k}\right\}
$$

where each \mathcal{B}_{i} is the image $\varphi_{i}\left(B^{2 n}\left(a_{i}\right)\right)$ of a Darboux chart.
An obvious lower bound for $\mathrm{S}_{\mathrm{B}}(M, \omega)$ is the diffeomorphism invariant

$$
\mathrm{B}(M):=\min \left\{k \mid M=B_{1} \cup \cdots \cup B_{k}\right\}
$$

where each B_{i} is diffeomorphic to the standard open ball in $\mathbb{R}^{2 n}$.
The volume associated with a symplectic manifold $\left(M^{2 n}, \omega\right)$ is

$$
\operatorname{Vol}(M, \omega)=\frac{1}{n!} \int_{M} \omega^{n}
$$

In particular, $\operatorname{Vol}\left(B^{2 n}(a)\right)=\frac{1}{n!} a^{n}$, as it should be. The volume of any symplectically embedded ball in (M, ω) is at most

$$
\gamma(M, \omega)=\sup \left\{\operatorname{Vol}\left(B^{2 n}(a)\right) \mid B^{2 n}(a) \text { symplectically embeds into } M\right\}
$$

Another lower bound for $\mathrm{S}_{\mathrm{B}}(M, \omega)$ is therefore

$$
\Gamma(M, \omega):=\left\lfloor\frac{\operatorname{Vol}(M, \omega)}{\gamma(M, \omega)}\right\rfloor+1
$$

where $\lfloor x\rfloor$ denotes the maximal integer which is smaller than or equal to x. Notice that $\gamma(M, \omega)=\frac{1}{n!}(\operatorname{Gr}(M, \omega))^{n}$ where

$$
\operatorname{Gr}(M, \omega)=\sup \left\{a \mid B^{2 n}(a) \text { symplectically embeds into }(M, \omega)\right\}
$$

is the Gromov width of (M, ω). The symplectic invariant $\Gamma(M, \omega)$ is therefore strongly related to the Gromov width. We abbreviate

$$
\lambda(M, \omega):=\max \{\mathrm{B}(M), \Gamma(M, \omega)\}
$$

Summarizing we have that

$$
\begin{equation*}
\lambda(M, \omega) \leq \mathrm{S}_{\mathrm{B}}(M, \omega) \tag{1}
\end{equation*}
$$

Before we state our main result, we consider two examples.

1) For complex projective space ${ }^{n}$ equipped with its standard Kähler form $\omega_{S F}$ we have $\mathrm{B}\left(\mathbb{C P}^{n}\right)=n+1$ and $\Gamma\left(\mathbb{C P}^{n}, \omega_{S F}\right)=2$. In particular,

$$
\lambda\left(\mathbb{C P}^{n}, \omega_{S F}\right)=\mathrm{B}\left(\mathbb{C P}^{n}\right)>\Gamma\left(\mathbb{C} \mathbb{P}^{n}, \omega_{S F}\right) \quad \text { if } n \geq 2
$$

It will turn out that $\mathrm{S}_{\mathrm{B}}\left(\mathbb{C P}^{n}, \omega_{S F}\right)=\lambda\left(\mathbb{C P}^{n}, \omega_{S F}\right)=n+1$ if $n \geq 2$.
2) We fix an area form σ on the 2 -sphere \mathbb{S}^{2}, and for $k \in \mathbb{N}$ we abbreviate $\mathbb{S}^{2}(k)=\left(\mathbb{S}^{2}, k \sigma\right)$. Then B $\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)=3$ and $\Gamma\left(\mathbb{S}^{2}(1) \times \mathbb{S}^{2}(k)\right)=2 k+1$. In particular,

$$
\lambda\left(\mathbb{S}^{2}(1) \times \mathbb{S}^{2}(k)\right)=\Gamma\left(\mathbb{S}^{2}(1) \times \mathbb{S}^{2}(k)\right)>\mathrm{B}\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right) \quad \text { if } k \geq 2
$$

It will turn out that $\mathrm{S}_{\mathrm{B}}\left(\mathbb{S}^{2}(1) \times \mathbb{S}^{2}(k)\right)=\lambda\left(\mathbb{S}^{2}(1) \times \mathbb{S}^{2}(k)\right)=2 k+1$ if $k \geq 2$.

We refer to Examples 2 and 4 in Section 5 for more details.
Our main result is
Theorem 1. Let (M, ω) be a closed connected $2 n$-dimensional symplectic manifold.
(i) If $\lambda(M, \omega) \geq 2 n+1$, then $\mathrm{S}_{\mathrm{B}}(M, \omega)=\lambda(M, \omega)$.
(ii) If $\lambda(M, \omega)<2 n+1$, then $n+1 \leq \lambda(M, \omega) \leq \mathrm{S}_{\mathrm{B}}(M, \omega) \leq 2 n+1$.

Remarks. 1. The assumption in (i) is met if $\left.[\omega]\right|_{\pi_{2}(M)}=0$, see Proposition 1 (ii) below. It is also met for various symplectic fibrations, see Section 5 .
2. Theorem 1 implies that

$$
n+1 \leq \lambda(M, \omega)<\mathrm{S}_{\mathrm{B}}(M, \omega) \leq 2 n+1 \quad \text { if } \lambda(M, \omega) \neq \mathrm{S}_{\mathrm{B}}(M, \omega) .
$$

The following question is based on the examples described in Section 5.
Question. Is it true that $\lambda(M, \omega)=\mathrm{S}_{\mathrm{B}}(M, \omega)$ for all closed symplectic manifolds (M, ω) ?

Theorem 1 essentially reduces the problem of computing the number $\mathrm{S}_{\mathrm{B}}(M, \omega)$ to two other problems, namely computing $\mathrm{B}(M)$ and $\Gamma(M, \omega)$. As we shall explain next, the diffeomorphism invariant $\mathrm{B}(M)$ can often be computed or estimated very well.

Recall that the Lusternik-Schnirelmann category of a finite $C W$-space X is defined as

$$
\text { cat } X:=\min \left\{k \mid X=A_{1} \cup \ldots \cup A_{k}\right\},
$$

where each A_{i} is open and contractible in $X,[20,4]$. Clearly,

$$
\text { cat } M \leq \mathrm{B}(M)
$$

if M is a compact smooth manifold. It holds that $\operatorname{cat} X=\operatorname{cat} Y$ whenever X and Y are homotopy equivalent. However, the Lusternik-Schnirelmann category is very different from the usual homotopical invariants in algebraic topology and hence often difficult to compute. Nevertheless, cat X can be estimated from below in cohomological terms as follows. Let H^{*} be singular (or Čech, or Alexander-Spanier) cohomology theory, with any coefficient ring, and let \tilde{H}^{*} be the corresponding reduced cohomology. The cup-length of X is defined as

$$
\operatorname{cl}(X):=\sup \left\{k \mid u_{1} \cdots u_{k} \neq 0, u_{i} \in \tilde{H}^{*}(X)\right\} .
$$

It then holds true that

$$
\begin{equation*}
\text { cat } X \geq \operatorname{cl}(X)+1, \tag{2}
\end{equation*}
$$

see [7]. If X is connected, an estimate of cat X from above is given by

$$
\text { cat } X \leq \operatorname{dim} X+1
$$

This inequality can be substantially improved as follows. Recall that X is said to be p-connected if it is path connected and its homotopy groups $\pi_{i}(X)$ vanish for $1 \leq i \leq p$. It turns out that

$$
\begin{equation*}
\operatorname{cat} X \leq \frac{\operatorname{dim} X}{p+1}+1 \tag{3}
\end{equation*}
$$

for every p-connected and finite $C W$-space X. Another useful property of the LS-category is

$$
\begin{equation*}
\max \{\operatorname{cat} X, \operatorname{cat} Y\} \leq \operatorname{cat}(X \times Y)<\operatorname{cat} X+\operatorname{cat} Y \tag{4}
\end{equation*}
$$

for any $C W$-spaces X and Y. Proofs of all the above statements and much additional information on LS-category can be found in [4, 12, 13].

Summarizing we have that

$$
\begin{equation*}
\operatorname{cl}(M)+1 \leq \operatorname{cat} M \leq \mathrm{B}(M) \tag{5}
\end{equation*}
$$

for any smooth manifold. Furthermore, if M^{n} is closed then $\mathrm{B}(M) \leq n+1$, see [19, 26, 36]. Hence,

$$
\begin{equation*}
\operatorname{cl}(M)+1 \leq \operatorname{cat} M \leq \mathrm{B}(M) \leq n+1 \tag{6}
\end{equation*}
$$

for any closed n-dimensional manifold.
These inequalities may be substantially improved if M is symplectic.
Proposition 1. Let (M, ω) be a closed connected $2 n$-dimensional symplectic manifold. Then

$$
n+1 \leq \operatorname{cl}(M)+1 \leq \operatorname{cat} M \leq \mathrm{B}(M) \leq 2 n+1
$$

Moreover, the following assertions hold true.
(i) If $\pi_{1}(M)=0$, then $n+1=\operatorname{cl}(M)+1=\operatorname{cat} M=\mathrm{B}(M)$.
(ii) If $\left.[\omega]\right|_{\pi_{2}(M)}=0$, then cat $M=\mathrm{B}(M)=2 n+1$.
(iii) If cat $M<\mathrm{B}(M)$, then $n \geq 2, n+1=\operatorname{cl}(M)+1=$ cat M and $\mathrm{B}(M)=n+2$.

On the other hand, the computation of the Gromov width and hence of the number $\Gamma(M, \omega)$ is often a very delicate matter. Fortunately, there has recently been some remarkable progress in this problem, see Section 5 .

The paper is organized as follows. In Section 2 we prove Theorem 1. In Section 3 we study the minimal number $\mathrm{S}_{\overline{\mathrm{B}}}(M, \omega)$ of equal symplectic balls needed to cover (M, ω) as well as the minimal number $\mathrm{S}(M, \omega)$ of symplectic charts diffeomorphic to a ball needed to parametrize (M, ω). In Section 4 we prove Proposition 1, and in the last section we compute the numbers $\mathrm{S}(M, \omega), \mathrm{S}_{\mathrm{B}}(M, \omega)$ and $\mathrm{S}_{\mathrm{B}} \overline{=}(M, \omega)$ for various closed symplectic manifolds.

Acknowledgements. The idea behind the proof of Theorem 1 belongs to Gromov. We are very grateful to Leonid Polterovich for explaining it to us. The first author was supported by NSF, grant 0406311.

2. Proof of Theorem 1

In view of the inequalities (1) and (6), Theorem 1 is a consequence of
Theorem 2.1. Let (M, ω) be a closed $2 n$-dimensional symplectic manifold.
(i) If $\Gamma(M, \omega) \geq 2 n+2$, then $\mathrm{S}_{\mathrm{B}}(M, \omega)=\Gamma(M, \omega)$.
(ii) If $\Gamma(M, \omega) \leq 2 n+1$, then $\mathrm{S}_{\mathrm{B}}(M, \omega) \leq 2 n+1$.

Proof. We start with describing the idea of the proof, which belongs to Gromov and is as simple as beautiful. For each Borel set A in M we abbreviate its volume

$$
\mu(A):=\frac{1}{n!} \int_{A} \omega^{n}
$$

Moreover, we define the natural number k by

$$
k=\left\{\begin{array}{lll}
\Gamma(M, \omega) & \text { if } & \Gamma(M, \omega) \geq 2 n+2 \tag{7}\\
2 n+1 & \text { if } & \Gamma(M, \omega) \leq 2 n+1
\end{array}\right.
$$

By definition of $\Gamma(M, \omega)$,

$$
\begin{equation*}
\gamma(M, \omega)>\frac{\mu(M)}{k} . \tag{8}
\end{equation*}
$$

By definition of $\gamma(M, \omega)$ we find a Darboux chart $\varphi: B^{2 n}(a) \rightarrow \mathcal{B} \subset M$ such that

$$
\mu(\mathcal{B})>\frac{\mu(M)}{k}
$$

In view of this inequality, and since $\operatorname{dim} M+1 \leq k$, we shall find a cover of M by k sets $\mathfrak{C}^{1}, \ldots, \mathfrak{C}^{k}$ where each set \mathfrak{C}^{j} is essentially a disjoint union of small cubes, and where

$$
\mu\left(\mathcal{C}^{j}\right)<\mu(\mathcal{B}) \quad \text { for each } j .
$$

Using this and the specific choice of the sets \mathcal{C}^{j} we shall then be able to construct for each j a symplectomorphism Φ^{j} of M such that $\Phi^{j}\left(\mathrm{C}^{j}\right) \subset \mathcal{B}$. The k Darboux charts

$$
\left(\Phi^{j}\right)^{-1} \circ \varphi: B^{2 n}(a) \rightarrow M
$$

will then cover M, and so Theorem 2.1 follows.

Figure 1. The idea behind the map Φ^{j}.
Notice that $\mu\left(\mathrm{C}^{j}\right)$ might be very close to $\mu(\mathcal{B})$. In order that the "cubes" in \mathcal{C}^{j} all fit into the ball \mathcal{B}, the map Φ^{j} should therefore not distort the cubes too much. We shall be able to find such a map Φ^{j} by constructing an appropriate atlas for (M, ω) and by constructing the set \mathfrak{C}^{j} carefully.

Step 1. Construction of a good atlas of (M, ω)

Let k be the natural number defined in (7). In view of the estimate (8) the real number ε defined by

$$
\gamma(M, \omega)=\frac{\mu(M)}{k}+2 \varepsilon
$$

is positive. By definition of $\gamma(M, \omega)$ we can choose a Darboux chart

$$
\varphi_{0}: B^{2 n}\left(a_{0}\right) \rightarrow \mathcal{B}_{0} \subset M
$$

such that

$$
\mu\left(\mathcal{B}_{0}\right)>\frac{\mu(M)}{k}+\varepsilon
$$

Since M is compact, we find m other Darboux charts $\varphi_{i}: B^{2 n}\left(a_{i}\right) \rightarrow \mathcal{B}_{i} \subset M$ such that

$$
\begin{equation*}
M=\bigcup_{i=0}^{m} \mathcal{B}_{i} \tag{9}
\end{equation*}
$$

We can assume that

$$
\begin{equation*}
\mathcal{B}_{i} \not \subset \bigcup_{j \neq i} \mathcal{B}_{j}, \quad i=0, \ldots, m \tag{10}
\end{equation*}
$$

Given open subsets $U \subset V$ of $\mathbb{R}^{2 n}$ we write $U \Subset V$ if $\bar{U} \subset V$, and we say that a symplectic chart $(\widetilde{U}, \widetilde{\varphi})$ is larger than a symplectic chart (U, φ) if $U \Subset \widetilde{U}$ and $\varphi=\left.\widetilde{\varphi}\right|_{U}$. Using this terminology we can also assume that each chart $\left(B^{2 n}\left(a_{i}\right), \varphi_{i}\right)$ is the restriction of a larger chart. Then the boundaries of the images $\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{m}$ are smooth. Using that M is a normal space we next choose for $i=0, \ldots, m$ numbers $a_{i}^{\prime}<a_{i}$ so large that with $\mathcal{B}_{i}^{\prime}=\varphi_{i}\left(B^{2 n}\left(a_{i}^{\prime}\right)\right)$ we have

$$
\begin{equation*}
\mu\left(\mathcal{B}_{0}^{\prime}\right)>\frac{\mu(M)}{k}+\varepsilon \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\bigcup_{i=0}^{m} \mathcal{B}_{i}^{\prime} \tag{12}
\end{equation*}
$$

After renumbering the charts $\left(B^{2 n}\left(a_{1}\right), \varphi_{1}\right), \ldots,\left(B^{2 n}\left(a_{m}\right), \varphi_{m}\right)$ we can then assume that $\mathcal{B}_{1} \cap \mathcal{B}_{0}^{\prime} \neq \emptyset$. In view of (10) and since the boundaries of \mathcal{B}_{1} and \mathcal{B}_{0}^{\prime} are smooth, the open set

$$
\mathcal{B}_{1} \backslash \overline{\mathcal{B}_{0}^{\prime}}=\coprod_{i=1}^{I_{1}} \mathcal{U}_{i}
$$

is non-empty and consists of finitely many connected components \mathcal{U}_{i} with piecewise smooth boundaries. For each $i \in\left\{1, \ldots, I_{1}\right\}$ we choose a point

$$
p_{i} \in \partial \mathcal{B}_{0}^{\prime} \cap \partial \mathcal{U}_{i}
$$

Here, ∂A denotes the boundary of a subset A of M. We let \mathcal{T}_{1} be the rooted tree whose vertices are the root p_{0} and the points p_{i} and whose edges
are $\left[p_{0}, p_{i}\right], i=1, \ldots, I_{1}$. For notational convenience we set $\mathcal{U}_{0}=\mathcal{B}_{0}$ and $\mathfrak{U}_{0}^{\prime}=\mathcal{B}_{0}^{\prime}$ as well as

$$
\mathcal{U}_{i}^{\prime}=\mathcal{U}_{i} \cap \mathcal{B}_{1}^{\prime}, \quad i=1, \ldots, I_{1}
$$

It might well be that $U_{i}^{\prime}=\emptyset$ for some i. Clearly,

$$
\begin{equation*}
\bigcup_{i=0}^{1} \mathcal{B}_{i}=\bigcup_{i=0}^{I_{1}} u_{i} \quad \text { and } \quad \bigcup_{i=0}^{1} \overline{\mathcal{B}_{i}^{\prime}}=\bigcup_{i=0}^{I_{1}} \overline{u_{i}^{\prime}}, \tag{13}
\end{equation*}
$$

cf. Figure 2.

Figure 2. The sets $\mathcal{U}_{1}^{\prime} \subset \mathcal{U}_{1}$ and $\mathcal{U}_{2}^{\prime} \subset \mathcal{U}_{2}$ and the points $p_{1} \in \partial u_{0}^{\prime} \cap \partial \mathcal{u}_{1}$ and $p_{2} \in \partial u_{0}^{\prime} \cap \partial \mathcal{U}_{2}$.

The tree \mathcal{T}_{1} corresponding to Figure 2 is depicted in Figure 4. We also set $U_{0}=B^{2 n}\left(a_{0}\right)$ and $\phi_{0}=\varphi_{0}: U_{0} \rightarrow \mathcal{U}_{0}$ and define the symplectic charts

$$
U_{i}=\varphi_{1}^{-1}\left(\mathcal{U}_{i}\right), \quad \phi_{i}=\left.\varphi_{1}\right|_{U_{i}}: U_{i} \rightarrow \mathcal{U}_{i}, \quad i=1, \ldots, I_{1} .
$$

Notice that each chart $\left(U_{i}, \phi_{i}\right)$ is the restriction of a larger chart.
If $m \geq 2$, the assumption (12) implies that we can renumber the charts $\left(B^{2 n}\left(a_{2}\right), \varphi_{2}\right), \ldots,\left(B^{2 n}\left(a_{m}\right), \varphi_{m}\right)$ such that $\mathcal{B}_{2} \cap \bigcup_{i=0}^{1} \mathcal{B}_{i}^{\prime} \neq \emptyset$. In view of (10) and since the boundaries of $\mathcal{B}_{2}, \mathcal{B}_{0}^{\prime}$ and \mathcal{B}_{1}^{\prime} are smooth, the open set

$$
\begin{equation*}
\mathcal{B}_{2} \backslash \bigcup_{i=0}^{1} \overline{\mathcal{B}_{i}^{\prime}}=\coprod_{i=I_{1}+1}^{I_{2}} u_{i} \tag{14}
\end{equation*}
$$

is non-empty and consists of finitely many connected components \mathcal{U}_{i} with piecewise smooth boundaries. In view of the second identity in (13) and the definition (14) of \mathcal{U}_{i} we find for each $i \in\left\{I_{1}+1, \ldots, I_{2}\right\}$ an index $\underline{i} \in$ $\left\{0, \ldots, I_{1}\right\}$ such that $\partial \mathcal{u}_{\underline{i}}^{\prime} \cap \partial \mathcal{U}_{i} \neq \emptyset$, and we choose a point

$$
p_{i} \in \partial \mathcal{u}_{\underline{i}}^{\prime} \cap \partial \mathcal{U}_{i} .
$$

We let \mathcal{T}_{2} be the tree obtained from the tree \mathcal{T}_{1} by adding the vertices p_{i} and the edges $\left[p_{i}, p_{i}\right], i=I_{1}+1, \ldots, I_{2}$. We set $\mathcal{U}_{i}^{\prime}=\mathcal{U}_{i} \cap \mathcal{B}_{2}^{\prime}$ for $i=I_{1}+1, \ldots, I_{2}$.

Then

$$
\bigcup_{i=0}^{2} \mathcal{B}_{i}=\bigcup_{i=0}^{I_{2}} \mathcal{U}_{i} \quad \text { and } \quad \bigcup_{i=0}^{2} \overline{\mathcal{B}_{i}^{\prime}}=\bigcup_{i=0}^{I_{2}} \overline{\mathcal{U}_{i}^{\prime}}
$$

cf. Figure 3.

Figure 3. The sets $\mathcal{U}_{3}^{\prime} \subset \mathcal{U}_{3}$ and the point $p_{3} \in \partial \mathcal{U}_{1}^{\prime} \cap \partial \mathcal{U}_{3}$.
The tree \mathcal{T}_{2} corresponding to Figure 3 is depicted in Figure 4.

Figure 4. The trees \mathcal{T}_{1} and \mathcal{T}_{2}.
We define the symplectic charts

$$
U_{i}=\varphi_{2}^{-1}\left(\mathcal{U}_{i}\right), \quad \phi_{i}=\left.\varphi_{2}\right|_{U_{i}}: U_{i} \rightarrow \mathcal{U}_{i}, \quad i=I_{1}+1, \ldots, I_{2}
$$

Notice again that each chart $\left(U_{i}, \phi_{i}\right)$ is the restriction of a larger chart.
Proceeding this way $m-2$ other times we find a sequence

$$
0=: I_{0}<I_{1}<\cdots<I_{m}
$$

of integers and $l:=I_{m}+1$ open connected sets $\mathcal{U}_{i} \subset M, i=0, \ldots, l$, with piecewise smooth boundaries such that for each $j \in\{0, \ldots, m-1\}$,

$$
\begin{equation*}
\mathcal{B}_{j+1} \backslash \bigcup_{i=0}^{j} \overline{\mathcal{B}_{i}^{\prime}}=\coprod_{i=I_{j}+1}^{I_{j+1}} \mathcal{U}_{i} . \tag{15}
\end{equation*}
$$

Moreover, defining $j(i)$ by the condition $i \in\left\{I_{j(i)}+1, \ldots, I_{j(i)+1}\right\}$ and setting $\mathcal{U}_{i}^{\prime}=\mathcal{U}_{i} \cap \mathcal{B}_{j(i)+1}^{\prime}$ we have found for each $i \in\{1, \ldots, l\}$ an index $\underline{i} \in\left\{0, \ldots, I_{j(i)}\right\}$ such that $\partial \mathcal{U}_{\underline{i}}^{\prime} \cap \partial \mathcal{U}_{i} \neq \emptyset$ and have chosen a point

$$
\begin{equation*}
p_{i} \in \partial \mathcal{U}_{\underline{i}}^{\prime} \cap \partial \mathcal{U}_{i} . \tag{16}
\end{equation*}
$$

The vertices of the rooted tree $\mathcal{T}=\mathcal{T}_{m}$ consist of the root p_{0} and the points p_{i}, and the edges of \mathcal{T} are $\left[p_{i}, p_{i}\right], i=1, \ldots, l$.

The identities (9) and (15) imply that

$$
\begin{equation*}
M=\bigcup_{i=0}^{l} u_{i} \tag{17}
\end{equation*}
$$

and that $\sum_{i=0}^{l} \mu\left(\mathcal{U}_{i}\right) \rightarrow \mu(M)$ as $a_{j}^{\prime} \rightarrow a_{j}$ for all $j=0, \ldots, m$. Choosing $a_{0}^{\prime}, \ldots, a_{m}^{\prime}$ larger if necessary we can therefore assume that

$$
\begin{equation*}
\sum_{i=0}^{l} \mu\left(U_{i}\right)<\mu(M)+\varepsilon . \tag{18}
\end{equation*}
$$

We replace the symplectic atlas $\left\{\varphi_{i}: B^{2 n}\left(a_{i}\right) \rightarrow \mathcal{B}_{i}, i=0, \ldots, m\right\}$ by the symplectic atlas $\left\{\phi_{i}: U_{i} \rightarrow \mathcal{U}_{i}, i=0, \ldots, l\right\}$. Here, we still have $\left(U_{0}, \phi_{0}\right)=$ $\left(B^{2 n}\left(a_{0}\right), \varphi_{0}\right)$, and

$$
U_{i}=\varphi_{j(i)+1}^{-1}\left(\mathcal{U}_{i}\right), \quad \phi_{i}=\left.\varphi_{j(i)+1}\right|_{U_{i}}: U_{i} \rightarrow \mathcal{U}_{i}, \quad i=1, \ldots, l .
$$

Each chart $\left(U_{i}, \phi_{i}\right)$ is the restriction of a larger chart $\widetilde{\phi}_{i}: \widetilde{U}_{i} \rightarrow \widetilde{U}_{i}$. While $p_{i} \notin \mathcal{U}_{i}$ in view of (16), we have $p_{i} \in \widetilde{\mathcal{U}}_{\underline{i}} \cap \widetilde{\mathcal{U}}_{i}$ for $i=1, \ldots, l$. Our next goal is to replace the charts $\widetilde{\phi}_{i}: \widetilde{U}_{i} \rightarrow \widetilde{\mathcal{U}}_{i}$ by charts $\widetilde{\psi}_{i}: \widetilde{V}_{i} \rightarrow \widetilde{\mathcal{U}}_{i}$ such that for each $i \geq 1$ the transition function

$$
\widetilde{\psi}_{\underline{i}}^{-1} \circ \widetilde{\psi}_{i}: \widetilde{\psi}_{i}^{-1}\left(\widetilde{\mathcal{U}}_{\underline{i}} \cap \widetilde{\mathcal{U}}_{i}\right) \rightarrow \widetilde{\psi}_{\underline{i}}^{-1}\left(\widetilde{\mathcal{U}}_{\underline{i}} \cap \widetilde{\mathcal{U}}_{i}\right)
$$

is the identity near $\widetilde{\psi}_{\underline{i}}^{-1}\left(p_{i}\right)$. We first of all set $\left(\widetilde{V}_{0}, \widetilde{\psi}_{0}\right)=\left(\widetilde{U}_{0}, \widetilde{\phi}_{0}\right)$. In order to construct $\left(\widetilde{V}_{1}, \widetilde{\psi}_{1}\right)$ we first define a symplectic chart $\left(\widehat{V}_{1}, \widehat{\psi}_{1}\right)$ by

$$
\widehat{V}_{1}=\left[d\left(\widetilde{\phi}_{1}^{-1} \circ \widetilde{\psi}_{0}\right)\left(q_{1}\right)\right]^{-1}\left(\widetilde{U}_{1}\right), \quad \widehat{\psi}_{1}=\widetilde{\phi}_{1} \circ d\left(\widetilde{\phi}_{1}^{-1} \circ \widetilde{\psi}_{0}\right)\left(q_{1}\right): \widehat{V}_{1} \rightarrow \widetilde{U}_{1}
$$

where we abbreviated $q_{1}:=\widetilde{\psi}_{0}^{-1}\left(p_{1}\right)$. We then find

$$
\begin{equation*}
\left(\widetilde{\psi}_{0}^{-1} \circ \widehat{\psi}_{1}\right)\left(q_{1}\right)=q_{1} \quad \text { and } \quad d\left(\widetilde{\psi}_{0}^{-1} \circ \widehat{\psi}_{1}\right)\left(q_{1}\right)=i d . \tag{19}
\end{equation*}
$$

We obtain the desired chart $\left(\widetilde{V}_{1}, \widetilde{\psi}_{1}\right)$ from the chart $\left(\widehat{V}_{1}, \widehat{\psi}_{1}\right)$ with the help of the following lemma.
Lemma 2.2. Assume that $\varphi: U \rightarrow U^{\prime}$ is a symplectomorphism between two domains U and U^{\prime} in $\mathbb{R}^{2 n}$ such that $\varphi(q)=q$ and $d \varphi(q)=$ id at some point $q \in U$. Then there exist open neighbourhoods $W \subset \widetilde{W} \Subset U$ of q and a symplectomorphism $\rho: U \rightarrow U^{\prime}$ such that $\left.\rho\right|_{W}=$ id and $\left.\rho\right|_{U \backslash \widetilde{W}}=\left.\varphi\right|_{U \backslash \widetilde{W}}$.
Proof. We can assume that $q=0$. Following [11, Appendix A.1] we represent the map φ by

$$
\begin{aligned}
& x=a(\xi, \eta) \\
& y=b(\xi, \eta) .
\end{aligned}
$$

Since $d \varphi(0)=i d$, we have $\operatorname{det}\left(a_{\xi}(0)\right)=1 \neq 0$. According to Proposition 1 in [11, Appendix A.1] we therefore find a smooth function w defined on a neighbourhood $\mathcal{N} \subset \mathbb{R}^{2 n}(x, \eta)$ of 0 such that

$$
\left\{\begin{align*}
\xi & =x+w_{\eta}(x, \eta) \tag{20}\\
y & =\eta+w_{x}(x, \eta)
\end{align*}\right.
$$

We can assume that $w(0)=0$. In view of the identities $\varphi(0)=0$ and $d \varphi(0)=i d$ and the relations (20) we find that all the derivatives of w up to order 2 vanish in 0, i.e.,

$$
\begin{equation*}
w(x, \eta)=O\left(|(x, \eta)|^{3}\right) \tag{21}
\end{equation*}
$$

Choose a smooth function $f:[0, \infty[\rightarrow[0,1]$ such that

$$
f(s)= \begin{cases}0, & s \leq 1 \\ 1, & s \geq 2\end{cases}
$$

and denote the open ball of radius s in $\mathbb{R}^{2 n}(x, \eta)$ by B_{s}. For each $\varepsilon>0$ for which $B_{3 \varepsilon} \subset \mathcal{N}$ we define the smooth function $w^{\varepsilon}(x, \eta): B_{3 \varepsilon} \rightarrow \mathbb{R}$ by

$$
w^{\varepsilon}(x, \eta)=f\left(\frac{1}{\varepsilon}|(x, \eta)|\right) w(x, \eta) .
$$

Then

$$
\begin{equation*}
\left.w^{\varepsilon}\right|_{B_{\varepsilon}}=0 \quad \text { and }\left.\quad w^{\varepsilon}\right|_{B_{3 \varepsilon} \backslash B_{2 \varepsilon}}=\left.w\right|_{B_{3 \varepsilon} \backslash B_{2 \varepsilon}} . \tag{22}
\end{equation*}
$$

Abbreviating $\zeta:=(x, \eta)$ and $r:=|\zeta|$ we compute

$$
\begin{aligned}
w_{\zeta_{i}}^{\varepsilon}(\zeta)=f^{\prime}\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon} \frac{\zeta_{i}}{r} w(\zeta)+ & f\left(\frac{r}{\varepsilon}\right) w_{\zeta_{i}}(\zeta), \\
w_{\zeta_{i} \zeta_{j}}^{\varepsilon}(\zeta)=f^{\prime \prime}\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon^{2}} \frac{\zeta_{i} \zeta_{j}}{r^{2}} w(\zeta) & +f^{\prime}\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon}\left(\frac{\delta_{i j}}{r}-\frac{\zeta_{i} \zeta_{j}}{r^{3}}\right) w(\zeta) \\
& +f^{\prime}\left(\frac{r}{\varepsilon}\right) \frac{1}{\varepsilon}\left(\frac{\zeta_{i}}{r} w_{\zeta_{j}}(\zeta)+\frac{\zeta_{j}}{r} w_{\zeta_{i}}(\zeta)\right) \\
& +f\left(\frac{r}{\varepsilon}\right) w_{\zeta_{i} \zeta_{j}}(\zeta)
\end{aligned}
$$

where $i, j \in\{1, \ldots, 2 n\}$ and where $\delta_{i j}$ denotes the Kronecker symbol. In view of the estimate (21) we therefore find that

$$
w_{\zeta_{i} \zeta_{j}}^{\varepsilon}(\zeta)=\frac{1}{\varepsilon^{2}} O\left(r^{3}\right)+\frac{1}{\varepsilon} O\left(r^{2}\right)+O(r)=O(r), \quad \zeta \in B_{3 \varepsilon},
$$

and so

$$
\begin{equation*}
w^{\varepsilon}(x, \eta)=O\left(|(x, \eta)|^{3}\right), \quad(x, \eta) \in B_{3 \varepsilon} \tag{23}
\end{equation*}
$$

We in particular conclude that $\operatorname{det}\left(\mathbb{1}_{n}+w_{x \eta}(x, \eta)\right) \neq 0$ for all $(x, \eta) \in B_{3 \varepsilon}$ if $\varepsilon>0$ is small enough. The relations

$$
\left\{\begin{array}{l}
\xi=x+w_{\eta}^{\varepsilon}(x, \eta) \tag{24}\\
y=\eta+w_{x}^{\varepsilon}(x, \eta)
\end{array}\right.
$$

therefore implicitly define a symplectic mapping φ^{ε} near 0 , see again [11, Appendix A.1]. The C^{2}-estimate (23) implies that φ^{ε} is C^{1}-close to the
identity and that for $\varepsilon>0$ small enough, φ^{ε} is defined and injective on all of

$$
U_{3 \varepsilon}^{\varepsilon}=\left\{(\xi, \eta) \in \mathbb{R}^{2 n} \mid(24) \text { holds for }(x, \eta) \in B_{3 \varepsilon}\right\}
$$

In view of the estimate (23) each of the sets

$$
U_{s}^{\varepsilon}=\left\{(\xi, \eta) \in \mathbb{R}^{2 n} \mid(24) \text { holds for }(x, \eta) \in B_{s}\right\}, \quad s \leq 3 \varepsilon
$$

is contained in the domain U of φ and is diffeomorphic to an open ball provided that $\varepsilon>0$ is small enough. According to the identities (22), the map φ^{ε} is the identity on $U_{\varepsilon}^{\varepsilon}$ and coincides with φ on the "open annulus" $U_{3 \varepsilon}^{\varepsilon} \backslash \overline{U_{2 \varepsilon}^{\varepsilon}}$. It follows that $\varphi^{\varepsilon}\left(U_{3 \varepsilon}^{\varepsilon}\right)=\varphi\left(U_{3 \varepsilon}^{\varepsilon}\right)$. We smoothly extend $\varphi^{\varepsilon}: U_{3 \varepsilon}^{\varepsilon} \rightarrow \mathbb{R}^{2 n}$ to a symplectic embedding $\rho: U \rightarrow \mathbb{R}^{2 n}$ by setting $\rho(z)=\varphi(z), z \in U \backslash U_{3 \varepsilon}^{\varepsilon}$. Then $\rho(U)=\varphi(U)=U^{\prime}$, and setting $W=U_{\varepsilon}^{\varepsilon}$ and $\widetilde{W}=U_{2 \varepsilon}^{\varepsilon} \Subset U_{3 \varepsilon}^{\varepsilon} \subset U$ we find that $\left.\rho\right|_{W}=\left.\varphi^{\varepsilon}\right|_{U_{\varepsilon}^{\varepsilon}}=i d$ and $\left.\rho\right|_{U \backslash \widetilde{W}}=\left.\varphi\right|_{U \backslash \widetilde{W}}$. The proof of Lemma 2.2 is complete.

In view of the identities (19) we can apply Lemma 2.2 to the symplectomorphism

$$
\tilde{\psi}_{0}^{-1} \circ \widehat{\psi}_{1}: \widehat{\psi}_{1}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \widetilde{\mathcal{U}}_{1}\right) \rightarrow \widetilde{\psi}_{0}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \tilde{\mathcal{U}}_{1}\right)
$$

which fixes q_{1}, and find open neighbourhoods $W_{1} \subset \widetilde{W}_{1} \Subset \widehat{\psi}_{1}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \widetilde{\mathcal{U}}_{1}\right)$ and a symplectomorphism

$$
\rho_{1}: \widehat{\psi}_{1}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \widetilde{\mathcal{U}}_{1}\right) \rightarrow \widetilde{\psi}_{0}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \widetilde{\mathcal{U}}_{1}\right)
$$

such that

$$
\begin{equation*}
\left.\rho_{1}\right|_{W_{1}}=i d \quad \text { and }\left.\quad \rho_{1}\right|_{\widehat{\psi}_{1}^{-1}}\left(\widetilde{\mathcal{u}}_{0} \cap \widetilde{u}_{1}\right) \backslash \widetilde{W}_{1}=\widetilde{\psi}_{0}^{-1} \circ \widehat{\psi}_{1} . \tag{25}
\end{equation*}
$$

Set $\widetilde{V}_{1}=\widehat{V}_{1}$. In view of the properties (25) of ρ_{1} the map $\widetilde{\psi}_{1}: \widetilde{V}_{1} \rightarrow \widetilde{U}_{1}$ defined by

$$
\widetilde{\psi}_{1}=\left\{\begin{array}{lll}
\widetilde{\psi}_{0} \circ \rho_{1} & \text { on } & \widehat{\psi}_{1}^{-1}\left(\widetilde{U}_{0} \cap \widetilde{U}_{1}\right), \\
\widehat{\psi}_{1} & \text { on } & \widetilde{V}_{1} \backslash \widetilde{W}_{1}
\end{array}\right.
$$

is a well-defined smooth symplectic chart such that

$$
\widetilde{\psi}_{0}^{-1} \circ \widetilde{\psi}_{1}: \widetilde{\psi}_{1}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \widetilde{\mathcal{U}}_{1}\right) \rightarrow \widetilde{\psi}_{0}^{-1}\left(\widetilde{\mathcal{U}}_{0} \cap \widetilde{\mathcal{U}}_{1}\right)
$$

is the identity on the open neighbourhood W_{1} of $q_{1}=\tilde{\psi}_{0}^{-1}\left(p_{1}\right)$. Assume now by induction that we have already constructed new charts $\widetilde{\psi}_{j}: \widetilde{V}_{j} \rightarrow \widetilde{U}_{j}$ for $j=1, \ldots, i-1$. Since $\underline{i}<i$, the chart $\left(\widetilde{U}_{\underline{i}}, \widetilde{\phi}_{\underline{i}}\right)$ is already replaced by the chart $\left(\widetilde{V}_{\underline{i}}, \widetilde{\psi}_{\underline{i}}\right)$. Applying the two-step construction shown above to the pair $\left(\widetilde{V}_{\underline{i}}, \widetilde{\psi}_{\underline{i}}\right),\left(\widetilde{U}_{i}, \widetilde{\phi}_{i}\right)$ we find a new chart $\widetilde{\psi}_{i}: \widetilde{V}_{i} \rightarrow \widetilde{U}_{i}$ such that the transition function

$$
\widetilde{\psi}_{\underline{i}}^{-1} \circ \widetilde{\psi}_{i}: \widetilde{\psi}_{i}^{-1}\left(\widetilde{U}_{\underline{i}} \cap \widetilde{U}_{i}\right) \rightarrow \widetilde{\psi}_{\underline{i}}^{-1}\left(\widetilde{U}_{\underline{i}} \cap \widetilde{\mathcal{U}}_{i}\right)
$$

is the identity on an open neighbourhood W_{i} of $q_{i}=\widetilde{\psi}_{\underline{i}}^{-1}\left(p_{i}\right)$. In this way we construct a new symplectic atlas

$$
\widetilde{\mathfrak{A}}=\left\{\widetilde{\psi}_{i}: \widetilde{V}_{i} \rightarrow \widetilde{\mathcal{U}}_{i}, i=0, \ldots, l\right\} .
$$

Recall that $\mathcal{U}_{i} \Subset \widetilde{\mathcal{U}}_{i}$. The collection

$$
\mathfrak{A}=\left\{\psi_{i}: V_{i} \rightarrow \mathcal{U}_{i}, i=0, \ldots, l\right\}
$$

of smaller charts defined by

$$
V_{i}=\widetilde{\psi}_{i}^{-1}\left(\mathcal{U}_{i}\right), \quad \psi_{i}=\left.\widetilde{\psi}_{i}\right|_{V_{i}}: V_{i} \rightarrow \mathcal{U}_{i}
$$

is the good atlas of (M, ω) we were looking for. We still have $\left(V_{0}, \psi_{0}\right)=$ $\left(B^{2 n}\left(a_{0}\right), \varphi_{0}\right)$ and $\mathcal{U}_{0}=\mathcal{B}_{0}$. We also recall that each set \mathcal{U}_{i} is connected and has piecewise smooth boundary.

Step 2. The dimension cover $\mathfrak{D}(2 n, k)$
Let $k \geq 2 n+1$ be the natural number defined in (7). In this step we shall construct a special cover $\mathfrak{D}(2 n, k)$ of $\mathbb{R}^{2 n}$ by cubes. Our construction is inspired by an idea from elementary dimension theory, see e.g. [5, Figure 7].

We denote the coordinates in $\mathbb{R}^{2 n}$ by $x_{1}, \ldots, x_{2 n}$, and we let $\left\{e_{1}, \ldots, e_{2 n}\right\}$ be the standard basis of $\mathbb{R}^{2 n}$. Given a point $q \in \mathbb{R}^{2 n}$ and a subset A of $\mathbb{R}^{2 n}$ we denote the translate of A by q by

$$
q+A=\{q+a \mid a \in A\} .
$$

By a cube we mean a translate of the closed cube $C^{2 n}=[0,1]^{2 n} \subset \mathbb{R}^{2 n}$. We define the $(2 n \times 2 n)$-matrix $M(2 n, k)$ as the matrix whose diagonal is $(k, 1, \ldots, 1)$, whose upper-diagonal is

$$
\left(\frac{k}{2 n}, \frac{2 n}{2 n-1}, \frac{2 n-1}{2 n-2}, \ldots, \frac{4}{3}, \frac{3}{2}\right)
$$

and whose other matrix entries all vanish. E.g.,

$$
M(2,3)=\left[\begin{array}{ll}
3 & \frac{3}{2} \\
0 & 1
\end{array}\right], \quad M(2,4)=\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right], \quad M(4,5)=\left[\begin{array}{cccc}
5 & \frac{5}{4} & 0 & 0 \\
0 & 1 & \frac{4}{3} & 0 \\
0 & 0 & 1 & \frac{3}{2} \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

We consider the infinite union of cubes

$$
\mathfrak{C}^{1}(2 n, k)=\bigcup_{v \in \mathbb{Z}^{2 n}} M(2 n, k) v+C^{2 n}
$$

and its translates

$$
\mathfrak{C}^{j}(2 n, k)=(j-1) e_{1}+\mathfrak{C}^{1}(2 n, k), \quad j=2, \ldots, k,
$$

and we abbreviate

$$
\mathfrak{D}(2 n, k):=\bigcup_{j=1}^{k} \mathfrak{C}^{j}(2 n, k),
$$

cf. Figure 5 and Figure 6.

Figure 5. Parts of the dimension covers $\mathfrak{D}(2,3)$ and $\mathfrak{D}(2,4)$.

Figure 6. A part of the intersections $\mathfrak{C}^{1}(4,5) \cap$ $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \left\lvert\, x_{3}=i-\frac{1}{2}\right., x_{4}=0\right\}, i=1,2,3$.

Finally, we define for each subset A of $\mathbb{R}^{2 n}$ and each $m \in\{1, \ldots, 2 n\}$ the cylinder $Z_{m}(A)$ over A by

$$
Z_{m}(A)=\left\{a+\lambda e_{m} \mid a \in A, \lambda \in \mathbb{R}\right\}
$$

Recall that the distance between two subsets A and B of $\mathbb{R}^{2 n}$ is defined as

$$
\operatorname{dist}(A, B)=\inf \{|a-b| \mid a \in A, b \in B\} .
$$

Given $\nu>0$ and a subset A of $\mathbb{R}^{2 n}$ we denote the ν-neighbourhood of A by

$$
\mathcal{N}_{\nu}(A)=\left\{z \in \mathbb{R}^{2 n} \mid \operatorname{dist}(z, A)<\nu\right\} .
$$

We abbreviate the positive number

$$
\begin{equation*}
\delta:=\min \left(\frac{k-2 n}{2 n}, \frac{1}{2 n-1}\right) . \tag{26}
\end{equation*}
$$

Lemma 2.3.

(i) For each $j \in\{1, \ldots, k\}$ and any cube C of $\mathfrak{C}^{j}(2 n, k)$ we have

$$
\operatorname{dist}\left(C, \mathfrak{C}^{j}(2 n, k) \backslash C\right)=\delta
$$

Moreover,

$$
Z_{1}(\operatorname{Int} C) \cap \mathfrak{C}^{j}(2 n, k)=\bigcup_{l \in \mathbb{Z}} k l e_{1}+\operatorname{Int} C
$$

and

$$
Z_{m}\left(\mathcal{N}_{\delta}(C)\right) \cap \mathfrak{C}^{j}(2 n, k)=\bigcup_{l \in \mathbb{Z}}(2 n-m+2) l e_{m}+C, \quad m=2, \ldots, 2 n .
$$

(ii) We have

$$
\mathfrak{D}(2 n, k)=\bigcup_{j=1}^{k} \mathfrak{C}^{j}(2 n, k)=\mathbb{R}^{2 n}
$$

and the interiors of the sets $\mathfrak{C}^{j}(2 n, k)$ are mutually disjoint.
The proof, which is elementary, is omitted.

Step 3. The cover of M by small cubes

Let $\mathfrak{A}=\left\{\psi_{i}: V_{i} \rightarrow \mathcal{U}_{i}, i=0, \ldots, l\right\}$ be the symplectic atlas of (M, ω) constructed in Step 1 and let $\mathfrak{D}(2 n, k)=\bigcup_{j=1}^{k} \mathfrak{C}^{j}(2 n, k)$ be the dimension cover of $\mathbb{R}^{2 n}$ constructed in the previous step. For any $r>0$ and any subset A of $\mathbb{R}^{2 n}$ we set

$$
r A=\{r z \mid z \in A\}
$$

and we denote by $|A|$ the Lebesgue measure of A. Fix $i \in\{0, \ldots, l\}$. For $d_{i}>0$ we define $\mathfrak{C}_{i}^{j}\left(d_{i}\right)$ as the set of those cubes C in $d_{i} \mathfrak{C}^{j}(2 n, k)$ for which

$$
\begin{equation*}
C \subset V_{i} \quad \text { and } \quad \operatorname{dist}\left(C, \partial V_{i}\right) \geq d_{i} \tag{27}
\end{equation*}
$$

and we abbreviate

$$
\mathfrak{D}_{i}\left(d_{i}\right):=\bigcup_{j=1}^{k} \mathfrak{C}_{i}^{j}\left(d_{i}\right) .
$$

In view of the identity (17) and since M is a normal space we find open sets $\breve{U}_{i} \Subset \mathcal{U}_{i}$ such that

$$
M=\bigcup_{i=0}^{l} \mathfrak{u}_{i}=\bigcup_{i=0}^{l} \breve{u}_{i}
$$

Choose $d_{i}>0$ so small that $\psi_{i}^{-1}\left(\breve{U}_{i}\right) \subset \mathfrak{D}_{i}\left(d_{i}\right)$. Then

$$
\begin{equation*}
M=\bigcup_{i=0}^{l} \psi_{i}\left(\mathfrak{D}_{i}\left(d_{i}\right)\right) . \tag{28}
\end{equation*}
$$

Also notice that the homogeneity of the sets $\mathfrak{C}_{i}^{j}\left(d_{i}\right)$ implies that

$$
\left|\mathfrak{C}_{i}^{j}\left(d_{i}\right)\right| \rightarrow \frac{1}{k}\left|V_{i}\right| \quad \text { as } \quad d_{i} \rightarrow 0
$$

for all $j \in\{1, \ldots, k\}$. Choosing $d_{i}>0$ smaller if necessary we can therefore assume that

$$
\begin{equation*}
\left|\mathfrak{C}_{i}^{j}\left(d_{i}\right)\right|<\frac{1}{k}\left(\left|V_{i}\right|+\frac{k-1}{l+1} \varepsilon\right) \tag{29}
\end{equation*}
$$

for all $i \in\{0, \ldots, l\}$ and $j \in\{1, \ldots, k\}$.
We denote by $\mathfrak{C}^{j}=\mathcal{C}^{j}\left(d_{0}, \ldots, d_{l}\right)$ the union of cubes "of the same colour"

$$
\mathfrak{C}^{j}=\bigcup_{i=0}^{l} \psi_{i}\left(\mathfrak{C}_{i}^{j}\left(d_{i}\right)\right), \quad j=1, \ldots, k
$$

The cubes $\psi_{i}(C)$ in $\psi_{i}\left(\mathfrak{C}_{i}^{j}\left(d_{i}\right)\right)$ are called i-cubes. For each connected component \mathcal{K} of \mathcal{C}^{j} we define the height of \mathcal{K} as the maximal $h \in\{0, \ldots, l\}$ for which \mathcal{K} contains an h-cube. The set \mathcal{C}^{j} decomposes as

$$
\mathcal{C}^{j}=\coprod_{h=0}^{l} \mathfrak{C}_{h}^{j}
$$

where \mathfrak{C}_{h}^{j} is the union of the components of \mathfrak{C}^{j} of height h. In view of (28) we have

$$
\begin{equation*}
M=\bigcup_{j=1}^{k} \bigcup_{h=0}^{l} \mathfrak{e}_{h}^{j} \tag{30}
\end{equation*}
$$

According to the estimates (29) we can choose for each $i \in\{1, \ldots, l\}$ a number

$$
\begin{equation*}
\left.\nu_{i} \in\right] 0, \frac{\delta}{2}[\tag{31}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(1+2 \nu_{i}\right)^{2 n}\left|\mathfrak{C}_{i}^{j}\left(d_{i}\right)\right|<\frac{1}{k}\left(\left|V_{i}\right|+\frac{k-1}{l+1} \varepsilon\right) \tag{32}
\end{equation*}
$$

for all $j \in\{1, \ldots, k\}$. Since $\nu_{i}<\frac{\delta}{2}<1$, the conditions (27) imply that

$$
\begin{equation*}
\mathcal{N}_{\nu_{i} d_{i}}(C) \subset V_{i} \tag{33}
\end{equation*}
$$

for any cube C in $\mathfrak{D}_{i}\left(d_{i}\right)$.
Lemma 2.4. If the numbers $d_{0}, \ldots, d_{l-1}>0$ as well as the ratios d_{i} / d_{i+1}, $i=0, \ldots, l-1$, are small enough, then the following assertions hold true.
(i) $\mathfrak{Q}_{h}^{j} \subset \mathcal{U}_{h}$ for each $j \in\{1, \ldots, k\}$ and $h \in\{0, \ldots, l\}$.
(ii) Any component \mathcal{K} of \mathfrak{C}_{h}^{j} contains only one h-cube $\psi_{h}(C)$, and

$$
\psi_{h}^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_{h} d_{h}}(C), \quad h=1, \ldots, l .
$$

Proof. We denote by $\mathcal{P}_{i}^{j}=\mathcal{P}_{i}^{j}\left(d_{0}, \ldots, d_{l}\right)$ the partial union of cubes

$$
\mathcal{P}_{i}^{j}=\bigcup_{g=i}^{l} \psi_{i}\left(\mathfrak{C}_{i}^{j}\left(d_{i}\right)\right), \quad i=0, \ldots, l ; j=1, \ldots, k
$$

E.g., $\mathcal{P}_{l}^{j}=\psi_{l}\left(\mathfrak{C}_{l}^{j}\left(d_{l}\right)\right)$ and $\mathcal{P}_{0}^{j}=\mathfrak{C}^{j}$. Generalizing the above definition we define the height of a connected component \mathcal{K} of \mathcal{P}_{i}^{j} as the maximal $h \in$
$\{i, \ldots, l\}$ for which \mathcal{K} contains an h-cube. The set \mathcal{P}_{i}^{j} decomposes as

$$
\mathcal{P}_{i}^{j}=\coprod_{h=i}^{l} \mathcal{P}_{i, h}^{j}
$$

where $\mathcal{P}_{i, h}^{j}$ is the union of components of \mathcal{P}_{i}^{j} of height h.
Since \mathcal{P}_{l}^{j} consists of finitely many disjoint closed cubes, we can choose $d_{l-1}>0$ so small that each cube of $\psi_{l-1}\left(\mathfrak{C}_{l-1}^{j}\left(d_{l-1}\right)\right)$ intersects at most one cube of \mathcal{P}_{l}^{j} for each j. Then each component \mathcal{K} of $\mathcal{P}_{l-1, l}^{j}$ contains only one l-cube. We denote the distinguished cube in \mathcal{K} by $\mathcal{C}(\mathcal{K})$. Since \mathcal{P}_{l}^{j} is a compact subset of the open set \mathcal{U}_{l}, we can choose d_{l-1} so small that $\mathcal{P}_{l-1, l}^{j} \subset \mathcal{U}_{l}$ for each j. Moreover, choosing d_{l-1} yet smaller if necessary we can assume that

$$
\begin{equation*}
\psi_{l}^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_{l} d_{l}}\left(\psi_{l}^{-1}(\mathcal{C}(\mathcal{K}))\right) \tag{34}
\end{equation*}
$$

for each component \mathcal{K} of $\mathcal{P}_{l-1, l}^{j}$ and each j.
Since \mathcal{P}_{l-1}^{j} consists of finitely many disjoint compact components, we can choose $d_{l-2}>0$ so small that each cube of $\psi_{l-2}\left(\mathfrak{C}_{l-2}^{j}\left(d_{l-2}\right)\right)$ intersects at most one component of \mathcal{P}_{l-1}^{j} for each j. Then each component \mathcal{K} of $\mathcal{P}_{l-2, h}^{j}$ contains only one h-cube, $h=l, l-1, l-2$. We denote this distinguished cube again by $\mathcal{C}(\mathcal{K})$. If $h \in\{l, l-1\}$, then $\mathcal{C}(\mathcal{K})=\mathcal{C}(\underline{\mathcal{K}})$ where $\underline{\mathcal{K}}$ is the unique component of $\mathcal{P}_{l-1, h}^{j}$ contained in \mathcal{K}, and if $h=l-2$, then $\mathcal{C}(\mathcal{K})=\mathcal{K}$ is an $(l-2)$-cube. Since $\mathcal{P}_{l-1, l}^{j}$ is a compact subset of the open set \mathcal{U}_{l} and since $\mathcal{P}_{l-1, l-1}^{j}$ is a compact subset of the open set \mathcal{U}_{l-1}, we can choose d_{l-2} so small that $\mathcal{P}_{l-2, l}^{j} \subset \mathcal{U}_{l}$ and $\mathcal{P}_{l-2, l-1}^{j} \subset \mathcal{U}_{l-1}$ for each j. Moreover, the compact inclusions (34) imply that we can choose d_{l-2} so small that

$$
\psi_{l}^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_{l} d_{l}}\left(\psi_{l}^{-1}(\mathcal{C}(\mathcal{K}))\right)
$$

for each component \mathcal{K} of $\mathcal{P}_{l-2, l}^{j}$ and each j. Choosing d_{l-2} yet smaller if necessary we can also assume that

$$
\psi_{l-1}^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_{l-1} d_{l-1}}\left(\psi_{l}^{-1}(\mathcal{C}(\mathcal{K}))\right)
$$

for each component \mathcal{K} of $\mathcal{P}_{l-2, l-1}^{j}$ and each j.
Repeating this reasoning $l-2$ other times, we successively find d_{l-1}, \ldots, d_{0} such that assertions (i) and (ii) of the lemma hold true for all $h \in\{1, \ldots, l\}$ and all j. Since $\mathcal{C}_{0}^{j} \subset \mathcal{U}_{0}$ by definition of \mathcal{C}_{0}^{j}, the proof of Lemma 2.4 is complete.

For $h \geq 1$ the sets $M \backslash \mathrm{C}_{h}^{j}$ do not need to be connected. Define the saturation $\mathcal{S}(A)$ of a closed subset A of $\mathbb{R}^{2 n}$ as the union of A with the bounded components of $\mathbb{R}^{2 n} \backslash A$. For a closed subset \mathcal{A} of \mathcal{U}_{h} for which
$\mathcal{S}\left(\psi_{h}^{-1}(\mathcal{A})\right) \subset V_{h}$ we set

$$
\mathcal{S}(\mathcal{A})=\psi_{h}\left(\mathcal{S}\left(\psi_{h}^{-1}(\mathcal{A})\right)\right) .
$$

By Lemma 2.4 (ii) and the inclusions (33) we have $\mathcal{S}\left(\psi_{h}^{-1}\left(\mathfrak{C}_{h}^{j}\right)\right) \subset V_{h}$ for all $j \in\{1, \ldots, k\}$ and $h \in\{0, \ldots, l\}$. For $j \in\{1, \ldots, k\}$ we can therefore recursively define compact subsets of \mathcal{U}_{h} by

$$
\begin{aligned}
\mathcal{S}_{l}^{j} & =\mathcal{S}\left(\mathfrak{C}_{l}^{j}\right) \\
\mathcal{S}_{h}^{j} & =\mathcal{S}\left(\mathfrak{C}_{h}^{j} \backslash \bigcup_{g=h+1}^{l} \mathcal{S}_{g}^{j}\right), \quad h=l-1, \ldots, 0 .
\end{aligned}
$$

Then each set $M \backslash S_{h}^{j}$ is connected. A component of S_{h}^{j} is just the saturation of a component of \complement_{h}^{j} which is not enclosed by any component of $\bigcup_{g=h+1}^{l} \complement_{g}^{j}$. Each component \mathcal{K} of \mathcal{S}_{h}^{j} has piecewise smooth boundary, and according to Lemma 2.4 (ii) it contains only one h-cube $\psi_{h}(C)$, and

$$
\begin{equation*}
\psi_{h}^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_{h} d_{h}}(C), \quad h=1, \ldots, l . \tag{35}
\end{equation*}
$$

While a component of \mathcal{S}_{0}^{j} is a cube of \mathcal{C}_{0}^{j} and a component of \mathcal{S}_{1}^{j} is the union of a cube of \mathcal{C}_{1}^{j} and the overlapping cubes of \mathcal{C}_{0}^{j}, a component of \mathcal{S}_{2}^{j} might contain a cube of \mathfrak{C}_{0}^{j} which is disjoint from $\mathfrak{C}_{1}^{j} \cup \mathfrak{C}_{2}^{j}$, cf. Figure 7 .

Figure 7. A component of S_{2}^{j}.
If the ratios $d_{h} / d_{h+1}, h=0, \ldots, l-1$, are small enough, then Lemma 2.4 (ii) implies that a component of \mathfrak{C}_{h}^{j} cannot be enclosed by a component of \mathcal{C}_{g}^{j} for some $g<h$, and so the sets $\mathcal{S}_{h}^{j}, h=0, \ldots, l$, are disjoint. We finally abbreviate

$$
\mathcal{S}^{j}:=\bigcup_{h=0}^{l} \mathcal{S}_{h}^{j}
$$

and read off from (30) and the definition of the sets \mathfrak{S}_{h}^{j} that

$$
\begin{equation*}
M=\bigcup_{j=0}^{k} \mathfrak{g}^{j} \tag{36}
\end{equation*}
$$

Step 4. Moving the cubes of the same colour into \mathcal{B}_{0}

In order to move the sets \mathcal{S}^{j} into \mathcal{B}_{0} we will have to choose the d_{i} yet smaller. We shall then be able to construct for each j a Hamiltonian isotopy Φ^{j} of M which first moves \mathcal{S}_{0}^{j} to a "dense cluster" around the center of \mathcal{B}_{0} and then successively moves \mathcal{S}_{h}^{j} to a "shell" around the already constructed cluster $\bigcup_{g=0}^{h-1} \Phi^{j}\left(\mathfrak{S}_{g}^{j}\right), h=1, \ldots, l$.
The main tool for the construction of the maps Φ^{j} is the following elementary lemma.

Lemma 2.5. Let K be a compact subset of $\mathbb{R}^{2 n}$ and let q be a point in $\mathbb{R}^{2 n}$. Denote by \mathcal{K} the convex hull of the union $K \cup(q+K)$. For any open neighbourhood U of \mathcal{K} there exists a symplectomorphism τ of $\mathbb{R}^{2 n}$ which is supported in U and which translates K to $q+K$.

Proof. We follow [11, p. 73]. We choose a smooth function $f: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ such that $\left.f\right|_{\mathcal{K}}=1$ and $\left.f\right|_{\mathbb{R}^{2 n} \backslash U}=0$. Define the Hamiltonian function $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ by

$$
H(z)=f(z)\langle z,-J q\rangle
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean scalar product on $\mathbb{R}^{2 n}$ and where J denotes the standard complex structure on $\mathbb{R}^{2 n}$ defined by

$$
\omega_{0}(z, w)=\langle z,-J w\rangle, \quad z, w \in \mathbb{R}^{2 n}
$$

Recall that the Hamiltonian vector field X_{H} of H is given by $X_{H}(z)=$ $J \nabla H(z)$. We conclude that the time-1-map τ of the flow generated by X_{H} is a symplectomorphism of $\mathbb{R}^{2 n}$ which is supported in U. Moreover, for $z \in \mathcal{K}$ we have

$$
X_{H}(z)=J \nabla H(z)=J(-J q)=q
$$

and so $\tau(z)=z+q$ for all $z \in K$.
We denote by B_{r} the open ball of radius r in $\mathbb{R}^{2 n}$. We recursively define the open ball $B_{r_{0}}$ and the open "annuli" $A_{r_{h-1}}^{r_{h}}=B_{r_{h}} \backslash \overline{B_{r_{h-1}}}$ by

$$
\begin{align*}
\left|B_{r_{0}}\right| & =\frac{1}{k}\left(\left|V_{0}\right|+\frac{k-1}{l+1} \varepsilon\right) \tag{37}\\
\left|A_{r_{h-1}}^{r_{h}}\right| & =\frac{1}{k}\left(\left|V_{h}\right|+\frac{k-1}{l+1} \varepsilon\right), \quad h=1, \ldots, l . \tag{38}
\end{align*}
$$

The definitions (37) and (38), the identities $\left|V_{h}\right|=\mu\left(\mathcal{U}_{h}\right)$ and the estimate (18), and the estimate (11) and the identity $\left|B^{2 n}\left(a_{0}^{\prime}\right)\right|=\mu\left(\mathcal{B}_{0}^{\prime}\right)$ imply that

$$
\begin{align*}
\left|B_{r_{0}}\right|+\sum_{h=1}^{l}\left|A_{r_{h-1}}^{r_{h}}\right| & =\frac{1}{k} \sum_{h=0}^{l}\left(\left|V_{h}\right|+\frac{k-1}{l+1} \varepsilon\right) \tag{39}\\
& <\frac{\mu(M)}{k}+\frac{\varepsilon}{k}+\frac{k-1}{k} \varepsilon \\
& =\frac{\mu(M)}{k}+\varepsilon \\
& <\left|B^{2 n}\left(a_{0}^{\prime}\right)\right|
\end{align*}
$$

and so

$$
\begin{equation*}
B_{r_{0}} \cup \bigcup_{h=1}^{l} A_{r_{h-1}}^{r_{h}} \subset B^{2 n}\left(a_{0}^{\prime}\right) \tag{40}
\end{equation*}
$$

Consider again the symplectic atlas $\mathfrak{A}=\left\{\psi_{h}: V_{h} \rightarrow \mathcal{U}_{h}, h=0, \ldots, l\right\}$ of (M, ω). Recall that $\psi_{0}: V_{0} \rightarrow \mathcal{U}_{0}$ is the Darboux chart $\varphi_{0}: B^{2 n}\left(a_{0}\right) \rightarrow$ \mathcal{B}_{0} and that the sets \mathcal{U}_{h} and V_{h} are connected and have piecewise smooth boundaries. Also recall that there exist larger charts $\widetilde{\psi}_{h}: \widetilde{V}_{h} \rightarrow \widetilde{\mathcal{U}}_{h}$. We can assume that the sets $\widetilde{\mathcal{U}}_{h}$ and \widetilde{V}_{h} are also connected and have piecewise smooth boundaries. We fix $j \in\{1, \ldots, k\}$. The construction of the map Φ_{0}^{j} will somewhat differ from the one of the maps Φ_{h}^{j} for $h \geq 1$ since $\Phi_{0}^{j}\left(\mathcal{S}_{0}^{j}\right)$ will not be disjoint from δ_{0}^{j}. We start with constructing Φ_{0}^{j}.

Proposition 2.6. If the numbers $d_{0}, \ldots, d_{l}>0$ as well as the ratios d_{i} / d_{i+1}, $i=0, \ldots, l-1$, are small enough, then there exists a symplectomorphism Φ_{0}^{j} of M whose support is disjoint from $\bigcup_{h=1}^{l} \mathcal{S}_{h}^{j}$ and such that $\Phi_{0}^{j}\left(\mathcal{S}_{0}^{j}\right) \subset$ $\psi_{0}\left(B_{r_{0}}\right)$.

Proof. We recall that \mathcal{S}_{0}^{j} is the set of "free" cubes in \mathfrak{C}_{0}^{j}, i.e., each component of \mathcal{S}_{0}^{j} is a cube of \mathcal{C}_{0}^{j} which is not enclosed by any component of $\bigcup_{h=1}^{l} \mathfrak{C}_{h}^{j}$. We abbreviate $\mathfrak{S}_{0}:=\psi_{0}^{-1}\left(\mathfrak{S}_{0}^{j}\right)$. Since \mathfrak{S}_{0} is contained in $\mathfrak{C}_{0}^{j}\left(d_{0}\right)$, we deduce from the estimate (29) for $i=0$ and the definition (37) that

$$
\begin{equation*}
\left|\mathfrak{S}_{0}\right|<\left|B_{r_{0}}\right| \tag{41}
\end{equation*}
$$

We denote by \mathfrak{Q} the standard decomposition of $\mathbb{R}^{2 n}$ into closed cubes,

$$
\mathfrak{Q}:=\bigcup_{v \in \mathbb{Z}^{2 n}} v+[0,1]^{2 n},
$$

and for each $\nu>0$ and each subset A of $\mathbb{R}^{2 n}$ we denote by $\mathfrak{Q}(\nu, A)$ the set of cubes in $\nu \mathfrak{Q}$ which are contained in A. Let s_{0} be the number of cubes in \mathfrak{S}_{0}. The estimate (41) implies that after choosing $d_{0}>0$ smaller if necessary we find $\varepsilon_{0}>0$ such that $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$ contains at least s_{0} cubes.

Recall that $k \geq 2 n+1$ and recall from the estimate (39) that $r_{0}<\sqrt{a_{0}^{\prime} / \pi}$. We define $\widetilde{r}_{0}>r_{0}$ by

$$
\begin{equation*}
\widetilde{r}_{0}=\min \left\{\frac{2 k}{4 n+1} r_{0}, \frac{1}{2}\left(r_{0}+\sqrt{a_{0}^{\prime} / \pi}\right)\right\} \tag{42}
\end{equation*}
$$

and we denote by $\mathfrak{S}_{0}^{\text {int }}$ the set of cubes in \mathfrak{S}_{0} contained in $B_{\widetilde{r}_{0}}$. Since $B_{\widetilde{r}_{0}} \subset B^{2 n}\left(a_{0}^{\prime}\right)$ and since $\mathcal{B}_{0}^{\prime}=\psi_{0}\left(B^{2 n}\left(a_{0}^{\prime}\right)\right)$ is disjoint from \mathcal{U}_{h} and $\mathcal{S}_{h}^{j} \subset \mathcal{U}_{h}$, $h \geq 1$, the set $B_{\widetilde{r}_{0}}$ is disjoint from $\psi_{0}^{-1}\left(\mathcal{S}_{h}^{j}\right), h \geq 1$. In particular, $\mathfrak{S}_{0}^{\text {int }}$ is the set of cubes in $\mathfrak{C}_{0}^{j}\left(d_{0}\right)$ contained in $B_{\widetilde{r}_{0}}$, cf. Figure 9 . We abbreviate the set of exterior cubes in \mathfrak{S}_{0} by

$$
\mathfrak{S}_{0}^{\text {ext }}:=\mathfrak{S}_{0} \backslash \mathfrak{S}_{0}^{\text {int }}
$$

Lemma 2.7. For d_{0} and ε_{0} small enough there exists a symplectomorphism θ of \widetilde{V}_{0} such that
(i) the support of θ is contained in $B_{\widetilde{r}_{0}}$ and disjoint from $\mathfrak{S}_{0}^{\text {ext }}$;
(ii) θ maps each cube of $\mathfrak{S}_{0}^{\text {int }}$ into a cube of $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$;
(iii) the set of cubes in $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$ containing a cube of $\theta\left(\mathfrak{S}_{0}^{\text {int }}\right)$ is contractible.

Proof. Using Lemmata 2.3 and 2.5 we successively construct symplectomorphisms $\theta_{2 n}, \theta_{2 n-1}, \ldots, \theta_{1}$ such that $\theta_{2 n}$ "collapses" $\mathfrak{S}_{0}^{\text {int }}$ along the $x_{2 n}$-axis and θ_{i} "collapses" $\theta_{i+1} \circ \cdots \circ \theta_{2 n}\left(\mathfrak{S}_{0}^{\text {int }}\right)$ along the x_{i}-axis, $i=2 n-1, \ldots, 1$, and such that the composite map

$$
\theta=\theta_{1} \circ \cdots \circ \theta_{2 n}
$$

meets assertion (i) as well as assertions (ii) and (iii) with $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$ replaced by $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{\widetilde{r}_{0}}\right)$, cf. Figure 8 .

Figure 8. The map $\theta=\theta_{1} \circ \theta_{2}$ for $j=1$.
In order to see that assertions (ii) and (iii) can be fulfilled as stated, we infer from the definition of the set $d_{0} \mathfrak{C}^{j}(2 n, k) \supset \mathfrak{S}_{0}^{\text {int }}$ given in Step 2 that

$$
\frac{\operatorname{diam} \mathfrak{S}_{0}^{\operatorname{int}}}{\operatorname{diam} \theta\left(\mathfrak{S}_{0}^{\operatorname{int} t}\right)} \rightarrow \frac{k}{2 n} \quad \text { as } \quad d_{0} \rightarrow 0 \text { and } \varepsilon_{0} \rightarrow 0
$$

In view of the choice (42) of \widetilde{r}_{0} we can therefore choose d_{0} and ε_{0} so small that $\theta\left(\mathfrak{S}_{0}^{\text {int }}\right) \subset \mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$, as desired.

Lemma 2.8. If the numbers $d_{0}, \ldots, d_{l}>0$ as well as the ratios d_{i} / d_{i+1}, $i=0, \ldots, l-1$, are small enough, then there exists a symplectomorphism Θ_{0} of \widetilde{V}_{0} such that
(i) the support of Θ_{0} is compact and disjoint from

$$
\psi_{0}^{-1}\left(\bigcup_{h=1}^{l} \mathcal{S}_{h}^{j}\right) \cup \theta\left(\mathfrak{S}_{0}^{\operatorname{int}}\right) ;
$$

(ii) Θ_{0} maps each cube of $\mathfrak{S}_{0}^{\text {ext }}$ into a cube of $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$.

Proof. The set $\mathcal{U}_{0} \backslash \bigcup_{h=1}^{l} \delta_{h}^{j}$ might not be connected for any choice of d_{0}, \ldots, d_{l}, in which case not every cube in S_{0}^{j} can be moved into $\psi_{0}\left(B_{r_{0}}\right)$ inside $\mathcal{U}_{0} \backslash \bigcup_{h=1}^{l} \delta_{h}^{j}$. This is the reason why we work in the extended chart $\widetilde{\psi}_{0}: \widetilde{V}_{0} \rightarrow \widetilde{U}_{0}$. We choose the numbers d_{0}, \ldots, d_{l} so small that each component of $\bigcup_{h=1}^{l} \delta_{h}^{j}$ which intersects \mathcal{U}_{0} is contained in $\widetilde{\mathcal{U}}_{0}$. The component $\widehat{\mathcal{U}}_{0}$ of $\widetilde{\mathcal{U}}_{0} \backslash \bigcup_{h=1}^{l} \mathcal{S}_{h}^{j}$ containing \mathcal{B}_{0}^{\prime} then contains \mathcal{S}_{0}^{j}, and the set $\widehat{V}_{0} \widetilde{\psi}_{0}^{-1}\left(\widehat{\mathcal{U}}_{0}\right)$ is an open connected set with piecewise smooth boundary which contains \mathfrak{S}_{0}.

Figure 9. Half of the subset $\mathfrak{S}_{0}=\mathfrak{S}_{0}^{\text {int }} \cup \mathfrak{S}_{0}^{\text {ext }}$ of \widehat{V}_{0}.
In order to move the cubes in $\mathfrak{S}_{0}^{\text {ext }}$ into $B_{r_{0}}$ we shall associate a tree with $\mathfrak{S}_{0}^{\text {ext. }}$. Recall that $\mathfrak{S}_{0}^{\text {ext }}$ is a subset of $d_{0} \mathfrak{C}^{j}(2 n, k)$. We enlarge $\mathfrak{S}_{0}^{\text {ext }}$ to the set $\widehat{\mathfrak{S}}_{0}^{\text {ext }}$ defined as the set of cubes in $d_{0} \mathfrak{C}^{j}(2 n, k) \backslash \mathfrak{S}_{0}^{\text {int }}$ which are contained in \widehat{V}_{0}. Abbreviate

$$
\lambda_{m}:= \begin{cases}k & \text { if } m=1, \\ 2 n-m+2 & \text { if } m \in\{2, \ldots, 2 n\} .\end{cases}
$$

We say that two cubes C and C^{\prime} of $\widehat{\mathfrak{S}}_{0}^{\text {ext }}$ are m-neighbours if

$$
C^{\prime}=C \pm d_{0} \lambda_{m} e_{m}
$$

for some $m \in\{1, \ldots, 2 n\}$ and if their convex hull is contained in \widehat{V}_{0}. According to Lemma 2.3 (i) the (interior of) the convex hull of two neighbours does not intersect any third cube of $\widehat{\mathfrak{S}}_{0}^{\text {ext }}$, cf. Figure 5 . We define \mathcal{G}_{0}^{\prime} to be the graph whose edges are the straight lines connecting the centers of neighbours in $\widehat{\mathfrak{S}}_{0}^{\text {ext }}$, and we define \mathcal{G}_{0} to be the graph obtained from \mathcal{G}_{0}^{\prime} by declaring the intersections of edges to be vertices, cf. Figure 10.

Figure 10. Part of the graph \mathcal{G}_{0} associated with $\widehat{\mathfrak{S}}_{0}^{\text {ext }}$.
Since \widehat{V}_{0} is an open connected relatively compact set with piecewise smooth boundary, we can choose d_{0} so small that the graph \mathcal{G}_{0} is connected. Choosing d_{0} yet smaller if necessary, we can also assume that

$$
\begin{equation*}
\sqrt{2 n} d_{0}<\frac{\widetilde{r}_{0}-r_{0}}{2} \tag{43}
\end{equation*}
$$

and that the convex hull of any two neighbours in $\widehat{\mathfrak{S}}_{0}^{\text {ext }}$ is contained in $\widehat{V}_{0} \backslash \overline{B_{r_{0}}}$. We then in particular have that $\mathfrak{S}_{0}^{\text {ext }}$ is disjoint from $\overline{B_{r_{0}}}$. Let C_{1} be a cube of $\mathfrak{S}_{0}^{\text {ext }}$ whose distance to $B_{r_{0}}$ is minimal. We choose a maximal tree \mathcal{T}_{0} in \mathcal{G}_{0} which is rooted at the center of C_{1}. Denote a vertex of \mathcal{T}_{0} represented by the center of a cube C of $\mathfrak{S}_{0}^{\text {ext }}$ by $v(C)$ and write \prec for the partial ordering on $\mathfrak{S}_{0}^{\text {ext }}$ induced by \mathfrak{T}_{0}. We number the $s_{0}^{\text {ext }}$ many cubes in $\mathfrak{S}_{0}^{\text {ext }}$ in such a way that

$$
\begin{equation*}
v\left(C_{i}\right) \prec v\left(C_{i^{\prime}}\right) \Longrightarrow i<i^{\prime} . \tag{44}
\end{equation*}
$$

We finally recall that $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right)$ contains at least s_{0} cubes. In view of Lemma 2.7 (iii) we can therefore choose cubes $Q_{1}, \ldots, Q_{s_{0}^{\text {ext }}}$ from the set $\mathfrak{Q}\left(d_{0}+\varepsilon_{0}, B_{r_{0}}\right) \backslash \theta\left(\mathfrak{S}_{0}^{\text {int }}\right)$ in such a way that each of the sets

$$
\begin{equation*}
\theta\left(\mathfrak{S}_{0}^{\text {int }}\right) \cup \bigcup_{g=1}^{i} Q_{i} \tag{45}
\end{equation*}
$$

$i=1, \ldots, s_{0}^{\text {ext }}$, is contractible.
We are now in a position to move the cubes of $\mathfrak{S}_{0}^{\text {ext }}$ into $B_{r_{0}}$. We shall successively move C_{i} into $Q_{i}, i=1, \ldots, s_{0}^{\text {ext }}$. Define $\left.\widehat{r}_{0} \in\right] r_{0}, \widetilde{r}_{0}\left[\right.$ by \widehat{r}_{0} : $=\left(r_{0}+\widetilde{r}_{0}\right) / 2$. In view of the assumption (43) we can then estimate the diameter of a cube in $\mathfrak{S}_{0}^{\text {ext }}$ by

$$
\begin{equation*}
\sqrt{2 n} d_{0}<\widehat{r}_{0}-r_{0} \tag{46}
\end{equation*}
$$

We first use Lemma 2.5 to construct a symplectomorphism ϑ_{1} of \widetilde{V}_{0} whose support is contained in \widehat{V}_{0} and disjoint from

$$
\bigcup_{g=2}^{s_{0}^{\mathrm{ext}}} C_{g} \cup \theta\left(\mathfrak{S}_{0}^{\mathrm{int}}\right)
$$

and which maps C_{1} into Q_{1}. Indeed, since C_{1} is a cube of $\mathfrak{S}_{0}^{\text {ext }}$ closest to $B_{r_{0}}$ and in view of the estimate (46) we can first move C_{1} into the annulus $B_{\widehat{r}_{0}} \backslash B_{r_{0}}$ without touching $\bigcup_{g \geq 2} C_{g}$, and in view of Lemma 2.7 (iii) we can then move the image cube along a piecewise linear path inside $B_{\widehat{r}_{0}} \backslash B_{r_{0}}$ to a position from which it can be moved into $B_{r_{0}}$ to its preassigned cube Q_{1} without touching $\theta\left(\mathfrak{S}_{0}^{\text {ext }}\right)$.

Assume now by induction that we have already constructed symplectomorphisms ϑ_{g} which moved the cubes C_{g} into the cubes Q_{g} for $g=$ $1, \ldots, i-1$. We are going to construct a symplectomorphism ϑ_{i} of \widetilde{V}_{0} whose support is contained in \widehat{V}_{0} and disjoint from

$$
\begin{equation*}
\bigcup_{g=i+1}^{s_{0}^{\mathrm{ext}}} C_{g} \cup \bigcup_{g=1}^{i-1} Q_{g} \cup \theta\left(\mathfrak{S}_{0}^{\mathrm{int}}\right) \tag{47}
\end{equation*}
$$

and which maps C_{i} into Q_{i}. Let γ be the piecewise linear path from $v\left(C_{i}\right)$ to $v\left(C_{1}\right)$ determined by the tree \mathfrak{T}_{0}. Because of (44), all the cubes of $\mathfrak{S}_{0}^{\text {ext }}$ on γ except C_{i} have already been moved into $B_{r_{0}}$. Using Lemmata 2.3 (i) and 2.5 we can therefore move C_{i} along γ to (the "former locus" of) C_{1} without touching $\bigcup_{g \geq i+1} C_{g}$. More precisely, let σ be a segment of γ, i.e., σ is a straight line which is parallel to a coordinate axis and connects two vertices v and v^{\prime} of \mathcal{G}_{0}. Let R be the convex hull of the cubes C_{v} and $C_{v^{\prime}}$ congruent to C_{i} and centered at v and v^{\prime}, respectively. In view of Lemma 2.3 (i), the closed rectangle R either is disjoint from $\bigcup_{g \geq i+1} C_{g}$ or it touches some cubes $C_{j}, j \geq i+1$, along a face. In the first case, we can directly apply Lemma 2.5 to move C_{v} to $C_{v^{\prime}}$ without touching $\bigcup_{g \geq i+1} C_{g}$. In the second case, we first move the touching cubes C_{j} a bit away from R, then move C_{v} to $C_{v^{\prime}}$, and then move the displaced cubes back to their former locus, cf. Figure 11. We can do this in such a way that the support of the resulting map τ_{σ} which translates C_{v} to $C_{v^{\prime}}$ is disjoint from $\bigcup_{g \geq i+1} C_{g}$. Since R is contained in $\widehat{V}_{0} \backslash \overline{B_{r_{0}}}$ we can also arrange that the support of τ_{σ} is contained in $\widehat{V}_{0} \backslash \overline{B_{r_{0}}}$. Composing the maps τ_{σ} corresponding to the segments of γ we obtain a symplectomorphism τ_{i} whose support is contained in \widehat{V}_{0} and disjoint from the

Figure 11. How to move C_{v} to $C_{v^{\prime}}$ along a path blocked by C_{j} and $C_{j^{\prime}}$.
set (47) and which maps C_{i} to C_{1}. Since the set (45) is contractible, we can now proceed as in the construction of ϑ_{1} and construct a symplectomorphism ϑ_{i} which moves the image of C_{i} at C_{1} into Q_{i} without touching the set (47). The composition $\vartheta_{i} \circ \tau_{i}$ is as desired.

After all, the composite map

$$
\Theta_{0}=\left(\vartheta_{s_{0}^{\text {ext }}} \circ \tau_{s_{0}^{\text {ext }}}\right) \circ \cdots \circ\left(\vartheta_{2} \circ \tau_{2}\right) \circ \vartheta_{1}
$$

is a symplectomorphism of \widetilde{V}_{0} which meets assertions (i) and (ii).
Let θ and Θ_{0} be the symplectomorphisms guaranteed by Lemmata 2.7 and 2.8. The symplectomorphism

$$
\widetilde{\psi}_{0} \circ \Theta_{0} \circ \theta \circ \widetilde{\psi}_{0}^{-1}
$$

of $\widetilde{\mathcal{U}}_{0}$ smoothly extends by the identity to a symplectomorphism Φ_{0}^{j} of M whose support is disjoint from $\bigcup_{h=1}^{l} \oint_{h}^{j}$ and such that $\Phi_{0}^{j}\left(\delta_{0}^{j}\right) \subset \psi_{0}\left(B_{r_{0}}\right)$. The proof of Proposition 2.6 is complete.

Proposition 2.9. If the numbers $d_{0}, \ldots, d_{l}>0$ as well as the ratios d_{i} / d_{i+1}, $i=0, \ldots, l-1$, are small enough, then there exists for each $h=1, \ldots, l a$ symplectomorphism Φ_{h}^{j} of M whose support is disjoint from

$$
\bigcup_{g=0}^{h-1} \Phi_{g}^{j}\left(\mathcal{S}_{g}^{j}\right) \cup \bigcup_{g=h+1}^{l} \mathcal{S}_{g}^{j}
$$

and such that $\Phi_{h}^{j}\left(\mathcal{S}_{h}^{j}\right) \subset \psi_{0}\left(A_{r_{h-1}}^{r_{h}}\right)$.
Proof. We first explain the construction of Φ_{1}^{j}. Recall from the end of Step 3 that $\mathcal{S}_{1}^{j} \subset \mathcal{U}_{1}$ is the union of those components of \mathcal{C}_{1}^{j} which are not enclosed by any component of $\bigcup_{h=2}^{l} \mathrm{C}_{h}^{j}$. Each component \mathcal{K} consists of a 1-cube $\psi_{1}(C)$ and some overlapping cubes of \mathfrak{C}_{0}^{j}, and

$$
\psi_{1}^{-1}(\mathcal{K}) \subset \mathcal{N}_{\nu_{1} d_{1}}(C) \subset V_{1} .
$$

For any cube C of $\mathfrak{C}_{1}^{j}\left(d_{1}\right)$ we denote by $C^{\nu_{1}}$ the closed cube of width $(1+$ $\left.2 \nu_{1}\right) d_{1}$ concentric to C. This is the smallest closed cube containing the
neighbourhood $\mathcal{N}_{\nu_{1} d_{1}}(C)$ of C. We abbreviate

$$
\mathfrak{S}_{1}:=\bigcup C^{\nu_{1}}
$$

where the union is taken over those cubes C of $\mathfrak{C}_{1}^{j}\left(d_{1}\right)$ that lie in $\psi_{1}^{-1}\left(\mathcal{S}_{1}^{j}\right)$. In view of the choice (31) the cubes $C^{\nu_{1}}$ are disjoint. Since the compact subset $\psi_{1}^{-1}\left(\mathcal{S}_{1}^{j}\right)$ of V_{1} is disjoint from the compact subset $\psi_{1}^{-1}\left(\bigcup_{h \geq 2} \mathcal{S}_{h}^{j}\right)$ of $\overline{V_{1}}$, we can choose $\nu_{1}>0$ (and for this $d_{0}>0$) so small that \mathfrak{S}_{1} is disjoint from $\psi_{1}^{-1}\left(\bigcup_{h \geq 2} \mathcal{S}_{h}^{j}\right)$. Since for each cube $C^{\nu_{1}}$ in \mathfrak{S}_{1} the cube C belongs to $\mathfrak{C}_{1}^{j}\left(d_{1}\right)$, we read off from the estimate (32) for $i=1$ and the definition (38) for $h=1$ that

$$
\begin{equation*}
\left|\mathfrak{S}_{1}\right|<\left|A_{r_{0}}^{r_{1}}\right| \tag{48}
\end{equation*}
$$

Let s_{1} be the number of cubes in \mathfrak{S}_{1}. The estimate (48) implies that after choosing $d_{1}>0$ and $\nu_{1}>0$ smaller if necessary we find $\varepsilon_{1}>0$ such that $\mathfrak{Q}\left(\left(1+2 \nu_{1}\right) d_{1}+\varepsilon_{1}, A_{r_{0}}^{r_{1}}\right)$ contains at least s_{1} cubes.

We next choose the numbers d_{0}, \ldots, d_{l} so small that each component of $\bigcup_{h=2}^{l} S_{h}^{j}$ which intersects \mathcal{U}_{1} is contained in $\widetilde{\mathcal{U}}_{1}$. The component $\widehat{\mathcal{U}}_{1}$ of $\widetilde{\mathcal{U}}_{1} \backslash \bigcup_{h=2}^{l} \mathcal{S}_{h}^{j}$ containing \mathcal{B}_{0}^{\prime} then contains \mathcal{S}_{0}^{j}, and the set $\widehat{V}_{1} \widetilde{\psi}_{1}^{-1}\left(\widehat{\mathcal{U}}_{1}\right)$ is an open connected set with piecewise smooth boundary which contains \mathfrak{S}_{1}.

We enlarge $\mathfrak{S}_{1}^{\text {ext }}$ to the set $\widehat{\mathfrak{S}}_{1}^{\text {ext }}$ defined as the set of cubes in $d_{1} \mathfrak{C}^{j}(2 n, k)$ which are contained in \widehat{V}_{1}.

In order to complete the proof of Theorem 2 we choose $d_{0}, \ldots, d_{l}>0$ such that the conclusions of Propositions 2.6 and 2.9 hold for each $j \in\{1, \ldots, k\}$, and we define the symplectomorphism Φ^{j} of M by

$$
\Phi^{j}=\Phi_{h}^{j} \circ \cdots \circ \Phi_{1}^{j} \circ \Phi_{0}^{j} .
$$

In view of Propositions 2.6 and 2.9 and the inclusion (40) we then have

$$
\begin{aligned}
\Phi^{j}\left(\mathcal{S}^{j}\right) & =\Phi^{j}\left(\bigcup_{h=0}^{l} \mathcal{S}_{h}^{j}\right) \\
& =\bigcup_{h=0}^{l} \Phi_{h}^{j}\left(\mathcal{S}_{h}^{j}\right) \\
& \subset \psi_{0}\left(B^{2 n}\left(a_{0}^{\prime}\right)\right) \\
& \subset \mathcal{B}_{0} .
\end{aligned}
$$

This and the identity (36) imply that the k Darboux charts

$$
\left(\Phi^{j}\right)^{-1} \circ \varphi_{0}: B^{2 n}(a) \rightarrow M
$$

cover M. The proof of Theorem 2 is finally complete, and so Theorem 1 is also proved.

3. Variations of the theme

Consider again a closed $2 n$-dimensional symplectic manifold (M, ω). In the symplectic packing problem, one usually considers packings of (M, ω) by equal balls, see $[10,22,35,1,2,30]$. In analogy to this we study the number

$$
\mathrm{S}_{\mathrm{B}}^{\overline{\mathrm{B}}}(M, \omega)=\min \left\{k \mid M=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{k}\right\}
$$

where now each \mathcal{B}_{i} is the symplectic image $\varphi_{i}\left(B^{2 n}(a)\right)$ of the same ball.
Theorem 3.1. Let (M, ω) be a closed $2 n$-dimensional symplectic manifold. Then Theorem 1 holds with $\mathrm{S}_{\mathrm{B}}(M, \omega)$ replaced by $\mathrm{S}_{\overline{\mathrm{B}}}(M, \omega)$.

Proof. In the proof of Theorem 1 we have covered (M, ω) by equal balls and have thus proved Theorem 1 with $\mathrm{S}_{\mathrm{B}}(M, \omega)$ replaced by $\mathrm{S}_{\overline{\mathrm{B}}}(M, \omega)$.

Clearly,

$$
\begin{equation*}
\mathrm{S}_{\mathrm{B}}(M, \omega) \leq \mathrm{S}_{\overline{\mathrm{B}}}^{\overline{(}}(M, \omega) . \tag{49}
\end{equation*}
$$

For every $a>0$ we denote by $\operatorname{Emb}(B(a), M)$ the space of symplectic embeddings of $\left(\overline{B^{2 n}(a)}, \omega_{0}\right) \hookrightarrow(M, \omega)$ endowed with the C^{∞}-topology.
Corollary 3.2. Assume that $\lambda(M, \omega) \geq 2 n+1$ or that $\operatorname{Emb}(B(a), M)$ is path-connected for all $a>0$. Then $\mathrm{S}_{\mathrm{B}}(M, \omega)=\mathrm{S}_{\overline{\mathrm{B}}}(M, \omega)$.
Proof. If $\lambda(M, \omega) \geq 2 n+1$, then Theorem 1 and Theorem 3.1 yield $\mathrm{S}_{\mathrm{B}}(M, \omega)=\lambda(M, \omega)$ and $\mathrm{S}_{\mathrm{B}}^{\overline{\mathrm{B}}}(M, \omega)=\lambda(M, \omega)$.

Assume now that $\operatorname{Emb}(B(a), M)$ is path-connected for all $a>0$, and choose $k=\mathrm{S}_{\mathrm{B}}(M, \omega)$ symplectic embeddings $\varphi_{i}: \overline{B^{2 n}\left(a_{i}\right)} \hookrightarrow M$ such that $M=\bigcup_{i=1}^{k} \varphi_{i}\left(B^{2 n}\left(a_{i}\right)\right)$. We choose $\varepsilon>0$ so small that

$$
M=\bigcup_{i=1}^{k} \varphi_{i}\left(B^{2 n}\left(a_{i}-\varepsilon\right)\right),
$$

and set $a_{i}^{\prime}=a_{i}-\varepsilon$. We can assume that $a_{1}^{\prime}=\max _{i} a_{i}^{\prime}$. The identity $\mathrm{S}_{\mathrm{B}}(M, \omega)=\mathrm{S}_{\mathrm{B}}^{ \pm}(M, \omega)$ follows from
Lemma 3.3. For each $i \geq 2$ there exists a symplectic embedding

$$
\widetilde{\varphi}_{i}: B^{2 n}\left(a_{1}^{\prime}\right) \hookrightarrow M
$$

such that $\left.\widetilde{\varphi}_{i}\right|_{B^{2 n}\left(a_{i}^{\prime}\right)}=\left.\varphi_{i}\right|_{B^{2 n}\left(a_{i}^{\prime}\right)}$.
Proof. By assumption, there exists a smooth family of symplectomorphisms $\varphi_{i}^{t}: B^{2 n}\left(a_{i}\right) \hookrightarrow M$ such that

$$
\varphi_{i}^{0}=\left.\varphi_{1}\right|_{B^{2 n}\left(a_{i}\right)} \quad \text { and } \quad \varphi_{i}^{1}=\varphi_{i} .
$$

Consider the subsets

$$
A=\bigcup_{t \in[0,1]}\{t\} \times \varphi_{i}^{t}\left(B^{2 n}\left(a_{i}\right)\right) \quad \text { and } \quad B=\bigcup_{t \in[0,1]}\{t\} \times \varphi_{i}^{t}\left(B^{2 n}\left(a_{i}^{\prime}\right)\right)
$$

of $[0,1] \times M$. Since each set $\varphi_{i}^{t}\left(B^{2 n}\left(a_{i}\right)\right)$ is contractible, there exists a smooth time-dependent Hamiltonian function $H: A \rightarrow \mathbb{R}$ generating the symplectic isotopy $\varphi_{i}^{t} \circ\left(\varphi_{i}^{0}\right)^{-1}: \varphi_{1}\left(B^{2 n}\left(a_{i}\right)\right) \rightarrow M$. By Whitney's Theorem there exists a smooth function $f:[0,1] \times M \rightarrow[0,1]$ such that $f=1$ on B and $f=0$ on $M \backslash A$. Let Φ be the time-1-map $M \rightarrow M$ of the flow generated by Hamiltonian $f H$. Then

$$
\Phi=\varphi_{i}^{1} \circ\left(\varphi_{i}^{0}\right)^{-1} \quad \text { on } \varphi_{1}\left(B^{2 n}\left(a_{i}^{\prime}\right)\right) .
$$

We define the embedding $\widetilde{\varphi}_{i}:=\left.\Phi \circ \varphi_{1}\right|_{B^{2 n}\left(a_{i}\right)}: B^{2 n}\left(a_{i}\right) \hookrightarrow M$ and find that on $B^{2 n}\left(a_{i}^{\prime}\right)$ we have

$$
\widetilde{\varphi}_{i}=\Phi \circ \varphi_{1}=\varphi_{i}^{1} \circ\left(\varphi_{i}^{0}\right)^{-1} \circ \varphi_{1}=\varphi_{i}^{1} \circ \varphi_{1}^{-1} \circ \varphi_{1}=\varphi_{i}^{1} .
$$

The proof of Lemma 3.3 is complete, and so Corollary 3.2 is also proved.
The spaces $\operatorname{Emb}(B(a), M)$ are known to be path-connected for all $a>0$ for $n=1$ and for a class of symplectic 4 -manifolds containing (blow-ups of) rational and ruled manifolds, see [21]. No closed symplectic manifold is known for which $\operatorname{Emb}(B(a), M)$ is not path-connected for some $a>0$. We thus ask

Question 3.4. Is it true that $\mathrm{S}_{\mathrm{B}}(M, \omega)=\mathrm{S}_{\mathrm{B}}(M, \omega)$ for every closed symplectic manifold (M, ω) ?

We next study the "symplectic Lusternik-Schnirelmann category" $\mathrm{S}(M, \omega)$ defined as

$$
\mathrm{S}(M, \omega)=\min \left\{k \mid M=\mathcal{U}_{1} \cup \cdots \cup \mathcal{U}_{k}\right\}
$$

where each \mathcal{U}_{i} is the image $\varphi_{i}\left(U_{i}\right)$ of a symplectic embedding $\varphi_{i}: U_{i} \rightarrow \mathcal{U}_{i} \subset$ M of a bounded subset U_{i} of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ diffeomorphic to the open ball in $\mathbb{R}^{2 n}$.

Theorem 3.5. Let (M, ω) be a closed $2 n$-dimensional symplectic manifold. Then $\mathrm{S}(M, \omega) \leq 2 n+1$.

Theorem 3.5 will follow from a stronger result dealing with coverings by displaceable sets. We say that a subset \mathcal{U} of M is displaceable if there exists an autonomous Hamiltonian function $H: M \rightarrow \mathbb{R}$ whose time-1-map φ_{H} displaces \mathcal{U}, i.e., $\varphi_{H}(\mathcal{U}) \cap \mathcal{U}=\emptyset$. Define the invariant $\mathrm{S}_{\text {dis }}(M, \omega)$ as

$$
\mathrm{S}_{\mathrm{dis}}(M, \omega)=\min \left\{k \mid M=\mathcal{U}_{1} \cup \cdots \cup \mathcal{U}_{k}\right\}
$$

where each \mathcal{U}_{i} is as in the definition of the invariant $\mathrm{S}(M, \omega)$ and is in addition displaceable. Coverings by such subsets \mathcal{U}_{i} play a role in the recent construction of Calabi quasimorphisms on the group of Hamiltonian diffeomorphisms of (M, ω) in [6], see also [3].

Theorem 3.6. Let (M, ω) be a closed $2 n$-dimensional symplectic manifold. Then $\mathrm{S}_{\mathrm{dis}}(M, \omega) \leq 2 n+1$.

Of course, $\mathrm{B}(M) \leq \mathrm{S}(M, \omega) \leq \mathrm{S}_{\text {dis }}(M, \omega)$. Theorem 3.6 thus implies Theorem 3.5, and Proposition 1 and Theorem 3.6 yield
$n+1 \leq \operatorname{cl}(M)+1 \leq \operatorname{cat} M \leq \mathrm{B}(M) \leq \mathrm{S}(M, \omega) \leq \mathrm{S}_{\text {dis }}(M, \omega) \leq 2 n+1$ and $\mathrm{B}(M)=\mathrm{S}(M, \omega)=\mathrm{S}_{\text {dis }}(M, \omega)=2 n+1$ if $\left.[\omega]\right|_{\pi_{2}(M)}=0$. For the 2 -sphere we have $2=\mathrm{S}\left(\mathbb{S}^{2}\right)<\mathrm{S}_{\text {dis }}\left(\mathbb{S}^{2}\right)=3$.
Question 3.7. Is it true that $\mathrm{B}(M)=\mathrm{S}(M, \omega)$ for every closed symplectic manifold (M, ω) ?

Proof of Theorem 3.6: Theorem 3.6 is a consequence of the construction in the previous section and the following

Proposition 3.8. For every $\varepsilon>0$ there exists a symplectic embedding $\psi:\left(U, \omega_{0}\right) \hookrightarrow(M, \omega)$ of a bounded subset U of $\mathbb{R}^{2 n}$ diffeomorphic to a ball such that $\psi(U)$ is displaceable and

$$
|U|>\frac{\mu(M)}{2}-\varepsilon .
$$

Indeed, choose $\varepsilon>0$ so small that

$$
\frac{\mu(M)}{2}-\varepsilon>\frac{\mu(M)}{2 n+1} .
$$

For the set $\psi(U) \subset M$ guaranteed by Proposition 3.8 we then have

$$
\mu(\psi(U))>\frac{\mu(M)}{2 n+1} .
$$

Repeating the construction in the proof of Theorem 2.1 with the ball $\mathcal{B}=$ $\varphi\left(B^{2 n}(a)\right)$ replaced by $\psi(U)$ and with $k=2 n+1$, we find a covering $\cup \mathcal{U}_{i}$ of M by $2 n+1$ domains $\mathcal{U}_{i} \subset M$ which are diffeomorphic to balls and displaceable.

Proof of Proposition 3.8: We fix $\varepsilon>0$. Let $k \in \mathbb{N}$ and $d>\delta>0$. For $j \in \mathbb{N} \cup\{0\}$ we denote by $\xi_{j d}$ the translation by $j d$ in the x_{1}-direction and by $\eta_{-d / 2}$ the translation by $-d / 2$ in the y_{1}-direction. Consider the open subsets $C_{j}(d)=\xi_{2 j}\left(\eta_{-d / 2}(] 0, d\left[^{2 n}\right)\right)$ and

$$
\mathcal{N}(k, d, \delta)=\coprod_{j=0}^{k} C_{j}(d) \cup(] 0,(2 k+1) d[\times]-\delta, \delta\left[^{2 n-1}\right)
$$

of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.
Figure 12 shows a set $\mathcal{N}(k, d, \delta) \subset \mathbb{R}^{2 n}$ for $k=1$.
According to [31, Section 6.1] there exist k, d and δ and a symplectic embedding $\psi: \mathcal{N}(k, d, \delta) \hookrightarrow(M, \omega)$ such that

$$
\begin{equation*}
\left|\coprod_{j=0}^{k} C_{j}(d)\right|>\mu(M)-\varepsilon . \tag{50}
\end{equation*}
$$

Figure 12. The sets \mathcal{N} and U for $k=1$.

Set $\mathcal{N}^{+}(k, d, \delta)=\mathcal{N}(k, d, \delta) \cap\left\{y_{1}>0\right\}$, and denote by $\partial \mathcal{N}^{+}(k, d, \delta)$ the boundary of this set. For $\nu>0$ we set

$$
U_{\nu}=\left\{z \in \mathcal{N}^{+}(k, d, \delta) \mid \operatorname{dist}\left(z, \partial \mathcal{N}^{+}(k, d, \delta)\right)>\nu\right\},
$$

For $\nu<\delta$ the set U_{ν} is connected and diffeomorphic to a ball. In view of (50) we can choose $\nu<\delta$ so small that

$$
\left|U_{\nu}\right|>\frac{\mu(M)}{2}-\varepsilon .
$$

For such a choice of k, d, δ and ν we abbreviate $\mathcal{N}=\mathcal{N}(k, d, \delta)$ and $U=U_{\nu}$. We shall construct a Hamiltonian isotopy φ_{t} of $\mathbb{R}^{2 n}$ which is generated by an autonomous Hamiltonian function with support in \mathcal{N} and such that $\varphi_{1}(U) \cap U=\emptyset$. The autonomous Hamiltonian diffeomorphism Φ of (M, ω) defined by

$$
\Phi(z)= \begin{cases}\psi \circ \varphi_{1} \circ \psi^{-1}(z) & \text { if } z \in \psi(\mathcal{N}) \\ z & \text { if } z \notin \psi(\mathcal{N})\end{cases}
$$

then displaces $\psi(U)$. In order to construct the Hamiltonian isotopy φ_{t}, we choose a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that on $] 0,(2 k+1) d[$ the graph of f is contained in $\pi(\mathcal{N})$ and lies above $\pi(U)$. Then the Hamiltonian function $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ defined by

$$
H\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right)=-\int_{0}^{x_{1}} f(s) d s
$$

generates the isotopy

$$
\phi_{t}:\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right) \mapsto\left(x_{1}, y_{1}-t f\left(x_{1}\right), x_{2}, \ldots, y_{n}\right), \quad t \in[0,1],
$$

which satisfies $\phi_{t}(U) \subset \mathcal{N}$ for all $t \in[0,1]$ and $\phi_{1}(U) \cap U=\emptyset$. Choose now a smooth function $h: \mathbb{R}^{2 n} \rightarrow[0,1]$ which is equal to 1 on $\bigcup_{t \in[0,1]} \phi_{t}(U)$ and vanishes outside \mathcal{N}. The Hamiltonian isotopy φ_{t} generated by the Hamiltonian function $h H$ is then as required.

4. Proof of Proposition 1

Since (M, ω) is symplectic, $[\omega]^{n} \neq 0$, and so $n+1 \leq \operatorname{cl}(M)+1$. The first statement in Proposition 1 follows from this estimate and from (6).

A main ingredient in the remainder of the proof is the following theorem of W. Singhof, who thoroughly studied the relation between $\mathrm{B}(M)$ and cat M.

Theorem 4.1. (Singhof, [33, Corollary (6.4)]) Let M^{m} be a closed smooth p-connected manifold with $n \geq 4$ and cat $M \geq 3$. Then
(a) $\mathrm{B}(M)=\operatorname{cat} M \quad$ if cat $M \geq \frac{m+p+4}{2(p+1)}$;
(b) $\mathrm{B}(M) \leq\left\lceil\frac{m+p+4}{2(p+1)}\right\rceil$ if cat $M<\frac{m+p+4}{2(p+1)}$.
(Here, $\lceil x\rceil$ denotes the minimal integer which is greater than or equal to x.)
Notice that if we consider only symplectic manifolds, the assumptions $\operatorname{dim} M \geq 4$ and cat $M \geq 3$ in Theorem 4.1 can be dropped. Indeed, if $\operatorname{dim} M=2$, it is easy to see that we are in the situation of (a) in Theorem 4.1; and if cat $M=2$, then $\frac{1}{2} \operatorname{dim} M \leq \operatorname{cl}(M)+1 \leq$ cat $M=2$ yields $\operatorname{dim} M=2$.
(i) If M is simply connected, (3) shows that cat $M=n+1$, and since $p=1$, we are in the situation of Theorem 4.1, item (a), so $\mathrm{B}(M)=$ cat M.
(ii) It has been proved in [28] that $\left.[\omega]\right|_{\pi_{2}(M)}=0$ implies cat $M=2 n+1$, and so the claim follows together with $\mathrm{B}(M) \leq 2 n+1$.
(iii) As we remarked above, $\mathrm{B}(M)=\operatorname{cat} M$ if $n=1$. So let $n \geq 2$ and assume that $\mathrm{B}(M)>\operatorname{cat} M$. By (i) we have $p=0$. The claim now readily follows from Theorem 4.1.

Remarks 4.2. 1. The inequality $\operatorname{cl}(M)+1 \leq \operatorname{cat} M$ can be strict: For the Thurston-Kodaira manifold described in [23, Example 3.8] we have $\pi_{2}(M)=$ 0 and hence cat $M=5$, but $\operatorname{cl}(M)=3$, see [27]. More generally, $\operatorname{cl}(M)+1<$ cat $M=\operatorname{dim} M+1$ for any symplectic non-toral nilmanifold, see [29].
2. It follows from [17, Prop. 13] and [4, Prop. 3.6] that there exist closed smooth manifolds with cat $M<\mathrm{B}(M)$. No symplectic examples are known, however.

Examples 4.3. 1. If $\left(M^{2 n}, \omega\right)$ admits a Riemannian metric with nonnegative Ricci curvature and has infinite fundamental group, then

$$
\text { cat } M \geq n+1+\frac{b_{1}(M)}{2} \quad \text { and } \quad b_{1}(M)>0
$$

see [25, Theorem 4.3]. In particular, cat $M \geq n+2$, and so cat $M=\mathrm{B}(M)$ by Proposition 1 (iii).
2. Assume that the homomorphism $[\omega]^{n-1}: H^{1}(M ; \mathbb{R}) \rightarrow H^{2 n-1}(M ; \mathbb{R})$ (multiplication by the class $[\omega]^{n-1}$ is a non-zero map. Kähler manifolds with $H^{1}(M ; \mathbb{R}) \neq 0$ have this property. Using Poincaré duality we see that $\operatorname{cl}(M) \geq n+1$, and so $n+2 \leq \operatorname{cat} M=\mathrm{B}(M)$.

5. Examples

In this section we compute or estimate the number $\mathrm{S}_{\mathrm{B}}(M, \omega)$ for various closed symplectic manifolds (M, ω). In view of Theorem 1 and Proposition 1, understanding $\mathrm{S}_{\mathrm{B}}(M, \omega)$ is often equivalent to understanding the Gromov width $\operatorname{Gr}(M, \omega)$. Our list of examples therefore resembles the list of manifolds whose Gromov widths are known.

We shall frequently use the following well-known fact.
Lemma 5.1. (Greene-Shiohama, [9]) Let U and V be bounded domains in $\left(\mathbb{R}^{2}, d x \wedge d y\right)$ which are diffeomorphic and have equal area. Then U and V are symplectomorphic.

1. Surfaces. A closed 2-dimensional symplectic manifold is a closed oriented surface equipped with an area form.

Corollary 5.2. Let $\left(\Sigma_{g}, \sigma\right)$ be a closed oriented surface with area form σ. Then

$$
\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}, \sigma\right)= \begin{cases}2 & \text { if } g=0, \\ 3 & \text { if } g \geq 1 .\end{cases}
$$

Proof. In view of Lemma 5.1 we have $\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}, \sigma\right)=\mathrm{B}\left(\Sigma_{g}\right)$, and so the corollary follows in view of Proposition 1.
2. Minimal ruled 4-manifolds. As before we denote by Σ_{g} the closed oriented surface of genus g. Recall that there are exactly two orientable \mathbb{S}^{2}-bundles with base Σ_{g}, namely the trivial bundle $\Sigma_{g} \times \mathbb{S}^{2} \rightarrow \Sigma_{g}$ and the nontrivial bundle $\Sigma_{g} \ltimes \mathbb{S}^{2} \rightarrow \Sigma_{g}$ [23, Lemma 6.25].
a) Trivial \mathbb{S}^{2}-bundles. Fix area forms $\sigma_{\Sigma_{g}}$ and $\sigma_{\mathbb{S}^{2}}$ of area 1 on Σ_{g} and \mathbb{S}^{2}, respectively. By the work of Lalonde-Mc Duff and Li-Liu every symplectic form on $\Sigma_{g} \times \mathbb{S}^{2}$ is diffeomorphic to $a \sigma_{\Sigma_{g}} \oplus b \sigma_{\mathbb{S}^{2}}$ for some $a, b>0$ (see [16]). We abbreviate $\Sigma_{g}(a):=\left(\Sigma_{g}, a \sigma_{\Sigma_{g}}\right)$ and $\mathbb{S}^{2}(b):=\left(\mathbb{S}^{2}, b \sigma_{\mathbb{S}^{2}}\right)$.

Corollary 5.3. For $\mathbb{S}^{2}(a) \times \mathbb{S}^{2}(b)$ with $a \geq b>0$ we have

$$
\mathrm{S}_{\mathrm{B}}\left(\mathbb{S}^{2}(a) \times \mathbb{S}^{2}(b)\right) \begin{cases}\in\{3,4,5\} & \text { if } 1 \leq \frac{a}{b}<\frac{3}{2}, \\ \in\{4,5\} & \text { if } \frac{3}{2} \leq \frac{a}{b}<2, \\ =\left\lfloor\frac{2 a}{b}\right\rfloor+1 & \text { if } \frac{a}{b} \geq 2,\end{cases}
$$

cf. Figure 13, and for $\Sigma_{g}(a) \times \mathbb{S}^{2}(b)$ with $g \geq 1$ and $a, b>0$ we have

$$
\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}(a) \times \mathbb{S}^{2}(b)\right) \begin{cases}\in\{4,5\} & \text { if } 0<\frac{a}{b}<2, \\ =\left\lfloor\frac{2 a}{b}\right\rfloor+1 & \text { if } \frac{a}{b} \geq 2\end{cases}
$$

cf. Figure 14.

Figure 13. What is known about $\mathrm{S}_{\mathrm{B}}\left(\mathbb{S}^{2}(a) \times \mathbb{S}^{2}(b)\right)$ and $\mathrm{S}_{\mathrm{B}}\left(\mathbb{S}^{2} \ltimes \mathbb{S}^{2}, \omega_{a b}\right)$.

$$
\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}(a) \times S^{2}(b)\right), \mathrm{S}_{\mathrm{B}}\left(\Sigma_{g} \ltimes S^{2}, \omega_{a b}\right)
$$

Figure 14. What is known about $\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}(a) \times \mathbb{S}^{2}(b)\right)$ and $\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g} \ltimes \mathbb{S}^{2}, \omega_{a b}\right)$.

Proof. Proposition 1, item (i) yields $\mathrm{B}\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)=3$. Moreover, the NonSqueezing Theorem implies that $\operatorname{Gr}\left(\mathbb{S}^{2}(a) \times \mathbb{S}^{2}(b)\right)=b$, and so

$$
\Gamma\left(\mathbb{S}^{2}(a) \times \mathbb{S}^{2}(b)\right)=\left\lfloor\frac{2 a}{b}\right\rfloor+1
$$

The first half of the corollary now follows from Theorem 1.
Applying the inequality (2) and the estimate (4) we find that $\operatorname{cat}\left(\Sigma_{g} \times\right.$ $\left.\mathbb{S}^{2}\right)=4$, and so $\mathrm{B}\left(\Sigma_{g} \times \mathbb{S}^{2}\right)=4$ in view of Proposition 1, item (iii). Moreover, it follows from Theorem 6.1.A in [1] that

$$
\Gamma\left(\Sigma_{g}(a) \times \mathbb{S}^{2}(b)\right)=\left\lfloor\max \left(1, \frac{2 a}{b}\right)\right\rfloor+1 .
$$

The second half of the corollary now follows from Theorem 1.
b) Nontrivial \mathbb{S}^{2}-bundles. Let $A \in H_{2}\left(\Sigma_{g} \ltimes \mathbb{S}^{2} ; \mathbb{Z}\right)$ be the class of a section with self intersection number -1 , and let F be the homology class of the fiber. We set $B=A+\frac{1}{2} F$. Then $\{F, B\}$ is a basis of $H_{2}\left(\Sigma_{g} \ltimes \mathbb{S}^{2} ; \mathbb{R}\right)$. For $a, b>0$ we fix a representative $\omega_{a b}$ of the Poincaré dual of $a F+b B$. By [23, Theorem 6.27] and the work of Lalonde-Mc Duff and Li-Liu (see [16]),

1. Every symplectic form on $\mathbb{S}^{2} \ltimes \mathbb{S}^{2}$ is diffeomorphic to $\omega_{a b}$ for some $a>\frac{b}{2}>0$.
2. Every symplectic form on $\Sigma_{g} \ltimes \mathbb{S}^{2}, g \geq 1$, is diffeomorphic to $\omega_{a b}$ for some $a, b>0$.

Corollary 5.4. For $\left(\mathbb{S}^{2} \ltimes \mathbb{S}^{2}, \omega_{a b}\right)$ with $a>\frac{b}{2}>0$ we have

$$
\mathrm{S}_{\mathrm{B}}\left(\mathbb{S}^{2} \ltimes \mathbb{S}^{2}, \omega_{a b}\right) \begin{cases}\in\{3,4,5\} & \text { if } \frac{1}{2} \leq \frac{a}{b}<\frac{3}{2}, \\ \in\{4,5\} & \text { if } \frac{3}{2} \leq \frac{a}{b}<2, \\ =\left\lfloor\frac{2 a}{b}\right\rfloor+1 & \text { if } \frac{a}{b} \geq 2,\end{cases}
$$

$c f$. Figure 13 , and for $\left(\Sigma_{g} \ltimes \mathbb{S}^{2}, \omega_{a b}\right)$ with $g \geq 1$ and $a, b>0$ we have

$$
\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g} \ltimes \mathbb{S}^{2}, \omega_{a b}\right) \begin{cases}\in\{4,5\} & \text { if } 0<\frac{a}{b}<2, \\ =\left\lfloor\frac{2 a}{b}\right\rfloor+1 & \text { if } \frac{a}{b} \geq 2,\end{cases}
$$

cf. Figure 14.
Proof. Since $\mathbb{S}^{2} \ltimes \mathbb{S}^{2}$ is simply connected, $\mathrm{B}\left(\mathbb{S}^{2} \ltimes \mathbb{S}^{2}\right)=3$ in view of Proposition 1, item (i). Moreover, based on Biran's work [1] it has been computed in [30] that

$$
\Gamma\left(\mathbb{S}^{2} \ltimes \mathbb{S}^{2}, \omega_{a b}\right)=\left\lfloor\frac{2 a}{b}\right\rfloor+1 .
$$

The first half of the corollary now follows from Theorem 1.
Using the Leray-Hirsch Theorem, we find that $\operatorname{cl}\left(\Sigma_{g} \ltimes \mathbb{S}^{2}\right)=3$, and so cat $\left(\Sigma_{g} \ltimes \mathbb{S}^{2}\right) \geq 4$. On the other hand, $\Sigma_{g} \ltimes \mathbb{S}^{2}$ having a section, and it is not hard to see that cat $\left(\Sigma_{g} \ltimes \mathbb{S}^{2}\right) \leq 4$ (cf. the proof of Proposition 3.3 in [32]). In view of Proposition 1, item (iii) we conclude that $\mathrm{B}\left(\Sigma_{g} \ltimes \mathbb{S}^{2}\right)=4$. Moreover, it has been computed in [30] that

$$
\Gamma\left(\Sigma_{g} \ltimes \mathbb{S}^{2}, \omega_{a b}\right)=\left\lfloor\max \left(1, \frac{2 a}{b}\right)\right\rfloor+1 .
$$

The second half of the corollary now follows from Theorem 1.
3. Products of surfaces. As before we denote by Σ_{g} the closed oriented surface of genus g. In view of the previous example we assume $g \geq 1$. If $g=1$ we write $T^{2}=\Sigma_{1}$. By a theorem of Moser [24], any two area forms on Σ_{g} of total area a are diffeomorphic. We write $\Sigma_{g}(a)$ for this symplectic manifold.

Corollary 5.5.

(i) $\mathrm{S}_{\mathrm{B}}\left(T^{2}(a) \times \Sigma_{g}(b)\right)=5$ if $\frac{a}{b}<\frac{5}{2}$.
(ii) $\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}(a) \times \Sigma_{h}(b)\right)=5$ if $\frac{2}{5}<\frac{a}{b}<\frac{5}{2}$.

Proof. By Proposition 1, item (ii) we have that

$$
\mathrm{B}\left(\Sigma_{g} \times \Sigma_{h}\right)=5 \quad \text { for all } g, h \geq 1
$$

Using Lemma 5.1 we see that the discs $B^{2}(a)$ and $B^{2}(b)$ symplectically embed into $\Sigma_{g}(a)$ and $\Sigma_{h}(b)$, respectively. Therefore, the ball $B^{4}(\min (a, b)) \subset$ $B^{2}(a) \times B^{2}(b)$ symplectically embeds into $\Sigma_{g}(a) \times \Sigma_{h}(b)$, and so

$$
\Gamma\left(\Sigma_{g}(a) \times \Sigma_{h}(b)\right) \leq 5 \quad \text { whenever } \frac{2}{5}<\frac{a}{b}<\frac{5}{2} .
$$

Claim (ii) now follows from Theorem 1.
We prove Claim (i) following [14]. For each $c>0$ we consider the rectangle

$$
R(c)=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,0<y<c\right\},
$$

and the linear symplectic map

$$
\begin{aligned}
\varphi:\left(R(c) \times R(c), \omega_{0}\right) & \rightarrow\left(\mathbb{R}^{2} \times \mathbb{R}^{2}, \omega_{0}\right) \\
\left(x_{1}, y_{1}, x_{2}, y_{2}\right) & \mapsto\left(x_{1}+y_{2}, y_{1},-y_{2}, y_{1}+x_{2}\right)
\end{aligned}
$$

where $\omega_{0}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$. Let $T^{2}(1)=\left(\mathbb{R}^{2} / \mathbb{Z}^{2}, d x_{1} \wedge d y_{1}\right)$ be the standard symplectic torus. Then the projection $p:\left(\mathbb{R}^{2}, d x_{1} \wedge d y_{1}\right) \rightarrow T^{2}(1)$ is symplectic, and so the composition

$$
(p \times i d) \circ \varphi: R(c) \times R(c) \rightarrow T^{2}(1) \times \mathbb{R}^{2}
$$

is also symplectic. It is easy to see that this map is an embedding and that

$$
\left.((p \times i d) \circ \varphi)(R(c) \times R(c)) \subset T^{2} \times\right]-c, 0[\times] 0, c+1[.
$$

In view of Lemma 5.1 the ball $B^{4}(c)$ symplectically embeds into $R(c) \times R(c)$, and $]-c, 0[\times] 0, c+1\left[\right.$ symplectically embeds into $\Sigma_{g}(c(c+1))$. We conclude that the ball $B^{4}(c)$ symplectically embeds into $T^{2}(1) \times \Sigma_{g}(c(c+1))$ for each $c>0$, i.e.,

$$
\operatorname{Gr}\left(T^{2}(1) \times \Sigma_{g}(d)\right) \geq \frac{1}{2}(\sqrt{4 d+1}-1) \quad \text { for each } d>0 .
$$

This estimate and a computation yield

$$
\Gamma\left(T^{2}(a) \times \Sigma_{g}(b)\right)=\Gamma\left(T^{2}(1) \times \Sigma_{g}\left(\frac{b}{a}\right)\right) \leq 5 \quad \text { whenever } \frac{a}{b}<\frac{9}{10} .
$$

Now, the already proved Claim (ii) and Theorem 1 imply Claim (i).

Remark 5.6. Assume that $g \geq 1, h \geq 2$ and $\frac{a}{b} \geq \frac{5}{2}$. The method used in the proof of 2) in Corollary 5.5 only yields the linear estimate

$$
\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}(a) \times \Sigma_{h}(b)\right) \leq\left\lfloor\frac{2 a}{b}\right\rfloor+1 .
$$

A variant of the method used in the proof of 1), however, yields the estimate

$$
\mathrm{S}_{\mathrm{B}}\left(\Sigma_{g}(a) \times \Sigma_{h}(b)\right) \leq C(h) \frac{\frac{a}{b}}{\left(\log \frac{a}{b}\right)^{2}}
$$

where $C(h)>0$ is a constant depending only on h (see [14]).
4. Complex projective space. Let $\mathbb{C P}^{n}$ be the complex projective space and let $\omega_{S F}$ be the unique $\mathrm{U}(n+1)$-invariant Kähler form on $\mathbb{C P}^{n}$ whose integral over $\mathbb{C P}^{1}$ equals 1.

Corollary 5.7. $\mathrm{S}_{\mathrm{B}}\left(\mathbb{C P}^{n}, \omega_{S F}\right)=n+1$.
Proof. In view of Proposition 1, we have

$$
\mathrm{S}_{\mathrm{B}}\left(\mathbb{C P}^{n}, \omega_{S F}\right) \geq B\left(\left(\mathbb{C P}^{n}\right) \geq n+1 .\right.
$$

On the other hand, we define for $0 \leq i \leq n$ maps $f_{i}: B^{2 n}(1) \rightarrow \mathbb{C P}^{n}$ by

$$
f_{i}: \mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \mapsto\left[z_{1}: \ldots: z_{i-1}: \sqrt{1-|\mathbf{z}|^{2}}: z_{i+1}: \ldots: z_{n}\right]
$$

It is well known that f_{i} is a symplectomorphism between $B^{2 n}(1)$ and $\mathbb{C P} \mathbb{P}^{n} \backslash$ S_{i}, where $S_{i}=\left\{\left[u_{1}: \ldots: u_{i-1}: 0: u_{i+1}: \ldots: u_{n}\right]\right\} \cong \mathbb{C P}^{n-1}$ is the i-th coordinate hypersurface (see e.g. [15]). Since

$$
\mathbb{C P}^{n} \subset \bigcup_{i=0}^{n} f_{i}\left(B^{2 n}(1)\right)
$$

we conclude that also $\mathrm{S}_{\mathrm{B}}\left(\mathbb{C P}^{n}, \omega_{S F}\right) \leq n+1$, and so the corollary follows.

Remark 5.8. By a theorem of Taubes [34], any symplectic form on $\mathbb{C P}^{2}$ is diffeomorphic to $a \omega_{S F}$ for some $a \neq 0$. In view of Corollary 5.7 we thus have

$$
\mathrm{S}_{\mathrm{B}}\left(\mathbb{C P}^{2}, \omega\right)=3 \quad \text { for any symplectic form } \omega \text { on } \mathbb{C} P^{2} .
$$

5. Complex Grassmann manifolds. Let $G_{k, n}$ be the Grassmann manifold of k-planes in \mathbb{C}^{n}, and let $\sigma_{k, n}$ be the standard Kähler form on $G_{k, n}$ normalized such that $\sigma_{k, n}$ is Poincaré dual to the generator of $H_{2}\left(G_{k, n} ; \mathbb{Z}\right)=\mathbb{Z}$. Since $\left(G_{n-k, n}, \sigma_{n-k, n}\right)=\left(G_{k, n}, \sigma_{k, n}\right)$, we can assume that

$$
k \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\} .
$$

We define the number $p_{k, n}$ by

$$
\begin{equation*}
p_{k, n}=\frac{(k-1)!\cdots 2!1!\cdot(k(n-k))!}{(n-1)!\cdots(n-k+1)!(n-k)!} . \tag{51}
\end{equation*}
$$

Notice that $p_{k, n}=\operatorname{deg}\left(p\left(G_{k, n}\right)\right)$ where

$$
p: G_{k, n} \hookrightarrow \mathbb{C P}^{\binom{n}{k}-1}
$$

is the Plücker map [8, Example 14.7.11], and so $p_{k, n}$ is indeed an integer.
Since $\left(G_{1, n}, \sigma_{1, n}\right)=\left(\mathbb{C P}^{n-1}, \omega_{S F}\right)$, we assume $k \geq 2$.

Corollary 5.9.

$\mathrm{S}_{\mathrm{B}}\left(G_{2,4}, \sigma_{2,4}\right) \in\{5, \ldots, 9\}, \quad \mathrm{S}_{\mathrm{B}}\left(G_{2,5}, \sigma_{2,5}\right) \in\{7, \ldots, 13\}$,
$\mathrm{S}_{\mathrm{B}}\left(G_{2,6}, \sigma_{2,6}\right) \in\{15,16,17\}$,
$\mathrm{S}_{\mathrm{B}}\left(G_{2, n}, \sigma_{2, n}\right)=p_{2, n}+1$ for all $n \geq 7$,
$\mathrm{S}_{\mathrm{B}}\left(G_{k, n}, \sigma_{k, n}\right)=p_{k, n}+1$ for all $k \geq 3$.

Proof. Since $G_{k, n}$ is simply connected and since

$$
\begin{equation*}
\operatorname{dim} G_{k, n}=2 k(n-k), \tag{52}
\end{equation*}
$$

we read off from Proposition 1, item (i) that

$$
\begin{equation*}
\mathrm{B}\left(G_{k, n}\right)=k(n-k)+1 \tag{53}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\operatorname{Vol}\left(G_{k, n}, \sigma_{k, n}\right)=\frac{p_{k, n}}{(k(n-k))!} \tag{54}
\end{equation*}
$$

(see [8, Example 14.7.11]), and it has been proved in [18] that

$$
\operatorname{Gr}\left(G_{k, n}, \sigma_{k, n}\right)=1
$$

Therefore,

$$
\begin{equation*}
\Gamma\left(G_{k, n}, \sigma_{k, n}\right)=p_{k, n}+1 \tag{55}
\end{equation*}
$$

The corollary now follow from the identities (52), (53) and (55), Theorem 1 and a straightforward computation.

References

[1] P. Biran. Symplectic packing in dimension 4. Geom. Funct. Anal. 7 (1997) 420-437.
[2] P. Biran. A stability property of symplectic packing. Invent. Math. 136 (1999) 123155.
[3] P. Biran, M. Entov and L. Polterovich. Calabi quasimorphisms for the symplectic ball. Commun. Contemp. Math. 6 (2004), no. 5, 793-802.
[4] O. Cornea, G. Lupton, J. Oprea, D. Tanré,. Lusternik-Schnirelmann category. Mathematical Surveys and Monographs, 103. American Mathematical Society, Providence, RI, 2003. .
[5] R. Engelking. Dimension theory. North-Holland Mathematical Library 19. NorthHolland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978.
[6] M. Entov and L. Polterovich. Calabi quasimorphism and quantum homology. Int. Math. Res. Not. 2003, no. 30, 1635-1676.
[7] S. Froloff and L. Elsholz. Limite inférieure pour le nombre des valeurs critiques d'une fonction, donnée sur une variété. Mat. Sbornik 42(5) (1935) 637-643.
[8] W. Fulton. Intersection Theory. Second edition. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1998.
[9] R. Greene and K. Shiohama. Diffeomorphisms and volume preserving embeddings of non-compact manifolds. Trans. Amer. Math. Soc. 255 (1979) 403-414.
[10] M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. Invent. math. 82 (1985) 307-347.
[11] H. Hofer and E. Zehnder. Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser 1994.
[12] I. M. James. On Category, in the sense of Lusternik and Schnirelman. Topology 17 (1978) 331-348.
[13] I. M. James. Lusternik-Schnirelmann category. In Handbook of algebaric topology. Ed. by I. James, Elsevier Science B. V., Amsterdam, 1995, 1293-1310.
[14] M.-Y. Jiang. Symplectic embeddings from $\mathbf{R}^{2 n}$ into some manifolds. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 53-61.
[15] Y. Karshon. Appendix to [22].
[16] F. Lalonde and D. Mc Duff. J-curves and the classification of rational and ruled symplectic 4-manifolds. Contact and symplectic geometry (Cambridge, 1994), 3-42, Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge, 1996.
[17] P. Lambrechts, D. Stanley and L. Vandembroucq. Embeddings up to homotopy of two-cones in Euclidean space. Trans. Amer. Math. Soc. 354 (2002) 3973-4013.
[18] G. Lu. Gromov-Witten invariants and pseudo symplectic capacities. Israel J. math (to appear). Preprint dg-ga 0103195.
[19] E. Luft. Covering manifolds with open discs. Illinois J. Math. 13 (1969) 321-326.
[20] L. Lusternik and L. Schnirelmann. Méthodes Topologiques dans les Problèmes Variationelles. Hermann, Paris 1934.
[21] D. Mc Duff. From symplectic deformation to isotopy. Topics in symplectic 4-manifolds (Irvine, CA, 1996), 85-99, First Int. Press Lect. Ser., I, Internat. Press, Cambridge 1998.
[22] D. Mc Duff and L. Polterovich. Symplectic packings and algebraic geometry. Invent. math. 115 (1994) 405-429.
[23] D. Mc Duff and D. Salamon. Introduction to Symplectic Topology. Second edition. Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York 1998.
[24] J. Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965) 286-294.
[25] J. Oprea. Category bounds for nonnegative Ricci curvature manifolds with infinite fundamental group. Proc. Amer. Math. Soc. 130 (2002) 833-839.
[26] P. P. Osborne and J. L. Stern. Covering manifolds with cells. Pacific. J. Math. 30 (1969) 201-207.
[27] Yu. B. Rudyak. On analytical applications of stable homotopy (the Arnold conjecture, critical points). Math. Z. 230 (1999) 659-672.
[28] Yu. B. Rudyak and J. Oprea. On the Lusternik-Schnirelmann Category of Symplectic Manifolds and the Arnold Conjecture Math. Z. 230 (1999) 673-678.
[29] Yu. Rudyak and A. Tralle. On symplectic manifolds with aspherical symplectic form. Topol. Methods Nonlinear Anal. 14 (1999) 353-362.
[30] F. Schlenk. Packing symplectic manifolds by hand. To appear in J. Symplectic Geom.
[31] F. Schlenk. Embedding problems in symplectic geometry. De Gruyter Expositions in Mathematics. Walter de Gruyter Verlag, Berlin. 2005.
[32] W. Singhof. Generalized higher order cohomology operations induced by the diagonal mapping. Math. Z. 162 (1978), 7-26.
[33] W. Singhof. Minimal coverings of manifolds with balls. Manuscripta Math. 29 (1979), 385-415.
[34] C. Taubes. $S W \Rightarrow G r$: from the Seiberg-Witten equations to pseudo-holomorphic curves. J. Amer. Math. Soc. 9(3) (1996) 845-918.
[35] L. Traynor. Symplectic packing constructions. J. Differential Geom. 42 (1995) 411429.
[36] E. C. Zeeman, The Poincaré conjecture for $n \geq 5$. Topology of 3-manifolds and related topics. Prentice Hall, Englewood Cliffs, N.J., 1962, 198-204.
(Yu. B. Rudyak) University of Florida, Department of Math., 358 Little
Hall, PO Box 118105, Gainesville, FL 32611-8105, USA
E-mail address: rudyak@math.ufl.edu
(F. Schlenk) Mathematisches Institut, Universität Leipzig, 04109 Leipzig, Germany

E-mail address: schlenk@math.uni-leipzig.de

