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QUADRATIC ALGEBRAS, YANG-BAXTER EQUATION, AND
ARTIN-SCHELTER REGULARITY

TATIANA GATEVA-IVANOVA

Abstract. We study two classes of quadratic algebras over a field k: the class

Cn of all n-generated PBW algebras with polynomial growth and finite global
dimension and the class of quantum binomial algebras. We show that a PBW

algebra A is in Cn iff its Hilbert series is HA(z) = 1/(1 − z)n. Furthermore

the class Cn contains a unique (up to isomorphism) monomial algebra, A =
k〈x1, · · · , xn〉/(xjxi | 1 ≤ i < j ≤ n). Surprising amount can be said when A

is a quantum binomial algebra, that is its defining relations are nondegenerate

square-free binomials xy − cxyzt, cxy ∈ k×. Our main result shows that
for an n-generated quantum binomial algebra A the following conditions are

equivalent: (i) A is an Artin-Schelter regular PBW algebra. (ii) A is a Yang-

Baxter algebra, that is the set of relations < defines canonically a solution of the
Yang-Baxter equation. (iii) A is a binomial skew polynomial ring, with respect

to an enumeration of X. (iv) The Koszul dual A! is a quantum Grassmann
algebra.

1. Introduction

A quadratic algebra is an associative graded algebra A =
⊕

i≥0 Ai over a ground
field k determined by a vector space of generators V = A1 and a subspace of
homogeneous quadratic relations R = R(A) ⊂ V ⊗ V. We assume that A is finitely
generated, so dim A1 < ∞. Thus A = T (V )/(R) inherits its grading from the
tensor algebra T (V ). The Koszul dual algebra of A, denoted by A! is the quadratic
algebra T (V ∗)/(R⊥), see [29, 30].

Following a classical tradition (and a recent trend), we take a combinatorial
approach to study A. The properties of A will be read off a presentation A =
k〈X〉/(<), where by convention X is a fixed finite set of generators of degree 1,
|X| = n, k〈X〉 is the unital free associative algebra generated by X, and (<)
is the two-sided ideal of relations, generated by a finite set < of homogeneous
polynomials of degree two. Clearly A is a connected graded k-algebra (naturally
graded by length) A =

⊕
i≥0 Ai, where A0 = k, A is generated by A1 = SpankX,

so each Ai is finite dimensional. A quadratic algebra A is a PBW algebra if there
exists an enumeration of X, X = {x1, · · ·xn} such that the quadratic relations <
form a (noncommutative) Gröbner basis with respect to the degree-lexicographic
ordering < on 〈X〉 induced from x1 < x2 < · · · < xn. In this case the set of normal
monomials (mod <) forms a k-basis of A called a PBW basis and x1, · · · , xn (taken

Date: January 16, 2012.

1991 Mathematics Subject Classification. Primary 81R50, 16W50, 16S36, 16S37.
Key words and phrases. Yang-Baxter, Artin-Schelter regular algebras, Quadratic algebras,

Quantum groups.
The author was partially supported by the Max Planck Institute for Mathematics, Bonn and

by the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste.

1
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exactly with this enumeration) are called PBW-generators of A. The notion of
a PBW algebra was introduced by Priddy, [33], his PBW basis is a generalization
of the classical Poincaré-Birkhoff-Witt basis for the universal enveloping of a finite
dimensional Lie algebra. PBW algebras form an important class of Koszul algebras.
The interested reader can find information on PBW algebras and more references
in [32]. One of the central problems that we consider is the classification of Artin-
Schelter regular PBW algebras. (We shall often use the abbreviation ”AS” instead
of ”Artin-Shelter”). The first question to be asked is: what can be said about PBW
algebras with polynomial growth and finite global dimension?

Theorem 1.1. Let A = k〈X〉/(<) be a quadratic PBW algebra, where X =
{x1, x2, · · · , xn} is a set of PBW generators. The following are equivalent:

(1) A has polynomial growth and finite global dimension.
(2) A has exactly

(
n
2

)
relations and finite global dimension.

(3) A has polynomial growth, exactly
(
n
2

)
relations, and the leading monomial

of each relation (w.r.t. deg-lex ordering) has the shape xy, x 6= y.
(4) The Hilbert series of A is

HA(z) =
1

(1− z)n
.

(5) There exists a permutation y1, · · · , yn of x1 · · ·xn, such that the set

(1.1) N = {yα1
1 yα2

2 · · · yαn
n | αi ≥ 0 for 1 ≤ i ≤ n}

is a k-basis of A.

Furthermore the class Cn of all n-generated PBW algebras with polynomial growth
and finite global dimension contains a unique (up to isomorphism) monomial alge-
bra: A0 = 〈x1, · · · , xn〉/(xjxi | 1 ≤ i < j ≤ n).

Note that y1, y2, · · · , yn is a possibly ”new” enumeration of X, which induces a
degree-lexicographic ordering ≺ on 〈X〉 (with y1 ≺ y2 ≺ · · · ≺ yn) different from
the original ordering. The defining relations remain the same, but their leading
terms w.r.t. ≺ may be different from the original ones, and y1, y2, · · · , yn are not
necessarily PBW generators of A. In the terminology of Gröbner bases, N is not
necessarily a normal basis of A w.r.t. ≺. A class of AS regular PBW algebras of
arbitrarily high global dimension n were introduced and studied in [16, 23, 18, 17].
These are the binomial skew-polynomial rings. It was shown in [23] that they
are also closely related to the set-theoretic solutions of the Yang-Baxter equation
(YBE).

More generally, we consider the so-called quantum binomial algebras introduced
and studied in [18, 20]. These are quadratic algebras (not necessarily PBW) with
square-free binomial relations. Each binomial skew-polynomial ring is an example
of a quantum binomial PBW algebra. So it is natural to ask: which are the Artin-
Schelter regular PBW algebras in the class of quantum binomial algebras? We
prove that each quantum binomial PBW algebra with finite global dimension is a
Yang-Baxter algebra and therefore a binomial skew-polynomial ring. This implies
that in the class of quantum binomial algebras the three notions: an Artin-Schelter
regular PBW algebra, a binomial skew-polynomial ring, and a Yang-Baxter algebra
(in the sense of Manin) are equivalent. The main result of the paper is the following.

Theorem 1.2. Let A = k〈X〉/(<) be a quantum binomial algebra, |X| = n, let A!

be its Koszul dual algebra. The following conditions are equivalent:
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(1) A is a PBW algebra with finite global dimension.
(2) A is a PBW algebra with polynomial growth.
(3) A is an Artin-Schelter regular PBW algebra.
(4) A is a Yang-Baxter algebra, that is the set of relations < defines canonically

a solution of the Yang-Baxter equation.
(5) A is a binomial skew polynomial ring, with respect to an enumeration of X.
(6)

dimk A3 =
(

n + 2
3

)
.

(7)

dimk A!
3 =

(
n

3

)
.

(8) The Hilbert series of A is

HA(z) =
1

(1− z)n
.

(9) The Koszul dual A! is a quantum Grassmann algebra of dimension n.
Each of these conditions implies that A is Koszul and a Noetherian domain.

Consider now the intersection I of the two classes quadratic algebras generated
by the same set of generators X, |X| = n: the class Cn of PBW algebras with
polynomial growth and finite global dimension, and the class of quantum binomial
algebras. Theorem 1.2 shows that I consists of Artin-Shelter regular algebras of
global dimension n or equivalently of Yang-Baxter algebras. Moreover, I coin-
cides with the class of binomial skew-polynomial rings (w.r.t. an enumeration of
X). It follows from Theorem 1.2 that the problem of classifying Artin-Schelter
regular PBW algebras with quantum binomial relations and global dimension n is
equivalent to finding the classification of square-free set-theoretic solutions of YBE,
(X, r), on sets X of order n. Even under these strong restrictions on the shape
of the relations, the problem remains highly nontrivial. However, for reasonably
small n (say n ≤ 10) the square-free solutions of YBE (X, r) are known. A possible
classification for general n can be based on the so called multipermutation level of
the solutions, see [22].

The paper is organized as follows. In section 2 we recall some basic definitions
and results used throughout the paper. In section 3 we study the general case
of PBW algebras with finite global dimension and polynomial growth and prove
Theorem 1.1. The approach is combinatorial. To each PBW algebra A we associate
two finite oriented graphs. The first one is the graph of normal words ΓN which
determines the growth and the Hilbert series of A (this is a particular case of
the Ufnarovski graph [38]). The second graph, ΓW, dual to ΓN, gives a precise
information about the global dimension of the algebra A. We prove that all algebras
in the class Cn of n-generated PBW algebras with polynomial growth and finite
global dimension determine a unique (up to isomorphism) graph of obstructions
ΓW , which is the complete oriented graph Kn without cycles. In section 4 we
find some interesting combinatorial results on quantum binomial sets (X, r) and
the corresponding quadratic algebra A = A(k, X, r). We show that a quantum
binomial set (X, r) of order n is a set-theoretic solution of the Yang-Baxter equation
iff dimkA3 =

(
n+2

3

)
. In section 5 we prove Theorem 1.2.
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2. Preliminaries - some definitions and facts

The paper is a natural continuation of [17]. We shall use the terminology, nota-
tion and results from our previous works [16, 23, 17, 18, 20]. The reader acquainted
with these may proceed to the next section.

2.1. Artin-Schelter regular algebras. A connected graded algebra A is called
Artin-Schelter regular (or AS regular) if

(i) A has finite global dimension d, that is, each graded A-module has a free
resolution of length at most d.

(ii) A has finite Gelfand-Kirillov dimension, meaning that the integer-valued
function i 7→ dimk Ai is bounded by a polynomial in i.

(iii) A is Gorenstein, that is, ExtiA(k, A) = 0 for i 6= d and ExtdA(k, A) ∼= k.
AS regular algebras were introduced and studied first in [3, 4, 5]. Since then AS

regular algebras and their geometry have intensively been studied. When d ≤ 3
all regular algebras are classified. The problem of classification of regular algebras
seems to be difficult and remains open even for regular algebras of global dimension
4. The study of Artin-Schelter regular algebras, their classification, and finding new
classes of such algebras is one of the basic problems in noncommutative geometry.
Numerous works on this topic appeared during the last two decades, see for example
[4, 5], [7, 26, 37, 28, ?], et all.

Definition 2.1. [16] A binomial skew polynomial ring is a quadratic algebra A =
k〈x1, · · · , xn〉/(<) with precisely

(
n
2

)
defining relations

< = {xjxi − cijxi′xj′}1≤i<j≤n

such that
(a) For every pair i, j, 1 ≤ i < j ≤ n, the relation xjxi− cijxi′xj′ ∈ <, satisfies

cij ∈ k×, j > i′, i′ < j′.
(b) Every ordered monomial xixj , with 1 ≤ i < j ≤ n occurs in the right hand

side of some relation in <.
(c) < is the reduced Gröbner basis of the two-sided ideal (<), with respect to

the order < on 〈X〉, or equivalently the ambiguities xkxjxi, with k > j > i
do not give rise to new relations in A.

We say that < are relations of skew-polynomial type if conditions 2.1 (a) and (b)
are satisfied (we do not assume (c)).

By [6] condition 2.1 (c) may be rephrased by saying that the set of ordered
monomials

N 0 = {xα1
1 · · ·xαn

n | αn ≥ 0 for 1 ≤ i ≤ n}
is a k-basis of A.

The binomial skew polynomial rings were introduced and studied first in [15,
16], where by definition they satisfy conditions (a) and (c) of Definition 2.1 but
not necessarily (b) (see [16], Definition 1.11). It was proven that condition (b) is
essential for the ”good” algebraic and homological properties of the skew polynomial
rings, so in our later works (b) became a part of the definition. We recall first the
following result which can be extracted from [16], Theorem II.

Fact 2.2. Assume that A = k〈x1, · · · , xn〉/(<) is a quadratic algebra, with relations
< satisfying conditions (a) and (c) of Definition 2.1. Then the following three
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conditions are equivalent: (i) A is left Noetherian; (ii) A is right Noetherian; (iii)
Condition (b) of Definition 2.1 holds.

Remark 2.3. In the terminology of this paper a binomial skew polynomial ring is a
PBW algebra A with PBW generators x1 · · · , xn and relations of skew-polynomial
type.

More generally, we will consider a class of quadratic algebras with binomial rela-
tions, so-called quantum binomial algebras, these are not necessarily PBW algebras.

2.2. Quadratic sets. Quantum binomial algebras. Quadratic sets were intro-
duced and studied in the context of set-theoretic solutions of YBE, see [20]. They
are also closely related to quadratic algebras with binomial relations.

Definition 2.4. Let X be a nonempty set and let r : X × X −→ X × X be a
bijective map. In this case we shall use notation (X, r) and refer to it as a quadratic
set. We present the image of (x, y) under r as

(2.1) r(x, y) = (xy, xy).

Formula (2.1) defines a “left action” L : X × X −→ X, and a “right action”
R : X ×X −→ X, on X as:

Lx(y) = xy, Ry(x) = xy, for all x, y ∈ X.

(1) r is nondegenerate if the maps Lx and Rx are bijective for each x ∈ X.
(2) r is involutive if r2 = idX×X .
(3) (X, r) is said to be square-free if r(x, x) = (x, x) for all x ∈ X.
(4) (X, r) is called a quantum binomial set if it is nondegenerate, involutive

and square-free.
(5) (X, r) is a set-theoretic solution of the Yang-Baxter equation (YBE) if the

braid relation
r12r23r12 = r23r12r23

holds in X ×X ×X, where r12 = r × idX and r23 = idX × r. In this case
we refer to (X, r) also as a braided set.

(6) A braided set (X, r) with r involutive is called a symmetric set.

More generally, let V be a k-vector space. Recall that a linear automorphism R
of V ⊗ V is a solution of the Yang-Baxter equation, (YBE) if the equality

(2.2) R12R23R12 = R23R12R23

holds in the automorphism group of V ⊗ V ⊗ V, where Rij means R acting on the
i-th and j-th component. Each braided set (X, r) extends canonically to a linear
solution R of YBE defined on V ⊗ V , where V = SpankX.

Set-theoretic solutions were introduced in [11, 39] and have been under intensive
study during the last decade. There are numerous works on set-theoretic solutions
and related structures, of which a relevant selection for the interested reader is
[39, 23, 34, 12, 27, 18, 17, 21, 24, 35, 36, 20, 21, 22, 8].

As a notational tool, we shall often identify the sets X×m of ordered m-tuples,
m ≥ 2, and Xm, the set of all monomials of length m in the free monoid 〈X〉.

To each quadratic set (X, r) we associate canonically algebraic objects generated
by X and with quadratic relations <0 = <0(r) naturally determined as

xy = y′x′ ∈ <0(r) iff r(x, y) = (y′, x′) and (x, y) 6= (y′, x′) hold in X ×X.
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The monoid S = S(X, r) = 〈X; <0(r)〉 with a set of generators X and a set of
defining relations <0(r) is called the monoid associated with (X, r). The group
G = G(X, r) associated with (X, r) is defined analogously. For an arbitrary fixed
field k, the k-algebra associated with (X, r) is defined as

A = A(k, X, r) = k〈X〉/(<) ' k〈X; <0(r)〉, where
< = <(r) = {xy − y′x′ | xy = y′x′ ∈ <0(r)}.

Clearly, the quadratic algebra A generated by X and with defining relations <(r)
is isomorphic to the monoid algebra kS(X, r).

Remark 2.5. The number of relations in <(r) depends on r and its properties. For
example, if r = idX2 then <(r) = ∅ and A is the free associative algebra. It follows
from [19], Proposition 2.3, that the set <(r) consists of precisely

(
n
2

)
quadratic

relations whenever (X, r) is nondegenerate and involutive, with |X| = n.

In many cases the associated algebra will be standard finitely presented with
respect to the degree-lexicographic ordering induced by an appropriate enumeration
of X, that is, it will be a PBW algebra.

Definition 2.6. Let V = SpankX. Let < ⊂ k〈X〉 be a set of quadratic binomials,
satisfying the following conditions:

B1 Each f ∈ < has the shape f = xy−cyxy′x′, where cxy ∈ k× and x, y, x′, y′ ∈
X.

B2 Each monomial xy of length 2 occurs at most once in <.
The canonically associated quadratic set (X, r(<)) with an involutive bijection r =
r(<) : X ×X −→ X ×X is defined as

r(x, y) = (y′, x′), and r(y′, x′) = (x, y) iff xy − cxyy′x′ ∈ <.
r(x, y) = (x, y) iff xy does not occur in <.

The (involutive) automorphism R = R(<) : V ⊗2 −→ V ⊗2 associated with < is
defined analogously.

R(x⊗ y) = cxyy′ ⊗ x′, and R(y′ ⊗ x′) = (cxy)−1x⊗ y iff xy − cxyy′x′ ∈ <.
R(x⊗ y) = x⊗ y iff xy does not occur in <.

R is called nondegenerate if r is nondegenerate.

Definition 2.7. Suppose A = k〈X〉/(<) is a quadratic algebra with binomial
relations < satisfying conditions B1 and B2. A is said to be a quantum binomial
algebra if the associated quadratic set (X, r(<)) is quantum binomial. In this case
we say that < is a set of quantum binomial relations. A is a Yang-Baxter algebra
(in the sense of Manin [30]), if the associated map R = R(<) : V ⊗2 −→ V ⊗2, is a
solution of the Yang-Baxter equation.

Note that (although this is not a part of the definition) every n-generated quan-
tum binomial algebra has exactly

(
n
2

)
relations, see Remark 2.5.

Remark 2.8. Each binomial skew-polynomial ring A is a quantum binomial PBW
algebra. Indeed A has square-free defining relations satisfying conditions B1 and
B2, so the associated (X, r) is square-free and involutive. Furthermore, A satisfies
the Ore conditions, see [23], which imply non-degeneracy of r.

The results below can be extracted from [23], [16], and [17], Theorem B.
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Fact 2.9. Let A = k〈X〉/(<) be a quantum binomial algebra. Then the following
two conditions are equivalent:

(1) A is a binomial skew polynomial ring, with respect to some appropriate
enumeration of X.

(2) The automorphism R = R(<) : V ⊗2 −→ V ⊗2 is a solution of the Yang-
Baxter equation, so A is a Yang-Baxter algebra.

Each of these conditions implies that A is an Artin-Schelter regular PBW algebra.
Furthermore A is a left and right Noetherian domain.

2.3. Examples. We end up the section with three concrete examples of quadratic
algebras.

Example 2.10. Let A = k〈X〉/(<), where X = {x, y, z, t} and

< = {xy − zt, ty − zx, xz − yx, tz − yt, xt− tx, yz − zy}.

A is a quantum binomial algebra. Indeed, the relations are square-free and satisfy
conditions B1 and B2, so the associated quadratic set (X, r) is involutive and
square-free. A direct verification shows that r is nondegenerate. More sophisticated
proof shows that the set of relations < is not a Gröbner basis w.r.t. deg-lex ordering
coming from any order (enumeration) of the set X. This example is studied with
details in Section 4 and illustrates various statements there.

Example 2.11. Let A = k〈X〉/(<), where X = {x, y, z, t} and

< = {xy − zt, ty − zx, xz − yt, tz − yx, xt− tx, yz − zy}.

We fix t > x > z > y and take the corresponding deg-lex ordering on 〈X〉. A direct
verification shows that < is a Gröbner basis. To do this one has to show that the
ambiguities txz, txy, tzy, xzy are solvable. In this case the set

N = {yαzβxγtδ | α, β, γ, δ ≥ 0}

is the normal basis of A modulo <. Hence A is a binomial skew-polynomial ring and
therefore A is a Yang-Baxter algebra and an AS-regular domain of global dimension
4, see Fact 2.9. Note that any order in which {t, x, } > {z, y}, or {z, y} > {t, x, },
makes A a PBW algebra (a skew polynomial ring), there are exactly eight such
enumerations of X.

Example 2.12. [3] Let V = SpankX, A = k〈X〉/(<), where X = {x, y, z} and

< = {[x, y]− z2, [y, z]− x2, [z, x]− y2}.

This is a classical example of a quadratic AS-regular algebra of global dimension
3 (type A). The algebra A has Hilbert function dimAl =

(
l+2
2

)
, [3], hence it has

”the correct” Hilbert series. The algebra A is Koszul and a Noetherian domain,
[4, 5]. Note that the Koszul dual A! is a quantum Grassman algebra. This follows
from Fact 5.1 and the ”good” shape of the Hilbert function of A. However, a direct
computation shows that the set < is not a Gröbner basis w.r.t. deg-lex ordering
induced by any order (enumeration) of X. The relations canonically define an
involutive automorphism R = R(<) : V

⊗
2 −→ V

⊗
2, where:

R(z ⊗ z) = x⊗ y − y ⊗ x, R(x⊗ x) = y ⊗ z − z ⊗ y, R(y ⊗ y) = z ⊗ x− x⊗ z.

We have verified via direct computation again, that R does not satisfy YBE (2.2).
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3. PBW algebras with polynomial growth and finite global
dimension

Let X = {x1, · · ·xn}. As usual, we fix the deg-lex ordering < on 〈X〉. Each
element g ∈ k〈X〉 has the shape g = cu + h, where u ∈ 〈X〉, c ∈ k×, h ∈ k〈X〉,
and either h = 0, or h =

∑
α cαuα, is a linear combination of monomials uα < u.

u is called the leading monomial of g (w.r.t. <) and is denoted by LM(g). Let
A = k〈X〉/I be a finitely presented algebra, where I is a finitely generated ideal of
k〈X〉. It is known that the ideal I has a uniquely determined (w.r.t. <) reduced
Gröbner basis G. In general G may be infinite. Consider the set W = {LM(f) |
f ∈ G} of all leading monomials of the elements of G.

It is straightforward that W coincides with a certain set of ”obstructions” in-
troduced by Anick, [2]. We shall follow Anick’s terminology and use the term
”obstructions” instead of ”leading monomials of the elements of G”. The set of
obstructions and the elements of G are involved in the construction of the now
famous Anick’s resolution, [1, 2]. It is a free resolution of the field k considered as
an A-module.

Consider now a PBW algebra A = k〈X〉/(<) with PBW generators X =
{x1, · · ·xn}. Then the set of defining relations < coincides with the reduced Gröbner
basis of the ideal (<), so

W = {LM(f) | f ∈ <},
and N = X2\W is the set of normal monomials (mod W) of length 2.

Notation 3.1. We set

N(0) = {1}, N(1) = X,

N(m) = {xi1xi2 · · ·xim
| xik

xik+1 ∈ N, 1 ≤ k ≤ m− 1}, m = 2, 3, · · ·

N∞ =
⋃

m≥0 N(m).

Note that N∞ is exactly the set of all normal (mod W) words in 〈X〉. It is well-
known that N∞ projects to a basis of A, [6]. More precisely, the free associative
algebra k〈X〉 splits into a direct sum of subspaces

k〈X〉 ' SpankN∞
⊕

I.

So there are isomorphisms of vector spaces

A ' SpankN∞

Am ' SpankN(m), dim Am = |N(m)|, m = 0, 1, 2, 3, · · ·

For a PBW algebra A there is a canonically associated monomial algebra A0 =
k〈X〉/(W). As a monomial algebra, A0 is also PBW. Both algebras A and A0 have
the same set of obstructions W and therefore they have the same normal basis
N∞, the same Hilbert series and the same growth. It follows from results of Anick
that gl.dim A = gl.dimA0. More generally, the set of obstructions W determines
uniquely the Hilbert series, the growth and the global dimension for the whole
family of PBW algebras A sharing the same W. The binomial skew polynomial
rings are a well-known example of PBW algebras with polynomial growth and finite
global dimension, moreover, they are AS regular Noetherian domains, see [23].
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Definition 3.2. Let M ⊂ X2 be a set of monomials of length 2. We define the
graph ΓM corresponding to M as a directed graph with a set of vertices V (ΓM ) = X
and a set of directed edges (arrows) E = E(ΓM ) defined as

x −→ y ∈ E iff x, y ∈ X, and xy ∈M.

Denote by M the complement X2\M. Then the graph ΓM is dual to ΓM in the
sense that

x −→ y ∈ E(ΓM ) iff x −→ y is not an edge of ΓM .

We recall that the order of a graph Γ is the number of its vertices, |V (Γ)|, so
ΓM is a graph of order |X|. A path of length k − 1 in ΓM is a sequence of edges
v1 −→ v2 −→ · · · −→ vk, where vi −→ vi+1 ∈ E. A cycle (of length k) in Γ is a
path of the shape v1 −→ v2 −→ · · · vk −→ v1 where v1, · · · , vk are distinct vertices.
A loop is a cycle of length 0, x −→ x. So the graph ΓM contains a loop x −→ x
whenever xx ∈ M and a cycle of length two x −→ y −→ x, whenever xy, yx ∈ M .
In this case x −→ y, y ←− x are called bidirected edges. Note that following
the terminology in graph theory we make difference between directed and oriented
graphs. A directed graph having no bidirected edges is known as an oriented graph.
An oriented graph without cycles is called an acyclic oriented graph. In particular,
such a graph has no loops.

Let A be a PBW algebra, let W and N be the set of obstructions and the set
of normal monomials of length 2, respectively. The graph ΓN called the graph of
normal words of A, was introduced in more general context by Ufnarovski, [38].
It gives a complete information about the growth of A. The global dimension of
A, can be read off its graph of obstructions ΓW. Note that, in general, ΓN is a
directed graph which may contain bidirected edges, so ΓN is not necessarily an
oriented graph. Similarly, its dual graph ΓW is a directed graph, which, in general,
may contain pairs of bidirected edges, or loops.

The following is a particular case of a more general result of Ufnarovski.

Fact 3.3. [38] Let A be a PBW algebra.
(1) For every m ≥ 1 there is a one-to-one correspondence between the set N(m)

of normal words of length m and the set of paths of length m−1 in the graph
ΓN. The path a1 −→ a2 −→ a2 −→ · · · −→ am (these are not necessarily
distinct vertices) corresponds to the word a1a2 · · · am ∈ N(m).

(2) A has exponential growth iff the graph ΓN has two intersecting cycles.
(3) A has polynomial growth of degree m iff ΓN has no intersecting cycles and

m is the largest number of (oriented) cycles occurring in a path of ΓN.

Example 3.4. All binomial skew-polynomial algebras A with five PBW generators
x1, x2, · · · , x5 have the same graph ΓN as in Figure 1. The graph of obstruction
ΓW for A can be seen in Figure 2. The graph of normal words for the Koszul dual
A! denoted by ΓN! is represented in Figure 3. The graphs in Figure 2 and Figure
3 are acyclic tournaments.

It is straightforward from Anick’s general definition of an m-chain, see [1, 2]
that in the case of PBW algebras, each m-chain is a monomial of length m + 1,
ym+1ym · · · y1, where yi+1yi ∈W, 1 ≤ i ≤ m. (For completeness, the 0-chains are
the elements of X, by definition). This implies that for every m ≥ 1 there is a
one-to-one correspondence between the set of m-chains, in the sense of Anick, and
the set of paths of length m in the directed graph ΓW. The m-chain ym+1ym · · · y1,
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with yi+1yi ∈W, 1 ≤ i ≤ m, corresponds to the path ym+1 −→ ym −→ · · · −→ y1

of length m in ΓW. Note that Anick’s resolution [1, 2] is minimal for PBW algebras
and for monomial algebras (not necessarily quadratic), and therefore a PBW algebra
A has finite global dimension d <∞ iff there is a (d− 1)-chain, but there are no
d-chains in 〈X〉. We ”translate” this in terms of the properties of ΓW.

Lemma 3.5. A PBW algebra A has finite global dimension d iff ΓW is an acyclic
oriented graph and d− 1 is the maximal length of a path occurring in ΓW.

All PBW algebras with the same set of PBW generators x1, · · · , xn and the same
sets of obstructions, W, share the same graphs ΓN and ΓW. In some cases it is
convenient to study the corresponding monomial algebra A0 instead of A.

2

1

3

4

5

Figure 1. This is the graph of normal words ΓN for a PBW al-
gebra A with 5 generators, polynomial growth and finite global
dimension.

2

1

3

4

5

Figure 2. This is the graph of obstructions ΓW, dual to ΓN. It
is an acyclic tournament of order 5, labeled ”properly”, as in
(3.1).

Definition 3.6. A complete oriented graph Γ is called a tournament or tour.

In other words, a tournament is a directed graph in which each pair of vertices
is joined by a single edge having a unique direction. Clearly, a complete directed
graph without cycles (of any length) is an acyclic tournament. An acyclic oriented
graph with n vertices is a tournament iff it has exactly

(
n
2

)
(directed) edges. The

following is well-known in graph theory.
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2

1

3

4

5

Figure 3. This is the graph of normal words Γ! for the Koszul
dual A!. It is an acyclic tournament of order 5

.

Remark 3.7. Let Γ be an acyclic tournament of order n. Then the set of its vertices
V = V (Γ) can be labeled V = {y1, y2, · · · , yn}, so that the set of edges is

(3.1) E(Γ) = {yj −→ yi | 1 ≤ i < j ≤ n}.

Analogously, the vertices can be labeled V = {z1, z2, · · · , zn}, so that E(Γ) =
{zi −→ zj | 1 ≤ i < j ≤ n}.

A0 is a quadratic monomial algebra if it has a presentation A0 = k〈X〉/(W ),
where W is a set of monomials of length 2. Any quadratic monomial algebra A0 is
a PBW algebra, moreover, any enumeration x1, · · · , xn of X gives PBW generators
of A0.

Theorem 3.8. Let A0 = k〈x1 · · · , xn〉/(W) be a quadratic monomial algebra. The
following conditions are equivalent:

(1) A0 has finite global dimension and polynomial growth.
(2) A0 has finite global dimension and |W| =

(
n
2

)
.

(3) A0 has polynomial growth, W
⋂

diag X2 = ∅, and |W| =
(
n
2

)
.

(4) The graph ΓW is an acyclic tournament.
(5)

HA0(z) =
1

(1− z)n
.

(6) There is a permutation y1, · · · , yn of x1 · · · , xn such that

(3.2) N∞ = {yα1
1 · · · yαn

n | αi ≥ 0, 1 ≤ i ≤ n}.

(7) There is a permutation y1, · · · , yn of x1 · · · , xn, such that

W = {yjyi | 1 ≤ i < j ≤ n}.

Furthermore, in this case

gl.dim A0 = n = the degree of the polynomial growth of A.

Proof. Condition (4) is central for our proof.
The following are straightforward

(4) =⇒ (1); (4) =⇒ (3); (7) =⇒ (3); (7) =⇒ (4);
(7) ⇐⇒ (6) =⇒ (5).
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(4) =⇒ (7). Suppose (4) holds, so ΓW is an acyclic tournament. By Remark
3.7 the set of its vertices V = V (ΓW) can be relabeled V = {y1, y2, · · · , yn}, so
that the set of edges satisfies (3.1), this implies (7).

(4) =⇒ (2). Suppose (4) holds. As an acyclic tournament ΓW contains exactly(
n
2

)
edges and therefore |W| =

(
n
2

)
. Chose a ”good” labeling of ΓW, such that (3.1)

holds. Then the set E(ΓW) contains the edges yj −→ yj−1, 2 ≤ j ≤ n, so the graph
ΓW has a path yn −→ yn−1 −→ · · · −→ y1 of length n − 1. Clearly, there are no
longer paths in ΓW, so by Lemma 3.5 gl.dim A0 = n.

(2) =⇒ (4). Assume (2). Clearly, ΓW has exactly
(
n
2

)
edges. Lemma 3.5 and

gl.dim A0 < ∞ imply that ΓW is an acyclic oriented graph, so, ΓW is an acyclic
tournament.

(3) =⇒ (4). Assume (3) holds. Then ΓW has exactly
(
n
2

)
edges, where each edge

has the shape x −→ y, x 6= y. Therefore its dual graph ΓN has a loop x −→ x
at every vertex and exactly

(
n
2

)
edges y −→ x, where x −→ y ∈ E(ΓW). The

polynomial growth of A0 implies that ΓN has no cycles of length ≥ 2, therefore
every two vertices in ΓN are connected with a single directed edge, so ΓN is an
oriented graph. It follows then that ΓW is an acyclic oriented tournament.

(5) =⇒ (4). Note first that

(3.3) HA0(z) =
1

(1− z)n
= 1 + nz +

(
n + 1

2

)
z2 +

(
n + 2

3

)
z3 + · · · .

So

dim A2 = |N| =
(

n + 1
2

)
, which implies |W| =

(
n

2

)
.

Secondly, the special shape of Hilbert series HA0(z) implies that A0 has polynomial
growth of degree n. Therefore by Fact 3.3 the graph ΓN contains a path with n
cycles. The only possibility for such a path is to have n distinct vertices and a loop
at every vertex:

(3.4) •�� −→ •�� −→ •�� −→ · · · −→ •��
a1 a2 a3 an

Indeed ΓN has exactly n vertices and possesses no intersecting cycles. Each loop
x −→ x in ΓN implies xx ∈ N , so ∆2 ⊂ N (∆2 = diag(X2)). Then the complement
N\∆2 contains exactly

(
n
2

)
monomials of the shape xy, x 6= y, or equivalently,

ΓN has
(
n
2

)
edges of the shape x −→ y, x 6= y. Clearly, E(ΓN) does not contain

bidirected edges otherwise the graph will have two intersecting cycles x −→ x and
x −→ y −→ x which is impossible since A0 has polynomial growth. Therefore ΓN is
an oriented graph. Consider now the dual graph ΓW. The properties of ΓN imply
that: (a) ΓW has no loops; (b) ΓW is without cycles of length ≥ 2. Each edge
x −→ y in E(ΓN) has a corresponding edge x←− y ∈ E(ΓW). So ΓW is an acyclic
oriented graph with

(
n
2

)
edges, therefore it is an acyclic tournament.

(1) =⇒ (4). Assume that A0 has polynomial growth and finite global dimension.
We shall use once more the nice balance between the dual graphs ΓW and ΓN.
The graph ΓN is without intersecting cycles (otherwise A would have exponential
growth). By Lemma 3.5 ΓW is also acyclic, therefore it is an acyclic oriented graph.
In particular, ΓW has no loops, therefore its dual graph ΓN has loops x −→ x at
every vertex. ΓW has no bidirected edges either, thus for each each pair x 6= y of
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vertices, its dual ΓN contains at least one of the edges x −→ y, or y −→ x. The
algebra A0 has polynomial growth, hence ΓN has no bidirected edges. It follows
then that ΓW is an acyclic oriented graph with

(
n
2

)
edges, therefore it is an acyclic

tournament. �

Remark 3.9. The implication (1) =⇒ (5) also follows straightforwardly from a
result of Anick, see [1] Theorem 6.

Proof of Theorem 1.1. Assume now that A = k〈X〉/(<) is a quadratic PBW
algebra, with PBW generators X = {x1, · · ·xn}. Let W be the set of obstructions
and let A0 = k〈X〉/(W) be the corresponding monomial algebra. As we have
noticed before, the two algebras share the same set of obstruction, so the set N∞

of normal (mod W) monomials is a k-basis for both algebras A and A0, they have
the same Hilbert series, equal degrees of growth and equal global dimension.

(2) ⇐⇒ (3). This is straightforward from Theorem 3.8.
(1) =⇒ (5). Suppose A has finite global dimension and polynomial growth. Then

the same is valid for A0. By Theorem 3.8.6 there is a permutation y1, · · · , yn of
x1 · · · , xn, such that

N∞ = {yα1
1 · · · yαn

n | αi ≥ 0, 1 ≤ i ≤ n},

so A has a k-basis of the desired form. (In general, it is not true that N∞ is a
normal basis for A w.r.t. the deg-lex ordering ≺ defined via y1 ≺ · · · ≺ yn).

(5) =⇒ (4) is clear.
(4) =⇒ (1) and (4) =⇒ (2). Assume (4) holds. Then obviously A has polynomial

growth of degree n. The equalities

HA0(z) = HA(z) =
1

(1− z)n

and Theorem 3.8 imply that the monomial algebra A0 has gl.dim A0 = n, and
|W |=

(
n
2

)
. Clearly, then A has

(
n
2

)
relations and global dimension n.

(2) =⇒ (4). Condition (2) is satisfied simultaneously by A and A0, so, by
Theorem 3.8, the Hilbert series HA0(z) has the desired form and therefore (4) is in
force. �

4. Combinatorics in quantum binomial sets

In this section (X, r) is a quantum binomial set of arbitrary cardinality. When
we consider only finite sets X this will be clearly indicated. As usual, S = S(X, r),
A = A(k, X, r) ' k [S], respectively, denote the monoid and the quantum binomial
k-algebra, associated with (X, r).

We shall consider the action of the group

D = gr〈r12, r23〉

on the set X × X × X, or equivalently on X3. Two monomials ω, ω′ ∈ X3 are
equal as elements of S iff they belong to the same orbit of D in X3. Clearly r2 = 1
implies (r12)2 = (r23)2 = 1, so D is a dihedral group, finite or infinite depending on
the order of the element r12r23. More precisely, D is the dihedral group of order 2m
iff r12r23 has order m <∞. We shall find some counting formulae and inequalities
involving the orders of the D-orbits in X3 and their number, see Proposition 4.6.
When X is finite we use these to find necessary and sufficient conditions for (X, r)
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to be a symmetric set, Proposition 4.10, and to give upper bounds for dim A3 and
dim A!

3 in the general case of a quantum binomial algebra A, Corollary 4.13.
As usual, the orbit of a monomial ω ∈ X3 under the action of D will be denoted

by O = O(ω). Denote by ∆i the diagonal of X×i, 2 ≤ i ≤ 3. One has ∆3 =
(∆2 ×X)

⋂
(X ×∆2).

Definition 4.1. We call a D-orbit O square-free if

O
⋂

(∆2 ×X
⋃

X ×∆2) = ∅.

A monomial ω ∈ X3 is square-free in S if its orbit O(ω) is square-free.

Remark 4.2. If (X, r) is a square-free and nondegenerate quadratic set of arbitrary
cardinality then

(4.1)
zt = zu =⇒ t = u ⇐= tz = uz

zt = z ⇐⇒ t = z ⇐⇒ tz = z.

Lemma 4.3. Let (X, r) be a quantum binomial set, (not necessarily finite) and let
O be a square-free D-orbit in X3. Then |O| ≥ 6.

Proof. Suppose O = O(xyz) is a square-free orbit. Consider the set

O1 = {vi | 1 ≤ i ≤ 6} ⊆ O
consisting of the first six elements of the ”Yang-Baxter” diagram

(4.2)

v1 = xyz
r12

−−−−→ (xyxy)z = v2

r23

y yr23

v3 = x(yzyz) (xy)(xy

z)(xy)z = v5

r12

y yr12

v4 = x(yz)(x
yz)(yz) [

xy(xy

z)][(xy)(
xy

z)][(xy)z] = v6.

Clearly,

O1 = U1

⋃
U3

⋃
U5, where Uj = {vj , r12(vj) = vj+1}, j = 1, 3, 5.

We claim that U1, U3, U5 are pairwise disjoint sets and each of them has order 2.
Note first that since vj is a square-free monomial, for each j = 1, 3, 5, one has
vj 6= r12(vj) = vj+1, therefore

|Uj | = 2, j = 1, 3, 5.

The monomials in each Uj have the same ”tail”. More precisely, v1 = (xy)z, v2 =
r(xy)z have a ”tail” z, the tail of v3 and v4 is yz, and the tail of v5 and v6 is (xy)z.
It will be enough to show that the three elements z, yz, (xy)z ∈ X are pairwise
distinct. But O(xyz) is square-free, so y 6= z and by (4.1) yz 6= z. Furthermore
v2 = (xy)(xy)z ∈ O(xyz) and therefore, xy 6= y and xy 6= z. Now by (4.1) one has

xy 6= z =⇒ (xy)z 6= z
xy 6= y =⇒ (xy)z 6= yz.

We have shown that the three elements z, yz, (xy)z ∈ X occurring as tails in
U1, U3, U5, respectively, are pairwise distinct, so the three sets are pairwise dis-
joint. This implies |O1| = 6 and therefore |O| ≥ 6. �
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Corollary 4.4. A quantum binomial set (X, r) is a symmetric set iff the group
D = gr〈r12, r23〉 is isomorphic to the symmetric group S3.

Notation 4.5. Denote E(O) = O
⋂

((∆2 ×X
⋃

X ×∆2)\∆3) .

Proposition 4.6. Suppose (X, r) is a quantum binomial set. Let O be a D-orbit
in X3.

(1) The following implications hold.

(i) O
⋂

∆3 6= ∅ =⇒ |O| = 1.
(ii) E(O) 6= ∅ =⇒ |O| ≥ 3 and |E(O)| = 2.

In this case we say that O is an orbit of type (ii).
(2) (X, r) satisfies the cyclic condition

(4.3) xy

y = xy and x
xy = xy, ∀x, y ∈ X

if and only if each orbit O of type (ii) has order |O| = 3.
(3) Suppose X has finite order n. Then there are exactly n(n− 1) orbits O of

type (ii) in X3.

Proof. Clearly, the ”fixed” points under the action of D on X3 are exactly the
monomials xxx, x ∈ X, this gives (i).

Assume now that O is of type (ii). Then it contains an element of the shape
ω = xxy, or ω = xyy, where x, y ∈ X, x 6= y. Without loss of generality we can
assume ω = xxy ∈ O. The orbit O(ω) can be obtained as follows. We fix as
an initial element of the orbit ω = xxy. Then there is a unique finite sequence
r23, r12, r23, · · · which exhaust the whole orbit and produces a ”new” element at
every step. r is involutive and square-free, thus in order to produce new elements
at every step, the sequence must start with r23 and at every next step we have to
alternate the actions r23 and r12.

We look at the ”Yang-Baxter” diagram starting with ω and exhausting the whole
orbit (without repetitions).
(4.4)

ω = ω1 = xxy
r23

←→ ω2 = x(xy)(xy) r12

←→ ω3 = (x2
y)(x

xy)(xy)←→ · · · ←→ ωm.

Note that the first three elements ω1, ω2, ω3 are distinct monomials in X3, hence
| O |≥ 3. Indeed, x 6= y implies r(xy) 6= xy in X2, so ω2 6= ω1. By assumption
(X, r) is square-free, so xx = x, but by the nondegeneracy y 6= x, also implies
xy 6= x. So r(x(xy)) 6= x(xy), and therefore ω3 6= ω2. Clearly ω3 6= ω1, since x 6= y
implies xy 6= yy = y, see (4.1).

We claim now that the intersection E = E(O) contains exactly two element. We
analyze the diagram (4.4) looking from left to right. Suppose we have made k − 1
”steps” to the right obtaining new elements, so we have obtained

ω1 = xxy
r23

←→ ω2 = x(xyxy) r12

←→ ω3 = (x2
y)(x

xy)xy ←→ · · · ←→ ωk−1
rii+1

←→ ωk,

where ω1, ω2, · · · , ωk are pairwise distinct. Note that all elements ωs, 2 ≤ s ≤ k−1,
have the shape ωs = asbscs, with as 6= bs and bs 6= cs. Two cases are possible.

(a) ωk = akbkck, with ak 6= bk and bk 6= ck, then applying rjj+1 (where j = 2 if
i = 1 and j = 1 if i = 2), we obtain a new element ωk+1 of the orbit.

(b) ωk = aac, or ωk = acc, a 6= c. In this case rjj+1 with j 6= i keeps ωk fixed,
so the process of obtaining new elements of the orbit stops at this step and the
diagram is complete.
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But our diagram is finite, so as a final step on the right it has to ”reach” some
ωm = aac, or ωm = acc, a 6= c (we have already shown that m ≥ 3). Note that
ωm 6= ω1. Hence the intersection E = E(O), contains exactly two elements, which
verifies (1).

Condition (2) follows straightforwardly from (4.4).
Assume now that |X| = n. We claim that there exists exactly n(n − 1) orbits

of type (ii). Indeed, let O1, · · · Op be all orbits of type (ii). The intersections
Ei = E(Oi), 1 ≤ i ≤ p, are disjoint sets and each of them contains two elements.
Now the equalities⋃

1≤i≤p Ei = (∆2 ×X
⋃

X ×∆2)\∆3

| Ei |= 2, | (∆2 ×X
⋃

X ×∆2)\∆3 |= 2n(n− 1)

imply p = n(n− 1). This verifies (3). �

Example 4.7. Consider the quantum binomial algebra A given in example 2.10.
Let (X, r) be the associated quadratic set, let S = S(X, r) be the corresponding
monoid. The relations are semigroup relations, so there is an algebra isomorphism
A = A(k, X, r) ' kS. We will find the corresponding D-orbits in X3. There are 12
orbits of type (ii). This agrees with Proposition 4.6.

O1 = xxy
r23

−−−−→ xzt
r12

−−−−→ yxt
r23

−−−−→ ytx
r12

−−−−→ tzx
r23

−−−−→ tty

O2 = xxz
r23

−−−−→ xyx
r12

−−−−→ ztx
r23

−−−−→ zxt
r12

−−−−→ tyt
r23

−−−−→ ttz

O3 = yxx
r12

−−−−→ xzx
r23

−−−−→ xty
r12

−−−−→ txy
r23

−−−−→ tzt
r12

−−−−→ ytt

O4 = zxx
r12

−−−−→ tyx
r23

−−−−→ txz
r12

−−−−→ xtz
r23

−−−−→ xyt
r12

−−−−→ ztt

O5 = xyy
r12

−−−−→ zty
r23

−−−−→ zxz; O6 = xzz
r12

−−−−→ yxz
r23

−−−−→ yyx

O7 = tyy
r12

−−−−→ zxy
r23

−−−−→ zzt; O8 = tzz
r12

−−−−→ ytz
r23

−−−−→ yyt

O9 = txx
r12

−−−−→ xtx
r23

−−−−→ xxt; O10 = xtt
r12

−−−−→ txt
r23

−−−−→ ttx

O11 = yzz
r12

−−−−→ zyz
r23

−−−−→ zzy; O12 = zyy
r12

−−−−→ yzy
r23

−−−−→ yyz

There are only two square-free orbits, O(1) = O(xyz) and O(2) = O(tyz). Each of
them has order 6.

(4.5)

xyz
r12

−−−−→ ztz

r23

y yr23

xzy zyt

r12

y yr12

yxy
r12

−−−−→ yzt

tyz
r12

−−−−→ zxz

r23

y yr23

tzy zyx

r12

y yr12

yty
r12

−−−−→ yzx

The one element orbits are {xxx}, {yyy}, {zzz}, {ttt}. Clearly, r does not satisfy
the braid relation, so (X, r) is not a symmetric set. A more detailed study of the
orbits shows that A is not a PBW algebra w.r.t. any enumeration of X.



PBW ALGEBRAS, YBE AND AS REGULARITY 17

Lemma 4.8. A quantum binomial set (X, r) is symmetric iff the orders of D-orbits
O in X3 satisfy the following two conditions:

(a) E(O) 6= ∅ ⇐⇒ |O| = 3.

(b) O
⋂

(∆2 ×X
⋃

X ×∆2) = ∅ ⇐⇒ |O| = 6.

Proof. Look at the corresponding YBE diagrams. �

We fix the following notation for the D-orbits in X3.

Notation 4.9. We denote by Oi, 1 ≤ i ≤ n(n − 1) the orbits of type (ii) and by
O(j), 1 ≤ j ≤ q all square-free orbits in X3. The remaining D-orbits in X3 are the
one-element orbits {xxx}, x ∈ X, their union is ∆3.

Proposition 4.10. In notation as above, let (X, r) be a finite quantum binomial
set, |X| = n. Then

(1) q ≤
(
n
3

)
.

(2) (X, r) is a symmetric set iff q =
(
n
3

)
.

Proof. Clearly, X3 is a disjoint union

X3 = ∆3

⋃
(

⋃
1≤i≤n(n−1)

Oi)
⋃

(
⋃

1≤j≤q

O(j)).

Thus

(4.6) | X3 |=| ∆3 | +
∑

1≤i≤n(n−1)

| Oi | +
∑

1≤j≤q

| O(j) | .

Denote mi = |Oi|, 1 ≤ i ≤ n(n − 1), nj = |O(j)|, 1 ≤ j ≤ q. By Proposition 4.6
one has

mi ≥ 3, 1 ≤ i ≤ n(n− 1), and nj ≥ 6, 1 ≤ j ≤ q.

We replace these inequalities in (4.6) and obtain

(4.7) n3 = n +
∑

1≤i≤n(n−1)

mi +
∑

1≤j≤q

nj ≥ n + 3n(n− 1) + 6q.

So

q ≤ n3 − 3n2 + 2n

6
=

(
n

3

)
,

which verifies (1). Assume now q =
(
n
3

)
. Then (4.7) implies

n3 = n +
∑

1≤i≤n(n−1)

mi +
∑

1≤j≤(n
3)

nj ≥ n + 3n(n− 1) + 6
(

n

3

)
= n3.

This is possible iff the following equalities hold

(4.8)
mi = |Oi| = 3, 1 ≤ i ≤ n(n− 1),
nj = |O(j)| = 6, 1 ≤ j ≤ q.

By Lemma 4.8, (X, r) is a symmetric set iff the equalities (4.8) hold. �

Corollary 4.11. Let (X, r) be a finite quantum binomial set. (X, r) is a symmetric
set iff the associated quadratic algebra A = A(k, X, r) satisfies

dimA3 =
(

n + 2
3

)
.
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Proof. The distinct elements of the associated monoid S = S(X, r), form a k- basis
of the monoid algebra kS ' A(k, X, r). In particular dimA3 equals the number
of distinct monomials of length 3 in S which is exactly the number of D-orbits in
X3. �

There is a close relation between Yang-Baxter monoids and a special class of
Garside monoids, see [9, 19]. Garside monoids and groups were introduced by
Garside, [14]. The interested reader can find more information and references in
[14, 10, 25], etall. In [19], Definition 1.10, we introduce the so-called regular Garside
monoids. It follows from [19], Main Theorem 1.16, that a finite quantum binomial
set (X, r) is a solution of YBE iff the associated monoid S = S(X, r) is a regular
Garside monoid. This together with Corollary 4.11 imply the following.

Corollary 4.12. Let (X, r) be a finite quantum binomial set. Let S = S(X, r) be
the associated monoid and let S3 be the set of distinct elements of length 3 in S.
Suppose the cardinality of S3 is

|S3| =
(

n + 2
3

)
.

Then S is a Garside monoid. Moreover, S is regular in the sense of [19].

Assume now that A is an n-generated quantum binomial algebra. We want to
estimate the dimension dim A3. Let (X, r) be the corresponding quantum binomial
set, S = S(X, r), A = A(k, X, r). We use Proposition 4.10 to find an upper bound
for the number of distinct D-orbits in X3, or equivalently, the order of S3, the set
of (distinct) elements of length 3 in S. One has

|S3| = n + n(n− 1) + q ≤ n + n(n− 1) +
(

n

3

)
=

(
n + 2

3

)
.

There is an isomorphism of vector spaces, A3 ' SpanS3, so

dimA3 = |S3| ≤
(

n + 2
3

)
.

In the general case, a quantum binomial algebra, satisfies dimA3 ≤ dimA3, due to
the coefficients cxy appearing in the set of relations. Similarly, the dimension of A!

3

is at most equal to the number of square-free D-orbits in X3. We have proven the
following corollary.

Corollary 4.13. If A is a quantum binomial algebra, then

dim A3 ≤
(

n + 2
3

)
, dim A!

3 ≤
(

n

3

)
.

5. Quantum binomial algebras, Yang-Baxter equation, and
Artin-Schelter regularity

A quadratic algebra A =
⊕

i≥0 Ai is called a Frobenius quantum space of dimen-
sion d (or a Frobenius algebra of dimension d) if dimk(Ad) = 1; Ai = 0, for i > d;
and the multiplication map m : Aj⊗Ad−j → Ad is a perfect duality (nondegenerate
pairing). A is called a quantum Grassmann algebra (of dimension d) if in addition
dimkAi =

(
d
i

)
, for 1 ≤ i < d, [30].

Fact 5.1. Let A be a Koszul algebra A with finite global dimension. Then A is
Gorenstein iff its dual A! is Frobenius.
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Remind that if A = k〈x1, · · · , xn〉/(<) is a quantum binomial algebra, then its
Koszul dual has a presentation A! = k〈ξi, · · · ξn〉/(<⊥), where <⊥ consists of

(
n
2

)
+n

relations: (a)
(
n
2

)
binomials, ξjξi + c−1

ij ξi′ξj′ ∈ <⊥ whenever xjxi − cijxi′xj′ ∈ <;
and (b) the monomials (ξi)2, 1 ≤ i ≤ n.

Lemma 5.2. Let A = k〈X;<〉 be a quantum binomial algebra, with |X| = n, let
(X, r), r = r(<) be the associated quantum binomial set (see Definition 2.7). Then
each of the following three conditions implies that (X, r) is a symmetric set.

(1)

dim A3 =
(

n + 2
3

)
.

(2)

dim A!
3 =

(
n

3

)
.

(3) X can be enumerated X = {x1 · · · , xn}, so that the set of ordered mono-
mials of length 3

(5.1) N 3 = {xi1xi2xi3 | 1 ≤ i1 ≤ i2 ≤ i3 ≤ n}
projects to a k-basis of A3.

Proof. As usual, S = S(X, r) and A = A(X, r) denote the associated monoid and
quadratic algebra, respectively.

(1) =⇒ (3). Assume (1) holds. Then one has(
n + 2

3

)
= dim A3 ≤ dimA3 ≤

(
n + 2

3

)
,

where the right-hand side inequality follows from Corollary 4.11. This implies
dimA3 =

(
n+2

3

)
, or equivalently, |S3| =

(
n+2

3

)
. Therefore there are exactly q =

(
n
3

)
square-free D-orbits in X3, so by Proposition 4.10.2 (X, r) is a symmetric set. By
Fact 2.9 A is a skew-polynomial ring with respect to an enumeration of X, so (3)
is in force. The converse implication (3) =⇒ (1) is straightforward.

The equivalence (1) ⇐⇒ (2) can be proved directly using the D-orbits in X3. It
is also straightforward from the following formula for quadratic algebras, see [32],
p 85.

dim A!
3 = (dim A1)3 − 2(dim A1)(dim A2) + dim A3.

�

Lemma 5.3. Let A be a quadratic algebra with relations of skew-polynomal type,
see Definition 2.1. Then the following conditions are equivalent:

(1)

dim A3 =
(

n + 2
3

)
.

(2)

dim A!
3 =

(
n

3

)
.

(3) The set of defining relations < for A is a Gröbner basis, so A is a skew poly-
nomial ring and therefore a PBW algebra with PBW generators x1, · · · , xn.

(4) The set of defining relations <⊥ for A! is a Gröbner basis, so A! is a a
PBW algebra with PBW generators ξ1, · · · , ξn.
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Sketch of the proof. The implications (1) ⇐= (3) and (2) ⇐= (4) are clear,
Lemma 5.2 gives (1)⇐⇒ (2).

(1) =⇒ (3). Assume condition (1) holds. The set N3 of monomials of length
3, normal mod the ideal (<), forms a k-basis of A3. The relations are of skew-
polynomial type (i.e. conditions (a) and (b) of Definition 2.1 hold) therefore each
normal monomial is also an ordered monomial and N3 ⊆ N 3. Now the equalities

| N 3 |=
(

n + 2
3

)
= dim A3 =| N3 |

imply N3 = N 3. It follows then that all ambiguities xkxjxi, 1 ≤ i < j < k ≤ n, are
resolvable and by Bergman’s Diamond lemma [6], < is a Gröbner basis of the ideal
(<). Thus A is a PBW algebra, more precisely, A is a binomial skew-polynomial
ring. An analogous argument proves (2) =⇒ (4). �

Theorem 5.4. Let A = k〈X〉/(<) be a quantum binomial algebra, |X| = n, and
let R(<) be the associated automorphism R = R(<) : V ⊗2 −→ V ⊗2. Then the
following three conditions are equivalent:

(1) R = R(<) is a solution of the Yang-Baxter equation.
(2) A is a binomial skew-polynomal ring with respect to an enumeration X =
{x1, · · ·xn}.

(3)

dimk A3 =
(

n + 2
3

)
.

Proof. The equivalence (1) ⇐⇒ (2) is proven in [17], Theorem B.
(2) =⇒ (3). Assume that A is a skew polynomial ring w.r.t. an enumeration

X = {x1, · · ·xn}. It follows from Definition 2.1 that the set N 3 is a k-basis of A3,
so dimk A3 =

(
n+2

3

)
.

(3) =⇒ (2). Assume that dimk A3 =
(
n+2

3

)
. Consider the corresponding qua-

dratic set (X, r) and the monoid algebra A = A(k, X, r). As before we conclude
that dimkA3 =

(
n+2

3

)
and therefore, by Corollary 4.11 (X, r) is a symmetric

set. It follows then from [18], Theorem 2.26, that there exists an ordering on X,
X = {x1, x2, · · · , xn} so that the algebra A(k, X, r) is a skew-polynomial ring and
therefore a PBW algebra, with PBW generators x1, x2, · · · , xn. The relations < of
A and the relations of A may differ only with coefficients, so < are also relations of
skew-polynomial type. It remains to show that < is a Gröbner basis. This follows
from the assumption dimk A3 =

(
n+2

3

)
and Lemma 5.3. Hence A is a binomial skew

polynomial ring. �

Proof of Theorem 1.2. Note that A has exactly
(
n
2

)
relations, see Remark 2.5.

The following implications are in force:

(1)⇐⇒ (2) : by Theorem 1.1
(3) =⇒ (1); (3) =⇒ (2) : clear
(5) =⇒ (2); (9) =⇒ (7) : clear

(5) =⇒ (8) =⇒ (6) : clear
(4)⇐⇒ (5)⇐⇒ (6) : by Theorem 5.4

(6)⇐⇒ (7) : is well-known, see [32]

(5) =⇒ (9). Theorem 3.1, [17] verifies that the Koszul dual A! of a binomial skew
polynomial ring A is a quantum Grassman algebra.
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(5) =⇒ (1). Assume that A is a binomial skew polynomial ring w.r.t. an enu-
meration x1, · · · , xn of X. Then A satisfies the hypothesis and condition (4) of
Theorem 1.1 hence, by the same theorem, A has finite global dimension.

(5) =⇒ (3). Assume that A is a binomial skew polynomial ring, so A has
polynomial growth, finite global dimension, and its Koszul dual A! is a quantum
Grassman algebra, see [17], Theorem 3.1. Furthermore, as a PBW algebra, A is
Koszul, hence by Fact 5.1, A is Gorenstein. The result that every binomial skew
polynomial ring is an AS regular domain follows also from the earlier work [23].

(1) =⇒ (8). Assume that A satisfies (1). Let A0 = k〈X〉/(W) be the corre-
sponding monomial algebra, where W is the set of obstructions. We know that
a quantum binomial algebra A has exactly

(
n
2

)
relations, which in this case form

a reduced Gröbner basis, so |W| = |<| =
(
n
2

)
. Furthermore, A and A0 share the

same global dimension, hence A0 satisfies the equivalent conditions (3) and (5) of
Theorem 3.8. But the algebras A and A0 have the same Hilbert series, so (8) is in
force.

The equivalence of conditions (1) · · · (9) has been verified. Each of these con-
ditions imply that A is a binomial skew-polynomial ring and therefore it is a Noe-
therian domain, see [23], or Fact 2.9. �
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