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ABELIAN VARIETIES OVER FINITE FIELDS AS BASIC

ABELIAN VARIETIES

CHIA-FU YU

Abstract. In this note we show that any basic abelian variety with additional

structures over an arbitrary algebraically closed field of characteristic p > 0 is

isogenous to another one which is defined over a finite field. We also show that

the category of abelian varieties over finite fields up to isogeny can be embed-

ded into the category of basic abelian varieties with suitable endomorphism

structures. Using this connection, we derive a new mass formula for an orbit

of polarized abelian surfaces over a finite field.

1. Introduction

In this note we work on abelian varieties over fields of positive characteristic,
particularly on basic abelian varieties with additional structures. Let p be a prime
number. Basic abelian varieties with fixed additional structures (endomorphisms,
a polarization and a level structure) over a field of characteristic p > 0 are concep-
tually defined as the points in a moduli space of PEL-type over Fp which land in
the minimal Newton stratum (Rapoport-Zink [6] and Rapoport [5]). The group-
theoretic definition was introduced by Kottwitz [1]. This is a geometric notion,
that is, an abelian variety with additional structures is basic if and only if its base
change to any algebraically closed field extension is also basic. As landing in the
same Newton stratum is an isogeny property, an abelian variety with additional
structures which is isogenous (compatible with the additional structures) to a basic
abelian variety with the same additional structures is also basic.

Let B be a finite-dimensional semi-simple Q-algebra with a positive involution
∗ and OB an order in B stable under ∗. A polarized abelian OB-variety is a triple
(A, λ, ι) where (A, λ) is a polarized abelian variety and ι : OB → End(A) is a
ring monomorphism which is compatible with λ. We recall the definition of basic
polarized abelian OB-varieties (A, λ, ι) in Section 2.

Basic abelian varieties with additional structures share many similar properties
as supersingular abelian varieties without additional structures have. For example,
like supersingular abelian varieties, one can formulate a geometric mass for a finite
orbit of basic abelian varieties and relate this geometric mass to an arithmetic mass.
A typical example is the Deuring-Eichler mass formula. We refer to [15] for more
discussions in this aspect. In this paper we prove the following result, which may
be regarded as another analogue of supersingular abelian varieties.

Theorem 1.1. Let A = (A, λ, ι) be a basic polarized abelian OB-variety over an
algebraically closed field k of characteristic p > 0. Then there exists a polarized
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2 CHIA-FU YU

abelian OB-variety A′ = (A′, λ′, ι′) over a finite field κ and an OB-linear isogeny
ϕ : A′ ⊗κ k → A over k that preserves the polarizations.

The second part of this note studies the converse. We show that any abelian
variety over a finite field can be regarded as a basic abelian variety with suitable
endomorphism structures. More precisely, if A is an abelian variety over Fq and
let F = Q(πA) be the Q-algebra generated by its Frobenius endomorphism πA,
then the abelian variety A together with the F -action is a basic abelian F -variety
(Proposition 4.1). See Remark 3.2 for the definition of basic abelian B-varieties.
The original definition of basic abelian varieties with additional structures requires
both structures of endomorphisms and polarizations. However, like supersingular
abelian varieties, polarizations play no role in the supersingularity.

Let AFq denote the category of abelian varieties over Fq up to isogeny, and let

Brig be the category of basic abelian varieties with rigidified endomorphisms over
Fp up to isogeny, defined in Section 4. We prove the following result.

Theorem 1.2. There is a functor Φ which embeds the category AFq as a full

subcategory of Brig.

Theorem 1.2 connects (polarized) abelian varieties over a finite field Fq with basic

(polarized) abelian F -varieties over Fp for a suitable commutative semi-simple Q-
algebra F . This connection is useful when the Q-algebra F is fixed. In this case one
considers abelian varieties over Fq whose endomorphism rings contain the maximal
order OF . Then we can embed the set of such kind of abelian varieties over Fq into
the basic locus of a moduli space of polarized abelian OF -varieties; see Lemma 5.1
and (5.2) for details. Below is a example where we use this embedding to derive a
mass formula for a class of polarized abelian surfaces over Fp.

Choose a simple abelian varieties A0 over the prime finite field Fp whose Frobe-
nius endomorphism π0 satisfying π2

0 = p. Then A0 is a superspecial abelian surface,
i.e. the base change A0 ⊗ Fp is isomorphic to the product of two supersingular
elliptic curves. Let us consider the set Λ of isomorphism classes of principally
polarized simple abelian surfaces (A, λ) over Fp which is isogenous to A0. Put
F = Q(π0) = Q(

√
p) and OF its ring of integers. Let Λmax ⊂ Λ the subset of (A, λ)

such that OF ⊂ End(A). We can show that Λmax is nonempty set and that the
mass Mass(Λmax) of Λmax

(1.1) Mass(Λmax) :=
∑

(A,λ)∈Λmax

|Aut(A, λ)|−1

is equal to the mass of a finite orbit S of the superspecial locus of a Hilbert mod-
ular surface modulo p. Furthermore, using the geometric mass formula for the
superspecial orbits [12], we obtain the mass formula

(1.2) Mass(Λmax) =
ζF (−1)

4

for p > 2, where ζF (s) the Dedekind zeta function of F . See Section 5.2 for details.
The paper is organized as follows. In Section 2 we recall the definition of basic

abelian varieties with additional structures. The proof and some consequences of
Theorem 1.1 are given in Section 3. In Section 4 we show that any abelian variety
over a finite field, together with the action of the center of its endomorphism al-
gebra, is a basic abelian variety. This connection allows us to make Theorem 1.2.
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In the last section we restrict ourselves to a special example of an isogeny class of
simple supersingular abelian surfaces. We compute the associated mass (1.1) by a
geometric mass formula in [12].

Notations. If M is a Z-module or a Q-module and ` is a prime, we write M` :=
M ⊗Z Z` or M` = M ⊗Q Q`, respectively. For any perfect field k of characteristic
p > 0, denote by W (k) the ring of Witt vectors over k, B(k) the fraction field of
W (k), σ the Frobenius map on W (k) and B(k) induced by σ : k → k, x 7→ xp. If
F is a finite product of number fields, denote by OF the maximal order in F . For
an abelian variety A over a field k, write End(A) = Endk(A) for the endomorphism
ring of A over k and End0(A) = End(A)⊗Z Q for the endomorphism algebra of A
over k.

2. Basic abelian varieties with additional structures

In this section we recall basic abelian varieties with additional structures intro-
duced by Kottwitz [1]. Our reference is Rapoport-Zink [6, p.11, p. 281 and 6.25,
p. 291].

2.1. Settings. Let B be a finite-dimensional semi-simple algebra over Q with a
positive involution ∗, and let OB be any order of B stable under ∗.

Recall that a non-degenerate Q-valued skew-Hermitian B-space is a pair (V, ψ)
where V is a left faithful finite B-module, and ψ : V × V → Q is a non-degenerate
alternating pairing such that ψ(bx, y) = ψ(x, b∗y) for all b ∈ B and all x, y ∈ V .

A polarized abelian OB-variety (resp. polarized abelian B-variety) is a triple
A = (A, λ, ι), where (A, λ) is a polarized abelian variety and ι : OB → End(A)
(resp. ι : B → End0(A)) is a ring monomorphism such that λι(b∗) = ι(b)tλ for all
b ∈ OB .

Let A be a polarized abelian OB-variety over a field k. For any prime ` (not
necessarily invertible in k), we write A(`) for the associated `-divisible group with
additional structures (A[`∞], λ`, ι`), where λ` is the induced quasi-polarization from
A[`∞] to At[`∞] = A[`∞]t (the Serre dual), and ι` : (OB)` → End(A[`∞]) the
induced ring monomorphism. If ` 6= char(k), let T`(A) denote the `-adic Tate
module of A, V` := T`(A)⊗Q`, and let

(2.1) ρ` : Gk → GUB`(V`, eλ)

be the associated Galois representation. Here Gk := Gal(ks/k) is the Galois group
of k, ks a separably closure of k, and

GUB`(V`, eλ) := {g ∈ AutB`(V`) | eλ(gx, gy) = c eλ(x, y) for some c ∈ Q×` }

is the group of B`-linear similitudes with respect to the Weil pairing

eλ = eλ,` : T`(A)× T`(A)→ Z`(1),

where

Z`(1) := lim
←
µpm(ks)

is the Tate twist.
If k is a perfect field of characteristic p, let M(A) denote the covariant Dieudonné

module of A with the additional structures and put N(A) := M(A) ⊗W (k) B(k),
the rational Dieudonné module (or the isocrystal) with the additional structures.
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In this note we only consider the objects A = (A, λ, ι) so that there is a non-
degenerate skew-Hermitian B-space (V, ψ) such that 2 dimA = dimQ V . That is,
we require the dimension g of A have the property that there exists a complex g-
dimensional polarized abelian OB-variety. For example we exclude the case where A
is a supersingular elliptic curve and B is the quaternion Q-algebra ramified precisely
at {p,∞}.

2.2. Basic abelian varieties. Let k be any field of characteristic p and let k̄ be
an algebraic closure of k. Put W := W (k̄) and L := B(k̄). Let (Vp, ψp) be a Qp-
valued non-degenerate skew-Hermitian Bp-module. A polarized abelian OB-variety
A over k̄ is said to be related to (Vp, ψp) if there is a Bp ⊗Qp L-linear isomorphism
α : N(A) ' (Vp, ψp)⊗Qp L which preserves the pairings for a suitable identification
L(1) ' L.

Let Gp := GUBp(Vp, ψp) be the algebraic group over Qp of Bp-linear similitudes
with respect to the pairing ψp. A choice α gives rise to an element b ∈ Gp(L) so
that one has an isomorphism of isocrystals with additional structures N(A) ' (Vp⊗
L,ψp, b(id⊗σ)). Let [b] be the σ-conjugacy class of b in Gp(L). The decomposition
of Vp ⊗ L into isotypic components (the components of single slope) induces a Q-
graded structure, and thus defines a (slope) homomorphism ν[b] : D → Gp over
some unramified finite extension Qps of Qp, where D is the pro-torus over Qp with
character group Q.

Definition 2.1. (1) A polarized abelian OB-variety A over k̄ is said to be basic
with respect to (Vp, ψp) if

(a) A is related to (Vp, ψp), and
(b) the slope homomorphism ν[b] : D→ Gp is central.

(2) The object A over k̄ is said to be basic if it is basic with respect to (Vp, ψp)
for some non-degenerate skew-Hermitian Bp-space (Vp, ψp).

(3) A polarized abelian OB-variety A over any field k is said to be basic if its
base change A⊗k k̄ is basic.

Clearly a polarized abelian OB-variety A is basic if (and only if) its polarized
abelian B-variety is so. Two polarized abelian B-varieties A1 and A2 are said to
be isogenous, denote A1 ∼ A2, if there is a B-linear isogeny ϕ : A1 → A2 such
that the pull-back ϕ∗λ2 is a Q-multiple of λ1. Clearly the property for an object
A being basic is an isogeny property. From the definition it is also easy to see that
this is a geometric notion: an object A = (A, λ, ι) over k is basic if and only if it
base change A⊗k k1 is basic for any algebraically closed field k1 ⊃ k.

3. Proof of Theorems 1.1 and its corollaries

3.1. We need some properties of basic abelian varieties with additional structures.
Let (V, ψ) be a non-degenerate skew-Hermitian B-space and let G := GUB(V, ψ)
be the algebraic group over Q of B-linear similitudes with respect to the pairing ψ.

Let F be the center of B and F0 be the subfield fixed by the involution on
F , which we denote by a 7→ ā. Let Σp be the set of primes p of F over p, and
for a prime p|p, write ordp the corresponding p-adic valuation normalized so that
ordp(p) = 1. Let Fp := F ⊗ Qp =

∏
p|p Fp be the decomposition as a product of
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local fields. For each isocrystal N with an Fp-linear action, let

N = ⊕p|pNp

be the decomposition with respect to the Fp-action.

Lemma 3.1 (Rapoport-Zink). Notations as above.
(1) The center Z of G is the algebraic group over Q whose group of Q-rational

points is
Z(Q) = {g ∈ F×; gḡ ∈ Q× }.

(2) Let N be an isocrystal with additional structures and suppose that it is related
to (V ⊗ Qp, ψ). Then N is basic with respect to (V ⊗ Qp, ψ) if and only if each
component Np is isotypic. In particular, if N is basic, then Np is supersingular for
primes p with p = p̄.

Proof. The statement (1) and the only if part of the statement (2) are proved in
6.25 of [6]. The if part is easier: as each Np is isotypic, say of slope r/s, the action
of sν(p) on Np is a scalar and thus the slope homomorphism ν must be central.

Remark 3.2. Lemma 3.1 provides a simple criterion to check whether a polarized
abelian B-variety A = (A, λ, ι) is basic. Note that the assertion of the statement
(2) only depends on the underlying structure of B-action, but not on the equipped
polarization structure. Therefore, it makes sense to call an abelian B-variety (A, ι)
basic if for any B-linear polarization λ the polarized abelian B-variety (A, λ, ι) is
basic in Definition 2.1. A B-linear polarization λ on an abelian B-variety (A, ι)
always exists [2, Lemma 9.2].

It follows from Lemma 3.1 that an abelian B-variety (A, ι) is basic if and only if
the abelian F -variety (A, ι|F ) is basic, where ι|F is the restriction of ι to F .

The following two lemmas are reorganized from [6, 6.26-6.29]; proofs are provided
only for the reader’s convenience.

Lemma 3.3. Given any set {λp}p|p of rational numbers with 0 ≤ λp ≤ 1 and

λp + λp̄ = 1, then there is a positive integer s and u ∈ OF [1/p]× such that

uu = q, and ordp u = sλp, ∀p ∈ Σp,

where q = ps.

Proof. Consider the map

ord : OF

[
1

p

]×
→ ZΣp , u 7→ (ordp(u))p∈Σp .

By Dirichlet’s unit theorem, the image is of finite index. Therefore, there is a
positive integer s such that there is an element u ∈ OF [1/p]× so that ordp(u) =
sλp =: rp for all p ∈ Σp. Let q = ps and u′ := qu/ū, then one computes

ordp u
′ = 2rp, u

′u′ = q2.

Replacing u by u′ and q by q2, one gets the desire results.

Lemma 3.4. Fix {λp}p|p and q = ps as in Lemma 3.3. Then there is a positive
integer n such that for any basic polarized abelian OB-variety A over a finite exten-
sion Fqm of Fq with slopes {λp}p|p, the n-th power of relative Frobenius morphism
πnA lies in ι(F ).
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Proof. We first prove that the statement holds for one such object A. Let M
be the Dieudonné module of A. Within the isogeny class, we can choose A so that
F sMp = prpMp for all p ∈ Σp, where rp = sλp. Let u be as in Lemma 3.3, then
ι(u)−mπA as an automorphism of A that preserves the polarization. Therefore, a
power of it is the identity.

Let C := End0
B(A). By the result we just proved, the algebra C is independent

of the choice of A and it has center ι(F ). Therefore, there is a positive integer n so
that any roots of unity ζ in C satisfies ζn = 1.

Repeat the same proof above and we get πnA ∈ ι(F ) for all such objects A.

3.2. Proof of Theorem 1.1. It suffices to show that A has smCM, that is, any
maximal commutative semi-simple Q-subalgebra of End0(A) has degree 2 dimA.
Then by a theorem of Grothendieck (see a proof in [4] or in [11]) there exists
an abelian variety A′ over a finite field κ and an isogeny ϕ : A′ ⊗κ k → A over
k. Replacing A′ by one in its isogeny class if necessary, we may assume that A′

admits an action ι′ of OB so that the isogeny ϕ is OB-linear. Take the pull-back
polarization λ′ on A′, which is clearly defined over a finite field extension of κ.

Let {λp}p|p be the set of slopes for A. Let q = ps and a positive integer n be
as in Lemmas 3.3 and 3.4. Let k0 be a field of finite type of Fq for which A is
defined. The abelian variety A extends to a polarized abelian OB-scheme A over a
subring R of k0 with Frac(R) = k0, which is smooth and of finite type over Fq. Put
S = SpecR. Let s be a closed point of S and η the generic point. By Grothendieck’s
specialization theorem, the special fiber As over s also has the same slopes {λp}p|p,
and hence is basic.

We identify the endomorphism rings Endk0
(A) = EndR(A) ⊂ End(As̄), and

write ι for the OB-actions on these abelian varieties. Let

ρ` : π1(S, η̄)→ Aut(T`(Aη̄))

be the associated `-adic representation. The action of Gal(η̄/η) on T`(Aη̄) factors
through ρ`. Again we identify the Tate modules T`(As̄) = T`(AS̃s̄

) = T`(Aη̄),

where S̃s̄ is the (strict) Henselization of S at s̄.
Let πAs be the relative Frobenius morphism on As and Frobs the geometric

Frobenius element in π1(S, η̄) corresponding to the closed point s. We have

(i) πnAs ∈ ι(F ) ⊂ End(T`(As̄)), by Lemma 3.4;
(ii) ρ`(Frobns ) = πnAs lies in the center Z(Q`) of GUB`(T`(Aη̄), 〈 , 〉), by identi-

fying the Tate modules and (i);
(iii) the Frobenius elements Frobs for all closed points s generate a dense sub-

group of π1(S, η̄).

Let G` := ρ`(π1(S, η̄)) be the `-adic monodromy group. Let mn : G` → G` be the
multiplication by n. It is an open mapping and the image of mn contains an open
subgroup U of G`. Clearly U lies in the center Z(Q`) by (ii) and (iii). Replacing
k0 by a finite extension, we have G` ⊂ Z(Q`). Let Q`[π] be the (commutative)
subalgebra of End(T`(Aη̄)) generated by G`. By Zarhin’s theorem [16], Q`[π] is
semi-simple and commutative, and EndQ`[π](T`(Aη̄)) = End(A) ⊗ Q`. This shows

that any maximal commutative semi-simple subalgebra of End0(A) has degree 2g.
This completes the proof.
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3.3. Some consequences. In [15] we defined a class of polarized abelian B-
varieties, called of arithmetic type there, which are those the main result [15,
Theorem 2.2] can extend over algebraically closed fields. We related these abelian
B-varieties with basic abelian B-varieties in the case where the ground field k is Fp;
see [15, Theorem 4.5]. Theorem 1.1 extends this result to that over an arbitrary
algebraically closed field k of characteristic p > 0.

Recall that we call a polarized abelian B-variety (A, λ, ι) over an algebraically
closed field k of characteristic p > 0 of arithmetic type if there is a model (A0, λ0, ι0)
of (A, λ, ι) over a field k0 finitely generated over Fp such that the associated Galois
representation ρ` : Gk0 → GUB(V`(A0), eλ,`) (Section 2.1) is central for some prime
` 6= p (or equivalently for all primes ` 6= p, see [15, Proposition 3.10]). It is shown in
[15, Section 3] that this is again a geometric notion and this notion only depends on
the underlying abelian B-variety (A, ι) but not on the carried polarization structure
λ.

Theorem 3.5. An abelian B-variety (A, ι) over an algebraically closed field k of
characteristic p > 0 is of arithmetic type if and only if it is basic.

Proof. By Theorem 1.1, there is an abelian B-variety (A0, ι0) over Fp and an
B-linear isogeny ϕ : (A0, ι0)⊗Fp k → (A, ι). As a result we can reduce the statement

to the case when k = Fp and this is Theorem 4.5 of [15].

Proposition 3.6 (cf. [6, Corollary 6.29] ). Let K be a finite-dimensional semi-
simple Q-algebra that admits a positive involution. Let (A, ι) and (A′, ι′) be two
abelian K-varieties over an algebraically closed field k of characteristic p > 0.
Then we have

HomK(A,A′)⊗Z Q` ' HomK(V`(A), V`(A
′)) ∀ ` 6= p,

and

HomK(A,A′)⊗Z Q` ' HomK((N,F ), (N ′, F )),

where N and N ′ are the isocrystals with additional structures associated to (A, ι)
and (A′, ι′), respectively.

Proof. By Theorem 1.1, there are abelianK-varieties (A0, ι0) and (A′0, ι
′
0) over Fp

such that (A0, ι0)⊗Fp k ∼ (A, ι) and (A′0, ι
′
0)⊗Fp k ∼ (A′, ι′). We have a natural iso-

morphism HomK(A0, A
′
0)⊗ZQ ' HomK(A,A′)⊗ZQ, V`(A0) = V`(A) and V`(A

′
0) =

V`(A
′), and the identification Hom((N0, F ), (N ′0, F )) = Hom((N,F ), (N ′, F )), where

N0 and N ′0 are the isocrystals with additional structures associated to (A0, ι0)
and (A′0, ι

′
0), respectively. Therefore, we are reduced to prove the statement when

k = Fp, which is proved by Rapoport-Zink (see [6, Corollary 6.29, p. 293]).

4. A correspondence

4.1. Let Fq be the finite field of q = ps elements. Let AFq denote the category of
abelian varieties over Fq up to isogeny. Let B be the category defined as follows,

which we call the category of basic abelian varieties with endomorphisms over Fp
up to isogeny . The objects of B consist of all triples (F,A, ι), where

• F is a finite-dimensional commutative semi-simple Q-algebra that admits
a positive involution, and
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• (A, ι) is a basic abelian F -variety over Fp.
For any two objects A1 = (F1, A1, ι1) and A2 = (F2, A2, ι2) in B, a morphism

ϕ : A1 → A2 is a pair (ϕ, ϕ̃), where

• ϕ̃ : F1 → F2 is a usual Q-algebra homomorphism (that is, it is not required
for ϕ̃ mapping the identity 1F1 of F1 to 1F2), and
• ϕ is an element in Hom(A1, A2) ⊗ Q which is (F1, F2)-equivariant in the

sense that ϕ ◦ ι1(a) = ι2(ϕ̃(a)) ◦ ϕ holds for all a ∈ F1.

Note that if a usual Q-algebra homomorphism ϕ̃ : F1 → F2 is surjective, then
ϕ̃(1F1) = 1F2 , i.e. it becomes a ring homomorphism. Clearly two objects A1 and
A2 are isomorphic in B if and only if there is a Q-algebra isomorphism ϕ̃ : F1 ' F2,
and a (F1, F2)-equivariant quasi-isogeny ϕ : A1 → A2 over Fp.

The category B is not yet good enough from comparing the study of abelian
varieties with additional structures; there are too many additional morphisms ϕ̃
among the fields F . For example, when F1 = F2 = F , the usual notion of morphisms
between two abelian F -varieties always requires ϕ̃ be identity in morphisms of B
but not an arbitrary automorphism. We introduce another category Brig, which we
call the category of basic abelian varieties with rigidified endomorphisms over Fp up

to isogeny. The objects of Brig are tuples (F, x,A, ι) over Fp, where (F,A, ι) is an
object in B and x ∈ F is an element that generates F over Q. Suppose (F, x,A, ι)
is an object, let Q[t] → F be the natural surjective map from the polynomial ring
Q[t] onto F sending t to x, and let f : Q[t]→ End0(A) be the morphism composing
with the map ι. For any two objects Ai = (Fi, xi, Ai, ιi) for i = 1, 2 in Brig, a
morphism ϕ : A1 → A2 in Brig is an element ϕ ∈ Hom(A1, A2) ⊗ Q such that
ϕ ◦ f1(a) = f2(a) ◦ ϕ for all a ∈ Q[t], where fi : Q[t] → End0(A) are the maps
associated as above. In the case when F1 = F2 = F , we would have

HomF ((A1, ι1), (A2, ι2))⊗Z Q = HomBrig((F, x,A1, ι1), (F, x,A2, ι2))

for any element x generates F over Q, which recovers the usual notion of morphisms
of abelian F -varieties (though we may not really want the additional structure x).

We shall embed AFq as a full subcategory of Brig. We first prove the following
connection.

Proposition 4.1. Let A be an abelian variety over Fq and πA its relative Frobenius

endomorphism. Put F := Q(πA) and ι : F → End0(A) is the inclusion. Then the
abelian F -variety (A, ι) is basic.

Proof. Suppose that the finite field k has q = ps elements. Let A ∼ Πt
i=1A

ni
i be

the decomposition into components up to isogeny, where each abelian variety Ai is
simple and Ai 6∼ Aj for any i 6= j. Let πi be the relative Frobenius endomorphism of

Ai and put Fi := Q(πi). Then we have F =
∏t
i Fi. Let Σp,i be the set of the primes

p of Fi over p. Thus, Σp is the disjoint union of its subsets Σp,i for i = 1, . . . , t. Let
N (resp. Ni) be the isocrystal with additional structures associated to the abelian
F -variety A = (A, ι) (resp. Ai = (Ai, ιi)). Clearly if p ∈ Σp,i then Np = Nni

i,p. In
particular, Np is isotypic for all p ∈ Σp if and only if Ni,p is isotypic for all i and
all p ∈ Σp,i. It follows from Lemma 3.1 that A is basic if and only if Ai is basic for
all i = 1, . . . , t. Therefore, it suffices to show the statement when A is simple. In
this case as F s = π and π ∈ Fp, the component Np has slope ordp(π)/s.
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Using Lemma 3.1, if K is any commutative semi-simple Q-subalgebra of the
endomorphism algebra End0(A) which is stable under a Rosati involution and con-
tains F , then (A, i), where i : K ⊂ End0(A), is also a basic abelian K-variety.
The way to make A as a basic abelian variety with endomorphism structures in
Proposition 4.1 is, after a base change, the most “economical” one, that is, it uses
the least endomorphism structure.

Proposition 4.2. Let A be an abelian variety over Fq such that End(A) = End(A),

where A = A⊗Fp. Suppose that (A, ι) is a basic abelian K-variety for a commutative
semi-simple Q-algebra K which admits a positive involution. Then ι(K) contains
the center F of the endomorphism algebra End0(A).

Proof. Let π be the relative Frobenius endomorphism of A. Then for any
positive integer n one has F = Q(πn) as F is the center of the endomorphism
algebra End0(A ⊗Fq Fqn). Now using Lemma 3.4, there is a positive integer n so
that πn is contained in ι(K). As a result, the center F is contained in ι(K).

Now we define a functor Φ : AFq → Brig as follows. To each abelian variety A

over Fq we associates the tuples (F, πA, A, ι), where πA is the relative Frobenius

endomorphism of A, F := Q(πA), A := A ⊗Fq Fp and ι : F → End0(A) is the
inclusion. Clearly we have the associated map

(4.1) Φ∗ : Hom(A1, A2)⊗Q→ HomBrig(Φ(A1),Φ(A2))

as ϕ ◦ ι1(πA1
) = ι2(πA2

) ◦ ϕ for any map ϕ in the source.

Theorem 4.3. The functor Φ : AFq → Brig is fully faithful.

Proof. LetA1 andA2 be two abelian varieties over Fq, and letAi := (Fi, πi, Ai, ιi)
be the associated object in Brig for i = 1, 2. We must show that the associated map
Φ∗ in (4.1) is bijective. It is clear that Φ∗ is injective. Let f : A1 → A2 be an ele-
ment in HomBrig(Φ(A1),Φ(A2)), particularly π2f = fπ1. As σq(f) = π2fπ

−1
1 = f ,

where σq ∈ Gal(Fp/Fq) is the Frobenius map, the morphism f is defined over Fq.

4.2. We restrict the functor Φ to the objects which have a common center of their
endomorphism algebras. We choose any abelian variety A0 over Fq. Let π0 be the
relative Frobenius endomorphism of A0 over Fq, p(t) ∈ Z[t] its minimal polynomial
over Q and F := Q[t]/(p(t)). A commutative semi-simple Q-algebra F arising in
this way is called a q-Weil Q-algebra.

Let Aπ0,Fq denote the category of abelian varieties A over Fq up to isogeny such
that the minimal polynomial of the relative Frobenius endomorphism of A is equal
to p(t). In other words, an abelian variety A over Fq in Aπ0,Fq shares the common
simple components of A0.

Let BF denote the category of basic abelian F -varieties over Fp up to isogeny.
Similarly we define a functor

(4.2) ΦF : Aπ0,Fq → BF , A 7→ (A, ι),

where A := A⊗Fq Fp and ι : F → End0(A) is the ring monomorphism sending t to
πA.

By Theorem 4.3, we have the following result.
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Proposition 4.4. For any q-Weil Q-algebra F = Q(π0), the functor ΦF : Aπ0,Fq →
BF is fully faithful.

Remark 4.5. The functor ΦF is not essentially surjective usually. For example take
q = p2 and π0 = pζ6 and let p ≡ 1 (mod 3). The corresponding abelian variety
A0 is a simple supersingular abelian surface, and any object in Aπ0,Fq is isogenous

to a finite product of copies of A0. However, as F = Q(
√
−3) and p splits in

F , there is an ordinary elliptic curve E over Fp so that there is an isomorphism

i : F ' End0(E). Clearly (E, i) is in BF but it does not land in the essential image
of the functor ΦF .

5. A mass formula

5.1. Within a simple isogeny class. Let π be a q-Weil number, F = Q(π) the
number field generated by π over Q, and OF the ring of integers in F . Let Isog(π)
denote the simple isogeny class corresponding to π by the Honda-Tate theory [8].
Let A0 be an abelian variety over Fq in Isog(π) and put d := dim(A0).

Let Λ(π) denote the set of isomorphism classes of abelian varieties over Fq in
Isog(π), and let Λ(π)max ⊂ Λ(π) be the subset consisting of all abelian varieties A so
that the ring OF is contained in End(A). Let Bd,OF denote the set of isomorphism

classes of d-dimensional basic abelian OF -varieties over Fp.
The following lemma clearly follows from Proposition 4.4.

Lemma 5.1. The association A 7→ (A, ι) induces an injection Φπ : Λ(π)max →
Bd,OF .

If A ∈ Λ(π)max is an abelian variety over Fq and (A, ι) the corresponding basic

abelian OF -variety over Fp, then clearly any OF -linear polarization λ on (A, ι)
descends uniquely to a polarization λ on A over Fq. Particularly, the map λ 7→ λ̄
gives rise to a one-to-one correspondence between polarizations on A and OF -linear
polarizations on (A, ι) over Fp. It follows that A admits a principal polarization

if and only if (A, ι) admits a principal OF -linear polarization. Moreover, we also
have a natural isomorphism of finite groups

(5.1) Aut(A, λ) ' Aut(A, λ, ι).

Let Λ(π)max
1 be the set of isomorphism classes of principally polarized abelian va-

rieties (A, λ) over Fq such that the underlying abelian variety A belongs to Λ(π)max.
The set Λ(π)max

1 could be empty; nevertheless, it is finite. Indeed Λ(π)max
1 is con-

tained in the finite set Ad,1(Fq) of Fq-rational points of the Siegel modular varieties
Ad,1,

Let Ad,OF ,1 be the moduli space over Fp of d-dimensional principally polarized

abelian OF -varieties, and let Bd,OF ,1 ⊂ Ad,OF ,1(Fp) be its basic locus. Then the
map Φπ induces an injective map

(5.2) Φπ : Λ(π)max
1 → Bd,OF ,1.

We have the following commutative diagram

Λ(π)max
1

Φπ−−−−→ Bd,OF ,1y y
Λ(π)max Φπ−−−−→ Bd,OF ,
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where the vertical maps forget the polarization.
The mass of Λ(π)max

1 is defined by

(5.3) Mass(Λ(π)max
1 ) :=

∑
(A,λ)∈Λ(π)max

1

|Aut(A, λ)|−1

if it is nonempty, and to be zero otherwise. For any finite subset S ⊂ Ad,OF ,1(Fp),
the mass of S is defined by

(5.4) Mass(S) :=
∑

(A,λ,ι)∈S

|Aut(A, λ, ι)|−1

if S is nonempty and Mass(S) = 0 otherwise. From (5.1) we have the equality

(5.5) Mass(Λ(π)max
1 ) = Mass(ImΦπ).

5.2. An example: π =
√
p. We consider a example when π =

√
p and prove the

following result.

Theorem 5.2. When π =
√
p, the finite set Λ(π)max

1 is nonempty and

(5.6) Mass(Λ(π)max
1 =

o

4
ζQ(
√
p)(−1),

where o = 8 or 1 according as p = 2 or not.

We need a general result. We refer to [10, Section 1] for Dieudonné modules and
Dieudonné modules with additional structures.

Proposition 5.3. Let F be a totally real field, O := OF⊗ZZp and k an algebraically
closed field of characteristic p > 0.

(1) Let M = (M, ιM , 〈 , 〉) be a supersingular separably quasi-polarized Dieudonné
O-module over k satisfying the following condition

(∗) tr(ιM (a)) · [F : Q] = (rankW M) · trF/Q(a), ∀ a ∈ OF .
Then there is a supersingular principally polarized abelian OF -variety A = (A, λ, ι)
over k such that the associated Dieudonné module M(A) with additional structures
is isomorphic to M .

(2) Assume that p is totally ramified in F and that dimA = [F : Q]. For
any supersingular Dieudonné O-module M = (M, ιM ) over k, there is a principally
polarized abelian OF -variety A = (A, λ, ι) over k such that the associated Dieudonné
O- module M(A, ι) is isomorphic to M .

Proof. (1) By [13, Theorem 1.1], there is a polarized abelian OF -variety A =
(A, λ, ι) such that M(A) ' M . We need an elementary fact that there is a self-
dual skew-Hermitian OF ⊗ Z`-lattice (L`, ψ`) so that there is an isomorphism ϕ` :
(L` ⊗Z` Q`, ψ`) ' (V`(A), eλ,`) for all primes ` 6= p. Note that any two skew-
Hermitian F`-spaces are isomorphic provided they are free over F` of the same
rank. We leave the existence of an OF ⊗Z`-free self-dual skew-Hermitian OF ⊗Z`-
module to the reader. Then there is an abelian OF -variety (A′, ι′) and a prime-to-p
degree OF -linear quasi-isogeny ϕ′ : (A′, ι′)→ (A, ι) such that ϕ′∗(T`(A

′)) = ϕ`(L`)
for all ` 6= p. Take λ′ = ϕ∗λ and then λ′ is a principal polarization. The object
(A′, λ′, ι′) is a desired one.

(2) Since there is only one prime of OF over p, the condition (∗) is satisfied.
By [10, Proposition 2.8] the Dieudonné O-module M admits a separable O-linear
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quasi-polarization, noting that an equivalent condition (5) of loc. cit. is satisfied
when p is totally ramified. Then the statement follows from (1).

Now let F = Q(
√
p). The prime p is ramified in F with ramification index e = 2.

Clearly any member A in Λ(π)max is a superspecial abelian surface over Fp. The
Dieudonné module M = M(A) of A is a rank 4 free Zp-module together with a
Zp-linear action by OF . Therefore, M ' O2 with O = OF ⊗Zp = Zp[

√
p] on which

the Frobenius F and the Verschiebung V both operate by
√
p. From this the Lie

algebra Lie(A) = M/VM of A is isomorphic to Fp ⊕ Fp as an OF /p-module. In
other words, A has Lie type (1, 1) in the terminology of [10, Section 1]. Therefore,
the injective map Φπ : Λ(π)max → B2,OF factors through the subset S ⊂ B2,OF of
superspecial abelian OF -surfaces of Lie type (1, 1).

We first claim that the induced map

(5.7) Φπ : Λ(π)max → S

is bijective. Fix a member A0 ∈ Λ(π)max. By Waterhouse [9, Theorem 6.2], there
is a natural bijection between the set Λ(π)max and the set Cl(End(A0)) of right
ideal classes. Since the map Φπ is injective, it suffices to show that S has the same
cardinality of Cl(End(A0)). Note that the isomorphism classes of (unpolarized)
superspecial Dieudonné O-modules are uniquely determined by their Lie types [12,
Lemma 3.2]. It follows that the Dieudonné modules and Tate modules of any
two members in S are mutually isomorphic (compatible with the actions of OF ).
By [12, Theorem 2.5] (the unpolarized version), there is a natural bijection S '
Cl(EndOF (A0)). Since we have End(A0) = EndOF (A0), our claim is proved.

Let S1 ⊂ B2,OF ,1 be the subset consisting of objects (A, λ, ι) so that the un-
derlying abelian OF -surface (A, ι) belongs to S. Proposition 5.3 implies that S1 is
nonempty. Consider the commutative diagram

(5.8)

Λ(π)max
1

Φπ−−−−→ S1

fΛ

y fS

y
Λ(π)max Φπ−−−−→

'
S

Note that a member A in Λ(π)max admits a principal polarization if and only if
Φπ(A) = (A, ι) admits a principal OF -linear polarization. Moreover, the equiva-
lence classes of principal polarizations on A are in bijection with the equivalence
classes of principal OF -linear polarizations on (A, ι). It follows that the diagram
(5.8) is cartesian, which particularly implies that the map Φπ : Λ(π)max

1 ' S1 is an
isomorphism. Thus, we have proved Mass(Λ(π)max

1 ) = Mass(S1).
Now we use the mass formula for Mass(S1) [12, Theorem 3.9] and get

(5.9) Mass(Λ(π)max
1 ) = Mass(S1) =

o

4
ζF (−1),

where o = 8 or 1 according as p = 2 or not. This proves Theorem 5.2.

5.3. Fiber of the map fS. We describe the fiber of the map fS in (5.8). Suppose
(A, λ0, ι) is a member in S1. Put D := End0

OF (A) and OD := EndOF (A); D is the
quaternion F -algebra ramified only at the two real places of F and OD is a maximal
order. Note that the canonical involution ∗ is the unique positive involution on D.
Therefore the Rosati involution induced by any OF -linear polarization must be
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∗. Suppose λ is another OF -linear principal polarization, then λ = λ0a for some
element a ∈ O×D with a = a∗ that is totally positive, or for some a ∈ O×F,+, the set of

totally positive units in OF . Suppose b ∈ AutOF (A) is an OF -linear automorphism.
Then

b∗(λ0a) = btλ0ab = λ0λ
−1
0 btλ0ba = λ0(b∗b)a.

Therefore, the set of equivalence classes of principal OF -linear polarizations on
(A, ι) is in bijection with the set O×F,+/Nr(O×D), where Nr : OD → OF is the
reduced norm. In other words, we yield an isomorphism

(5.10) f−1
S (A, ι) ' O×F,+/Nr(O×D).

Now the group O×F,+/Nr(O×D) is a homomorphism image of O×F,+/O
×,2
F . The latter

group has 1 or 2 elements according as the fundamental unit ε of F has norm −1
or not. Therefore, if N(ε) = −1, then f−1

S (A, ι) has one element. Otherwise, the

fiber f−1
S (A, ι) has at most two elements.
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