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On l-adic iterated integrals V, linear
independence, properties of l-adic
polylogarithms, l-adic sheaves

Zdzislaw Wojtkowiak

Abstract In series of papers we have introduced and studied l-adic polylogarithms
and l-adic iterated integrals which are analogues of the classical complex polyloga-
rithms and iterated integrals in l-adic Galois realizations. In this note we shall show
that in the generic case l-adic iterated integrals are linearly independent ver Ql . In
particular they are non trivial. This result can be view as analoguous of the state-
ment that classical iterated integrals from 0 to z of sequences of one forms dz

z and
dz

z−1 are linearly independent over Q. We also study ramification properties of l-adic
polylogarithms and the minimal quotient subgroup of GK on which l-adic polylog-
arithms are defined. In the final sections of the paper we study l-adic sheaves and
their relations with l-adic polylogarithms. We show that if an l-adic sheaf has the
same monodromy representation as the classical complex polylogarithms then the
action of GK in stalks is given by l-adic polylogarithms.

Key words: Galois group, polylogarithms, fundamental group

1 Introduction

In this paper we study properties of l-adic iterated integrals and l-adic polyloga-
rithms introduced in [W1] and [W2]. We describe briefly main results of the paper,
though in the introduction we do not present them in full generality.

Let K be a number field, let z ∈ K \ {0,1} or let z be a tangential point of P1
K̄ \

{0,1,∞} defined over K and let γ be an l-adic path from −→01 to z on P1
K̄ \ {0,1,∞}.

For any σ ∈ GK we set
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fγ(σ) := γ
−1 ·σ(γ) ∈ π

et
1 (P1

K̄ \{0,1,∞};−→01)pro−l .

Then we define l-adic iterated integrals from −→01 to z. They are functions

lb(z) : GK → Ql

(they are coefficients of fγ( )) and indices are taking values in a Hall base B of
the free Lie algebra Lie(X ,Y ) on two generators X and Y . Let Bn be the set of
elements of degree n in B. Let Hn ⊂ GK(µl∞ ) be a subgroup of GK(µl∞ ) defined by
the condition that all lb(z) and lb(

−→10) vanish on Hn for all b ∈
⋃

i<n Bi.

Our first result concerns linear independence of l-adic iterated integrals.

Theorem 1. Let z ∈ K \ {0,1}. Assume that z is not a root of any equation of the
form zp · (1− z)q = 1, where p and q are integers such that p2 + q2 > 0. Then the
functions lb(z) : Hn→ Ql for b ∈Bn are linearly independent over Ql .

Our second result concerns the minimal quotient of GK , on which l-adic poly-
logarithms ln(z) are defined and ramification properties of l-adic polylogarithms.

Let z∈K\{0,1}. Consider the fields K(µl∞) and K(µl∞ ,z
1

l∞ ). Let M(K(µl∞ ,z
1

l∞ ))ab
l,1−z

be a maximal, abelian, pro-l, unramified outside l and 1−z extension of K(µl∞ ,z
1

l∞ ).

Theorem 2. Let z ∈ K \ {0,1}. Assume that z is not a root of any equation of the
form zp · (1− z)q = 1, where p and q are integers such that p2 + q2 > 0. Then we
have:

1. The l-adic polylogarithm ln(z) : GK → Ql factors through the group
Gal(M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K).
2. The l-adic polylogarithm ln(z) ramifies only at prime divisors of the product l · z ·

(1− z).
3. The l-adic polylogarithm ln(z) determines a non-trivial element in the group

Hom
(
Gal(M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K(µl∞ ,z
1

l∞ ));Ql
)
.

Our third result concerns connections with a non-abelian Iwasawa theory though
we are not sure if our terminology non-abelian Iwasawa theory is not exaggerated
as a result is quite elementary.

Let us set G := Gal
(
M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K(µl∞ ,z
1

l∞ )
)

and Φ := Gal(K(µl∞ ,z
1

l∞ )/K).
The Galois group G is a Φ-module, hence it is also a Zl [[Φ ]]-module. Therefore
Hom(G ,Zl) is also a Zl [[Φ ]]-module.

Theorem 3. Let µ ∈ Zl [[Φ ]]. Under the same assumptions as in Theorems 1 and 2
we have

µ(lm(z)) =
(∫

Φ

χ
m(x)dµ

)
lm(z)+

m−1

∑
k=1

(∫
Φ

(−l(z)(x))k

k!
χ

m−k(x)dµ
)
lm−k(z). (1)
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In the final sections of the paper we study l-adic sheaves. We shall show that if
an l-adic sheaf has the same monodromy representation as the classical complex
polylogarithms then the Galois action in stalks is given by l-adic polylogarithms.

2 P1
Q(µn)

\ ({0,∞}∪µn)

In this section we recall some elementary results concerning Galois actions on fun-
damental groups in the special case of P1

Q(µn) \ ({0,∞}∪µn) (see [W3] and [DW]).
Let us fix a rational prime l. Let K be a number field containing the group µn of

n-th roots of unity. Let V := P1
K \ ({0,∞}∪ µn). We denote by π1(VK̄ ;−→01) the pro-l

completion of the étale fundamental group of VK̄ based at −→01. First we describe how
to choose generators of π1(VK̄ ;−→01). Let ξ := exp( 2πi

n ). Let π0 be the standard path
from−→01 to−→10. Let x be a loop around 0 based at−→01 in an infinitesimal neibourhood of
0. Let y′0 be a loop around 1 based at−→10 and sk a path from−→01 to

−→
0ξ

k in infinitesimal
neibourhoods of 1 and 0 respectively.

Let rk : V → V be given by rk(z) = ξ k · z. We set y0 := π
−1
0 · y′0 · π0 and yk :=

s−1
k · ((rk)∗(y0)) · sk for 0 < k < n. Then x,y0,y1, . . . ,yn−1 are free generators of

π1(VK̄ ;−→01). Observe that s−1
j ·((r j)∗(yk)) ·s j = yk+ j if k+ j < n and s−1

j ·((r j)∗(yk)) ·
s j = x−1 · yk+ j · x if k + j ≥ n

Let z ∈V (K) or let z be a tangential point defined over K. Let γ be an l-adic path
from −→01 to z. We recall that for any σ ∈ GK ,

fγ(σ)(x,y0, . . . ,yn−1) := γ
−1 ·σ(γ). (2)

Observe that (rk)∗(γ) · sk is a path from −→01 to ξ kz and

f((rk)∗(γ))·sk
(σ) = fγ(σ)(x,yk,yk+1, . . . ,yn−1,x−1 · y0 · x, . . . ,x−1 · yk−1 · x) · x

k(χ(σ)−1)
n .

(3)
Let

k : π1(VK̄ ;−→01)→ Ql{{X ,Y0, . . . ,Yn−1}}

be a continuous multiplicative embedding of π1(VK̄ ;−→01) into the Ql-algebra of non-
commutative formal power series Ql{{X ,Y0, . . . ,Yn−1}} given by k(x) = exp(X) and
k(y j) = exp(Yj) for 0≤ j < n.

Let π(VK̄ ;z,−→01) be the π1(VK̄ ;−→01)-torsor of l-adic paths from −→01 to z. The map
δ → γ−1 ·δ defines the bijection tγ : π(VK̄ ;z,−→01)→ π1(VK̄ ;−→01). Composing tγ with
the embedding k we get an embedding

kγ : π(VK̄ ;z,−→01)→ Ql{{X ,Y0, . . . ,Yn−1}}.

The Galois group GK acts on π1(VK̄ ;−→01) and on π(VK̄ ;z,−→01). Hence we get two
Galois representations
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ϕ−→01 : GK → Aut(Ql{{X ,Y0, . . . ,Yn−1}})

and
ψγ : GK → GL(Ql{{X ,Y0, . . . ,Yn−1}})

deduced from the action of GK on π1(VK̄ ;−→01) and on π(VK̄ ;z,−→01) respectively.

Before going farther we fix the notation.
The set of Lie polynomials in Ql{{X ,Y0, . . . ,Yn−1}}we denote by Lie(X ,Y0, . . . ,Yn−1).
It is a free Lie algebra on n + 1 generators X ,Y0, . . . ,Yn−1. The set of formal Lie
power series in Ql{{X ,Y0, . . . ,Yn−1}} we denote by L(X ,Y0, . . . ,Yn−1).

We denote by I2 the closed Lie ideal of L(X ,Y0, . . . ,Yn−1) generated by Lie brack-
ets with two or more Y ’s. We shall use the following notation

[Yk,X (1)] := [Yk,X ] and [Yk,X (m)] := [[Yk,X (m−1)],X ] for m > 1.

In an algebra the operator of the left (resp. right) multiplication by a we denote
by La (resp. Ra).

We recall the definition of l-adic iterated integrals from [W1]. Let B be a
Hall base of the free Lie algebra Lie(X ,Y0, . . . ,Yn−1) on n + 1 free generators
X ,Y0, . . . ,Yn−1 and let Bm be the set of elements of degree m in B. For b ∈ B
we define l-adic iterated integrals

lb(z)γ : GK(µl∞ )→ Ql

as follows. Let σ ∈ GK(µl∞ ). Then (logψγ(σ))(1) is a Lie element, hence

(logψγ(σ))(1) = ∑
b∈B

lb(z)γ(σ) ·b.

More naively, for σ ∈ GK we define functions lib(z)γ : GK → Ql by the equality

logΛγ(σ) = ∑
b∈B

lib(z)γ(σ) ·b, (4)

where Λγ(σ) := k( fγ(σ)).
With the representations ϕ−→01 and ψγ there are associated the filtrations {Gm =

Gm(V,
−→01)}m∈N and {Hm = Hm(V,z,−→01)}m∈N of GK (see [W1], section 3, pp. 122-

124).
We recall that

Hm = {σ ∈GK(µl∞ ) | lb(z)(σ)= 0 and lb(ξ k)(σ)= 0 for 0≤ k < n and for all b∈
⋃
i<m

Bi}.

If b ∈Bm and σ ∈ Hm then lb(z)γ(σ) = lib(z)γ(σ).

Proposition 1. Let σ ∈ Hm(V,z,−→01). Then
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(logψγ(σ))(1)≡ logΛγ(σ)≡Λγ(σ)−1 mod Γ
m+1L(X ,Y0, . . . ,Yn−1). (5)

Proof. The first congruence follows from the formula Ψγ = LΛγ (σ) ◦ϕ−→01 (see [W1],
Lemma 1.0.2) after taking logarithm and applying the Baker-Campbell-Hausdorff
formula. The second congruence is clear. ut

Let us set
γk := ((rk)∗(γ)) · sk. (6)

Our next result is a consequence of the formula (3).

Proposition 2. Let σ ∈ Hm(V,z,−→01). Then

log(Λγk(σ)(X ,Y0, . . . ,Yn−1))≡ log(Λγ(σ)(X ,Yk, . . . ,Yn−1,Y0, . . . ,Yk−1)) mod Γ
m+1L(X ,Y0, . . . ,Yn−1).

Proof. The proof is the same as the proof of Lemma 15.2.1 in [W3]. ut

Corollary 1. Let m > 1 and let σ ∈ Hm(V,z,−→01). Then we have

log(Λγ(σ)(X ,Y0, . . . ,Yn−1))≡
n−1

∑
k=0

lm(ξ−kz)(σ)[Yk,X (m−1)] mod Γ
m+1L(X ,Y0, . . . ,Yn−1)+I2

for m > 1. Let σ ∈ GK(µl∞ ). Then we have

log(Λγ(σ)(X ,Y0, . . . ,Yn−1))≡
n−1

∑
k=0

l(1−ξ
−kz)Yk mod Γ

2L(X ,Y0, . . . ,Yn−1).

Proof. The corollary follows from the very definition of l-adic polylogarithms (see
[W2], Definition 11.0.1) and from Proposition 2. ut

Now we shall define polylogarithmic quotients of the representations ϕ−→01 and
ψγ .

Let I be a closed ideal of Ql{{X ,Y0, . . . ,Yn−1}} generated by monomials with
any two Y ’s and by monomials YkX for 0≤ k ≤ n−1. We set

Pol(X ,Y0, . . . ,Yn−1) := Ql{{X ,Y0, . . . ,Yn−1}}/I

Observe that the classes of 1,X , . . . ,Xm, . . . ,Yk,XYk, . . . ,Xm−1Yk, . . . for m = 1,2, . . .
and 0≤ k ≤ n−1 form a topological base of Pol(X ,Y0, . . . ,Yn−1).

The image of the power series Λγ(σ)∈Ql{{X ,Y0, . . . ,Yn−1}} in Pol(X ,Y0, . . . ,Yn−1)
we denote by Ωγ(σ).

Proposition 3. i) The representation ϕ−→01 (resp. ψγ ) induces the representation

ϕ̄−→01 : GK → Aut(Pol(X ,Y0, . . . ,Yn−1))

.
(resp.ψ̄γ : GK → GL(Pol(X ,Y0, . . . ,Yn−1)) ).
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ii) The representation ϕ̄−→01 is given by

ϕ̄−→01(σ)(X) = χ(σ)X

and

ϕ̄−→01(σ)(Yk) = χ(σ)Yk +
∞

∑
i=1

(−1)i

i!
χ(σ)

( k
n
(χ(σ)−1)

)iX iYk

for k = 0,1, . . . ,n−1.
iii) The representation ψ̄γ is given by the formula

ψ̄γ(σ) = LΩγ (σ) ◦ ϕ̄−→01(σ).

iv) If n = 1 then

logΩγ(σ) = l(z)γ(σ)X +
∞

∑
i=1

(−1)i−1li(z)γ(σ)X i−1Y0.

Proof. It follows from [W3], Proposition 15.1.7 that ϕ−→01(I ) ⊂ I . Hence ϕ−→01
induces a representation on the quotient space. The point ii) follows from [W3],
Proposition 15.1.7 too.

We recall that ψγ(σ) = LΛγ (σ) ◦ϕ−→01(σ) (see [W1], section 4). Hence we get the
point i) for ψγ and the point iii). The point iv) follows from the definition of l-adic
polylogarithms given in [W2]. ut

Let α ∈ Q×l . We denote by τ(α) the automorphism of the Ql-algebra Pol(X ,Y )
such that τ(α)(X) = α ·X and τ(α)(Y ) = α ·Y and continuous with respect to the
topology defined by the powers of the augmentation ideal.

For n = 1 we have a very simple description of ϕ−→01.

Corollary 2. If n = 1 then
ϕ̄−→01(σ) = τ(χ(σ)).

3 Linear independence over Ql of l-adic iterated integrals

In this section we shall prove linear independence of l-adic polylogarithms in
generic situation. We use the notation of section 2.

If a1, . . . ,ak belong to K× we denote by 〈a1, . . . ,ak〉 or 〈ai | 1 ≤ i ≤ n〉 the
subgroup of K× generated by a1, . . . ,ak.

Theorem 4. Let z ∈ K. Suppose that z is not a root of any equation of the form
zp ·∏n−1

k=0(z− ξ k)qk = 1, where p and qk are integers not all equal zero. Suppose
that 〈z,1− ξ−kz | 0 ≤ k ≤ n− 1〉 ∩ 〈1− ξ−k | 1 ≤ k ≤ n− 1〉 ⊂ µn. Then the
homomorphisms



On l-adic iterated integrals V 7

lb(z) : Hm(V,z,−→01)/Hm+1(V,z,−→01)→ Ql

for b ∈Bm are linearly independent over Ql .

Proof. The morphism

ψγ : GK → GL(Ql{{X ,Y0, . . . ,Yn−1}})

induces the morphism of associated graded Lie algebras

Ψ
z,
−→01 :

∞⊕
m=1

(Hm(V,z,−→01)/Hm+1(V,z,−→01))⊗Q→Lie(X ,Y0, . . . ,Yn−1)×̃Lie(X ,Y0, . . . ,Yn−1){ }.

(The Lie algebra Lie(X ,Y0, . . . ,Yn−1){ } and the semi-direct product
Lie(X ,Y0, . . . ,Yn−1)×̃Lie(X ,Y0, . . . ,Yn−1){ } are defined in [W1], section 5.) The
morphism Ψ

z,
−→01 in degree 1 is given by

Ψ
z,
−→01(σ) =

(
l(z)(σ)X +

n−1

∑
k=0

l(1−ξ
−kz)(σ)Yk,

n−1

∑
k=1

l(1−ξ
−k)(σ)Yk

)
.

Numbers z and 1−ξ−kz, 0 ≤ k < n are linearly independent in K×⊗Q. The inter-
section of subgroups 〈1−ξ−k | 1≤ k≤ n−1〉 and 〈z,1−ξ−kz | 0≤ k≤ n−1〉 is
contained in µn. Hence it follows from the Kummer theory that we can find τ ∈H1 =
K(µl∞) and σk ∈H1 for 0≤ k < n such thatΨ

z,
−→01(τ) = (X ,0) andΨ

z,
−→01(σk) = (Yk,0)

for 0 ≤ k < n. The Lie subalgebra of Image(Ψ
z,
−→01) generated by these elements is

the first factor of the semi-direct product Lie(X ,Y0, . . . ,Yn−1)×̃Lie(X ,Y0, . . . ,Yn−1){ },
hence it is the free Lie algebra Lie(X ,Y0, . . . ,Yn−1). For σ ∈ Hm(V,z,−→01) the mor-
phism Ψ

z,
−→01 is given by the formulas

Ψ
z,
−→01(σ)= (logΛγ(σ), logΛπ0(σ)) mod Γ

m+1(Lie(X ,Y0, . . . ,Yn−1)×̃Lie(X ,Y0, . . . ,Yn−1){ }
)

and
logΛγ(σ)≡ ∑

b∈Bm

lb(z)(σ)b mod Γ
m+1L(X ,Y0, . . . ,Yn−1).

Hence it follows that the functions

lb(z) : Hm(VK ,z,−→01)→ Ql

are linearly independent over Ql . ut

Theorem 1 of Introduction follows immediately from Theorem 4.

Corollary 3. The l-adic polylogarithms

lm(ξ kz) : Hm(VK ,z,−→01)/Hm+1(VK ,z,−→01)→ Ql
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are linearly independent over Ql .

Proof. The corollary follows immediately from Theorem 4 and Corollary 1 of sec-
tion 2. ut

Remark 1. Theorem 4 is an analogue of the statement - as far as we know unproven
- that the iterated integrals indexed by elements of Bm as in [W6] of sequences of
length m of one forms dz

z and dz
z−ξ k for 0 ≤ k ≤ n− 1 from −→01 to z satisfying the

assumption of Theorem 4, are linearly independent over Q.

4 Ramification properties of l-adic polylogarithms

Let K be a number field. Let z ∈ K \ {0,1} or let z be a tangential point of P1
K̄ \

{0,1,∞} defined over K. Let γ be an l-adic path from −→01 to z.
If L is an algebraic extension of K and z∈K, we denote by M(L)l,z (resp. M(L)ab

l,z)
a maximal, pro-l, unramified outside l and z (resp. and abelian) extension of L.

The triple (P1
K \ {0,1,∞},z,−→01) has good reduction outside the prime ideals

dividing z or 1− z. Therefore the action of GK on the torsor of l-adic paths
π(P1

K̄ \ {0,1,∞};z,−→01) from −→01 to z factors through Gal(M(K(µl∞))l,z(1−z)/K).
Hence the l-adic polylogarithm

lm(z)γ : GK → Ql

factors through Gal
(
M(K(µl∞))l,z(1−z)/K

)
and we get

lm(z)γ : Gal
(
M(K(µl∞))l,z(1−z)/K)→ Ql .

Let us consider a tower of fields

K ↪→ K(µ
l∞

) ↪→ K(µl∞ ,z
1

l∞ ).

Proposition 4. The l-adic polylogarithm ln(z)γ factors through Gal
(
M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K
)
.

Proof. Let us consider polylogarithmic quotient of the representation ψγ : GK →
GL(Ql{{X ,Y}}), i.e. the representation ψ̄γ : GK → GL(Pol(X ,Y )) given by

GK 3 σ → LΩγ (σ) ◦ ϕ̄−→01(σ) ∈ GL(Pol(X ,Y )),

where logΩγ(σ) = l(z)γ(σ)X + ∑
∞
n=1(−1)n−1ln(z)γ(σ)Xn−1Y (see Proposition 3).

After the restriction to G
K(µl∞ ,z

1
l∞ )

we get an abelian representation

G
K(µl∞ ,z

1
l∞ )
3 σ → L1+∑

∞
n=1(−1)n−1ln(z)γ (σ)Xn−1Y ∈ GL(Pol(X ,Y )).
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Therefore the l-adic polylogarithm ln(z)γ factors through Gal(M(K(µl∞ ,z
1

l∞ ))ab
l,z(1−z)/K).

The functions lm(z)γ are given explicitely by Kummer characters associated to

∏
n−1
i=0 (1− ξ i

lnz
1
ln )

im−1
ln (see [NW]). Observe that 1− ξ i

lnz
1
ln ≡ 1 modulo any prime

ideal lying over prime divisors of the principal ideal (z). Hence ln(z)γ factors
through Gal(M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K). ut

Corollary 4. The l-adic polylogarithm ln(z)γ restricted to the Galois group

Gal
(
M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K(µl∞ ,z
1

l∞ )
)

is a homomorphism.

Proof. In the proof of Proposition 4 we have already seen that the representation ψ̄γ

restricted to G
K(µl∞ ,z

1
l∞ )

is abelian. ut

5 Action of Zl[[Gal
(
K(µl∞ ,z

1
l∞ )/K

)
]] on l-adic polylogarithms

The notation in this section is the same as in the section 4. Let us consider a tower
of fields

M(K(µl∞ ,z
1

l∞ ))ab
l,1−z

G |
K(µl∞ ,z

1
l∞ )

Zl(1) |
K(µl∞)

Γ |
K

where Γ := Gal(K(µl∞)/K). Observe that Gal
(
K(µl∞ ,z

1
l∞ )/K(µl∞)

)
= Zl(1) as a

Γ -module.
Let Φ := Gal

(
K(µl∞ ,z

1
l∞ )/K

)
. We want to understand G as a Φ-module and

as a Zl [[Φ ]]-module. The l-adic polylogarithms ln(z)γ , restricted to G , belong to
Hom(G ,Ql). As our first step to understand G we shall study a Zl [[Φ ]]-module
generated by ln(z)γ in Hom(G ,Ql).

We recall that Φ acts on G on the left in the following way. Let σ ∈ Φ and
τ ∈ G . Let σ̃ ∈ Gal

(
M(K(µl∞ ,z

1
l∞ ))ab

l,1−z/K
)

be a lifting of σ . Then the formula
σ τ := σ̃ · τ · σ̃−1 defines a left action of Φ on G . Hence the right action of Φ on
Hom(G ,Ql) is given by

( f σ )(τ) := f (σ̃ · τ · σ̃−1).

To study the action of Φ on ln(z)γ first we need to calculate Λγ(σ̃ · τ · σ̃−1).

Lemma 1. For any α,τ ∈ GK we have

Λγ(α · τ ·α−1) = Λγ(α) ·ϕ−→01(α)(Λγ(τ)) ·ϕ−→01(α · τ ·α−1)(Λγ(α)−1)
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in Ql{{X ,Y}}.

Proof. The formula of the lemma follows from [W1], Proposition 1.0.7 and Corol-
lary 1.0.8. ut

We define the product© by the Baker-Campbell-Hausdorff formula

X©Y := log(eX · eY ).

Proposition 5. The action of σ ∈Φ on lm(z)γ ∈Hom(G ,Ql) is given by the formula

(lm(z)γ)σ = χ(σ)m · lm(z)γ +
m−1

∑
k=1

(−l(z)γ(σ))k

k!
·χ(σ)m−k · lm−k(z)γ .

Proof. Let τ ∈ G and let σ̄ and τ̄ be liftings of σ and τ to Gal(K̄/K). It follows
from Lemma 1 that

logΛγ(σ̄ · τ̄ ·σ̄−1)= logΛγ(σ̄)©ϕ−→01(σ̄)(logΛγ(τ̄))©
(
ϕ−→01(σ̄ · τ̄ ·σ̄−1)(−logΛγ(σ̄))

)
.

Hence we get

∞

∑
n=1

ln(z)(σ
τ)[Y,X (n−1)]≡

(
l(z)(σ̄)X +

∞

∑
n=1

ln(z)(σ̄)[Y,X (n−1)]
)
©
(
χ(σ̄)l(z)(τ)X+

∞

∑
n=1

χ(σ̄)n · ln(z)(τ)[Y,X (n−1)]
)
©
(
− l(z)(σ̄)X−

∞

∑
n=1

ln(z)(σ̄)[Y,X (n−1)]
)

mod I2.

Observe that l(z)(σ̄) and χ(σ̄) depend only on σ . Hence we replace them by l(z)(σ)
and χ(σ).
We get the formula of the proposition calculating the right hand side of the congru-
ence and comparing coefficients at [Y,X (n−1)]. ut

Generalization to the action of Zl [[Φ ]] is straightforward.

Corollary 5. Let µ ∈ Zl [[Φ ]]. Then

(lm(z)γ)µ =
(∫

Φ

χ(x)mdµ(x)
)
lm(z)γ +

m−1

∑
k=1

(∫
Φ

(−l(z)γ(x))k

k!
·χ(x)m−kdµ(x)

)
·lm−k(z)γ .

6 l-adic sheaves

The l-adic polylogarithms and l-adic iterated integrals studied in [W1], [W2], [W3]
and in [NW] arise from actions of Galois groups on the set of homotopy classes of
l-adic paths from v to z on P1

Q̄ minus a finite number of points.
On the other side in [BD], [BL] and in various other papers there are studied

motivic polylogarithmic sheaves. Their l-adic realizations are inverse systems of
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locally constant sheaves of Z/ln-modules in étale topology. Each stalk is equipped
with a Galois representation. The relation between the parallel transport and the
Galois representations in stalks is given by the formula

σt ◦ p∗ = σ(p)∗ ◦σs, (7)

where p∗ (resp. σ(p)∗) is the parallel transport along the path p (resp. σ(p)) from s
to t, σs (resp. σt ) is the action of σ ∈ GK in the stalk over s (resp. over t) and σ(p)
is the image of p by σ in the torsor of paths from s to t.

The formula (7) is fundamental to relate l-adic polylogarithms introduced in
[W2] with polylogarithmic sheaves.

If V is a smooth quasi-projective algebraic variety we denote by (V )et the étale
site associated to V .

Example 1. Let p : X → S be a smooth morphism between smooth quasi-projective
algebraic schemes over K. Let p̄ : XK̄→ SK̄ be obtained from p : X→ S by the exten-
sion of scalars to K̄. Let (Z/ln)(XK̄)et be the constant sheaf on (XK̄)et. The sheaves of
Z/ln-modules Ri(p̄)∗

(
(Z/ln)(XK̄)et

)
on (SK̄)et are locally constant in the étale topol-

ogy. The projective system of sheaves

{Ri(p̄)∗((Z/ln)(XK̄)et)}n∈N

defines an l-adic sheaf on (SK̄)et. The stalk over s ∈ S(K̄) is H i
et((Xs)K̄ ;Zl) :=

projlimnH i
et((Xs)K̄ ;Z/ln). If s ∈ S(K) then GK acts on H i

et((Xs)K̄ ;Zl). If s, t ∈
S(K) and γ is an l-adic path from s to t then the parallel transport induces γ∗ :
H i

et((Xs)K̄ ;Zl)→ H i
et((Xt)K̄ ;Zl) satisfying (7).

The example given above motivates the following definition.

Definition 1. Let S be a smooth quasi-projective algebraic variety defined over K.
A profinite sheaf F on SK̄ is an inverse system

{ϕn+1 : Fn+1→Fn}n∈N

of sheaves on (SK̄)et such that :

1. for each n, Fn is a sheaf of finite sets, locally constant on (SK̄)et;
2. each sheaf Fn is equipped with a continuous action of GK on⊕t∈Gal(L/K)s(Fn)t ,

if s ∈ S(L), where L is a finite extension of K and Gal(L/K)s is the Gal(L/K)-
orbit of s;

3. the structure maps ϕn+1 : Fn+1→Fn are surjective and compatible with the Ga-
lois actions in the stalks;

4. if s and t are in S(L) (L is a finite extension of K), p is a profinite path from s to
t and σ ∈ GK then

σt ◦ p∗ = σ(p)∗ ◦σs, (8)

where σs : (Fn)s→ (Fn)σ(s) and σt : (Fn)t → (Fn)σ(t) are maps induced by σ

and p∗ (resp. σ(p)∗) is a parallel transport along p (resp. σ(p) ).
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If each sheaf Fn is a sheaf of finite l-groups and the maps ϕn are homomorphisms
then the profinite sheaf F = {ϕn+1 : Fn+1→Fn}n∈N we shall call an l-adic sheaf.

Let s ∈ S(K̄). We shall call

Fs := projlimn(Fn)s

the stalk of the profinite sheaf F over s. Parallel transports along profinite paths and
actions of Galois groups are defined on stalks of a profinite sheaf and they satisfy
the equality (8).

We recall that πet
1 (SK̄ ;s) is the étale fundamental group of SK̄ based at s. It is a

profinite group. We define the monodromy representatiom

ρs : π
et
1 (SK̄ ;s)→ Aut(Fs)

of the profinite sheaf F by the formula

ρs(T )(w) := T∗(w),

where w ∈Fs.
Let us observe the following elementary facts about profinite sheaves.

Proposition 6. Let S be a smooth quasi-projective algebraic variety defined over K
and let s0 ∈ S(K). Let F be a profinite sheaf on SK̄ . Then the representation of GK
in the stalk Fs0 determines the Galois representation in any other stalk.

Proof. Let p be a path from s0 to s. Then it follows from the formula (8) that

σs = σ(p)∗ ◦σs0 ◦ (p∗)−1.

Hence the Galois action in the stalk over s is uniquely determined by the action of
GK in the stalk over s0. ut

Let us define

fπet
1 (SK̄ ;s)

(
Gal(K̄/K)

)
:= {T−1 ·σ(T )∈ π

et
1 (SK̄ ;s) | T ∈ π

et
1 (SK̄ ;s), σ ∈Gal(K̄/K)}.

Proposition 7. Let F be a profinite sheaf on SK̄ . Let us assume that the subset
fπet

1 (SK̄ ;s)
(
Gal(K̄/K)

)
is dense in πet

1 (SK̄ ;s). If the monodromy representation ρs :
πet

1 (SK̄ ;s)→ Aut(Fs) is non-trivial then the Galois representation in the stalk Fs

GK → Aut(Fs)

is also non-trivial.

Proof. It follows from the formula (8) that

T−1
∗ ◦σs ◦T∗ ◦ (σs)−1 = (T−1 ·σ(T ))∗

for any T ∈ πet
1 (SK̄ ;s) and any σ ∈ GK . The elements of the form T−1 ·σ(T ) are

dense in πet
1 (SK̄ ;s). Hence σs cannot be the identity for all σ ∈ GK . ut
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Let π and G be profinite groups and let ϕ : G→ Aut(π) be a continuous ho-
momorphism. We denote by REPϕ(π,G) the category of pairs of continuous repre-
sentations fV : π → Aut(V ) and ρV : G→ Aut(V ) in finitely generated Zl-modules
satysfying

ρV (σ)◦ fV (T ) = fV (ϕ(σ)(T ))◦ρV (σ)

for any T ∈ π and σ ∈ G.

Proposition 8. Let S be a smooth quasi-projective algebraic variety defined over K
and let s ∈ S(K). Let ϕs : GK →Aut(πet

1 (SK̄ ;s)) be the homomorphism of the action
of GK on the étale fundamental group. The category of l-adic sheaves on SK̄ whose
stalks are finitely generated Zl-modules and the category REPϕs(π

et
1 (SK̄ ;s),GK) are

equivalent.

Proof. It is clear that an l-adic sheaf F determines an object of the category
REPϕs(π

et
1 (SK̄ ;s),GK) by taking the stalk of F over s equipped with the mon-

odromy representation and the action of GK .
Let V be a finitely generated Zl-module. Let us assume that we have two con-

tinuous representations f : πet
1 (SK̄ ;s)→ Aut(V ) and ρ : GK → Aut(V ) satisfying

ρ(σ)◦ f (T ) = f (ϕs(σ)(T ))◦ρ(σ). The continuous representation f : πet
1 (SK̄ ;s)→

Aut(V ) determines the compatible family of continuous representations

{ f (n) : π
et
1 (SK̄ ;s)→ Aut(V/lnV )}n∈N .

For each n there exists a locally constant sheaf Fn on (SK̄)et, whose stalk over s
is V/lnV and whose monodromy representation is f (n) : πet

1 (SK̄ ;s)→ Aut(V/lnV ).
The representation of GK in the stalk over s is the composition of ρ : GK → Aut(V )
with the homomorphism Aut(V )→ Aut(V/lnV ). The Galois action in any other
stalk is then defined by the formula (8). ut

7 l-adic sheaves related to bundles of fundamental groups

In this section we shall study examples of l-adic sheaves for which the monodromy
representation determines Galois representations in the stalks.

Let S be a smooth quasi-projective algebraic variety defined over K and let s be
a K-point of S. If σ ∈ GK we denote by σ the automorphisms of πet

1 (SK̄ ;s) and
of π1(SK̄ ;s) induced by σ . We denote by σs the automorphism induced by σ in the
stalk over s of an l-adic sheaf on SK̄ . If p is a path we denote by p∗ the parallel trans-
port along p. We have the surjective map πet

1 (SK̄ ;s)→ π1(SK̄ ;s). If T ∈ πet
1 (SK̄ ;s)

we denote also by T its image in π1(SK̄ ;s).

Proposition 9. Let S and s be as above. We assume that π1(SK̄ ;s) is a free noncom-
mutative pro-l group. Let Π1 be an l-adic sheaf on SK̄ whose stalk over s is π1(SK̄ ;s).
We assume that the monodromy representation
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ρ : π
et
1 (SK̄ ;s)→ Aut(π1(SK̄ ;s))

is given by ρ(T )(w) = T−1 ·w ·T. We assume also that for any σ ∈ GK , σs acts on
π1(SK̄ ;s) by a group homomorphism. Then for any σ ∈ GK and any w ∈ π1(SK̄ ;s)
we have

σs(w) = σ(w).

Proof. Let σ ∈ GK , T ∈ πet
1 (SK̄ ;s) and w ∈ π1(SK̄ ;s). The formula (8) implies

σs(T−1 ·w ·T ) = σ(T )−1 ·σs(w) ·σ(T ).

Let us take T such that its image in π1(SK̄ ;s) is w. Then

σs(w) = σ(w)−1 ·σs(w) ·σ(w).

The assumption that π1(SK̄ ;s) is a free pro-l group implies that σs(w) = σ(w)η(σ ,w),
where η(σ ,w) ∈ Zl .

Let w1,w2 ∈ π1(SK̄ ;s) be two arbitrary noncommuting elements. Then

σs(w1 ·w2) = σ(w1 ·w2)η(σ ,w1·w2) = (σ(w1) ·σ(w2))η(σ ,w1·w2)

and
σs(w1) ·σs(w2) = σ(w1)η(σ ,) ·σ(w2)η(σ ,w2).

Hence we get

(σ(w1) ·σ(w2))η(σ ,w1·w2) = σ(w1)η(σ ,w1) ·σ(w2)η(σ ,w2)

for two noncommuting elements σ(w1), σ(w2) in the free pro-l group π1(SK̄ ;s) and
for η(σ ,w1 ·w2) 6= 0, η(σ ,w1) 6= 0 and η(σ ,w2) 6= 0. This implies that η(σ ,w) = 1
for all σ and w. ut

Proposition 10. Let S and s be as above. Let Π be a profinite sheaf on SK̄ × SK̄
whose stalk over (s,s) is π1(SK̄ ;s) We assume that the monodromy representation

ρ : π
et
1 (SK̄ ;s)×π

et
1 (SK̄ ;s)→ Bi jections(π1(SK̄ ;s))

is given by ρ(T1,T2)(w) = T−1
1 ·w ·T2. We assume also that the centrum of the group

π1(SK̄ ;s) is 1. Then for any σ ∈ GK and any w ∈ π1(SK̄ ;s) we have

σ(s,s)(w) = σ(w).

Proof. The formula (8) implies

σ(T1)−1 ·σ(s,s)(w) ·σ(T2) = σ(s,s)(T
−1

1 ·w ·T2). (9)

Let us take T1 = T2 = T and w = 1. Then we get σ(T )−1 ·σ(s,s)(1) ·σ(T ) = σ(s,s)(1).
Hence σ(s,s)(1) commutes with every element of π1(SK̄ ;s). The centrum of π1(SK̄ ;s)
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is 1. Therefore we get that σ(s,s)(1) = 1. Let us take T1 = w = 1 in formula (9). Then
we get σ(T2) = σ(s,s)(T2) for any T2 ∈ π1(SK̄ ;s). ut

8 Polylogarithmic l-adic sheaves and l-adic polylogarithms

We shall show that if an l-adic sheaf on P1
K̄ \{0,1,∞} has the same monodromy rep-

resentation as the classical complex polylogarithms then the Galois representation
in the stalk over a K-point z of P1

K \ {0,1,∞} is given by the l-adic polylogarithms
evaluated at z.

We start by recalling a result about the monodromy of classical complex poly-
logarithms. We equip the vector bundle

P1(C)\{0,1,∞}×Pol(X ,Y )→ P1(C)\{0,1,∞}

with the connection given by the one-form

1
2πi

dz
z
⊗X +

1
2πi

dz
z−1

⊗Y.

(The algebra Pol(X ,Y ) is the quotient of C{{X ,Y}} by the ideal I .) Horizontal
sections satisfy the equation

dΛ(z)− (
1

2πi
dz
z
⊗X +

1
2πi

dz
z−1

⊗Y ) ·Λ(z) = 0.

One checks that

Λ−→01(z) := e
1

2πi logzX +
1

2πi
log(1− z)Y +

∞

∑
k=2

−1
(2πi)k Lik(z)Xk−1Y

is a horizontal section. The functions logz, log(1− z) and Lik(z) are calculated
along a path α from −→01 to z. Let x and y be the standard generators of π1(P1(C) \
{0,1,∞};−→01). To calculate the monodromy of Λ−→01(z) we integrate along the paths
α · x and α · y.

The monodromy transformation of Λ−→01(z) is given by

x : Λ−→01(z)→Λ−→01(z) · eX

and
y : Λ−→01(z)→Λ−→01(z) · eY .

The elements α ·x ·α−1 and α ·y ·α−1 are free generators of π1(P1(C)\{0,1,∞};z).
Let w(α · x ·α−1,α · y ·α−1) ∈ π1(P1(C) \ {0,1,∞};z) be a word in α · x ·α−1 and
α · y ·α−1. The monodromy representation is given by
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ρz : π1(P1(C)\{0,1,∞};z)→GL(Pol(X ,Y )); ρz(α ·x ·α−1)= ReX and ρz(α ·x ·α−1)= ReY .

Hence ρz(w(α · x ·α−1,α · y ·α−1)) = Rw(eX ,eY ).

Now we shall study l-adic situation. Let z0 be a K-point of P1
K \ {0,1,∞}. We

start with the description of the action of GK on π1(P1
K̄ \{0,1,∞};z0),

Let γ be a path from z0 to −→01 and let p be the standard path from −→01 to −→10. We
recall that x and y are the standard generators of π1(P1

K̄ \{0,1,∞};−→01). Then

xz0 := γ
−1 · x · γ and yz0 := γ

−1 · y · γ

are free generators of π1(P1
K̄ \{0,1,∞};z0). Let σ ∈ GK . We recall that

fγ(σ) := γ
−1 ·σ(γ).

The following lemma is a standard exercice.

Lemma 2. The action of GK on π1(P1
K̄ \{0,1,∞};z0) is given by the formulas

σ(xz0) = fγ(σ)−1 · xz0
χ(σ) · fγ(σ)

and

σ(yz0) = fγ(σ)−1 · (γ−1 · fp(σ)−1 · γ) · yz0
χ(σ) · (γ−1 · fp(σ) · γ) · fγ(σ).

Let z be another K-point of P1
K \{0,1,∞}. Let δ be a path from z to z0. Let us set

γz := γ ·δ .

It follows from [W1] that we have the following equalities:

fγ·δ (σ) = δ
−1 · fγ(σ) ·δ · fδ (σ) and fδ−1(σ)−1 = δ · fδ (σ) ·δ−1. (10)

Hence we get
δ · fγ·δ (σ) ·δ−1 = fγ(σ) · fδ−1(σ)−1. (11)

The elements xz := γ−1
z · x · γz and yz := γ−1

z · x · γz are generators of π1(P1
K̄ \

{0,1,∞};z). We embed the groups π1(P1
K̄ \ {0,1,∞};−→01), π1(P1

K̄ \ {0,1,∞};z0) and
π1(P1

K̄ \{0,1,∞};z) into the Ql-algebra Q{{X ,Y}} by setting
k−→01(x) := eX , k−→01(y) := eY for the first group;

kz0(xz0) := eX , kz0(yz0) := eY for the second group;
and
kz(xz) := eX , kz(yz) := eY for the third group.

In other words we have trivialized the bundle of fundamental groups along the path
γz. The action of GK on Q{{X ,Y}} considered over a K-point s is deduced from the
action of GK on π1(P1

K̄ \{0,1,∞};s) so it depends over which point we take a stalk.
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Using embeddings ka, a∈{−→01,z0,z}we can define Λ -series, for example Λδ (σ) :=
kz( fδ (σ)) and Λγ(σ) := kz0( fγ(σ)). Because of the trivialization of the bundle of
fundamental groups we can compare various Λ -series. It follows from (10) and (11)
that

Λγ·δ (σ) = Λγ(σ) ·Λδ (σ),
(
Λδ−1(σ)

)−1 = Λδ (σ) (12)

and
Λγ·δ (σ) = Λγ(σ) ·

(
Λδ−1(σ)

)−1
. (13)

Theorem 5. Let z0 be a K-point of P1
K \ {0,1,∞}. Let P be an l-adic sheaf of Zl-

algebras over P1
K̄ \{0,1,∞} such that

i) the stalk Pz0 tensored with Q is Pol(X ,Y );
ii) the monodromy representation after tensoring the stalk over z0 by Q

ρz0 : π
et
1 (P1

K̄ \{0,1,∞};z0)→ GL(Pol(X ,Y ))

is given by the formula ρz0

(
w(xz0 ,yz0)

)
(F(X ,Y )) = F(X ,Y ) ·w(eX ,eY )−1.

Let z be another K-point of P1
K \{0,1,∞}. Let δ be a path from z to z0 and let α be

a path from −→01 to z. Then

δ∗ ◦σz ◦ (δ∗)−1 = LB(σ) ◦RΩα (σ)−1 ◦ τ(χ(σ)),

where B : GK → Pol(X ,Y ) is a cocycle and

logΩα(σ) = l(z)α(σ)X +
∞

∑
i=1

(−1)i−1li(z)α(σ)X i−1Y.

Proof. Let us set γ = (δ ·α)−1. Then γ is a path from z0 to −→01. It follows from
Lemma 2 that for any σ ∈ GK and any w(xz0 ,yz0) ∈ π1(P1

K̄ \{0,1,∞};z0) we have

ρz0

(
σ(w(xz0 ,yz0))

)
(1) = (Ωγ(σ))−1 ·w(eχ(σ)X ,eχ(σ)Y )−1 ·Ωγ(σ). (14)

Let F(X ,Y ) ∈ Pol(X ,Y ) be in the stalk tensored by Q of P over z0. It follows from
the formula (8) and the formula (14) that

σz0(F(X ,Y ) ·w(eX ,eY )−1) = σz0(F(X ,Y )) ·Ωγ(σ)−1 ·w(eχ(σ)X ,eχ(σ)Y )−1 ·Ωγ(σ).

Setting F(X ,Y ) = 1 we get

σz0(w(eX ,eY )−1) = σz0(1) · (Ωγ(σ))−1 · (w(eχ(σ)X ,eχ(σ)Y ))−1 ·Ωγ(σ). (15)

The action of GK on the stalk of P over z0 is continuous with respect to the topology
of Pol(X ,Y ) defined by the powers of the augmentation ideal. Hence it follows from
(15) that for any W (X ,Y ) ∈ Pol(X ,Y ) we have

σz0(W (X ,Y )) = σz0(1) · (Ωγ(σ))−1 ·W (χ(σ)X ,χ(σ)Y ) ·Ωγ(σ). (16)
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We recall from the assumptions of the theorem that z is another K-point of P1
K \

{0,1,∞}, δ is a path from z to z0 and α is a path from −→01 to z.
We shall calculate the representation of GK in the stalk of P over z. It follows

from the fundamental formula (8) that

δ∗ ◦σz ◦δ
−1
∗ = δ∗ ◦σ(δ )−1

∗ ◦σz0 .

Observe that

δ∗ ◦σ(δ )−1
∗ = (δ ◦σ(δ−1))∗ = ( fδ−1(σ))∗ = ρz0( fδ−1(σ)) = R(Ω

δ−1 (σ))−1 .

Hence we get
δ∗ ◦σz ◦δ

−1
∗ = R(Ω

δ−1 (σ))−1 ◦σz0 .

The formula (16) implies that R(Ω
δ−1 (σ))−1 ◦σz0 = R(Ω

δ−1 (σ))−1 ◦Lσz0 (1)·(Ωγ (σ))−1 ◦
RΩγ (σ) ◦ τ(χ(σ)) = Lσz0 (1)·(Ωγ (σ))−1 ◦RΩγ (σ)·(Ω

δ−1 (σ))−1 ◦ τ(χ(σ)).

We recall that α−1 = γ ·δ . Hence it follows from (13) that Ωγ(σ)·(Ωδ−1(σ))−1 =
Ωα−1(σ) = (Ωα(σ))−1. Let us set B(σ) = σz0(1) ·(Ωγ(σ))−1. Therefore we finally
get

δ∗ ◦σz ◦δ
−1
∗ = LB(σ) ◦R(Ωα (σ))−1 ◦ τ(χ(σ)).

It follows from the equality (τ ·σ)z = τz ◦σz that B : GK → Pol(X ,Y ) is a cocycle.
The path α is from −→01 to z. Hence the formula for logΩα(σ) follows from the

very definition of l-adic polylogarithms in [W2]. ut

9 Cosimplicial spaces and Galois actions

Let V be a smooth algebraic variety over K and let v be a K-point of V . The étale
fundamental group πet

1 (VK̄ ;v) and its maximal pro-l quotient π1(VK̄ ;v) are equipped
with the action of GK .

On the other side, given an algebraic variety V and a K-point v there is a cosim-
plicial algebraic variety, which we provisionally denote by V •, which is a model in
algebraic geometry for the loop space based at v (see [W4] and [W5]). Let us assume
that K ⊂C and let V (C) be the set of C-points of V . V (C) is a complex variety. The
de Rham cohomology group H0

DR(V •)⊗k C is the algebra of polynomial complex
valued functions on the Malcev Q-completion π1(V (C);v)⊗Q.

The étale cohomology group H0
et(V

•
K̄ ;Ql) can be interpreted as the algebra of

Ql-valued functions on π1(V (C);v)⊗Ql . The Galois group GK acts on H0
et(V

•
K̄ ;Ql).

In this section we shall compare these two actions of GK . The first action is the
action of GK on πet

1 (VK̄ ;v), which is defined through étale coverings. The second
action is the action of GK on the 0-th étale cohomology group H0

et(V
•
K̄ ;Ql) of the

cosimplicial algebraic variety V •K̄ . The cohomology group H0
et(V

•
K̄ ;Ql) has a natural

interpretation as an algebra of Ql-valued polynomial functions on on π1(VK̄ ;v)⊗Q.
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We fix the notation we shall use in this section.
Xet is the étale site associated to an algebraic variety X ;
AXet (resp. AX(C)) is the constant sheaf on Xet (resp. X(C)) with values in A;
∆ [1] is the standard simplicial model of the one simplex;
∂∆ [1] is the boundary of ∆ [1]. It is a constant simplicial set.
X•[n] is the n-th truncation of a cosimplicial object X•.

Let X be a smooth quasi-projective algebraic variety over an algebraically closed
field k. The inclusion of simplicial sets

∂∆ [1] ↪→ ∆ [1]

induces the morphism of cosimplicial algebraic varieties

p• : X∆ [1]→ X∂∆ [1].

Therefore for each n we get the morphism between their n-th truncations

p•[n] : X∆ [1]
[n] −→ X∂∆ [1]

[n] .

For each k,
pk : X∆ [1]k = X×Xk×X → X∂∆ [1]k = X×X

is the projection map on the first and the last factors. Let us set

TotR(p•[n])∗
(
(Z/lm)

(X∆ [1]
[n] )et

)
:=⊕n

i=0R(pi)∗
(
(Z/lm)(X∆ [1]i )et

)
,

where Tot is the total complex of a bicomplex. Let us define

Ri(p•[n])∗
(
(Z/lm)

(X∆ [1]
[n] )et

)
:= H i(TotR(p•[n])∗

(
(Z/lm)

(X∆ [1]
[n] )et

)
.

Lemma 3. The cohomology sheaves Ri(p•[n])∗
(
(Z/lm)

(X∆ [1]
[n] )et

)
are sheaves of finitely

generated Z/lm-modules on (X×X)et.

Proof. The spectral sequence of the bicomplex ⊕n
i=0R(pi)∗

(
(Z/lm)(X∆ [1]i )et

)
con-

verges to cohomology sheaves Ri(p•[n])∗
(
(Z/lm)

(X∆ [1]
[n] )et

)
. The E1-term E j,k

1 =

R j(pk)∗
(
(Z/lm)(X∆ [1]k )et

)
is the constant sheaf on (X×X)et, whose stalk is a finitely

generated Z/lm-module. There are only finitely many E1-terms different from zero.
Hence the lemma follows. ut

We need to know if the sheaves Ri(p•[n])∗
(
(Z/lm)

(X∆ [1]
[n] )et

)
are locally constant

and we need to calculate their monodromy representations. Therefore we shall
study the Gauss-Manin connection associated to the morphism p• : X∆ [1]→ X∂∆ [1].
We review briefly the results from [W4] in the form suitable to study the sheaves
Ri(p•[n])∗

(
(Z/lm)

(X∆ [1]
[n] )et

)
.
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We apply to the map between the n-th truncations

p•[n] : X∆ [1]
[n] → X∂∆ [1]

[n]

the standard construction of the Gauss-Manin connection (see [W4]). For each 0≤
i≤ n the complex of sheaves Ω ∗

X∆ [1]i
is equipped with a canonical filtration

F j
Ω
∗
X∆ [1]i

:= Image
(
Ω
∗−i
X∆ [1]i /X∂∆ [1]i

⊗O
X∆ [1]i

(pi)∗Ω j
X∂∆ [1]i

→Ω
∗
X∆ [1]i

)
.

Hence on X∂∆ [1]i = X×X we have a filtered complex R(pi)∗
(
Ω ∗

X∆ [1]i

)
. We form the

total complex
TotR(p•[n])∗

(
Ω
∗
X∆ [1]

[n]

)
:=⊕n

i=0R(pi)∗
(
Ω
∗
X∆ [1]i

)
.

The filtration on each R(pi)∗
(
Ω ∗

X∆ [1]i

)
induces a filtration on TotR(p•[n])∗

(
Ω ∗

X∆ [1]
[n]

)
.

Applying the spectral sequence of a finitely filtered object to the complex
TotR(p•[n])∗

(
Ω ∗

X∆ [1]
[n]

)
, we get a spectral sequence converging to the cohomology

sheaves H j(TotR(p•[n])∗
(
Ω ∗

X∆ [1]
[n]

)
) on X×X . The E1-terms are equal

E p,q
1 = Ω

p
X×X ⊗OX×X Hq(TotR(p•[n])∗

(
Ω
∗
X∆ [1]

[n] /X∂∆ [1]
[n]

))
.

Farther we denote the relative de Rham complex Ω ∗
X∆ [1]

[n] /X∂∆ [1]
[n]

by Ω ∗ in the algebraic

case, by Ω ∗hol in the holomorphic case and by Ω ∗C ∞ in the smooth complex case.
The differential d0,q

1 : E0,q
1 → E1,q

1 is the integrable connection on the relative de
Rham cohomology sheaves Hq(TotR(p•[n])∗Ω

∗). The fiber of Hq(TotR(p•[n])∗Ω
∗)

over a point (x,y) ∈ X ×X is Hq
DR((p•[n])

−1(x,y)). (If x = y then (p•[n])
−1(x,x) is

the n-th truncation of the cosimplicial alebraic variety denoted by X• at the very
beginning of the section.)

Let us assume that k ⊂ C. Then we get the morphism of cosimlicial complex
varieties

p(C)• : X(C)∆ [1] −→ X(C)∂∆ [1]

and the maps between the n-th truncations

p(C)•[n] : X(C)∆ [1]
[n] −→ X(C)∂∆ [1]

[n] .

We do the same construction for holomorphic differentials. The holomorphic de
Rham sheaf Ω ∗

X(C)∆ [1]
[n]

is the resolution of the constant sheaf C
X(C)∆ [1]

[n]
on X(C)∆ [1]

[n] .

Hence we get that Hq(TotR(p(C)•[n])∗(CX(C)∆ [1]
[n]

)) is the sheaf of the flat sections of

the holomorphic Gauss-Manin connection
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(d0,q
1 )hol : Hq(TotR(p(C)•[n])∗Ω

∗
hol)→Ω

1
X(C)×X(C)⊗OX(C)×X(C)

Hq(TotR(p(C)•[n])∗Ω
∗
hol).

We shall calculate the monodromy representation of the locally constant sheaf
H0(TotR(p(C)•[n])∗(CX(C)∆ [1]

[n]
)). The de Rham complexes of smooth differentials are

acyclic for direct image functors. Hence the complexes TotR(p(C)•[n])∗Ω
∗
hol and

Tot(p(C)•[n])∗Ω
∗
C ∞ are quasi-isomorphic.

Let ω1, . . . ,ωn ∈ Ω 1
C ∞(X(C)) be closed one-forms on X(C). Let us assume that

ωi ∧ωi+1 = 0 for all i. Then 1⊗ω1 ⊗ . . .⊗ωn ⊗ 1 defines a global section of
H0(Tot(p(C)•[n])∗Ω

∗
C ∞). We shall calculate the action of d0 := (d0,0

1 )C ∞ on the sec-
tion 1⊗ω1⊗ . . .⊗ωn⊗1. The connection d0 is the boundary homomorphism of the
long exact sequence associated to the short exact sequence

0→ F1/F2→ F0/F2→ F0/F1→ 0 .

We recall that the coface maps

δ
i : X×Xn−1×X → X×Xn×X

are given by
δ

i(x0,x1, . . . ,xn) = (x0, . . . ,xi−1,xi,xi, . . . ,xn)

for 0 ≤ i ≤ n. We set δn := ∑
n
i=0(−1)n−i(δ i)∗. The boundary operator of the total

complex is given by D = δn +(−1)nd, where d is the exterior differential of the de
Rham complex.

We denote by
∫

a ω1, . . . ,ωi a function defined on a contractible subset of X(C)
containing a and sending z to the iterared integral

∫ z
a ω1, . . . ,ωi along any path con-

tained in this contractible subset. After calculations we get the following result.

Lemma 4. Let (a,b) ∈ X(C)×X(C). We have

D
(

∑
0≤i≤ j≤n

∫
a

ω1, . . . ,ωi⊗ωi+1⊗ . . .⊗ω j⊗ (−1)n− j
∫

b
ωn, . . . ,ω j+1

)
= 0 .

We denote by π(X(C);b,a) the π1(X(C);a)-torsor of paths from a to b on X(C)
and by π(X(C);b,a)⊗Q, the deduced π1(X(C);a)⊗Q-torsor.
We denote by AlgebraC(π(X(C);b,a)⊗Q) the algebra of complex valued polyno-
mial functions on π(X(C);b,a)⊗Q.

The shuffle product defines a multiplication on H0
DR((p(C)•)−1(a,b)), hence the

0-th cohomology group is a C-algebra and if a = b it is a Hopf algebra.
The element 1⊗ω1 ⊗ . . .⊗ωn ⊗ 1 in the stalk over a point (a,b) determines

a polynomial complex valued function on the rational completion of the torsor of
paths π(X(C);b,a)⊗Q, which to a path γ from a to b associates the iterated integral∫

γ
ω1 . . . ,ωn. Hence we get an isomorphism of C-algebras

H0
DR
(
(p(C)•)−1(a,b)

)
≈ AlgebraC(π(X(C);b,a)⊗Q)
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and if a = b we get an isomorphism of Hopf algebras, which follows from works of
Chen.

Observe that injlimnH0
DR((p(C)•[n])

−1(a,b)) = H0
DR((p(C)•)−1(a,b)). The same

holds also for cohomology sheaves , considered by us, on X(C)×X(C) and for the
connections d0. Hence we shall calculate the monodromy representation in the fiber
of p(C)•.

Proposition 11. Let X be a smooth affine algebraic curve over a field k ⊂ C. The
monodromy representation of the bundle of flat sections of the Gauss-Manin con-
nection d0 at a point (a,b) ∈ X(C)×X(C)

ρa,b : π1(X(C);a)×π1(X(C);b)→ Aut(AlgebraC(π(X(C);b,a)⊗Q))

is given by the formula

((ρa,b(α,β ))( f ))(γ) = f (β−1 · γ ·α), (17)

where (α,β ) ∈ π1(X(C);a)×π1(X(C);b), γ ∈ π(X(C);b,a)⊗Q and where
f ∈ AlgebraC(π(X(C);b,a)⊗Q).

Proof. We can find smooth closed one-forms η1, . . . ,ηr ∈ Ω 1
C ∞(X(C)) such that

their classes form a base of H1
DR(X(C)) and ηi ∧η j = 0 for 1 ≤ i, j ≤ r. Then all

possible tensor products 1⊗ηi1⊗ . . .⊗ηik⊗1 form a base of H0
DR((p(C)•)−1(a,b)).

Let 1⊗ω1⊗ . . .⊗ωn⊗1 be one of such products. The stalk of the locally constant
sheaf H0

(
TotR(p(C)•[n])∗(CX(C)∆ [1]

[n]
)
)

over the point (a,b) is equal H0((p(C)•[n])
−1(a,b)).

To calculate H0((p(C)•[n])
−1(a,b)) we use complexes of smooth differential

forms. Hence the element 1⊗ω1⊗ . . .⊗ωn⊗1 we consider in the stalk of the sheaf
H0
(
TotR(p(C)•[n])∗(CX(C)∆ [1]

[n]
)
)

over the point (a,b). We prolongate 1⊗ω1⊗ . . .⊗

ωn⊗1 to a continuous section s of the locally constant sheaf H0
(
TotR(p(C)•[n])∗(CX(C)∆ [1]

[n]
)
)

along (α,β ) ∈ π1(X(C);a)×π1(X(C);b). We have s(0) = 1⊗ω1⊗ . . .⊗ωn⊗1. It
follows from Lemma 4 that

s(1) = ∑
0≤i≤ j≤n

(
∫

α

ω1, . . . ,ωi)⊗ωi+1⊗ . . .⊗ω j⊗ (−1)n− j(
∫

b
ωn, . . . ,ω j+1).

The element s(1) ∈ AlgebraC(π(X(C);b,a)⊗Q) and for any path γ from a to b we
have

s(1)(γ) = ∑
0≤i≤ j≤n

(
∫

α

ω1, . . . ,ωi) · (
∫

γ

ωi+1, . . . ,ω j) · (−1)n− j(
∫

β

ωn, . . . ,ω j+1).

(18)
It follows from the Chen formulas (see [Ch]) that the right hand side of (18) is equal∫

β−1·γ·α ω1, . . . ,ωn. Hence the monodromy transformation along (α,β ) maps the
function f (−) := s(0) ∈ AlgebraC(π(X(C);b,a)⊗Q) into the function f (β−1 ·− ·
α) ∈ AlgebraC(π(X(C);b,a)⊗Q). ut
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Corollary 6. Let X be a smooth quasi-projective algebraic variety over an alge-
braically closed field k ⊂C. Let us assume that there is an affine smooth algebraic
curve S over k and a smooth morphism f : S→ X over k such that the induced map
f∗ : H1(S(C);Q)→ H1(X(C);Q) is surjective. Then the monodromy representation
of the bundle of flat sections of the Gauss-Manin connection d0 at a point (a,b) is
given by the formula (17).

Proof. The morphism f induces a morphism of locally constant sheaves

H0(TotR(p(C)•[n])∗(CX(C)∆ [1]
[n]

)
)
−→ H0(TotR(p(C)•[n])∗(CS(C)∆ [1]

[n]
)
)
.

Let us assume that (a,b) ∈ X(C)× X(C) is the image of a point (s, t) ∈ S(C)×
S(C). Then H0((p(C)•[n])

−1(a,b)) is the subalgebra of H0((p(C)•[n])
−1(s, t)). Hence

it follows from Proposition 11 that the monodromy representation of the sheaf
H0
(
TotR(p(C)•[n])∗(CX(C)∆ [1]

[n]
)
)

at the point (a,b) is given by the formula (17). But

then it is given by the formula (17) at any point of X(C)×X(C). ut

Let Y be a topological space. We denote by Ylh the site of local homeomorphisms
on Y . We have the comparison isomorphisms

Ri(p•[n])∗(Z/lm)
(X∆ [1]

[n] )et
≈Ri(p(C)•[n])∗(Z/lm)

(X(C)∆ [1]
[n] )lh

≈Ri(p(C)•[n])∗(Z/lm)
(X(C)∆ [1]

[n] )
.

(19)
We do not know how to show that the sheaves in (19) are locally constant. However(

projlimmRi(p(C)•[n])∗(Z/lm)
(X(C)∆ [1]

[n] )lh

)
⊗Q≈ (Ri(p(C)•[n])∗(Z(X(C)∆ [1]

[n] )lh
))⊗Ql .

The sheaf Ri(p(C)•[n])∗(C(X(C)∆ [1]
[n] )lh

) is locally constant as the sheaf of flat sections

of the integrable connection d0. Hence the sheaf (Ri(p(C)•[n])∗(Z(X(C)∆ [1]
[n] )lh

))⊗Q

is locally constant. Therefore the sheaf (Ri(p(C)•[n])∗(Z(X(C)∆ [1]
[n] )lh

))/Torsion is also

locally constant on (X(C)×X(C))lh. Hence to calculate the stalk of the sheaf(
projlimmRi(p(C)•[n])∗(Z/lm)

(X(C)∆ [1]
[n] )lh

)
⊗Q≈ (Ri(p(C)•[n])∗(Z(X(C)∆ [1]

[n] )lh
))⊗Ql

over (a,b) ∈ X(C)×X(C), it is sufficient to consider only the family of finite cov-
ering spaces X̄(C)→ X(C)×X(C). By the comparison isomorphism (19) the same
is true for the projective system of sheaves

{Ri(p•[n])∗(Z/lm)
(X∆ [1]

[n] )et
}m∈N . (20)

If X̄(C) → X(C)× X(C) is a Galois covering space then the finite quotient of
π1(X(C)×X(C);(a,b)) acts on X̄(C), hence we get an action of πet

1 (X ×X ;(a,b))
on the projective limit tensored with Q of stalks over (a,b) of the projective system
of sheaves (20). This projective limit tensored with Q is H0

et((p•[n])
−1(a,b);Ql).
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It follows from the works of Chen that

H0
DR
(
(p(C)•)−1(a,b)

)
≈ AlgebraC(π(X(C);b,a)⊗Q) .

We shall use Sullivan polynomial differential forms with Q-coefficients (see [Su]
page 297). We shall use subscript SDR to denote the corresponding cohomology
groups. We get the corresponding isomorphism of Q-algebras

H0
SDR
(
(p(C)•)−1(a,b)

)
≈ AlgebraQ(π(X(C);b,a)⊗Q) .

If a = b then we get an isomorphism of Hopf algebras.
It follows from the comparison isomorphisms

H0
et
(
(p•)−1(a,b);Ql

)
≈H0((p(C)•)−1(a,b);Q

)
⊗Ql ≈H0

SDR
(
(p(C)•)−1(a,b)

)
⊗Ql

between étale and singular cohomology and between singular and de Rham coho-
mology - the last one calculated using Sullivan polynomial differential forms - that

H0
et
(
(p•)−1(a,b);Ql

)
≈ AlgebraQl (π(X(C);b,a)⊗Q) .

On the other side we have an isomorphisms of torsors

π(X(C);b,a)⊗Ql ≈ π(X ;b,a)⊗Q .

deduced from the fact that the finite completion of π1(X(C);a) is isomorphic to
πet

1 (X ;a).
Therefore we get an isomorphism of Ql-vector spaces

H0
et
(
(p•)−1(a,b);Ql

)
≈ AlgebraQl (π(X ;b,a)⊗Q) . (21)

The shuffle product in H0
DR is defined using codegeneracies hence it can be de-

fined in H0
et. The Hopf algebra structure on H0

DR((p(C)•)−1(a,a)) is defined by the
maps

1⊗ω1⊗ . . .⊗ωn⊗1→
n

∑
i=0

(1⊗ω1⊗ . . .⊗ωi⊗1)⊗ (1⊗ωi+1⊗ . . .⊗ωn⊗1),

hence one can use maps Xn → X i×Xn−i to define it. Therefore the isomorphism
(21) is an isomorphism of Ql-algebras and if a = b it is an isomorphism of Hopf
algebras.

Hence we get that the monodromy representation associated to the projective
system (20) on (X ×X)et, in the projective limit of stalks over (a,b) after tensoring
by Q and passing to the inductive limit as n→ ∞,

ρ(a,b) : π
et
1 (X ,a)×π

et
1 (X ,b)−→ Aut

(
AlgebraQl (π(X ;b,a)⊗Q)

)
is given by the formula
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((ρ(a,b)(α,β ))( f ))(γ) = f (β−1 · γ ·α).

If X is defined over a number field K contained in k and if a and b are two K-
points of X then GK acts on H0

et
(
(p•)−1(a,b);Ql

)
. The Galois group GK acts also on

the π1(X ;a)⊗Q-torsor π(X ;b,a)⊗Q. The next result compares these two actions.

Proposition 12. Let X be an algebraic curve over an algebraically closed field k ⊂
C. Suppose that X is defined over a number field K contained in k. Let a and b be
two K-points of X. Then the isomorphism of Ql-algebras

H0
et((p•)−1(a,b);Ql)≈ AlgebraQl (π(X ;b,a)⊗Q)

is an isomorphism of GK-modules.

Proof. Let (α,β )∈ πet
1 (X ,a)×πet

1 (X ,a), let σ ∈GK and let f ∈H0
et((p•)−1(a,a);Ql).

Then
σ(a,a)

(
(α,β )∗( f )

)
= (σ(α),σ(β ))∗(σ(a,a)( f )) (22)

by the formula (8). Observe that for any γ ∈ π1(X ,a)⊗Q we have

((α,β )∗( f ))(γ) = f (β−1 · γ ·α).

The function γ → f (β−1 · γ ·α) is calculated using the Hopf algebra structure on
H0

et((p•)−1(a,a);Ql). Therefore after applying σ(a,a) and setting β = 1 and γ = 1
we get that the left hand side of (22) is equal f (α).

Applying (σ(α),σ(β ))∗◦σ(a,a) to f we get the function γ→ (σ(a,a)( f ))(σ(β )−1 ·
γ · σ(α)). Hence for β = 1 and γ = 1 we get (σ(a,a)( f ))(σ(α)). Hence for any
σ ∈ GK and any α ∈ π1(X ,a) we have

(σ(a,a)( f ))(α) = f (σ−1(α)).

Therefore the GK-modules H0
et((p•)−1(a,a);Ql) and AlgebraQl (π1(X ;a)⊗Q) are

isomorphic. Hence for any pair (a,b) the GK modules H0
et((p•)−1(a,b);Ql) and

AlgebraQl (π(X ;b,a)⊗Q) are isomorphic. ut
Corollary 7. Let X be a smooth quasi-projective algebraic variety over a num-
ber field K ⊂ C. Let us assume that there is an affine smooth algebraic curve S
over K and a smooth morphism f : S → X over K such that the induced map
f∗ : H1(S(C);Q)→ H1(X(C);Q) is surjective. Let us assume that S has a K-point.
Let a and b be any two K-points of X. Then the isomorphism of Ql-algebras

H0
et((p•K̄)−1(a,b);Ql)≈ AlgebraQl (π(XK̄ ;b,a)⊗Q),

where p•K̄ : X∆ [1]
K̄ → X∂∆ [1]

K̄ , is an isomorphism of GK-modules.

Proof. The corollary follows from Corollary 6 and Proposition 12.
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