On sum-normalised cohomology of categories, twisted homotopy pairs, and universal Toda brackets

H.-J. Baues, A. Tonks

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-53225 Bonn

Germany

On sum-normalised cohomology of categories, twisted homotopy pairs, and universal Toda brackets.

Hans-Joachim Baues and Andy Tonks

Introduction

This paper describes new links between cohomology of categories, groupoid enriched categories, and homotopy theory of fibres and cofibres.

For a category C with sums we introduce in (2.10), (2.15) a natural transformation of cohomology groups

$$
H^{\mathrm{n}+1}(\mathbf{C}, D) \xrightarrow{\lambda_{\mathrm{sum}}} H^{n}(\operatorname{Twist}(\mathbf{C}), \hat{D})
$$

where Twist (C) is the twisted version of the category of pairs in C. The construction of $\lambda_{\text {sum }}$ relies on the normalisation theorem A. 9 in the appendix which shows that cochains can be assumed to respect sums. This is a new kind of normalisation result extending classical normalisation with respect to identities and generalising that with respect to zero maps [5]. There are dual results for categories with products, yielding the dual transformation $\lambda_{\text {prod }}$.

Given a groupoid-enriched category with sums we introduce the category of twisted homotopy pairs which generalises the category of homotopy pairs studied by Hardie [8, 9]. We show that

$$
H^{3}(\mathbf{C}, D) \xrightarrow{\lambda_{\text {sum }}} H^{2}(\operatorname{Twist}(\mathbf{C}), \widehat{D})
$$

takes the class represented by a groupoid enriched category to the class represented by its category of twisted homotopy pairs; see (3.15). Actually this correspondence is the motivation for studying the transformation $\lambda_{\text {sum }}$.

If C is the homotopy category of suspensions, resp. loop spaces, then the associated classical groupoid-enriched category given by maps and homotopies represents an element

$$
T_{\Sigma} \in H^{\mathbf{3}}\left(\mathbf{C}, D_{\Sigma}\right), \quad \text { resp. } T_{\Omega} \in H^{3}\left(\mathbf{C}, D_{\Omega}\right)
$$

termed the universal Toda bracket. This determines all classical triple Toda brackets in C [5].
In homotopy theory a space is often obtained as a homotopy cofibre $C(f)$ of an attaching map f or dually as a homotopy fibre $P\left(f^{\prime}\right)$ of a classifying map f^{\prime}. Therefore it is a classical problem to describe homotopy classes of maps

$$
C(f) \xrightarrow{F} C(g) \quad \text { resp. } \quad P\left(f^{\prime}\right) \xrightarrow{F^{\prime}} P\left(g^{\prime}\right)
$$

and their composites only in terms of the homotopy classes of the attaching maps or classifying maps repsectively. Studying this problem leads inevitably to the theory of this paper; solutions are described in (4.7), (5.7) where we show that maps F or F^{\prime} are equivalent to twisted homotopy pairs. This improves considerably the classical method of constructing such maps by homotopy pairs.

It is well known that examples of maps F and F^{\prime} are given by 'extensions' and 'coextensions' and that these are related to classical Toda brackets. In fact we show how the universal Toda
bracket determines such homotopy categories of maps between cofibres, resp. fibres; see (4.8), (5.8). For this we use the transformation $\lambda_{\text {sum }}$, resp. $\lambda_{\text {prod }}$, and the result that maps between cofibres or fibres can be constructed by twisted homotopy pairs.

1 Cohomology of categories

Recall from [1, 4] that the category of factorisations $F \mathrm{C}$ on a category C is the category with objects the morphisms $f: A \rightarrow X$ of \mathbf{C} and morphisms $(\alpha, \beta): f \rightarrow g$ the 'factorisations' given by commutative diagrams

with the composition $(\alpha, \beta)\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(\alpha \alpha^{\prime}, \beta^{\prime} \beta\right)$. A natural system D on C is then a functor from $F \mathrm{C}$ to the category of abelian groups. We write D_{f} for the abelian group $D(f)$ and α_{*}, β^{*} for the induced homomorphisms

$$
D_{f} \xrightarrow{\alpha *} D_{\alpha f} \quad D_{f} \xrightarrow{\beta^{*}} D_{f \beta}
$$

given by $D(\alpha, 1)$ and $D(1, \beta)$ respectively.
If D is a natural system on a category C recall that the cohomology of C with coefficients in D is defined as follows. First let $\operatorname{Ner}(\mathbf{C})$ be the simplicial nerve of \mathbf{C}, given in dimension $n \geq 1$ by the set of all sequences $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

of n composable morphisms in C , and in dimension 0 by $\mathrm{Ob}(\mathrm{C})$. The face maps are defined by

$$
\begin{aligned}
d_{0}(\sigma) & =\left(\sigma_{2}, \ldots, \sigma_{n}\right) \\
d_{k}(\sigma) & =\left(\sigma_{1}, \ldots, \sigma_{k} \sigma_{k+1}, \ldots, \sigma_{n}\right) \\
d_{n}(\sigma) & =\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)
\end{aligned}
$$

and the degeneracies by insertion of identities. We will write $|\sigma|$ for the composite $\sigma_{1} \ldots \sigma_{n}$. Now let $F^{*}=F^{*}(\mathbf{C}, D)$ be the cochain complex with F^{n} the abelian group of all functions

$$
\operatorname{Ner}(\mathbf{C})_{n} \xrightarrow{c} \bigcup\left\{D_{g}: g \in \operatorname{Mor}(\mathbf{C})\right\}
$$

with $c \sigma \in D_{|\sigma|}$. Addition in F^{n} is defined pointwise, and the coboundary $\delta: F^{n-1} \rightarrow F^{n}$ is defined by

$$
(\delta c) \sigma=\left(\sigma_{1}\right) \cdot c\left(d_{0} \sigma\right)+\sum_{i=1}^{n-1}(-1)^{i} c\left(d_{i} \sigma\right)+(-1)^{n}\left(\sigma_{n}\right)^{\mathbf{n}} c\left(d_{n} \sigma\right)
$$

Then the cohomology groups of \mathbf{C} with coefficients in D are defined by

$$
H^{n}(\mathbf{C}, D)=H^{n}\left(F^{*}(\mathbf{C}, D), \delta\right)
$$

for $n \geq 0$. An equivalence of categories $\phi: K \rightarrow C$ induces by [4] an isomorphism of cohomology groups:

$$
H^{\mathrm{n}}\left(\mathbf{K}, \phi^{*} D\right) \quad \cong \quad H^{n}(\mathbf{C}, D)
$$

A sum (or coproduct) of objects $X_{k}, 1 \leq k \leq r$, in a category \mathbf{C} is an object $X=X_{1} \vee \ldots \vee X_{r}$ of C together with morphisms $i_{k}: X_{k} \rightarrow X$ such that pre-composition by the i_{k} induces natural bijections of hom-sets

$$
i^{*}=\left(i_{1}^{*}, \ldots, i_{r}^{*}\right): \mathbf{C}(X, Z) \cong \mathbf{C}\left(X_{1}, Z\right) \times \ldots \times \mathbf{C}\left(X_{r}, Z\right)
$$

Some applications of the cohomology of categories may be found in $[7,10,11,12]$.
Definition 1.1 Suppose D is a natural system on a category C. Let (X, i) be a sum in C and $f: X \rightarrow Y$ a morphism of C . There are homomorphisms

$$
D_{f} \xrightarrow{i_{k}^{*}} D_{f i_{k}}
$$

which define a homomorphism

$$
D_{f} \xrightarrow{i^{*}} \bigoplus_{k=1}^{r} D_{f i_{k}}
$$

by $\left(i^{*} a\right)_{k}=i_{k}^{*}(a)$. We say D is compatible with sums if i^{*} is an isomorphism of groups for each such morphism f of C and sum diagram (X, i).

In the appendix we will show that the cohomology $H^{n}(\mathbf{C}, D)$ admits a "normalisation theorem" in the case that D is compatible with sums.

2 Pairs, twisted pairs and the natural transformation λ

Let \mathbf{C} be a category with finite sums, that is, with binary sums $A \vee B$ and an initial object *. Suppose that $*$ is also a terminal object. For objects A, B of C the zero morphism $0=0_{A B}$: $A \rightarrow B$ is given by $A \rightarrow * \rightarrow B$. For $f: A \rightarrow X, g: B \rightarrow X$ we write $(f, g): A \vee B \rightarrow X$ for the unique morphism with $(f, g) i_{A}=f$ and $(f, g) i_{B}=g$.
Definition 2.1 A morphism $\xi: A \rightarrow X \vee Y$ in C is trivial on Y if the composite $(0,1) \xi: A \rightarrow$ $X \vee Y \rightarrow Y$ is the zero morphism.

In particular the composite $i_{X} \zeta: A \rightarrow X \rightarrow X \vee Y$ is trivial on Y for every morphism $\zeta: A \rightarrow X$ of C.

Definition 2.2 The twisted pair category $\mathrm{Twist}(\mathrm{C})$ on C is the category with objects the morphisms f of \mathbf{C} and morphisms $(\xi, \eta): f \rightarrow g$ given by commutative diagrams

where ξ is trivial on Y. Composition is defined by

$$
(\xi, \eta)\left(\xi^{\prime}, \eta^{\prime}\right)=\left(\bar{\xi} \xi^{\prime}, \eta \eta^{\prime}\right)
$$

where $\bar{\xi}: A \vee B \rightarrow X \vee Y$ is given by $\left(\xi, i_{Y} \eta\right)$. One readily checks that this is a well-defined category. In fact an alternative description of the morphisms $f \rightarrow g$ of $\operatorname{Twist(C)~is~given~by~pairs~}$ of commutative diagrams

with the composition given by horizontal composition of these diagrams.
Definition 2.3 A natural system D on C is said to be strongly compatible with sums if D is compatible with sums and has the following additional properties:

1. for each $\xi: A \rightarrow X \vee Y$ in \mathbf{C} which is trivial on Y, the homomorphism $(0,1) *: D(\xi) \rightarrow$ $D\left(0_{A Y}\right)$ is surjective; we write $D(\xi)_{2}$ for the kernel.

$$
D(\xi)_{2} \xrightarrow{\longrightarrow} D(\xi) \xrightarrow{(0,1)_{*}} D\left(0_{A Y}\right)
$$

2. for each sum $X \vee Y$ and each morphism $\zeta: A \rightarrow X$ in C, the homomorphism (i_{X}). : $D(\zeta) \rightarrow$ $D\left(i_{X} \zeta\right)$ has image $D\left(i_{X} \zeta\right)_{2}$.

Example 2.4 The natural system D_{Σ} used in (4.4) is strongly compatible with sums since the homomorphisms

$$
D_{\Sigma}(f)=[\Sigma X, Y] \xrightarrow{g_{*}} D_{\Sigma}(g f)=[\Sigma X, Z]
$$

are defined simply by $a \mapsto g a$.
A natural system D on \mathbf{C} defines a natural system \hat{D} on the category $\operatorname{Twist(C)}$ of twisted pairs as follows. For morphisms $(\xi, \eta): f \rightarrow g$ of Twist(C) consider the subgroup

$$
f^{*} D(\eta)+(g, 1) * D(\xi)_{2} \subseteq D(\eta f)
$$

and define $\widehat{D}(\xi, \eta)$ to be the quotient

$$
\begin{equation*}
\widehat{D}(\xi, \eta)=D(\eta f) / f^{*} D(\eta)+(g, 1) . D(\xi)_{2} \tag{2.5}
\end{equation*}
$$

For $a \in D(\eta f)$ we write $[a] \in \widehat{D}(\xi, \eta)$ for the corresponding coset.
Consider morphisms $(\xi, \eta),\left(\xi^{\prime}, \eta^{\prime}\right)$ of Twist(C), with composite $\left(\bar{\xi} \xi^{\prime}, \eta \eta^{\prime}\right)$.

Lemma 2.7 Suppose D is compatible with sums and $a \in D\left(\eta\left(f_{1}, 1\right)\right)$ satisfies $i_{X_{1}}(a)=0$. Then $\xi^{\prime *}(a) \in\left(f_{0}, 1\right)_{*} D\left(\bar{\xi} \xi^{\prime}\right)_{2}$.

Proof: Let $b=i_{Y_{1}}(a) \in D(\eta)$ and let $b^{\prime} \in D(\bar{\xi})$ correspond to $\left(0,\left(i_{Y_{0}}\right) * b\right) \in D(\xi) \oplus D\left(i_{Y_{0}} \eta\right)$. Then

$$
\left(f_{0}, 1\right) . b^{\prime}=a \in D\left(\left(f_{0}, 1\right) \bar{\xi}\right)=D\left(\eta\left(f_{1}, 1\right)\right)
$$

since they agree under $i_{X_{1}}^{*}$ and $i_{Y_{1}}^{*}$. Furthermore

$$
(0,1) * b^{\prime}=(0,1)^{*} b \in D((0,1) \bar{\xi})=D(\eta(0,1))
$$

Thus $\xi^{\prime *}(a)=\left(f_{0}, 1\right)_{*}\left(\xi^{\prime *} b^{\prime}\right)$ with $(0,1)_{*}\left(\xi^{\prime *} b^{\prime}\right)=\xi^{\prime *}(0,1)^{*} b=0$ since ξ^{\prime} is trivial on Y_{1}.
For morphisms $(\kappa, \rho): A \vee B \rightarrow Y$ in C we write α_{1} for the monomorphism

$$
\alpha_{1}: D(\kappa) \longleftrightarrow D(\kappa) \oplus D(\rho) \xrightarrow{\cong} D(\kappa, \rho)
$$

Proposition 2.8 Suppose D is compatible with sums. Then the groups $\hat{D}(\xi, \eta)$ and the induced homomorphisms

$$
\begin{array}{rll}
(\xi, \eta)_{*}: & \widehat{D}\left(\xi^{\prime}, \eta^{\prime}\right) \rightarrow \widehat{D}\left(\bar{\xi} \xi^{\prime}, \eta \eta^{\prime}\right), & {[a] \mapsto\left[\eta_{*} a\right]} \\
\left(\xi^{\prime}, \eta^{\prime}\right)^{*}: & \widehat{D}(\xi, \eta) \rightarrow \widehat{D}\left(\bar{\xi} \xi^{\prime}, \eta \eta^{\prime}\right), & {[a] \mapsto\left[\xi^{\prime *} \alpha_{1}(a)\right]}
\end{array}
$$

form a well-defined natural system on the category Twist(C).
Proof: The only part which is not straight-forward is showing that $\left(\xi^{\prime}, \eta^{\prime}\right)^{*}$ takes the subgroup $f_{1}^{*} D(\eta)$ to zero. Let $b \in D(\eta)$ and let

$$
a=\alpha_{1}\left(f_{1}^{*} b\right)-\left(f_{1}, 1\right)^{*} b \in D\left(\eta\left(f_{1}, 1\right)\right)
$$

Then $\xi^{\prime *}\left(f_{1}, 1\right)^{*} b=f_{2}^{*} \eta^{\prime *} b \in f_{2}^{*} D\left(\eta \eta^{\prime}\right)$. Also $i_{X_{1}}^{*} a=0$ and so we have $\xi^{\prime *}(a) \in\left(f_{0}, 1\right)_{*} D\left(\bar{\xi} \xi^{\prime}\right)_{2}$ by lemma 2.7. Thus

$$
\left(\xi^{\prime}, \eta^{\prime}\right)^{*} f_{1}^{*} b=\xi^{\prime *} \alpha_{1}\left(f_{1}^{*} b\right)=\xi^{\prime *}\left(f_{1}, 1\right)^{*} b+\xi^{\prime *} a
$$

is zero in the quotient as required.
If D is strongly compatible with sums then the groups $\hat{D}(\xi, \eta)$ have the following alternative description. Consider the subgroup

$$
\left(0^{*} \oplus f^{*}\right) D(\eta)+\left((0,1)_{*} \oplus(g, 1)_{*}\right) D(\xi) \subseteq D\left(0_{A Y}\right) \oplus D(\eta f)
$$

Then $\hat{D}(\xi, \eta)$ is given by the quotient

$$
\begin{equation*}
\hat{D}(\xi, \eta)=\frac{D\left(0_{A Y}\right) \oplus D(\eta f)}{\left(0^{*} \oplus f^{*}\right) D(\eta)+\left((0,1) \cdot \oplus(g, 1)_{*}\right) D(\xi)} \tag{2.9}
\end{equation*}
$$

Since $0^{*}=0$ and $(0,1)_{*}: D(\xi) \rightarrow D\left(0_{A Y}\right)$ is onto this agrees with the definition in (2.5). For an element $\left(b^{\prime}, b\right) \in D\left(0_{A Y}\right) \oplus D(\eta f)$ we write $\left[b^{\prime}, b\right] \in \widehat{D}(\xi, \eta)$ for the corresponding element of the quotient.

We can now state the main theorem of this section.
Theorem 2.10 Suppose D is a natural system on C which is strongly compatible with sums. Then there is a well-defined natural transformation

$$
H^{n+1}(\mathbf{C}, D) \xrightarrow{\lambda_{\text {sum }}} H^{n}(\operatorname{Twist}(\mathbf{C}), \widehat{D})
$$

given by (2.11) below.

There are homomorphisms

$$
F^{n+1}(\mathbf{C}, D) \xrightarrow{\lambda_{\text {sum }}} F^{n}(\operatorname{Twist}(\mathbf{C}), \widehat{D})
$$

for $n \geq 0$ defined as follows. For $\sigma \in \operatorname{Ner}(\operatorname{Twist}(\mathbf{C}))_{n}$ given by $\left(\xi_{i}, \eta_{i}\right): f_{i} \rightarrow f_{i-1}, f_{i}: X_{i} \rightarrow Y_{i}$, one has ($n+1$)-simplices $\lambda_{i} \sigma \in \operatorname{Ner}(\mathbf{C})$ with $\left|\lambda_{i} \sigma\right|=\eta_{1} \ldots \eta_{n} f_{n}: X_{n} \rightarrow Y_{0}$ by

$$
\lambda_{i} \sigma=\left\{\begin{array}{cl}
\left(\left(f_{0}, 1\right), \bar{\xi}_{1}, \ldots, \bar{\xi}_{n-1}, \xi_{n}\right) & i=0 \\
\left(\eta_{1}, \ldots, \eta_{i},\left(f_{i}, 1\right), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-1}, \xi_{n}\right) & 1 \leq i \leq n-1 \\
\left(\eta_{1}, \ldots, \eta_{n}, f_{n}\right) & i=n
\end{array}\right.
$$

Simplices $\lambda_{i}^{\prime} \sigma$ with $\left|\lambda_{i}^{\prime} \sigma\right|=0: X_{n} \rightarrow Y_{0}$ are defined similarly by replacing the f_{i} by $0: X_{i} \rightarrow Y_{i}$. Then for c_{n+1} an $(n+1)$-cochain on C we define an n-cochain $\lambda_{\text {sum }}\left(c_{n+1}\right)$ on $\operatorname{Twist}(\mathbf{C})$ by

$$
\begin{equation*}
\left(\lambda_{\text {sum }} c_{n+1}\right)(\sigma)=\left[\sum_{i=0}^{n}(-1)^{i} c_{n+1}\left(\lambda_{i}^{\prime} \sigma\right), \sum_{i=0}^{n}(-1)^{i} c_{n+1}\left(\lambda_{i} \sigma\right)\right] \tag{2.11}
\end{equation*}
$$

where we use the definition of \hat{D} in (2.9).
The pair category $\operatorname{Pair}(\mathbf{C})$ on \mathbf{C} is the category with objects the morphisms f of \mathbf{C} and morphisms $f \rightarrow g$ given by pairs of morphisms (ζ, η) such that $g \zeta=\eta f$. There is an inclusion

$$
\begin{equation*}
\operatorname{Pair}(\mathbf{C}) \stackrel{\iota}{\longrightarrow} \text { Twist(C) } \tag{2.12}
\end{equation*}
$$

which is the identity on objects and takes (ζ, η) to $\left(i_{X} \zeta, \eta\right)$. Recall from [3] that a natural system D on C induces a natural system $D^{\#}$ on $\operatorname{Pair}(\mathbf{C})$ with

$$
D^{\#}(\zeta, \eta)=D(\eta f) / f^{*} D(\eta)+g_{*} D(\zeta)
$$

and that there is a natural transformation

$$
H^{n+1}(\mathbf{C}, D) \xrightarrow{\lambda} H^{n}\left(\operatorname{Pair}(\mathbf{C}), D^{\#}\right)
$$

Proposition 2.13 Suppose D is strongly compatible with sums. Then there is a well defined natural isomorphism of natural systems

$$
\tau: \iota^{*} \hat{D} \xrightarrow{\cong} D^{\#}
$$

induced by the identity on D.
Proof: For (ζ, η) in $\operatorname{Pair}(C)$ we have

$$
\left(\iota^{*} \hat{D}\right)(\zeta, \eta)=\hat{D}\left(i_{X} \zeta, \eta\right)=D(\eta f) / f^{*} D(\eta)+(g, 1)_{*} D\left(i_{X} \zeta\right)_{2}
$$

But as $D\left(i_{X} \zeta\right)_{2}=\left(i_{X}\right) . D(\zeta)$ we have $(g, 1) * D\left(i_{X} \zeta\right)_{2}=g . D(\zeta)$ and the result follows.
We thus have a natural homomorphism between cohomology groups

$$
\begin{equation*}
H^{n}(\operatorname{Twist}(\mathrm{C}), \hat{D}) \xrightarrow{\ell_{*} \tau^{*}} H^{n}\left(\operatorname{Pair}(\mathrm{C}), D^{\#}\right) \tag{2.14}
\end{equation*}
$$

As an addendum to theorem 2.10 we have

Addendum 2.15 If D is strongly compatible with sums then the natural transformation λ factors through $\lambda_{\text {sum }}$, as shown in the following diagram:

The intricate proof in the appendix of theorem 2.10 and its addendum requires the normalisation theorem A.9. In the following section we describe various topological interpretations of the natural transformation $\lambda_{\text {sum }}$.

3 Homotopy pairs and twisted homotopy pairs

A track category

$$
T \Longrightarrow \mathrm{~K} \xrightarrow{p} \mathrm{C}
$$

is a groupoid-enriched category $T \mathbf{K}$ together with a functor $p ; \mathbf{K} \rightarrow \mathbf{C}$ which is the identity on objects, is full, and satisfies $p(f)=p(g)$ on morphisms if and only if $T(f, g)$ is non-empty. Here $T(f, g)$ is the set of 2 -morphisms $f \rightarrow g$ for $f, g: A \rightarrow B$ in \mathbf{K}. The category \mathbf{C} is termed the quotient category of $T \mathbf{K}$, and is also denoted by \mathbf{K} / \simeq.

Example 3.1 Let I be the unit interval in the category Top* of pointed topological spaces. For X a pointed space, let $I X=I \times X / I \times\{*\}$ be the reduced cylinder on X. For maps $f, g: X \rightarrow Y$ in Top* let

$$
T(f, g)=[I X, Y]^{(f, g)}
$$

be the set of homotopy classes rel. $X \vee X$ of maps $H: I X \rightarrow Y$ with

$$
(f, g)=H\left(i_{0}, i_{1}\right): X \vee X \rightarrow I X \rightarrow Y
$$

This defines a track category

$$
T \Longrightarrow \text { Top }^{*} \xrightarrow{p} \text { Top }^{*} / \simeq
$$

with quotient category the homotopy category of pointed topological spaces.
Let $T K$ be a track category with quotient category \mathbf{C}. For each morphism f of \mathbf{C} we choose a fixed morphism \tilde{f} in \mathbf{K} with $p(\tilde{f})=f$. Recall from [8] that the category Hopair($T \mathrm{~K})$ of homotopy pairs in $T \mathrm{~K}$ is the category with objects the morphisms f of C and morphisms $\{\zeta, \eta, H\}: f \rightarrow g$ given by equivalence classes of 3 -tuples (ζ, η, H) with $H \in T(\eta \tilde{f}, \tilde{g} \zeta)$. The equivalence relation on the morphisms is defined by $(\zeta, \eta, H) \sim\left(\zeta^{\prime}, \eta^{\prime}, H^{\prime}\right)$ if there exist tracks $G_{1} \in T\left(\zeta, \zeta^{\prime}\right), G_{2} \in T\left(\eta^{\prime}, \eta\right)$ such that H^{\prime} is the composite track

7

Moreover applying the functor $p: \mathbf{K} \rightarrow \mathbf{C}$ to a morphism in Hopair($T \mathbf{K}$) gives a commutative diagram in \mathbf{C}, and we have a functor

$$
\begin{equation*}
\text { Hopair }(T \mathbf{K}) \xrightarrow{\hat{p}} \operatorname{Pair}(\mathbf{C}) \tag{3.2}
\end{equation*}
$$

which is the identity on objects and is full.
We now generalise this to twisted pairs, under certain conditions on $T \mathbf{K}$. We assume that finite sums exist in K and \mathbf{C} and are preserved by p, and that $*$ is both initial and terminal in \mathbf{K} and C.

Definition 3.3 The track structure of $T K$ is compatible with sums if for each sum $A \vee B$ in \mathbf{K} the induced groupoid homomorphism

$$
T \mathrm{~K}(A \vee B, X) \xrightarrow{\left(i_{A}^{*}, i_{B}^{*}\right)} T \mathrm{~K}(A, X) \times T \mathrm{~K}(B, X)
$$

is an isomorphism, and if the groupoids $T K(*, X)$ and $T K(X, *)$ are just the trivial group.
For morphisms $f, f^{\prime}: A \rightarrow X, g, g^{\prime}: B \rightarrow X$ in \mathbf{K} and tracks $G \in T\left(f, f^{\prime}\right), H \in T\left(g, g^{\prime}\right)$ we write $(G, H) \in T K(A \vee B, X)$ for the corresponding track from (f, g) to $\left(f^{\prime}, g^{\prime}\right)$.

Definition 3.4 Let TK be a track category compatible with sums, with \mathbf{C} the corresponding quotient category. The category Hotwist(TK) of twisted homotopy pairs in $T \mathrm{~K}$ is the category with objects the morphisms f of \mathbf{C}, and morphisms $\left\{\xi, \eta, H_{0}, H\right\}: f \rightarrow g$ the equivalence classes of 4-tuples (ξ, η, H_{0}, H) given by morphisms ξ, η of \mathbf{K} and tracks H_{0}, H as shown in the following diagrams

The equivalence relation on such 4-tuples is defined by $\left(\xi, \eta, H_{0}, H\right) \sim\left(\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime}, H^{\prime}\right)$ if there exist tracks $G_{1} \in T\left(\xi, \xi^{\prime}\right), G_{2} \in T\left(\eta^{\prime}, \eta\right)$ such that $H_{0}^{\prime}, H^{\prime}$ are the composite tracks

respectively.
Since the track structure is compatible with sums we can equivalently define the morphisms via the diagrams

subject to the equivalence relation indicated by

where \bar{G} is a track of the form ($\left.G_{1},-\left(i_{Y^{\prime}}\right) . G_{2}\right)$. Then we can define composition in Hotwist($T \mathrm{~K}$) by the horizontal composition of such diagrams.

Proposition 3.7 Let TK be a track category with quotient category \mathbf{C} and compatible with sums. Then there is a well defined functor

$$
\text { Hotwist }(T \mathrm{~K}) \xrightarrow{\widehat{p}} \operatorname{Twist}(\mathbf{C})
$$

which is the identity on objects and is full.
Proof: Given a morphism $\left(\xi, \eta, H_{0}, H\right): f \rightarrow g$ of Hotwist $(T K)$ we get via p a well defined morphism ($p \xi, p \eta$) : $f \rightarrow g$ of Twist (\mathbf{C}); this defines \hat{p}. Also \hat{p} is full: given (ξ, η) in Twist (\mathbf{C}) we can choose tracks $H_{0} \in T\left(0_{A Y},(0,1) \tilde{\xi}\right), H \in T(\tilde{\eta} \tilde{f},(\tilde{g}, 1) \tilde{\xi})$ and we have $\tilde{p}\left(\tilde{\xi}, \tilde{\eta}, H_{0}, H\right)=(\xi, \eta)$.

This is a generalisation of (3.2); there is an inclusion ι of $\operatorname{Hopair}(T \mathbf{K})$ into Hotwist(TK) with $\iota\{\zeta, \eta, H\}=\left\{i_{Y} \zeta, \eta, 0, i_{Y} H\right\}$, and the following diagram commutes:

We show now that this map t is a map of linear extensions of categories.
Definition 3.9 Compare [1, 4, 5]. Suppose D is a natural system on a category C.
A linear extension of C by D

$$
D \xrightarrow{+} \mathrm{K} \xrightarrow{p} \mathrm{C}
$$

consists of a category K with the same objects as C , a functor $p: \mathbf{K} \rightarrow \mathbf{C}$ which is the identity on objects and is full, and for each morphism f of C a transitive effective action + of $D(f)$ on $p^{-1}(f)$ satisfying the linear distributivity law

$$
\left(g_{0}+b\right)\left(f_{0}+a\right)=g_{0} f_{0}+g_{*} a+f^{*} b
$$

A linear track extension of \mathbf{C} by D

$$
D \longrightarrow+T \Longrightarrow \mathbf{K} \xrightarrow{p} \mathbf{C}
$$

consists of a track category $T \mathbf{K}$ whose quotient category is \mathbf{C}, and for each morphism f of \mathbf{K} an isomorphism of groups

$$
\sigma_{f}: D(p f) \cong T(f, f)
$$

such the natural system respects the compositions in TK:

$$
\begin{aligned}
g \cdot \sigma_{f}(a) & =\sigma_{g f}\left((p g)_{*} a\right) \\
\sigma_{g}(b) \cdot f & =\sigma_{g f}\left((p f)^{*} b\right) \\
H+\sigma_{f}(a) & =\sigma_{h}(a)+H \quad \text { for } H \in T(f, h)
\end{aligned}
$$

Any fibration category or cofibration category [1] gives rise to such linear track extensions; compare (4.4).

In [3] it is shown that the category of homotopy pairs associated to a linear track extension $T \mathbf{K}$ yields a linear extension of categories

This extends to the category Hotwist($T \mathrm{~K}$) as follows.
Proposition 3.11 Let D be a natural system on C which is strongly compatible with sums, and let \mathbf{C} be the quotient category of a track category $T \mathrm{~K}$ where the track structure is compatible with sums as in definition 3.3. If TK is part of a linear track extension

then (3.8) and (3.10) are part of a map of linear extensions of categories

where \hat{D} acts by

$$
\left\{\xi, \eta, H_{0}, H\right\}+[a]=\left\{\xi, \eta, H_{0}, H+\sigma_{\eta j}(a)\right\}
$$

for $a \in D(p(\eta) f)$ as in (2.5), or equivalently by

$$
\left\{\xi, \eta, H_{0}, H\right\}+\left[b^{\prime}, b\right]=\left\{\xi, \eta, H_{0}+\sigma_{0, A Y}\left(b^{\prime}\right), H+\sigma_{\eta j}(b)\right\}
$$

for $\left(b^{\prime}, b\right) \in D\left(0_{A Y}\right) \oplus D(p(\eta) f)$ as in (2.9).
Proof: We first show the action is well-defined. If $\left[b^{\prime}, b\right]=0$ we have

$$
\left(b^{\prime}, b\right)=\left((0,1) \cdot y, f^{*} x+(g, 1) . y\right)
$$

for $x \in D(p \eta), y \in D(p \xi)$. Then

$$
\begin{aligned}
H_{0}+\sigma_{0_{A Y}}\left(b^{\prime}\right) & =\sigma_{(0,1) \xi}((0,1) \cdot y)+H_{0} & =(0,1) \cdot \sigma_{\xi}(y)+H_{0} \\
H+\sigma_{\eta j}(b) & =\sigma_{(\bar{g}, 1) \xi}\left((g, 1)_{*} y\right)+H+\sigma_{\eta j}\left(f^{*} x\right) & =(\tilde{g}, 1) \cdot \sigma_{\xi}(y)+H+\sigma_{\eta}(x) \cdot \tilde{f}
\end{aligned}
$$

and so by the definition of the equivalence relation in (3.6) we have

$$
\begin{equation*}
\left\{\xi, \eta, H_{0}, H\right\}+\left[b^{\prime}, b\right]=\left\{\xi, \eta, H_{0}, H\right\} \tag{3.12}
\end{equation*}
$$

as required. Conversely the same argument in reverse shows that if (3.12) holds then $\left[b^{\prime}, b\right]=0$; thus the action is effective.

For transitivity consider morphisms

$$
\left\{\xi, \eta, H_{0}, H\right\},\left\{\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime}, H^{\prime}\right\}: f \rightarrow g
$$

in Hotwist $(T \mathrm{~K})$ with $(p \xi, p \eta)=\left(p \xi^{\prime}, p \eta^{\prime}\right)$. Choose $G_{1} \in T\left(\xi, \xi^{\prime}\right), G_{2} \in T\left(\eta^{\prime}, \eta\right)$ and then we have

$$
\left\{\xi, \eta, H_{0}, H\right\}=\left\{\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime \prime}, H^{\prime \prime}\right\}
$$

where now $H_{0}^{\prime \prime}, H^{\prime \prime}$ are the composite tracks shown in (3.6). Now define ($\left.b^{\prime}, b\right) \in D\left(0_{A Y}\right) \oplus D(p(\eta) f)$ by

$$
\sigma_{0_{A Y}}\left(b^{\prime}\right)=-H_{0}^{\prime \prime}+H_{0}^{\prime} \quad \text { and } \quad \sigma_{\eta j}(b)=-H^{\prime \prime}+H^{\prime}
$$

so that

$$
\left\{\xi, \eta, H_{0}, H\right\}+\left[b^{\prime}, b\right]=\left\{\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime \prime}, H^{\prime \prime}\right\}+\left[b^{\prime}, b\right]=\left\{\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime}, H^{\prime}\right\}
$$

as required.
Two linear track extensions $T K$ are termed equivalent if they are objects in the same connected component of the category $\operatorname{Track}(\mathbf{C}, D)$, where morphisms $T \mathbf{K} \rightarrow T^{\prime} \mathbf{K}^{\prime}$ in this category are given by groupoid-enriched functors which commute with the isomorphisms $\sigma_{f, f}$ and the functors p. Two linear extensions $\mathbf{K}, \mathbf{K}^{\prime}$ are termed equivalent if there is an isomorphism $\mathbf{K} \cong \mathbf{K}^{\prime}$ which respects the actions of D and induces the identity on \mathbf{C}. Writing $M^{2}(\mathbf{C}, D)$ and $M^{3}(\mathbf{C}, D)$ for set of equivalence classes of linear extensions and of linear track extensions respectively, we have

Theorem 3.13 There are natural bijections

$$
M^{n}(\mathrm{C}, D) \cong H^{n}(\mathrm{C}, D)
$$

for $n=2,3$.
Proof: See [4, 5]. The 2-cocycle Δ corresponding to a linear extension K measures the nonfunctoriality of the function $\mathbf{C} \rightarrow \mathbf{K}, f \mapsto \tilde{f}$, and takes $(f, g) \in \operatorname{Ner}(\mathbf{C})_{2}$ to $\Delta_{f, g} \in D(f g)$ given by

$$
\widetilde{f g}=\tilde{f} \tilde{g}+\Delta_{f, g}
$$

in \mathbf{K}. The 3-cocycle corresponding to a linear track extension $T K$ measures the non-associativity of lifting composites from \mathbf{C} to $T \mathbf{K}$; it takes $(f, g, h) \in \operatorname{Ner}(\mathbf{C})_{3}$ to $a \in D(f g h)$ where $\sigma_{f g h}(a)$ is given by tracks as in the following diagram
in $T \mathrm{~K}$.

We now have the following crucial application of the natural transformation $\lambda_{\text {sum }}$ of theorem 2.10. This was our original motivation for the study of this transformation.

Theorem 3.15 The map

$$
H^{\mathbf{3}}(\mathbf{C}, D) \xrightarrow{\lambda_{\text {sum }}} H^{2}(\operatorname{Twist}(\mathbf{C}), \widehat{D})
$$

in (2.11) takes the class of the linear track extension $T \mathrm{~K}$ to the class of the corresponding linear extension Hotwist(TK) of proposition 3.11.

Proof: The cocycle $\Delta \in H^{2}(\operatorname{Twist}(\mathrm{C}), \hat{D})$ corresponding to Hotwist $(T K)$ is defined as follows. For morphisms $(\xi, \eta),\left(\xi^{\prime}, \eta^{\prime}\right)$ and $\left(\xi \xi^{\prime}, \vec{\eta} \eta^{\prime}\right)$ of $\mathrm{Twist}(\mathbf{C})$ as in (2.6) we choose corresponding lifts $\left(\tilde{\xi}, \tilde{\eta}, H_{0}, H\right),\left(\tilde{\xi}^{\prime}, \tilde{\eta}^{\prime}, H_{0}^{\prime}, H^{\prime}\right)$ and $\left(\widetilde{\bar{\xi} \xi^{\prime}}, \widetilde{\eta \eta^{\prime}}, H_{0}^{\prime \prime}, H^{\prime \prime}\right)$ in Hotwist $(T \mathrm{~K})$. Then $\Delta\left((\xi, \eta),\left(\xi^{\prime}, \eta^{\prime}\right)\right)=\left[b^{\prime}, b\right]$ where $\sigma_{\eta_{\eta^{\prime}} f_{2}}(b)$ is a composite of tracks given by the sum of the following diagrams.

and $\sigma_{0 x_{0} r_{2}}\left(b^{\prime}\right)$ similarly. However adding the diagonals $\left(\widetilde{\eta f_{1}}, \tilde{\eta}\right), \widetilde{\eta^{\prime} f_{2}}$ and $\widetilde{\eta \eta^{\prime} f_{2}}$ before choosing the tracks we see that $\sigma(b)$ can also be described by diagrams

Thus b is an element which represents

$$
c\left(\left(f_{0}, 1\right), \bar{\xi}, \xi^{\prime}\right)-c\left(\eta,\left(f_{1}, 1\right), \xi^{\prime}\right)+c\left(\eta, \eta^{\prime}, f_{2}\right)
$$

for $c \in H^{3}(\mathbf{C}, D)$ the cohomology class of the linear track extension $T \mathbf{K}$, as described in (3.14). Together with the corresponding statement for b^{\prime} this shows $\lambda_{\text {sum }}(c)=\Delta$ as required.

4 Universal Toda brackets and twisted maps between cofibres

Let Top* be the track category in example 3.1, with quotient category Top* / \simeq. We consider the cofibre functor

$$
\begin{equation*}
\text { Hotwist(Top*) } \xrightarrow{C} \text { Top }^{*} / \simeq \tag{4.1}
\end{equation*}
$$

which carries an object f of Hotwist(Top*) to the mapping cone (or homotopy cofibre) $C(f)$ of \tilde{f}. Here $\tilde{f}: A \rightarrow B \in \operatorname{Top}{ }^{*}$ represents the homotopy class $f: A \rightarrow B \in \mathbf{T o p}^{*} / \simeq$, and the mapping
cone of \tilde{f} is the pushout

where $C A=I A / i_{1} A$ is the cone on A.
Suppose $\left\{\xi, \eta, H_{0}, H\right\}: f \rightarrow g$ is a morphism of Hotwist(Top*) and let H_{1} be the homotopy

given by $\pi_{\tilde{g}}: C X \rightarrow C(g)$. Then we define $F=C\left(\xi, \eta, H_{0}, H\right)$

$$
C(f) \xrightarrow{F} C(g)
$$

to be the map with $F i_{j}=i_{\bar{g}} \eta$ and with $F \pi_{j}$ given by the following sum of the homotopies H, H_{0}, H_{1} :

Such a map $F: C(f) \rightarrow C(g)$ is termed a twisted map in [1].
Proposition 4.3 The cofibre functor in (4.1) is well-defined.
Proof: Certainly $F \pi_{j}$ defines a map $C A \rightarrow C(g)$ with $\left(F \pi_{j}\right) i=i_{\tilde{g}} \eta \tilde{f}=\left(F i_{j}\right) \tilde{f}$, and so F is a map from the pushout $C(f)$ to $C(g)$. Now suppose $F^{\prime}=C\left(\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime}, H^{\prime}\right)$ and we have G_{1}, G_{2} as in (3.6) so that

$$
\left\{\xi, \eta, H_{0}, H\right\}=\left\{\xi^{\prime}, \eta^{\prime}, H_{0}^{\prime}, H^{\prime}\right\}
$$

Then the contributions of G_{1} to H^{\prime} and $-H_{0}^{\prime}$ in $F^{\prime} \pi_{j}$ cancel, giving

$$
F^{\prime} \pi_{\tilde{j}}=F \pi_{j}+i_{\tilde{g}} G_{2} \tilde{f}
$$

We therefore have a homotopy $F^{\prime} \simeq F$ given by

$$
I C(f) \xrightarrow{q} C A \vee_{A} I B \xrightarrow{F \pi_{j} \vee_{A} G_{2}} C(g)
$$

where $C A \vee_{A} I B$ is the pushout of $i_{1} \tilde{f}: A \rightarrow I B$ along $i: A \rightarrow C A$ and q is induced by the quotient $I C A \rightarrow C A$.

Our main example of a linear track extension is the following. Let Top ${ }_{\Sigma}^{*}$ be a full subcategory of the category Top* of pointed topological spaces such that all objects of Top: are suspensions. Let $\operatorname{Top}_{\Sigma}^{*} / \simeq$ be the homotopy category of $\operatorname{Top}_{\Sigma}^{*}$ and let T be the track structure on Top ${ }_{\Sigma}^{*}$ given as in example 3.1 by

$$
T(f, g)=[I X, Y]^{(f, g)}
$$

for $f, g: X \rightarrow Y$. Then there is a natural system D_{Σ} on Top ${ }_{\Sigma} / \simeq$ such that Top ${ }_{\Sigma}^{*}$ is part of a linear track extension

$$
\begin{equation*}
D_{\Sigma} \longrightarrow+\operatorname{Top}_{\Sigma}^{*} \xrightarrow{p} \operatorname{Top}_{\Sigma}^{*} / \simeq \tag{4.4}
\end{equation*}
$$

The natural system D_{Σ} on $\operatorname{Top} \dot{\Sigma} / \simeq$ is defined by the homotopy groups

$$
D_{\Sigma}(f)=[\Sigma X, Y]
$$

for $f: X \rightarrow Y$, with the homomorphisms $g_{*}: D(f) \rightarrow D(g f)$ given by $a \mapsto g a$ as in example 2.4. The homomorphisms $f^{*}: D(g) \rightarrow D(g f)$ are more complicated to define. See section 3 of [3] for details.

The cohomology class represented by (4.4) via theorem 3.13 is the universal Toda bracket

$$
T_{\Sigma} \in H^{3}\left(\operatorname{Top}_{\Sigma}^{*} / \simeq, D_{\Sigma}\right)
$$

which depends only on the homotopy category Top ${ }_{\Sigma} / \simeq$.
Now let \mathcal{X}_{Σ} be a class of maps in $\operatorname{Top}_{\Sigma} \dot{\Sigma} / \simeq$, and let $\operatorname{Twist}\left(\mathcal{X}_{\Sigma}\right)$ and Hotwist $\left(\mathcal{X}_{\Sigma}\right)$ be the full subcategories of $\operatorname{Twist}\left(\operatorname{Top}_{\Sigma}^{*} / \simeq\right)$ and Hotwist $\left(\operatorname{Top}_{\Sigma}^{*}\right)$ respectively whose objects are in \mathcal{X}_{Σ}. Then by proposition 4.4, definition 3.4 and proposition 3.11 we have a linear extension of categories

$$
\begin{equation*}
\widehat{D}_{\Sigma}>+\quad \text { Hotwist }\left(\mathcal{X}_{\Sigma}\right) \xrightarrow{\hat{p}} \operatorname{Twist}\left(\mathcal{X}_{\Sigma}\right) \tag{4.5}
\end{equation*}
$$

From theorem 3.15 we have the following result which shows that this extension is determined by the universal Toda bracket.

Theorem 4.6 The universal Toda bracket T_{Σ} determines the cohomology class

$$
\left\langle\operatorname{Hotwist}\left(\mathcal{X}_{\Sigma}\right)\right\rangle \in H^{2}\left(\operatorname{Twist}\left(\mathcal{X}_{\Sigma}\right), \widehat{D}_{\Sigma}\right)
$$

corresponding to the linear extension of categories (4.5). In fact this class is a restriction of $\lambda_{\text {sum }}\left(T_{\Sigma}\right)$.

The cofibre functor C in (4.1) is compatible with the linear extension (4.5) above in the following sense. Let $C\left(\mathcal{X}_{\Sigma}\right)$ be the full subcategory of Top*/ \simeq whose objects arise as mapping cones $C(f)$ of maps $f \in \mathcal{X}_{\mathbf{\Sigma}}$.

Theorem 4.7 Let $a \geq 3$ and suppose \mathcal{X}_{Σ} is a class of maps $h: A \rightarrow B$ between suspensions $A=\Sigma A^{\prime}, B=\Sigma B^{\prime}$ of CW complexes A^{\prime}, B^{\prime} such that A is $(a-1)$-connected, B is simplyconnected, $\operatorname{dim}(A) \leq 2 a-1$ and $\operatorname{dim}(B) \leq a-1$. Then there is a map of linear extensions of categories

where C as in (4.1) is full, and τ is a surjective natural transformation. If $\operatorname{dim}(A) \leq 2 a-2$ for all $h: A \rightarrow B \in \mathcal{X}_{\Sigma}$ then C and τ are isomorphisms.

Note that this is a significant improvement of the corresponding theorem for homotopy pairs in [3], which assumes higher connectivity for B.

As in theorem 4.6 we also have:
Corollary 4.8 Suppose \mathcal{X}_{Σ} is given as in theorem 4.7. Then the homotopy category $\mathbf{C}\left(\mathcal{X}_{\Sigma}\right)$ is determined by the universal Toda bracket T_{Σ}. That is, the cohomology class

$$
\left\langle\mathbf{C}\left(\mathcal{X}_{\Sigma}\right)\right\rangle \in H^{2}\left(\operatorname{Twist}\left(\mathcal{X}_{\Sigma}\right), \Gamma / I\right)
$$

is the image under τ_{*} of the restriction of $\lambda_{\text {sum }}\left(T_{\Sigma}\right)$ to $\operatorname{Twist}\left(\mathcal{X}_{\Sigma}\right)$.

Proof of Theorem 4.7: The assumptions on \mathcal{X}_{Σ} show that $\mathrm{C}\left(\mathcal{X}_{\Sigma}\right)=\operatorname{TWIST}\left(\mathcal{X}_{\Sigma}\right)$ where the right-hand side is defined in [1, V.3.14]. Hence the result follows from (V.7.17,18) in [1], where also an explicit description of Γ / I is given when $\operatorname{dim}(A)=2 a-1$.

As an application of theorem 4.7 we consider the following category of CW-spaces with only two non-trivial homology groups. Let $2 \leq b \leq a$ and let $\mathbf{H}(b, a+1)$ be the full homotopy category of all simply-connected CW-spaces with homology groups in degree b and $a+1$, that is

$$
H_{b}(X)=B, \quad H_{a+1}(X)=A, \quad \text { and } \tilde{H}_{i}(X)=0 \text { for } i \neq a+1, b
$$

It is well known that X is the mapping cone of a map $h: M(A, a) \rightarrow M(B, b)$ between Moore spaces and it is an old problem of algebraic topology to determine the category $\mathbf{H}(b, a+1)$ by use of such attaching maps h; compare [6]. The next result yields such a classification of $\mathbf{H}(b, a+1)$.

Theorem 4.9 Let $2 \leq b<a-1$ and let $X_{\Sigma}^{b, a}$ be the class of all homotopy classes

$$
M(A, a) \xrightarrow{h} M(B, b)
$$

where A and B are abelian groups. Then there is a linear extension of categories

where the vertical arrows are equivalences of categories. As in 4.8 the cohomology class of the extension is determined by the universal Toda bracket T_{Σ}.

We point out that for $b \geq 3$ the category $\operatorname{Twist}\left(\mathcal{X}_{\Sigma}^{b, a}\right)$ in theorem 4.9 coincides with $\operatorname{Pair}\left(\mathcal{X}_{\Sigma}^{b, a}\right)$ and that in this case the theorem is also treated in [3]. For $b=2$ however one has to use twisted maps to describe $\mathbf{H}(b, a+1)$. Theorem 4.9 implies the following result on the classification of homotopy types with two homology groups.

Corollary 4.10 Let $2 \leq b<a-1$. For $b \geq 3$ the isomorphism types in Pair $\left(\mathcal{X}_{\Sigma}^{b, a}\right)$ are in 1-1 correspondence with the homotopy types in $\mathbf{H}(b, a+1)$. For $b \geq 2$ the isomorphism types in Twist $\left(\mathcal{X}_{\Sigma}^{, b, a}\right)$ are in 1-1 correspondence with the homotopy types in $\mathbf{H}(b, a+1)$.

The case $b \geq 3$ of the corollary is an old result of Brown-Copeland [6].

5 Universal Toda brackets and twisted maps between fibres

This section is dual to section 4. Let $\mathrm{C}^{o p}$ be the opposite category of a category C . This construction is the basis of duality in category theory; for example sums in $C^{\circ p}$ are just products in C. This leads to the following dual notion of the category Twist $(-)$ in 2.2 .

Let C be a category with finite products, that is, with binary products $A \times B$ and a terminal object *. Suppose that * is also an initial object. We define the category $\mathrm{Twist}^{\prime}(\mathrm{C})$ by the dual of definition 2.2 .

$$
\begin{equation*}
\text { Twist }^{\prime}(\mathrm{C})=\left(\mathrm{Twist}\left(\mathrm{C}^{\mathrm{op}}\right)\right)^{\mathrm{op}} \tag{5.1}
\end{equation*}
$$

Thus a morphism $(\xi, \eta): f \rightarrow g$ of Twist $^{\prime}(\mathbf{C})$ is given by commutative diagrams

in C .
Dualising definitions 1.1 and 2.3 we have the notion of a natural system which is strongly compatible with products. Such a natural system D on \mathbf{C} induces a natural system \widehat{D}^{\prime} on Twist ${ }^{\prime}(\mathbf{C})$ by the dual of (2.5). Then theorem 2.10 becomes

Theorem 5.2 Suppose D is a natural system on \mathbf{C} which is strongly compatible with products. Then there is a well-defined natural transformation

$$
H^{n+1}(\mathrm{C}, D) \xrightarrow{\lambda_{\text {prod }}} H^{n}\left(\operatorname{Twist}^{\prime}(\mathrm{C}), \hat{D}^{\prime}\right)
$$

The dual of addendum 2.15 says also that λ factors through $\lambda_{\text {prod }}$; the proofs require normalisation with respect to products as in theorem A.ll in the appendix.

We have the notion of the opposite of a track category, and we say a track category $T \mathbf{K}$ is compatible with products if $T K^{\circ p}$ is compatible with sums as in definition 3.3. Then similarly to 5.1 we define

$$
\operatorname{Hotwist}^{\prime}(T \mathbf{K})=\left(\operatorname{Hotwist}\left(T \mathbf{K}^{\mathrm{op}}\right)\right)^{\mathrm{op}}
$$

for $T \mathbf{K}$ compatible with products. For $T \mathbf{K}$ a linear track extension of \mathbf{C}, $\operatorname{Hotwist}^{\prime}(T \mathbf{K})$ is a linear extension of $\mathrm{Twist}^{\prime}(\mathbf{C})$ dually to proposition 3.11 , and $\lambda_{\text {prod }}$ takes the cohomology class representing $T \mathbf{K}$ to that representing $\operatorname{Hotwist}^{\prime}(T \mathbf{K})$ by the dual of theorem 3.15.

In this section we consider the track category Top* and the fibre functor

$$
\begin{equation*}
\text { Hotwist }^{\prime}\left(\text { Top }^{*}\right) \xrightarrow{P} \text { Top }{ }^{*} / \simeq \tag{5.3}
\end{equation*}
$$

which carries an object f of Hotwist' ${ }^{\prime}$ Top *) to the fibre (or homotopy fibre) $P(f)$ of \tilde{f} where again \tilde{f} represents the homotopy class f. For this recall that $P(f)$ is constructed dually to $C(f)$ in section 4 using the duality of I-categories and P-categories in [1].

We obtain the dual of the linear track extension (4.4) as follows. Let $\mathrm{Top}_{\Omega}^{*}$ be a full subcategory of the category Top" of pointed topological spaces such that all objects of Top" are loop spaces. Let $\operatorname{Top}_{\Omega}^{*} / \simeq$ be the homotopy category of $\operatorname{Top}_{\Omega}^{*}$ and let T be the track structure on Top ${ }_{\Omega}^{*}$ given
as in example 3.1. Then there is a natural system D_{Ω} on $\operatorname{Top}_{\Omega}^{*} / \simeq$ such that $\operatorname{Top}_{\Omega}^{*}$ is part of a linear track extension

The natural system D_{Ω} on $\operatorname{Top}_{\Omega}^{*} / \simeq$ is defined by the homotopy groups

$$
D_{\Omega}(f)=[X, \Omega Y]
$$

for $f: X \rightarrow Y$, with the homomorphisms $f^{*}: D(g) \rightarrow D(g f)$ given by $a \mapsto a f$. The homomorphisms g : : $D(f) \rightarrow D(g f)$ are more complicated to define; see section 3 of [3] for details. We point out that D_{Ω} does not coincide with D_{Σ} in (4.4).

The cohomology class represented by (5.4) via theorem 3.13 is the universal Toda bracket

$$
T_{\Omega} \in H^{3}\left(\operatorname{Top}_{\Omega}^{*} / \simeq, D_{\Omega}\right)
$$

which depends only on the homotopy category Top ${ }_{\Omega}^{*} / \simeq$.
Now let \mathcal{X}_{Ω} be a class of maps in $\operatorname{Top}_{\Omega}^{*} / \simeq$, and let $\mathrm{Twist}^{\prime}\left(\mathcal{X}_{\Omega}\right)$ and Hotwist ${ }^{\prime}\left(\mathcal{X}_{\Omega}\right)$ be the full subcategories of ${ }^{\top}$ wist $^{\prime}\left(\operatorname{Top}_{\Omega}^{*} / \simeq\right)$ and Hotwist $^{\prime}\left(\right.$ Top $\left._{\Omega}^{*}\right)$ respectively whose objects are in \mathcal{X}_{Ω}. Then we have the linear extension

$$
\begin{equation*}
\hat{D}_{\Omega}^{\prime} \xrightarrow{+} \operatorname{Hotwist}^{\prime}\left(\mathcal{X}_{\Omega}\right) \xrightarrow{\hat{p}} \text { Twist }^{\prime}\left(\mathcal{X}_{\Omega}\right) \tag{5.5}
\end{equation*}
$$

which is dual to (4.5). As a dual of theorem 4.6 we get
Theorem 5.6 The universal Toda bracket T_{Ω} determines the cohomology class

$$
\left\langle\operatorname{Hotwist}^{\prime}\left(\mathcal{X}_{\Omega}\right)\right\rangle \in H^{2}\left(\operatorname{Twist}^{\prime}\left(\mathcal{X}_{\Omega}\right), \widehat{D}_{\Omega}^{\prime}\right)
$$

corresponding to the linear extension of categories (5.5). In fact this class is a restriction of $\lambda_{\text {prod }}\left(T_{\Omega}\right)$.

The fibre functor P in (5.3) is compatible with the linear extension (5.5) above in the following sense. Let $\mathbf{P}\left(\mathcal{X}_{\Omega}\right)$ be the full subcategory of Top ${ }^{*} / \simeq$ whose objects arise as homotopy fibres $P(f)$ of maps $f \in \mathcal{X}_{\Omega}$.

Theorem 5.7 Let $a \geq 3$ and suppose \mathcal{X}_{Ω} is a class of maps $h: B \rightarrow A$ between loop spaces $A=\Omega A^{\prime}, B=\Omega B^{\prime}$ of CW complexes A^{\prime}, B^{\prime} such that A is $(a-1)$-connected, B is simplyconnected, $\pi_{i}(A)=0$ for $i \geq 2 a-1$ and $\pi_{i}(B)=0$ for $i \geq a-1$. Then there is an isomorphism of linear extensions of categories

where P is defined by (5.3).
Proof: This is a consequence of $\{1, V .10 .19]$ and the exact sequence 3.3 in [2]. Details of the proof are somewhat sophisticated but are based on the material in section V. 10 of [1].

Corollary 5.8 Suppose \mathcal{X}_{Ω} is given as in theorem 5.7. Then the homotopy category $\mathrm{P}\left(\mathcal{X}_{\Omega}\right)$ is determined by the universal Toda bracket T_{Ω}. That is, the cohomology class

$$
\left\langle\mathbf{P}\left(\mathcal{X}_{\Omega}\right)\right\rangle \in H^{2}\left(\text { Twist }^{\prime}\left(\mathcal{X}_{\Omega}\right), \Gamma / I\right)
$$

is the image under τ_{*} of the restriction of $\lambda_{\text {prod }}\left(T_{\Omega}\right)$ to Twist ${ }^{\prime}\left(\mathcal{X}_{\Omega}\right)$.

A Appendix

Sum normalised cohomology of categories

Let C be a (small) category. Since we will always want to have explicit structure maps for sums in \mathbf{C}, we make the following definition.

Definition A. 1 The category $\operatorname{Sum}(C)$ of finite sum diagrams in C is the category with objects all pairs (X, i) with $i=\left(i_{1}, \ldots, i_{r}\right)$ an r-tuple of morphisms $i_{k}: X_{k} \rightarrow X$ which gives X the structure of a sum in C. Morphisms $f:(X, i) \rightarrow(Y, j)$ in $\operatorname{Sum}(\mathbf{C})$ are just morphisms $f: X \rightarrow Y$ in C.

The forgetful functor

$$
\operatorname{Sum}(C) \xrightarrow{\phi} C
$$

given by $(X, i) \mapsto X, f \mapsto f$, is an equivalence of categories; an inverse to ϕ is given by the functor ψ which carries X to the trivial sum diagram $\left(X, 1_{X}\right)$. We therefore have an isomorphism of cohomology groups

$$
\begin{equation*}
H^{n}\left(\operatorname{Sum}(\mathbf{C}), \phi^{*} D\right) \cong H^{n}(\mathbf{C}, D) \tag{A.2}
\end{equation*}
$$

Dually one can define the category Product(C) of all finite product diagrams (X, p) in C ; the defining property for products is that post-composing with the morphisms $p_{k}: X \rightarrow X_{k}$ induces natural bijections of hom-sets

$$
p_{*}: \mathrm{C}(Z, X) \cong \mathrm{C}\left(Z, X_{1}\right) \times \ldots \times \mathrm{C}\left(Z, X_{r}\right)
$$

All the definitions and results for sums in this section will have dual formulations for products, with dual proofs.

Definition A. 3 A cochain $c \in F^{n}\left(\operatorname{Sum}(\mathrm{C}), \phi^{*} D\right)$ is said to respect the sum diagrams of C if

$$
\begin{equation*}
i_{n, k}^{*} c(\sigma)=c\left(\sigma_{1}, \ldots, \sigma_{m-1}, \sigma_{m} i_{m, k}, \sigma_{m+1}^{(k)}, \ldots, \sigma_{n}^{(k)}\right) \quad \text { for } 1 \leq k \leq r \tag{A.4}
\end{equation*}
$$

for each $0 \leq m \leq n$ and whenever $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \operatorname{Ner}(\operatorname{Sum}(\mathbf{C}))_{n}$ is such that each σ_{j} is a sum $\sigma_{j}=\mathrm{V}_{k=1}^{r} \sigma_{j}^{(k)}$ for $j>m$, or in the case $m=n$ that the source of σ_{n} is a sum $X_{n}=V_{k=1}^{r} X_{n, k}$. If $m=0$ then (A,4) is supposed to mean $i_{n, k}^{*} c(\sigma)=i_{0, k_{*}} c\left(\sigma_{1}^{(k)}, \ldots, \sigma_{n}^{(k)}\right)$.

The collection of cochains on $\operatorname{Sum}(\mathrm{C})$ which respect the sum diagrams is written $F_{\text {sum }}^{*}(\mathrm{C}, D)$.
For a simplex σ as above we will write $\sigma i_{m, k}$ and ($\sigma, i_{m, k}$) for the simplices

$$
\begin{aligned}
\sigma i_{m, k} & =\left(\sigma_{1}, \ldots, \sigma_{m-1}, \sigma_{m} i_{m, k}, \sigma_{m+1}^{(k)}, \ldots, \sigma_{n}^{(k)}\right) \\
\left(\sigma, i_{m, k}\right) & =\left(\sigma_{1}, \ldots, \sigma_{m-1}, \sigma_{m}, i_{m, k}, \sigma_{m+1}^{(k)}, \ldots, \sigma_{n}^{(k)}\right)
\end{aligned}
$$

of dimension n and $n+1$ respectively. We write equations (A.4) as $i_{n, k}^{*} c(\sigma)=c\left(\sigma i_{m, k}\right)$, or $i_{n, k}^{*} c(\sigma)=i_{0, k_{*}} c\left(\sigma^{(k)}\right)$ when $m=0$.

Lemma A. $6 F_{\text {sum }}^{*}(\mathbf{C}, D)$ is a sub-cochain complex of $F^{*}\left(\operatorname{Sum}(\mathbf{C}), \phi^{*} D\right)$.
Proof: Given $c \in F^{n-1}$ respecting sum diagrams we must show δc respects sum diagrams also. Suppose $\sigma \in \operatorname{Ner}(\operatorname{Sum}(\mathbf{C}))_{n}$ as in (A.5), with $m \neq 0, n$. Then $i_{n, k}^{*}(\delta c)(\sigma)$ is given by

$$
\begin{equation*}
i_{n, k}^{*} \sigma_{1, c} c\left(d_{0} \sigma\right)+\sum_{i=1}^{n-1}(-1)^{i} i_{n, k}^{*} c\left(d_{i} \sigma\right)+(-1)^{n} i_{n, k}^{*} \sigma_{n}^{*} c\left(d_{n} \sigma\right) \tag{A.7}
\end{equation*}
$$

Now $i_{n, k}^{*} c\left(d_{i} \sigma\right)=c\left(d_{i}\left(\sigma i_{m, k}\right)\right)$ for $i<n$ and

$$
i_{n, k}^{*} \sigma_{n}^{*} c\left(d_{n} \sigma\right)=\sigma_{n}^{(k)^{*}} i_{n-1, k}^{*} c\left(d_{n} \sigma\right)=\sigma_{n}^{(k)^{*}} c\left(d_{n}\left(\sigma i_{m, k}\right)\right)
$$

Thus (A.7) becomes

$$
\sigma_{1 *} c\left(d_{0}\left(\sigma i_{m, k}\right)\right)+\sum_{i=1}^{n-1}(-1)^{i} c\left(d_{i}\left(\sigma i_{m, k}\right)\right)+(-1)^{n} \sigma_{n}^{(k)^{*}} c\left(d_{n}\left(\sigma i_{m, k}\right)\right)
$$

which is $(\delta c)\left(\sigma i_{m, k}\right)$ as required. The proofs for the special cases $m=0$ and $m=n$ are similar.
Thus we can define the cohomology groups of C with respect to the sum diagrams by

$$
\begin{equation*}
H_{s u m}^{n}(\mathrm{C}, D)=H^{n}\left(F_{\mathrm{sum}}^{*}(\mathrm{C}, D), \delta_{\mid F_{\mathrm{sum}}}\right) \tag{A.8}
\end{equation*}
$$

The main result of this section is the following normalisation theorem.
Theorem A. 9 If D is compatible with sum diagrams then there is a natural isomorphism

$$
H_{\text {sum }}^{n}(\mathbf{C}, D) \cong H^{n}(\mathbf{C}, D)
$$

Proof: We show that the inclusion of cochain complexes

$$
F_{\mathrm{sum}}^{*}(\mathrm{C}, D) \subseteq F^{*}\left(\operatorname{Sum}(\mathrm{C}), \phi^{*} D\right)
$$

induces an isomorphism of cohomology groups

$$
H_{\mathrm{sum}}^{n}(\mathbf{C}, D) \cong H^{n}\left(\operatorname{Sum}(\mathbf{C}), \phi^{*} D\right)
$$

Then applying the isomorphism (A.2) we get the theorem.
We define for each $(n+1)$-cochain c on $\operatorname{Sum}(\mathbf{C})$ an n-cochain γ_{c} such that $c+\delta \gamma_{c}$ respects sums if δc does. Let $\sigma \in \operatorname{Ner}(\operatorname{Sum}(\mathbb{C}))_{n}$. If the source $\left(X_{n}, i\right)$ is a trivial sum diagram then we put $\gamma_{c}(\sigma)=0$; otherwise there is a least m such that σ has the form of (A.5) and we define $\gamma_{c}(\sigma)$ by

$$
i_{n, k}^{*} \gamma_{c}(\sigma)=\sum_{t=m}^{n}(-1)^{t} c\left(\sigma_{1}, \ldots, \sigma_{t}, i_{t, k}, \sigma_{t+1}^{(k)}, \ldots, \sigma_{n}^{(k)}\right)=\sum_{t=m}^{n}(-1)^{t} c\left(\sigma, i_{t, k}\right)
$$

for $1 \leq k \leq r$. This is well-defined since i_{n}^{*} is an isomorphism. The source of $\left(\sigma, i_{t, k}\right)$ is the trivial sum diagram on $X_{n, k}$, so $\gamma_{c}\left(d_{j}\left(\sigma, i_{t, k}\right)\right)=0$ unless $j=t=n$, and hence

$$
\begin{aligned}
& \left(\partial \gamma_{c}\right)\left(\sigma, i_{t, k}\right)=0 \text { for } t<n \\
& \left(\partial \gamma_{c}\right)\left(\sigma, i_{n, k}\right)=(-1)^{n+1} i_{n, k}^{*} \gamma_{c}(\sigma)=\sum_{t=m}^{n}(-1)^{n+t+1} c\left(\sigma, i_{t, k}\right)
\end{aligned}
$$

Putting $c^{\prime}=c+\delta \gamma_{c}$ we thus have

$$
\begin{equation*}
\sum_{t=m}^{n}(-1)^{t} c^{\prime}\left(\sigma, i_{t, k}\right)=0 \tag{A.10}
\end{equation*}
$$

For $\sigma \in \operatorname{Ner}(\mathbf{C})_{n+1}$ and m minimal such that $\sigma_{t}=\bigvee_{k=1}^{r} \sigma_{t}^{(k)}$ for $m<t \leq n+1$ we assume inductively

$$
i_{n+1, k}^{*} c^{\prime}(\sigma)=c^{\prime}\left(\sigma i_{t, k}\right) \text { for } m \leq t<s
$$

which holds trivially for $s=m$. Assuming also that c^{\prime} is normalised with respect to identities we have $c^{\prime}\left(\sigma, i_{t, k}\right)=0$ for $m \leq t<s$ in (A.10). Together with $d_{t+1}\left(\sigma, i_{t, k}\right)=d_{t+1}\left(\sigma, i_{t+1, k}\right)$ this implies

$$
\sum_{t=s}^{n+1}(-1)^{\iota}\left(\delta c^{\prime}\right)\left(\sigma, i_{t, k}\right)=c^{\prime}\left(\sigma i_{s, k}\right)-i_{n+1, k}^{*} c^{\prime}(\sigma)
$$

But this is zero if δc^{\prime} is normalised with respect to sums and identities.
Dually we can consider the cohomology of the category Product(\mathbf{C}) of finite product diagrams $\left(X,\left(p_{1}, \ldots, p_{r}\right)\right)$ in C :

$$
H^{n}\left(\operatorname{Product}(\mathbf{C}), \phi^{\prime} D\right)=H^{n}\left(F^{*}\left(\operatorname{Product}(\mathbf{C}), \phi^{*} D\right), \delta\right)
$$

The natural system D is compatible with products if the homomorphisms

$$
D_{f} \longrightarrow p_{*} \bigoplus_{k=1}^{r} D_{p_{k} J}
$$

are always isomorphisms and a cochain $c \in F^{*}\left(\operatorname{Product}(\mathrm{C}), \phi^{*} D\right)$ is compatible with products if the equations

$$
p_{n, k} c(\sigma)=c\left(p_{m, k} \sigma\right) \quad(1 \leq k \leq r)
$$

hold whenever appropriate. Considering only those cochains compatible with products we have a sub-cochain complex

$$
F_{\text {prod }}^{*}(\mathbf{C}, D) \subseteq F^{*}\left(\operatorname{Product}(\mathbf{C}), \phi^{*} D\right)
$$

by the dual of lemma A.6. The dual of theorem A. 9 is the following.
Theorem A. 11 If D is compatible with product diagrams then there is a natural isomorphism

$$
H_{\text {prod }}^{n}(\mathbf{C}, D) \cong H^{n}(\mathbf{C}, D)
$$

The natural transformation $\lambda_{\text {sum }}$

Given the normalisation theorem A. 9 above we are now able to prove theorem 2.10 and its addendum 2.15.

Proof of Theorem 2.10: Recall that the homomorphism

$$
F^{n+1}(\mathbf{C}, D) \xrightarrow{\lambda_{\text {sum }}} F^{n}(\operatorname{Twist}(\mathbf{C}), \widehat{D})
$$

is defined by

$$
\left(\lambda_{\text {sum }} c_{n+1}\right)(\sigma)=\left[\sum_{i=0}^{n}(-1)^{i} c_{n+1}\left(\lambda_{i}^{\prime} \sigma\right), \sum_{i=0}^{n}(-1)^{i} c_{n+1}\left(\lambda_{i} \sigma\right)\right]
$$

for $\sigma \in \operatorname{Ner}(\operatorname{Twist}(\mathrm{C}))_{n}$ given by $\left(\xi_{i}, \eta_{i}\right): f_{i} \rightarrow f_{i-1}, f_{i}: X_{i} \rightarrow Y_{i}$, and where

$$
\lambda_{i} \sigma=\left\{\begin{array}{cl}
\left(\left(f_{0}, 1\right), \bar{\xi}_{1}, \ldots, \bar{\xi}_{n-1}, \xi_{n}\right) & i=0 \\
\left(\eta_{1}, \ldots, \eta_{i},\left(f_{i}, 1\right), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-1}, \xi_{n}\right) & 1 \leq i \leq n-1 \\
\left(\eta_{1}, \ldots, \eta_{n}, f_{n}\right) & i=n
\end{array}\right.
$$

and $\lambda_{i}^{\prime} \sigma$ similarly, replacing the f_{i} by $0: X_{i} \rightarrow Y_{i}$.
We show that $\lambda_{\text {sum }}$ is a degree -1 cochain map and hence induces a well-defined map of cohomology groups; that is, we prove

$$
\begin{equation*}
\delta \lambda_{\text {sum }}+\lambda_{\text {sum }} \delta=0 \tag{A.12}
\end{equation*}
$$

The following relations between the functions λ_{i} and the simplicial face maps d_{i} are clear:

$$
\begin{aligned}
d_{i} \lambda_{i} \sigma & =d_{i} \lambda_{i-1} \sigma \\
d_{j} \lambda_{i} \sigma & =\lambda_{i-1} d_{j} \sigma, j<i \\
d_{j} \lambda_{i} \sigma & =\lambda_{i} d_{j-1} \sigma, i+1<j \leq n
\end{aligned}
$$

Thus on expanding the left-hand side of (A.12) by the definitions of $\lambda_{\text {sum }}$ and δ most terms will cancel, leaving $\left(\delta \lambda_{\text {sum }}+\lambda_{\text {sum }} \delta\right)\left(c_{n}\right)=\left[b^{\prime}, b\right]$ where

$$
\begin{aligned}
b^{\prime} & =(0,1) \cdot c_{n} d_{0} \lambda_{0}^{\prime} \sigma-0_{n}^{*} c_{n} d_{n+1} \lambda_{n}^{\prime} \sigma+\sum_{i=0}^{n-1}(-1)^{n+i} \xi_{n}^{*}\left(\alpha_{1} c_{n} \lambda_{i}^{\prime} d_{n} \sigma-c_{n} d_{n+1} \lambda_{i}^{\prime} \sigma\right) \\
b & =\left(f_{0}, 1\right) \cdot c_{n} d_{0} \lambda_{0} \sigma-f_{n}^{*} c_{n} d_{n+1} \lambda_{n} \sigma+\sum_{i=0}^{n-1}(-1)^{n+i} \xi_{n}^{*}\left(\alpha_{1} c_{n} \lambda_{i} d_{n} \sigma-c_{n} d_{n+1} \lambda_{i} \sigma\right)
\end{aligned}
$$

Since $d_{0} \lambda_{0} \sigma=d_{0} \lambda_{0}^{\prime} \sigma$ and $d_{n+1} \lambda_{n} \sigma=d_{n+1} \lambda_{n}^{\prime} \sigma$ the first two terms of b^{\prime} and of b together are zero in the quotient $\widehat{D}(|\sigma|)$. Consider the elements

$$
\begin{aligned}
a_{i}^{\prime} & =\alpha_{1} c_{n} \lambda_{i}^{\prime} d_{n} \sigma-c_{n} d_{n+1} \lambda_{i}^{\prime} \sigma \\
& =\alpha_{1} c_{n}\left(\eta_{1}, \ldots, \eta_{i},(0,1), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-2}, \xi_{n-1}\right)-c_{n}\left(\eta_{1}, \ldots, \eta_{i},(0,1), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-2}, \bar{\xi}_{n-1}\right) \\
a_{i} & =\alpha_{1} c_{n} \lambda_{i} d_{n} \sigma-c_{n} d_{n+1} \lambda_{i} \sigma \\
& =\alpha_{1} c_{n}\left(\eta_{1}, \ldots, \eta_{i},\left(f_{i}, 1\right), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-2}, \xi_{n-1}\right)-c_{n}\left(\eta_{1}, \ldots, \eta_{i},\left(f_{i}, 1\right), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-2}, \bar{\xi}_{n-1}\right)
\end{aligned}
$$

Assuming c_{n} respects sums we have $i_{X_{n-1}}\left(a_{i}^{\prime}\right)=0$ and so

$$
\xi_{n}^{*}\left(a_{i}^{\prime}\right)=\xi_{n}^{*}(0,1)^{*} i_{Y_{n-1}}\left(a_{i}^{\prime}\right)=0
$$

Also $i_{X_{n-1}}^{*}\left(a_{i}\right)=0$ and so $\xi_{n}^{*}\left(a_{i}\right) \in\left(f_{0}, 1\right) . D\left(\bar{\xi}_{1} \ldots \bar{\xi}_{n-1} \xi_{n}\right)_{2}$ by lemma 2.7. Thus $\left[b^{\prime}, b\right]=0$ and (A.12) holds.

Proof of Addendum 2.15: Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ be an n-simplex of $\operatorname{Ner}(\operatorname{Pair}(\mathbf{C}))$ with $\sigma_{k}=$ $\left(\zeta_{k}, \eta_{k}\right): f_{k} \rightarrow f_{k-1}$ for $1 \leq k \leq n$. Then $\iota_{*} \sigma \in \operatorname{Ner}(\operatorname{Twist}(\mathrm{C}))$ is given by

$$
\iota \sigma_{k}=\left(\xi_{k}, \eta_{k}\right)=\left(i_{X_{k-1}} \zeta_{k}, \eta_{k}\right)
$$

and we have $\bar{\xi}_{k}=\zeta_{k} \vee \eta_{k}: X_{k} \vee Y_{k} \rightarrow X_{k-1} \vee Y_{k-1}$. Therefore

$$
\begin{aligned}
c_{n+1}\left(\lambda_{i} \iota_{*} \sigma\right) & =c_{n+1}\left(\eta_{1}, \ldots, \eta_{i},\left(f_{i}, 1\right), \bar{\xi}_{i+1}, \ldots, \bar{\xi}_{n-1}, \xi_{n}\right) \\
& =i_{X_{n}} c_{n+1}\left(\eta_{1}, \ldots, \eta_{i},\left(f_{i}, 1\right), \zeta_{i+1} \vee \eta_{i+1}, \ldots, \zeta_{n} \vee \eta_{n}\right) \\
& =c_{n+1}\left(\eta_{1}, \ldots, \eta_{i}, f_{i}, \zeta_{i+1}, \ldots, \zeta_{n}\right)
\end{aligned}
$$

since we can assume c_{n+1} respects sums. Assuming also it is normalised with respect to zero maps we have $c_{n+1}\left(\lambda_{i}^{\prime} \iota_{*} \sigma\right)=0$. Thus

$$
\left(\lambda_{\mathrm{sum}} c_{n+1}\right)\left(\iota_{*} \sigma\right)=\left[0, \sum_{i=0}^{n}(-1)^{i} c_{n+1}\left(\eta_{1}, \ldots, \eta_{i}, f_{i}, \zeta_{i+1}, \ldots, \zeta_{n}\right)\right]
$$

and $\tau^{*} \iota_{*} \lambda_{\text {sum }}$ is just λ as defined in [3] as required.

References

[1] H.-J. Baues. Algebraic homotopy. Cambridge studies in advanced mathematics 15 (1989), Cambridge University Press.
[2] H.-J. Baues. Metastable homotopy and homology. Quaestiones Mathematicae 14 (1991) 161-178
[3] H.-J. Baues. On the cohomology of categories, universal Toda brackets and homotopy pairs. preprint MPI für Math. (1994) 25pp
[4] H.-J. Baues and G. Wirsching. The cohomology of small categories. J. Pure Appl. Algebra 38 (1985) 187-211
[5] H.-J. Baues and W. Dreckmann. The cohomology of homotopy categories and the general linear group. K-Theory 3 (1989) 307-338
[6] E.H. Brown and A.H. Copeland. Homotopy analogue of Postnikov systems. Mich. Math. J. 6 (1959) 313-330
[7] W.G. Dwyer and D.M. Kan. Hochschild-Mitchell cohomology of simplicial categories and the cohomology of simplicial diagrams of simplicial sets. preprint
[8] K.A. Hardie. On the category of homotopy pairs. Topology and its applications 14 (1982) 59-69
[9] K.A. Hardie and K.H. Kamps. Secondary composition operation in homotopy pair theory. Tsukuba J. Math. 17 (1993) 201-220
[10] M. Jibladze and T. Pirashvili. Cohomology of algebraic theories. Journal of Algebra 137 (1991) 253-296
[11] I. Moerdijk and J.-A. Svensson. A Shapiro lemma for diagrams of spaces with applications to equivariant topology. preprint, to appear Compositio Math.
[12] P. Pavešic. Diagram cohomologies using categorical fibrations. preprint

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
March 1995.

