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INTRODUCTION

A classical theorem of Schur asserts that a Riemannian space
of dimension greater than two that is isotropic at all its points
(i.e. the sectional curvature of the space at every point does not
depend on 2-dimensional directions) 1is a space of constant
curvature (see [Cal). Further, it is required that the space under
consideration be a Riemamian manifold with at least trice
continuously differentiable metric tensor.Here we present a purely
metric variant of this theorem. We shall not assume that the space
is a smooth Riemannian manifold or even a topological manifold. We
shall show that in fact the only essential condition is that of
existence at every point of the space of isoireopic cwurvature what
can be expressed in terms of excesses of geodesic triangles
according to Aleksandrov's theory [A],

In the classical case the constancy of the curvature of an
isotropic space is established on the basis of the second Bianchi
identity. That is why the third derivatives of a metric tensor are
required. Taking advantage of the concept of current [(Rh] we prove
generalized Bianchi identity in order to bring into consideration
the derivatives of a metric tensor of order not greater than two.
This and also application of the Smoothness Theorem for metric
spaces of bounded curvature {N]1,2]1 are crucial steps of the proof
of Generalized Schur's Theorem.

In the second part of the paper we consider the problem of
stability in Schur's theorem, that is the problem of stability of
the differential structure and also the stability of +the metric
of almost isotropic Riemannian space (i.e.the space whose

curvature is almost constant at every point w.r,t. 2-dimensional



directions) w.r.t. the class of spaces of constant curvature,

Loosely speaking we prove that every compact almost isotropic
Riemannian space is diffeomorphic to a space form whenever one
tontrols the injectivity radius and curvature bounds. Roughly
speaking the stability is a consequence of Generalized Schur's
Theorem via Gromov's compactness ([Gr1l) and Cheeger's finiteness
(LCh1) theorems. We also make use of the fact that the "bounded
turvature closure” of the set of compact Riemannian spaces
coincides with the set of compact spaces of bounded curvature
fN4,51].

We prove the weak convergence of curvatures in Gromov's class
Min,d,V,A> and construct example showing that it can not be
improved to Lp—convergence in gemneral case. Weak convergence of
turvatures bring wus that every sequence of almost isotropic
Riemannian spaces with anisotropy converging to zero can converge
only to a space of constant curvature. This is a crucial step in
our work.

The same approach based on Generalized Schur's Theorem and
Gromov's theorem is used to prove the stability of the metric of
almost isotropic spaces. Namely we are interesting 1in the
following question:! is it true that almost isotropic Riemannmian

space has almost constant curvature? The answer is "yes'" provided
that the curvature deviation 1is estimated 1in Lp—classes for
pelf,n>. The application of the compactness theorem requires a
stronger convergence than in Gromov's theorem and we made use of
ideas of work C[Ruhl] to improve the convergence of curvatures in

cur situation. Taking advantage of Generalized Schur's Theorem,

Gromov's compactness theorem and the bound of +the deviation of



curvature we obtain wi—bound for the deviation of a metric tensor
from the metric tensor of a space of constant curvature.

We would like to mention that our generalization of Schur's
thecorem solves a problem posed by A.D.Aleksandrov 1in 1982 at a
symposium on geometry "in the Large" and foundations of the theory
of relativity (see also [Me)nand Remark 1.6).

E.Ruh [Ruhl thas proved the stability of the differential
structure of almost isotropic spaces of positive curvature (see
also the papers fM-Ruhl] and [Hul). We want to mention the recent
paper due to I[{Yel in which R.Ye constructed deformations of
positively and negatively curved manifolds with La—small
anisotropy to a space form through the Ricci flow, We do not
abtain the explicit bounds in our stability results. However, our
Theorem A.1 is applicable to Riemarmmian manifolds without
restrictions on the sign of a curvature and gives bounds w.r.t.
Lf—small anisotropy (see also Remark A.1).

The author learned the problem of stability of a metric in
Schur's theorem from £.G. Poznyak, Yu. G. Reshetnyak and
V.A. Toponogov. This problem was considered earlier by 1I1.V.Gribkov
[Gri 1-3] who constructed example showing that in general the
problem of metric stability in Schur's theorem is not well posed
and found some sufficient conditions ensuring stability, and
V.V.Slavskii (S1] who has estimated the difference between the
metric of a conformally flat almost isotropic Riemannian manifold
and that of a constant curvature w.r.t. Co—norm relying on the
integral representation due to Yu.G.Reshetnyak.

Results concerning metric generalization of Schur's theorem

and stability of differential structure were announced in [N3,61.



1. METRIC VERSION OF SCHUR’'S THEOREM

1.1.Basic concepts. For more details see original paper by
A.D.Aleksandrov [A),{Ri] and surveys £A~B—Nlland [(B-N1.

Let CM,p> be a metric space. The metric po is called intrinsic
if for any X,YeM the distance oCX,Y2 is equai to the greatest
lower bound of the lengths of curves (measured in the metric p)
Joining X and Y.

A curve £ in CMHM,p> joining points X,¥YeM is called a geodesic
segment if its length is equal to pECX,Y2>2.Both ofX,Y> and the
geodesit segment with ends X and ¥ are denoted by XY.

A triangle T = XYZ in a metric space CAM,p> (where X,Y,ZeM) is
a set rconsisting of points of geodesic segments XY, XZ and
YZ,called the sides of 7.The points X,¥Y,Z are called the vertices
of T.

Let £ and P be two geodesic segments in C(M,p> that have
common starting point 0.0n &£ and P respectively we choose

arbitrary points X and ¥ (X,Y #2 0) and x = OX,y = OY,z2z = XY.UWe

I

consider a triangle 7T’ X*Y'0' in a Euclidean plane.with lengths

of sides O'X" = x, O'Y'

n

v, X'Y" =z and denote by Cx, 9o the

Yep
angle in T’ at the vertex T’.The (upper) angle between £ and P is

by definition the quantity

al, P> = lim 7x?§x,y), X,y —0.

The area o(T> of a triangle T = OXY is understood as ithe area

of the Euclidean triangle 70 = X'0O'Y’.



The excess of the triangle T = XYO is the quantity

ECT> = a + 3 +y - n,

where by a,f3 and y we denote the angles of 7T at the vertices
O,X,Y.
Define the wpper and lower curvalures KCT> and KCT> of a

triangle 7 as follows. If (7> # O, then

KCT> = KCTD = &CTO/0CTD.

For a degenerate triangle (i.e.o(72> = 0),6set
_ + o if 670 > 0O + w0 if &CTO> 2 0O
KCTO = KCTO =

- w if &CTO< O, - w if &€72 < 0.

The wpper and lower curvatures of a locally compact metric
space (M, o2 with intrinsic metric p at a peotnt P Iin M are

introduced as follows:

EJFFD = lim KC(TO, T—3P,

where triangles 7 contract arbitrarily to the point P.

The wpper and lower curvatures of (M,p> are defined as
K(M) = sup {KJFP)}, KCA = inf {EAFP))'PGM'

1.2.Spaces of bounded curvature. A locally compact metric space



with intrinsic metric is called a space of bounded curvature if it
satisfies the conditions:

(i) The condition of local extendability of geodesic
segments: For each point of M there is a ball of sufficiently
small radius with center at this point such that if two points
lying inside the ball can be joined by a geodesic,then this can be
extended so that these points become interior points of the
extended geodesic,

(i1) The condition of local curvature boundedness: For each
point PeM the upper and lower curvatures at P satisfy the
inequalities: ZJHCP) <+ @ KCP>> - o,

Smoothness Theorem (N1 ,N2].In a space of bounded curvature
CHM,p2 it s possible to introduce the structure of a Riemannian
mant fold with the help of local harmonic coordinates,which form an

atlas ©H of smoothness CB’Q.and the metric tensor in the harmontc

coordinates belongs at least to Wi N Cj’ct

for each pe [(1,+ o
and ae (0,10,

Here by wi we denote Sobolev's class of functions having
second generalized derivatives summable to the power p- As

usually we use the notation cie

for the corresponding Holder
class.

The Smoothness Theorem enables us to define the sectional
curvatures Kf('UA V) w.r.t. 2-dimensional directions UAV (U, Vet
and bivector UNV is not equal to =zero) which are formally
calculated "almost everywhere”" in M by ithe components (gij) of a
metric tensor w.r.t. atlas H. We shall also bring into
tonsideration the formal curvature tensor R _(U,VOW that is defined

f

almost everywhere in M w.r. t. n-dimensional Hausdorff measure (n=



dim M). The following theorem shows a geometrical meaning of the
formally introduced curvature tensor.
Let U,V be vectors at a point P of a space of bounded

curvature CAHM,p> such that
Ul = V| = f and o = UNV = 0. (1.1

lLet T = PBC be a triangle in CAM,p> .We introduce the notation

legooPB, UCEH = exp,lccospe.

uce> = exp;

This notation is meaningful provided that the triangle T is
small encugh.

Theorem 1.1 (N4]l.lLet (M, p> be a space of bounded
curvature.Then there is a set © & M of =zero n-dimensional
Hausdor ff measure (n = dim M that includes the set 01 of all
points in M at which the metric tensor does net have second
derivatives., At each point Pe M N © the following condition is
satisfied:

For arbitrary pairs of vectors U,Ve M satisfying (1.10 there

P

i a seguence (Tm = PBmFm?m=1,2,... of non—-degeneraled

triangles that contract to P in the direction of the pair dU,V2

Cthat is, UCB >2—U,UCC D—=V and ¢ = UCB OA VCC D—o = UANV O
" m m m m

such that the limit of the ratios éCTm?/o(Tm? exists and

K Co> = lim 8T D/0CT O, m—— co.
f m m

1.3.Generalized Bianchi identity. Let x :Y E M —— € & R" be a



harmonic system of coordinates in a neighborhocod U of a point Pe M

of a space of bounded curvature CMHM,p> (here ¥ 1s a domain in Rn,

n = dim M, x = (xj.x?....xn) ). We keep the notation

for the components of the metric tensor

w.r.t. coordinates x.We also denote by r?.,r.. and R# R ,
DRF I N B T,jJt i, kl

(8.7 j=1,2,. . \n

t,j, R, L =1,2,...,n, the Christoffel symbols and the components

i

of the formal curvature tensor RfCU,V)W. It follows from
Wo R w!

the Smoothness Theorem that g. & (82,and hence, ro.,r,. ew (g
L)y op ty i,k p

for any pell,+ o,%,5,k = 1,2,...,n.Theorem 1.1 ensures that in

addition R& LR, e L (%>, provided that U is small
.l iy, kL w0

enough. Therefore, the numbers

R - R
IRi,ljlm = es8s suUpP {IRi, Cx2|2, |R

L; = ess suUp (lRij,

7. ke r1C2 7
(xe §:¢,7,kR, L = {,2,...,n} are finite.
To explain motives of our generalization of Bianchi identity

let us first assume that g ,i,j = 1,2,...,n, belong to class c®.

We introduce differential forms of degree 1,namely

axl,dx®, ..., ax® and w; = thdxj, i,k = 1,2,....n.
. . 1 e n z
Note that we consider collections (dx ,dx ,....,dx 2 and (wh}

as the tensor differential forms

dx = Cdxf,dxa,...,dxn) and w = Ewi]

(see [Cal).We want to retall also the concept of Cartan's absolute

exterior differential D.By definition the absolute exterior



differential DY of a vector field Y 1is the following tensor
differential form of degree 1. D¥CX> = VXY,where v is the
Levi-Civita connection in 7M. In terms of coordinates this formula

can be rewritten as follows:

py® = ar® 4 w? ¥y, k= 1,2,....n, (1.2)

where d means Cartan's exterior differential.

Let 2 = €Z,.Z,,...,Z D> be a co-vector field.One can easily

2’
show that

DZ = d2, - w, Z.. 1.3
We mention that the curvature form is defined as follows:

o) = Dol = do! - SN W = 2 RI dx™ A dx®,
T ) i i J i,rs
where "' means the exterior product of differential forms.
One can easily obtain the formula for the exterior absolute
differential of a tensor differential form [ﬁi] of the second

order from (1.2),(1.3) and the following equation
D37 x'y . = a8 x'y, + 3 ax'y. + &) xtay
i J t J v J t J

where X = (Xf,Xe....,Xn) and CY1,Y Yn) are parallel vector

orr e

fields.For smooth Riemanmnian manifolds the Bianchi identity means

10




e

Do{ =0 or DO =0,{,5 =1,2,...,n,

(see [Cal), where o'’ is the form D; with raised subscript j.

We recall that
iy _ 1y R j 2 ik J _
Dl = d + 0 Aw' + 0 Awk—O. (1.4)

We denocte by ﬁgtg) the set of CP~smooth scalar differential
forms yw of degree m,which are compactly supported in the domain ¥.

Making use of the obvious equation
iy iy
[ aa™Ay = - oA ay
7 g
and (1.4) we get the following equation:

f dn”f\:,u=_|'[-0”/\dw+ [thl\w;a,n”‘/\wi]/\w] (1.5)
A7 g

for any we Ag'Bcg).

We can generalize this situation as follows. Let [@LJ] be a

tensor differential form of degree 2.Ue assume that the
coefficients of 8°7 = ¢°7 ax’'A dx® belong to class L cg>  for
rs e, loc
every pelt,+a0, that 1is
87 L C€>, pell,+wd, 1,7,r,6 = 1,2,...,n.

e, loc

Then & defines the tensor current:

T



CDE,y> = {CD@ o> = | [—@”A dy +

g

+ [ﬁ"j/\ w;; + a3tka w;:]/\ w ]} , pe Ag'gc:g).

So, in the case of c®-Riemannian manifold Bianchi identity

can be rewritten as

AT?.-B

(D2 = 0 V ye 0

Cgo. {1.86)
Let us now turn to the case of a space of bounded curvature.
Lemma 1.1. Generalized Biancht identity (1.60 holds in a

space of bounded curvature.

&
Proof. o We construct a collection (gi.} of c®-Riemannian

J
metrics converging to the metric of the space of bounded turvature
under consideration taking advantage of the operation of the

Sobolev averaging.

Without loss of generality we may assume that harmonic

coordinates x can be extended to chart x':uf———4g1 such that
&
’ = < < '
x |u x (U < uj, € < 31).The averaged metric (gij)i,j=1.2....,n

is introduced as follows:

&
_1' -
& .= & _]’g g, W ¢[§—-é-‘i-] du,

v
where ¢ . R*——R"™ is the averaging kernel,that is,a function for
which the following conditions are satisfied:

(i) The support of ¢ is contained in the unit ball BC(O,10c Rr"

(ii) gpe cZrR™

12



(111} ﬂmn PCw> du = f£.
Components of the averaging metric (gij} belong to class
c®ce> and the following bounds hold for any pelf,+xd, ae(0,1D:

& &

L - &g, 8,
1] 1] Ci’afg) i) ij wigg)

— 0 as £——0 +.

This follows from the Smoothness Theorem and standard
properties of Sobolev averaging [(G-R3J.

& . & .
We denote by wi and Qi connection and curvature forms that
>

are calculated by metric tensor {gij}.Relying on the latter
bounds one can easily prove the following estimates:
- wd| o - oy —» as s—0 + (.7

| w )
t U Prdes t t L C8>

&
for every pe (1, +aD and oae (0,f2.Since (1.6) holds for O, the

following equation holds (see (1.5) ):

&, . &, ., £, €, £ .
I [ oA ay + [o’”h or + a kA ol ]A v ] =0V we/\g_'gC?}),s >0.
g

The bounds (1.7) ensure that both sides of the latter
equation converge to the same expression for & = 0.So, we conclude
that for & = 0 the same equation holds, what means that
Generalized Bianchi identity is true for the metric {gij}.This
completes the proof of the lemma.m
1.4.Isotropic metric spaces. We recall that a neighborhood of a
point in a metric space is linear if it is isometric to a straight

line.

13



We say that the isotropic curvature X(P2> exists at a point P
of a locally compact metric space (MHM,p2 with intrinsic metric p if
the following conditions are satisfied:

(i) No neighborhood of the point is linear

(ii) For every sequence {Tm)m of triangles in (A, p0,

= 1,2,...
that contiract arbitrarily to the point P (i,e.the vertices of the
triangles converge to P w.r.t.p! notétion Tm——»P ) the following

limit exists:
KCP> = lim 6CT D/0CT >, T —3P 1.7
m w m

and does not depend on the choice of the sequence.

Remark 1.1. In the case when (72 = 0 the expression (1.7)
does not make sense. Therefore, the existence of the limit in (1.7
is understood in the sense that for an arbitrary & > 0O there
exists a o > 0 such that if T is an arbitrary triangle such that
the distance from P to each of its vertices does not exceed o,
then CKCP2 — &2 o(T> = &CT2 = (KCPO - &5 &CTO.

A locally compact metric space CM,p2 with intrinsic metric is
said to be isotropic if the isotropic curvature exists at each
point of A

Remark 1.2. It is easy to prove that the curvature XCP> of an
isotropic metric space is continuous function.

Remark 1.3. An 1isotropic metric space in which geodesic
segments are locally extendibtle is a space of bounded curvature.
This immediately follows from Remark 1.1.

Remark 1.4. In distance geometry [B1l]l a large role is played

by the Wald curvature KWCP) {Wl. The curvature KWCP) is applicable

14



only in 2-dimensional case. A.Wald modified +the definition of
KWCP) in such a way that 1t is suitable also in the
multidimensional case.We recall this definition.

A quadruple of points in a metric space has embsdded
curvature equal to k if it is 1isometric to some quadruple of
points on a surface of constant curvature R.A triple of points 1is
called linear if it is isometric to a triple of points in a
straight line.

Let (M, o> be a metric space with intrinsic metric in which no
neighborhood is linear. Then (M, p> has Wald's curvature K'W(P) at
an accumulation point P if for each £ > O there is a ¢ > 0O such
that each quadruple Q@ of points that contains a linear triple of
points and is in the ball of radius ¢ about P has imbedded
curvature RC(Q> admitting the estimate

|K* (P> - RCQO| < &.

W

One could also define the existence of a curvature taking
advantage of imbedding of quadruples in a space of constant
curvature. This would bring us the curvature K"WCP).

It follows from Theorem 3.1 in (K] that

KCPO = K'WCP)

whenever one of these curvature exists.So, one may replace in the
definition of isotropic space the existence of KJ{PO at each point

P with the existence of Wald curvature K'wa).The similar

CP> is also true.

statement concerning the curvature K"w

15



1.5.Generalization of Schur’s theorem to metric spaces.

Generalized Schur’s Theorem. Suppose that (M,p> 1is an
isotropic metric space with Urysochn—-Menger dimension (see [H-W1D
greater than two in which the condition of local extendability of
geodesic segments holds. Then (M,p2 is irsometric to a Riemannian
mant fold of constant curvature.

Corollary 1.1. Let CM,po> be a locally compact metric space
with intrinsic metric and Urysohn—-Menger dimenston greater than
two. Assume that the Wald curvature K'wa) extists at each point in
M. Then (M,p> i1s isometric to a Riemannian manifold of constant
curvalure.

Remark 1.5, One may replace local compactness and local
extendability of geodesic segments with the condition that (A, )
be a topological manifold of finite dimension.

Remark 1.6, Corollary 1.1 answers a question posed in [K1]:
what information about a space gives the existence of the Wald
curvature K'w(PD at each point of the space in the
multidimensional case?

Proof of the Generalized Schur's Theorem. o According to
Remark 1.3 (M,po> is a space of bounded curvature.In view of

Theorem 1.1 the equality

KCUN V> = KCPD, U.Veﬁp. UNV = 0,

holds for almost all points PeM. But then it is possible to write
out a.e. the identity
a'd =2 kax*Aax!,i,j =1,2,...,n

L

16



for the form 07 with "raised” index J (see (Cal,p.193).

By Lemma 1.1 Generalized Bianthi identity can be written for
CM (D) =0; ¢, = 1,2,...,n3.This enables us to write the
equation

) K[—dx‘f\ N ay + [dx"/\ dxI A w}; + dxtA A wi]/\ yJ] =0 (1.8)
R

for any w & AB_Bng. We specify the form y,e Ag'Bcg) as follows:
= In GoBA . A oA A @I A A axBA A dx
wOCx) = fCx2 dx dx N o dxe NN dxed LN dx ca dx
where ke (f,2,...,n\(1,j), fe Agcg>, the sign " 7~ " above x°
means that x° is missed in this expression.
In consequence of the definition of w; ,i.e.w} = F}h dxk,and
the choice of Yo equation (1.8) can be written
J K[éis dxt N dxI N dxA Cljh -
ax
g
y [r:s axtA axd A ax® + r{s dx A axtA dxs]f\ c”k] =0, (1.9
where we have introduced the notation
3R = @A BEA A A A A A oA A ax
Since 't =T¢ , we conclude that
ls sl
r:s dx A dxI A @A PR [rth - r;l] dx A axI A axBA IR 2 o

17



(here and in what follows there is no summation w.r.t. i, and k ).

Similarly we obtain

r-{s dx'A axtA ax®A IR 2 o

and (1.9) turns to the equation

af - A0 -
J'g KCxD Zhkex> dx = 0 ¥V fe N(g>, k= 1,...,n,

where we denote by dx the volume element AxIA EA LA ax
The latter equation means that a generalized derivative of

the distribution

fe /\gcg) —— (K, f2 = [ KO fCxD dx

A7
w.r.t. R is equal to zero for each ke (1,2,...,n).This implies
that the distribution X{x2> 1is constant (see LH], Theorem

3.1.4). The latter implies that K(x> is equal to a constant for
almost all xe& ¢.Since the function X is continuous,this means that
KCx2 coincides with the constant for every x.By a theorem of
A.D.Aleksandrov [A) CAMHM,p> is isometric to a space of constant
curvature. m

Remark 1.7. In fact,one can replace the existence of
isotropic curvature at every point with the condition:

CM,p> is a space of bounded curvature such that a.e. the

formal sectional curvature does not depend on the two-dimensional

18



directions.
To argue the statement observe that by [S-Sh]l CdAM,p0 is
c®-Riemannian manifold and by hypothesis its curvature is

constant.

19



2. STABILITY IN SCHUR'S THEOREM

2. 1. Weak convergence of curvatures in Gromov’s class.We want to

recall the statement of Gromov's compactness theorem.
Let us consider class Min,ad,V,A> of nrn-dimensional compact
connected c¥-Riemannian manifolds M with diameter diam CAH =

d, volume Vol CA 2 V > 0 and sectional curvatures [K = A We

"

now introduce a distance in the space MCn,d,V,A> that specifies a

natural convergence.

Let (Jy.piJ, C#é.pa) be metric spaces with metrics Py and Py

f:(ﬁi,pf)———+CM2,p2) a Lipschitz map. Then

1

dil f = suPX,Ytyﬂi;X =y (pECfCX),fCY))/pI(X,YJ)

is called dilatation of f.

Suppose that CJ&,pl) and (ﬂ%,pe) are compact. Then

d, M, , MO ¢ lndil f| + [tndil £ 1

L1 27 = lnff bi-Lipech. hom.

is the Lipschitz distance between m1 and ﬁé provided that

bi-Lipschitz homeomorphisms exist.Otherwise dLCJl,J%Q =+ w .

1

Gromov's compactness theorem states (see Theorems 8.25 and
8.27 of [Gr11):

Given a seguence in MCn,d,V,A> there exists a

Ml k=12, ..

subseguence (M, ). _ and a Co—Riemannian mani fold M such
hl l=1,2,... 00

that Cﬁh 2} converges to #b in the Lipschitz distance d that is

? L

20



Min,d,V,A> is precompact in a larger class of non—-regular
Riemannian manti folds.

In fact, every limit in Gromov's theorem is compact space of
bounded curvature and the Smoothness Theorem can be applied.Hence,

1,

the metric tensor 8 belongs to class Wim C for any peil, -+

and a0, 2. The precompactness of Gromov's class w.r. t. CI or more
generally Cz’a—convergence of metric tensors was proved
independently by S.Peters [PJ],0.Durumeric [D] and R.E.Greene and
H. Wu [G-W]. We would like +to emphasize that while the

I’Q—Emoothness of +the metric tensor of +the 1limit space in

C
compactness theorem is obviously a special case of the earlier
Smoothness Theorem, that part of the work of the authors mentioned
above that concerns the precompactness of class Min,d,V,AD w.r.t.
the Cf’a-convergence was not known before.

Due to the Smoothness Theorem one could hope to improve the
Lipschitz convergence in Gromov's compactness theorem
to the Wi—convergence. The following example shows that this is
not true in general.Yet we shall formulate 1in a moment the
statement in which our Wi—result manifests itself.

Example 2.1. Let us consider the sequence of 2-dimensional
c®-Riemannian metrics which are introduced as follows.

kax.y) 2 2 2

= & Cdx~ + dy 2, kax,yD = (cos ntkx + cos nky2/k-,

x,yel-1,17 ; R = 1,2,...

2
dsk

It is not difficult to show directly that the sequence {dsi}

=4 b4 I,

converges to d{dx + dy 2 in C norm for every oaeC0,f2 as k—oo.

So, the diameters and the areas of +the Riemannian manifolds
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<{—1,1}x{—1.1],d52

h> converge to the diameter and the area of

[-1,13x{—-1,1) w.r.t. Euclidean metric.A direct computation shows

that the curvature of dsi is equal to

2

2 —-Ccos kx + cos kyd-k

K(dshJ = 2"1(cos kx + cos kyo e

and, hence, 1is uniformly bounded.In the meantime, the curvature can
not converge to zZero in Lp—norm, since otherwise a subsequence of

(KCdsa)) would converge to zero almost everywhere.

k
We complete the consideration of +the example by the
. ) 2 . T2
observation that the metrics <::is]Q ctan be realized on a torus ,
since kax,y) are periodic functions of x and y.So, on account of

2

the manifolds <T2’d5k

the properties of the metrics dsi

Gromov's class MC2,4,1,1> for sufficiently large k.

> belong to

Now we are going to state the weak convergence of curvatures
of a Cf—convergent sequence of Riemannian manifolds in Gromov's
class MCn,d,V,AD. Since the manifolds.Mk are diffeomorphic to each
other for sufficiently large kR, we ctan assume that the metrics &
are given on a fixed ¢c®-manifold.

Let {<m°gk>)k=1,2,... be a sequence of Riemannian manifolds
in MCn,d,V,A> that converges to a space of bounded curvature <M, g>
in the Lipschitz distance.We shall use the following statement
tha£ we call the Cz—convergence of Riemannian manifolds (see

D1, Theorem 5.5):

There is a subsequence {cm,gk >} of the segquence (cm,gk>)
l

such that given any peoint PeM, there s an open set U =M
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T ——

containing P and and a local coordinate chart x : U—>R" such that

X 18 a Ct—limit of harmonic (w.r.t.gh) coordinate charts X . There
o0

18 also an open set § < ﬁh=1 xhCWD such that f 8 is considered

! n -~ -1 .* ~ -1
as a metric on xhC%) R as 8y = th 2 8’ then 88 = Cx "2 g
in the Cz sense on &, namely

]gk -~ 8| P —0 as kR—oo. (2.1)
c Ccgo

It goes without saying that ¥ is bounded domain in R™ and the
estimate (2.1) ctan be extended to a bounded domain $'2 ¢ in R™.
We want to remark that the chart x: U—>R"™ is harmonic w.r.t.

the metric tensor g. This follows from the equations
8 r..=0, 1! =1,2,...,n,

for components (gij) of the metric tensor g w.r.t.chart x :u-»m",
which are ensured by (2.1) and the fact that xk;u——+m“ is harmonic
system of coordinates w.r. t. Bl kR =1,2,... . In particular, the
(formal) sectional curvature XKC(g> is defined almost everywhere 1in
U .

We dencote by KCgk) the sectional curvature of the manifold
(M,gk> . The sequence of sectional curvatures KCth is salid to be
weakly convergent to the sectional curvature Klg2>2 (the notation
K(gk)mz»KCg) ) if for any pair of Cj—smooth vector fields X and

Y on ¢ such that & = (|XCx> N YCxD|> >0 the sectional

infxeg

curvatures of gh, k =1,2,..., satisfy
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Cg2Cx2 fCx2 dx vV fe ﬁg(?).

Jé Kyp y$8 20X fCxD dx —s jg Kyp y

~

Proposition 2.1. Let (cﬂh be a sequence in

8l k=t,2,. ..
MCn,d,V,A> which is Cj—convergent to a compact space of bounded
curvature <M, g>. Then

KCgh>—2+KCg).

Proof .o Let us denote by RkCX,Y)Z. k= 1,2,..., the curvature

tensor of the Riemannian space <M

k,gk>.we express the sectional

curvature X Cgk) as follows:

XNy

K > = <R CX,¥2Y,X>/| XA y|i .

XA Y Ex k
where we denote by |XA Y[k the norm of the bivector XA Y w.r.t.og,.
Taking into account (2.1) we observe that the inequality
| XA yli > 822
holds for sufficiently large k.

The latter bound and (2.1) imply that

1./ XA Y|i - 1 1xA Y% ; — 0 a5 k—m .
cC Ceo
On account of the uniform boundedness of the norm of X and Y
w.r.t.the metric tensor 8 (see (2.1) ) and KCgh) we arrive at the
equality

Lim <R CX,¥DY, X5/ | XA Y|i = <R CX, YOY, X3/ | XN y|% = o.

I
Rk—»w ccg2
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Hence, the desired statement follows from the equality

Lim f [<chx,y>y,x> - <R CX,YJY.X)] f ZIXN Y|2 dx = 0

for any infinitely smooth compactly supported in § function f.
To simplify the notation let us denote f/|XA Y|2 by . It 1is

obvious that y is Ci~smooth and compactly supported function in §.

Let Xihj be the k-th basis vector field of the harmonic

coordinates x,. We introduce the quantities {Cak)q). ,
R Ui, g=t,2,.. .,

as follows:

xR = ol x .
Z DA
Since the sequence (cM,gh>) is Ci—convergent to <M,g>, the
functions Cak)i uniformly converge to 6f . S0, the toordinates of
the vector fields X and Y w.r.t. the basis (Xik)} converge

uniformly in € to the corresponding coordinates of +these vector

fields w.r.t. the basis {Xi}.Hence, we only need to prove that

tim [R(k) - R ] wdx =0 (2.2)

for any Ci—smooth compactly supported in § function y, where we

have introduced the notation RCh)

, R for components of
rs, pg

rs, pg

the curvature tensor of <mqgk> and <M,g> w.r.t. charts X and x

respectively.

Let us denote by FCh) , FCh)l and so on corresponding

sP,Q sp
Christoffel symbols w.r.t. metric tensor 8 Then the integral in
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the right-hand side of (2.2) by integration by parts is

transformed to the integral

I N I M v [ r€R _r SR
€ SP,Q sp.qQ ) 9Ox re,q re,q ) 9x

+ er)l rCh) . r v -
sp ir,qg sp lr,q

FCh)l F(h) - Fl r W dx
rp stl.g re si,g

which converges to zero as k—w (see (2.1) ).This proves (2.2)
and completes the proof of the proposition.m

Similarly to the weak convergence of the curvatures one can
introduce the concept of +the weak convergence of the scalar
curvatures SCgh) to SCg> and so on.The following statement
obviously follows from (2.1) and Proposition 2.1.

Corollary 2.1. sc,gk)-i»sc,g) , k—rco.

2.2. Almost isotropic Riemannian spaces. Let <M, g> be n-dimensional
c®-Riemannian manifold (n23). Suppose that the curvature of <M, g>
is almost isotropic at a point P.Then any sectional curvature at P
is almost equal to SCP2nln-1>, where we denote by SCP> the scalar
curvature of <M,g>. Hence, the following definition is
meaningful.

We call the quantity

&Cg,P> = sup (|K Cg> — SCPO/nCn—12|>; U VaeM_, |UNV| = 1

N A" P
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curvature anisotropy of <M,g> at a point PeM.

The curvature anisotropy of <M,g> is defined as follows:

&Cg> = sup (&Cg,P2): Peh.

Let us make the following trivial remark.

We introduce the notation:

KCPY> = SCPO/nln-12, &CUA VD = KuAVCg) - KCPD,

where U,VeM, , UNV = 0.

In consequence of the formula for sectional curvatures we

have that
r s kR h _ r s kR A
Rrs,kh XY Xy = [K + &Co2} grs,hh X° YT Xy,
for any non-zero bivector ¢ = XA Y. Here and in what follows we

wse the notation 8r5.hh = grh gsh B grh 8sh'

Following the arguments of [Cal,sec.172,we obtain that

Res,kh = 7 K * &0 kh” Brs, ki 2.3
where srs,hh = Csr.kh = skh,rs JRyh,r,s = ¢,2,...,n and
= eCX N X D, & = eCX N CX_+X DD,
re,rs r s rs,rh r s h
= A
€re, kR s((Xr+Xs) (Xk+xh))
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provided that r,s,k and h are different.

It follows from the definition of &Cg> that

< £(go. (2.4)

The above computations enables us to write the bound for the
tensor ECg> that can be written in a local system of coordinates

as follows:

31w

1)

Lemma 2.1. For any <M,g> in Min,d,V,A> there is a constant C

depending on n,d,V and A such that

(CE; P> E*7cp>517%) < ¢ scgd.

Proof. o By (2.3) and (2.4) we only need to know the bounds

for |g£j| and !gljl. Harmonic coordinates constructed in (J-K1

and estimates of lgijl ! a due to [J-KJ bring us the desired
C »

bound. m

We shall use the following well-known equation relating ECg>
and the scalar curvature §, that is a consequence of the Bianchi
identity:

s, _
=t = cg’? E g (2.5)

where we denote by Cgpq EpiJ’q the covariant derivative of +the
tensor field gpq E .
ot

We complete this section with the following statement that
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will be a crucial step in our applications of Generalized Schur's
Theorem.
Proposition 2.2, Let {(<AM,g >> _ be a seguence of
kR Tk=f,2,...

Riemannian spaces in Gromov’s class MCn,d,V,A> for which the

following condition is satisfied:

lim &Cg, > = O.
R
R—@

Then every limitl space of the seguence {(M’gk>}k=1,2,...
w.r.t. the Lipschitz distance is isomeiric to a Riemannian space
of constant curvature.

Proof .o First we observe that by Gromov's compactness theorem
at least one limit spate exists.As we have mentioned any limit
space in Gromov's theorem is a space of bounded curvature. So, on
account of the Generalized Schur's Theorem (see also Remark 1.7)
to prove the proposition we have to establish that the formal
sectional curvature of the limit space does not depend on two-
dimensional directions.

Without loss of generality we may assume that the sequence

{cﬁ,gk>} Cl-converges to the space of bounded curvature

k=f,2,...
<M,g> and, hence, the statements of boih Proposition 2.1 and Lemma
2.1 are applicable to the sequence {CA’3h>}h=1,2,.”

Let X and ¥ be a pair of continuous vector fields in ¥ such

that infxeg CIXCON YCxD ) > 0. By hypothesis the following bound

holds:

5Cg, 2w

- < - < =

29



Let us consider the function

X—u n
Cuw> = —_—
¢n,x < 7 n .,
where ¢Cw> is the averaging kernel (see sec.1.3), n > 0.
On multiplying (2.6) by ¢ Cw> , integrating over domain

n,x
¥ and also taking into account that

we arrive at the inequalities

SCg 2w
- e <
sCg > < jé {xxA y$BRCW = ——r ] ¢n,x Cw du £ &Cg, 0.

. w w L
Since KXA ngh)——»KxA Yfg) ,SCng——+SCg) (see Proposition 2.1
and Corollary 2.1) and s(gk)——+0 as k—ow, we obtain that
n
n SCgICx0
Kyn y€82C2 = ommys> =
SCgoluwr

g

n n
where we denote by KxA ng) and SCg> the Sobolev averaging of

corresponding functions w.r.t. parameter 7.

n n
Since KXA YCg)——»KxA YCg) and S(g>—SCg> as n—0 a.e. in §,

we arrive at the equation

SCgaCxo

CgICx0 - ——ee = 0

K n (n—-1>

XA Y
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which holds for almost all x&8, provided that X and Y are fixed.

Without loss of generality we may assume that the latter

equation holds for the following pairs of vector fields: Xr , X_

s
X , X _ + X D0 CX_+X 2> , (X + X, 2o , where r,s,h,k are
r s R r s Rk R !
different and take values from {,2,...,n. Then following the
arguments of Lemma 2.1 we conclude that

s

Rrs.hh g grs,hh
for almost all x€%. The latter means that K{g> is isotropic and by
the Generalized Schur's Theorem <M,g> 1is a space of constant
curvature.m
2.3.Stability of the differential structure of almost isotropic
spaces. A Riemannian manifold <M,g> 1is said to be e-isotropic if
&eCg> = &.

Let us consider Gromov's class of compact Riemannian
mani folds Min,d,V,A). We claim the following statement.

Theorem 2.1. let n 2 3. Then there is a positive constant
&eCn,d,V,A> such that any e—-isotropic Riemannian mant fold
<M, g>efi(n,d,V,A) with O £ & £ &(n,d,V,A> is diffeomorphic to a
compact hyperbolic, flat or spherical space form.

Remark 2.1. In the case of compact positively curved
manifolds there is stronger result by E.Ruh C[Ruhl. Loosely
speaking in the theorem of Ruh &£ depend only on the dimension,
M. Gromov and W. Thurston constructed a sequence (cmh,gh>} of closed

Riemannian manifolds with curvatures satisfying
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where A, — - as kR—w and <M > tarries no metric of constant

R k' Er
negative curvature (see [G-T1). In our theorem the curvature may
have arbitrary sign. The example by Gromov-Thurston shows that
additional assumptions compared those of the theorem of Ruh are
absolutely necessary. In Addendum we shall give more general
results.

Remark 2.2. If in addition to hypothesis of Theorem 2.1

<MHM,g> 1s simply connected then it is diffeomorphic to a sphere s™.

Proof. o On the ctontrary to the statement of Theorem 2.1 let
us assume that there are a seguence (Eh)h=1 2 of positive
numbers and a sequence of Riemannian manifolds
(<J%'gh>}h=1,2,...ln Mn,d,V,A> satisfying the following

conditions.:
ﬁ)quOaskqw

_(ii) ngk) < €k
(iii) For sufficiently large k the manifold cﬁh.gk> is not
diffeomorphic to a compact space of constant curvature.
Making use of Cheeger's finiteness theorem (Ch] we can assume
that the metrics gk,k =f7,2,..., are given on a fixed manifold M .
Gromov's ctompactness theorem and Proposition 2.2 are used to
vield the metric g of constant curvature on the manifeold M . This
obviously contradicts to (iii) and we complete the proof of
Theorem 2.1.®
2.4.Lp—bound for the deviation of a curvature from a constant. Let

<M,g> be a compact space of bounded curvature and pe [1{, +o0?. The

set of measurable functions f T AHA—R (w.r. . the standard
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measure on M ) satisfying the inequality

1/p
- e
|J¢f|‘,_puD {{M | fCPOIF d Vol(g)} < + oo

will be denoted by LPCJD. The average value of the scalar
curvature SCPO of <M, g> is defined as the quantity
1

s = VET??EF.PM SCP> d Vollgd.

In particular, the notation just introduced can be applied to
w . .
C -Riemannian spaces.

Theorem 2.2. Let n 2 3 and I £ p < +w . Then given vy > 0
there is &Cn,d,V,A,p> > 0 depending only on n,d,V,A and p such
that

|SCP> - S v

| <
a L CA
o)

for every s-isotropic Riemannian mantifold <M, g> in Mn.d,V,A> with

O g = &ln,d,V,.A,p>.

Remark 2.3. [.Gribkov [Grill constructed example of (an open)
manifold with A = p =+w for which the latter bound does not hold.

Remark 2.4. In the proof of Theorem 2.2 we are going to make
use of modifications of Lemmas 1 and 2 in [Ruh]. We would like to
emphasis that no new ideas are needed to prove these auxiliary
lemmas besides those used by E.Ruh.However, the statements we need
are somewhat different from those in {Ruh] and for the reader's

tonvenience we want to give the proof.
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In what follows we shall consider a harmonic system of
coordinates x:U SH—BC4Lr> SR” in a compact Riemannian manifold
<M, &> (here r > 0 and BC4Aro> = ( xeR™ } |x| <4r2} ), such that the
bound (2.1) (where € = BC2r2 ) holds. We shall assume that

dim M 2 3.

We keep the notation SCPO for the scalar curvature of <M, 8>
and consider the averaging kernel &z> (see (i), (ii) and (iii) of
sec.1.3) and a cut-off function 8:R—R with support in |jz| < 2r

and eCz> = f for |z] £ r. We introduce the notation:

aC | x-y |2

- [SCy> - SCy>) dy, xeB(ro.

Qx> = cn_zf n ——
R Ix=yl

where €, = —n(n—z)xn, * is equal to the volume of n-dimensional

unit ball in R™.

Lemma 2.2. Let peC!,+2. Then the following bound holds

oFa
max. ._. > n { 7 } } 2 CCn,d,V,A,p,r> £Cgo,
LrJTEEy e xt ax’ L CBCro>

where C{n,d,V,A> is a constant depending on n,d.V,A,p and r.

Proof. o Integration by parts implies

2 —
9Q (x) = - c. 1 I . 2? [ 8¢ | x yiie ] 35Cy> ay +
axt ax’ R" 8x f =y | 3’
+ Cn—f f N 2? [ sclx-yiie ] asgyJ dy. 2. 75
R ax x~y| ax’
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Taking advantage of the obvious equation

35C x> -n -x) 8sCyD
=X =y ¢[?——] ¥ ay
ax’ R ax’

r

and (2.5) we arrive at the formula

ASCx> _ _-n Y- k1l
- =r j n ¢[~—J g  E_.D,

o R = ) Cy2 dy . (2.8)

(2.8), (2.1), Lemma 2.1 and integration by parts bring us the

estimate

93X < Crcn,d VL A P> eCgd, xeBCrD. (2.9)

ax’

Inequality (2.9) together with the smoothness property of the
kernel yield the the bound of the first integral in (2.7) claimed
in Lemma 2. 2.

Similar trick is used to vyield the bound for the second
integral in (2.7). Namely, we replace aS/ayj by (gkl Ekj)’l'

integrating by parts we arrive at integrals the worst of which has

By

the kernel of the form

bed a eC | x—yi|>
P oIx,y> = —
ki axh axl [|X—y|n 2

We observe that for |[x-y|] < r this is a singular kernel (see

(Ca-2]3 and so, the Calderon-2ygmund inequality is applicable.This
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bring us the desired estimate of the second integral in (2.7).m

kL 8%

6xk3xl

We denote by A the Laplace operator, i.e. &

Lemma 2.3. Let pel(!,+wd. Then the following bound holds

1A Q - ¢C§ - < CCn,d,V,A, p,r> &Cgo,

S)lL CBCrD —
e

where C(n,d,V,A> (s a constant depending on n,d,V,A,p and r.

Corollary 2.2. 1S - S| £ 2 Cln,d,V,A,p,r0 &Cg2.

L CB(r>
P

Proof of Lemma 2.3 . a Let [Cy> be a cut-off function such that
[Cy> =1 for |yl € 3r and [{(x2> = O for |y| 2 7r/2. Since |x - y| 2
vl = Ix], it follows that for xeB(r> and |y| = 3r the function

8¢ |x-y|> vanishes. Hence, one may replace the function ¢35 - $> by

n

the function I ¢S - 8> which is compactly supported in R and
equal to ¢§ - S$>Cy> for |y| < 3r.So, we can express 5 - S as
follows:

SCx> - SCx> = cn'fj : A (ISCy> - SCy>1 [Cy>)> dy.

n n—2
R {x=y|

Taking into account that 8C|x-y|>2 = ¢ for |x-y| = r, one can

write the difference A Q - ¢C§ - S2 in the form:

ICx> = ¢ ”j { 8Cix=yl2 =1 5 SCy> [Cyd> } dy -
n al> _, n=e
| -1z r{ Ix-y|

i

< _1f { aclx_yiia_j A (SCyo €Cy))} dy , xeB(r>. (2.10)
Ix-yiz r{ |x-y]
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Similar to the proof of the estimates for the +two integrals
in (2.7) after integration by parts and taking advantage of (2.5)
and (2.9) we establish the desired bounds for integrals in (2.10).

We only want to remark that the function

8l | x-y|> -1
n—2
fx=y|

is at least twice-continuously differentiable for ix-y| 2 r. So,
here we do not need the Calderon—-Zygmund inequality.a
Proof of Theorem 2.2. o On the contrary to the statement of

>

Theorem 2.2 let us assume that there are a sequence (Eh k=1 . 2

of positive numbers , a sequence of metric tensors (gh)h=1 2
on a fixed manifold M and a positive number » satisfying the

following conditions!:

(1) &, —0 as k—w

R
i <
(ii) s(gk) s 6,
(iii) The seguence (CM'8k>}h=1.2,... lies in MCn,d,V,AD

(iv) The following inequality holds

RO

Cko
- >
|s P2 Sq IL cHa = pelt, +o0,
e
where we denote by SCk)CP) and Sik) the scalar and average value
of the scalar curvature SCk) w.v.t. the metric tensor B where

kR =1,2,...
Let wus consider the Sobolev averaging of the function
S(h)CP) and the constant function Sih) w.r.t. r. We have the

identities:
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Gromov's compactness theorem and Proposition 2.2 ensure the

existence of a . subseqguente {cﬁ,gh >

, }L=1,2, N of the sequence

(cﬂ,gh>}k=1 > Cz—converging to a space of tonstant curvature

<AM,g>. Without loss of generality we may assume that

(M8 22 121,2,... = (He?

L kR={,2,...

Corollary 2.1 vyields that

TR xr SCx>, s, S, . 35 k— +o . (2.11)
a

Let us first obtain estimates for ped?, +uw.

We observe that due to standard properties of the Sobolev

averaging and (iii)d

=R
SUPp-1. 2, ... ¢« |S (X)‘LwCﬂfr)) > < 4o . (2.12)

By Lebesgue theorem (see (2.11) and (2.12) ) we conclude that

=Rk

1S x> - SCx2|

LPC3(r)) —0, as k—r+m . (2.13)

The triangle inequality implies
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CRO C

1" x> ~ s Ck2 gR

RO
1Lp($(r)) < 15°% 0 - T %ex0|

L CBCro>>
o
= kD = =
TS0 = SO, cmerd> YISO T S cgerss
£ P
Cho
+ ISa Sal L CBCrOD - (2.14)
P
Since <M,g> is a space of constant curvature, 3¢(x> i s the

Sobolev averaging of the constant Sa and, hence

|SCx> ~- =0 .

Salec3Cr))

In the meantime, Corollary 2.2 together with (i) and <(ii)
yields that the first summand in the right-hand side of (2.14)
converges to O as k—+mw . On account of (2.13) the second summand
in the same expression converges to O too. The equality to O of
the last summand in (2.14) is ensured by (2.11). Thus we arrive at

the equality

Clo

, RO
lim |S Cx2 - SG lLPC$Cr)D

kR—r+@

=0 (2.15)

for pel!, +wd.

Since the imbedding operator 9bq :Lp(?)—~»LqC§) (p 2 g 21) 1is

17 - 1/p

bounded with norm = Vel (¥ , (2.15) holds also for p = 1.

Because of (iii1) there is a constant ro(n,d.V,A) >0 depending

only on n,d,V, and A such that »r can be chosen no 1less than

r.{n.d.V,A> [J-KJ . Together with the bound on the diameter this

0
implies that for any pell, +a2
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RO RO

, q _
lim |S Cx> - SCL leCJD = 0.

k—+@

This is a contradiction with (iv) and we complete the proof
of the theorem.m
2.5. Wﬁ—stability of the metric of almost isotropic space.We start
with the following proposition.

Proposition 2.3. Let <M, g> eMin.d.V,A> and pell,+o. Then
there are positive constants Cin,d,V,A,p2 and rin,d,V,A> depending
on n,d,V,A,p and n,d,V,A respectively such that for any point PeM
there s a chart x:B(P,r2 SHh—% = (¢ |x} < 1 ) <R” such that

components (8ij) of & w.r.t. x satisfy the ineguality:
<
]8ij|WiC§) < Cln,d,V,A, po.

Proof. o Let us consider harmonic systems of coordinates
constructed in [J-K] by means of almost linear functiomns. Due to
what was done in this work we only have to prove the bound claimed
in Proposition 2.3. We observe that components {gij} of the metric
tensor g satisfy elliptic equations

sl azgij
8 — = 2R ij+ ICg2, (2.16)
X Ix
where I(g> depends only on components of the metric tensor and its
first derivatives.

Let wus consider CmLsmooth cut—-off function I compactly

supported in |x| ¢ & and equal to { in the ball |x] <« {. Without

loss of generality on may assume that Cz’a—bounds for gij holds in

the ball x| £ 2. Then applying theorem 15.1 in ([L-U]J toc the
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function 4 gij and taking into account (2.16) we arrive at the
desired bound.a

We keep the notation bOCg) for the €2’ %-smooth ¢ aeC0, 1> )
atlas on M formed by charts x from Proposition 2.3.

Ltet us denote by ﬂneCn,d.V,A) the subset in MMdCn,d,V,A>
consisting of e-isotropic Riemannian spaces.

Theorem 2.3. Let n 2 3 and pell,+tx>. Then for any v > O there
ls a positive number &(n,d,V,A,p,v> depending only on n,d,V,A,p
and v such that for every <M,g> éman,d,V.A) with &£ =
eCn,d,V,A, p,v> there exists a metric gc of constant curvature on M

for which the following ineguality holds:
[~
- <
'8, 3ij‘wicg) =V

w.r.t. every chart xebO(g).
Proof. o On the contrary to the statement of Theorem 2.3 let

P of positive

us assume that there are a sequence (sh kR=1.,2,. ..

numbers a sequence of metric tensors on a fixed

(8’ k=1,2,...

L

manifold M and a positive number v, satisfying the conditions
(i)~C(iii) (see the proof of Theorem 2.2) and

(iv) The inequality (w.r.t. any chart xebOCgk))

<
- <
1€8)y” 5 8£j|W§C§) s

does not hold for every metric of constant curvature on M
By Gromov's compactiness theorem and Proposition 2.2 we may

assume that the sequence (cM.gh>) is Cl*convergent to a

k=f,2,...

compact space of bounded curvature cM,g°>. We want to prove that
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the metric g° satisfies the equality

lim |Cg. D, , - &.51 = 0,
o 18745 L wicg)
where 8, Was defined in sec.2.1.

According to (2.16) we consider the differential operator

2
Lcw = s° L2 uecop.

axsax

Let [Cx> be the cut-off function, defimed in Proposition 2. 3.

On account of (2.16) the function wlx> = [{xD giij) satisfies the

equation:
L Cuw> =2 R, B + ICg> + L (Lo u + L CL,w, (2.17O
s L R, + U ICq s &€ 7
where
L CC,w = 351 gg QQL
g ax 3x

For the sake of brevity we introduce the notation

uka) = [Cx2 Cgh)iij), L; =L , L =1
R

Then the difference u, - satisfies the elliptic eguation

LCuh - w2 = chuk) - LCw - (Lh - L)(uh).

42



Proposition 2.3 and the property of Cf—convergence ensure

that the Lp—norm of (Lk - L)Cuh) converges to zeroc as k—o . On

the other hand, Theorem 2.2 together with the property of

Cf—convergence implies that the Lp—norm of L Cuh) - L{w converges

R

to zero too (see (2.17)).Hence, the function hh =y, —ou satisfies

the equation

where

lim |3 | . =0, & = (x| |x} = 272,
R +00 R chg 2
with the boundary condition
h (x2 =0, |x| = 2.

In addition, the property of Ci—convergence implies that

lim |h, | , ~ = O.
R 400 kRICCE D

These equalities together with (11.8) of chapter III in [L-U]

imply for p > n that
~ <
- <
lth)ij githi(y) < lhk‘WiC@') — O as R-—+om. (2.18)

Boundedness of the imbedding operator &Pq:Lch)——ancg) for

p>nzqg 21 (¢ is bounded domain) implies that (2.18) holds also

1A

for £ < p n and hence, for pelf, +w,
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Let ﬁk:<u,gh>——+<u,g> be a local diffeomorphism which 1is

identification via harmonic coordinates xhebofgh) and xebng),

namely we assign to a point P with harmonic coordinates
Cx{x ?...,xn) w.r.t. the chart Xy the point P’ with the same
ctoordinates w.r.t. the chart x By definition B = éZ(gh) . We

consider the metric g;= L:CQFJ. Due to what was done in [G-W] the
diffeomorphism ik can be extended to a diffeomorphism ik M M sO0
that in fact 3; is given on the whole M . On account of (2,18) to

complete the proof of the theorem we only have to prove that

tim  |gs . - (gt .| =0 .
Ry +00 iy k1 wi(SJ

To prove the latter statement it is sufficient to establish
that

Lim |4 =0 , r (2,19

- id| .2
R +-00 R c~Cce2
where td (P> = P for PeAM .
Due to [G-W] (2.19) holds for C€Z'%-norms ( aeC0,1> ). We are
going to explain how one can improve this bound to 63’a~norms.
Shortly speaking the proof of (2.139) w.r.t. the Ce'a—norm in

[(G-W] was as follows,. The authors made use of barmonic

coordinates. Due to [J-K] one may assume that the bound
ICgh)ijlci,a < eln,d,V, A, o0

holds. Since a harmonic function A U —R satisfies the elliptic

equation
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if 1 on
- gJer >t o2
3% ax kR RL) O

st &°h

div grad h = B

i =0, (2.20)
it is not difficult to establish then that A «='® for any
aeC0,12. In particular, for two harmonic systems of coordinates
x: UESH—E and y:WEJL—»@i on <M,g> the function xoy‘I belongs to

tlass Ce’a provided that € n gz: @ and |x=y_1| 2,0 depends only on

c

n,d,V,A and a. This and alsoc the Arcela-Ascoli Theorem bring us
that local diffeomorphism {k converges to i{d in the Ce’a—norm as k

converges to +w . fFor a given k the local diffeomorphisms {k can

be "glue together" to get a global diffeomorphism fh' by taking

advantage of the standard center of mass technique w.r.t. a fixed
c®-smooth Riemannian metric on M . We observe that in harmonic

toordinates the following equalities hold

iy
8 cr

Lo -
Wiy S0t =12,. . n

and therefore (2.20) in fact brings us the stronger bound
|X°y—IIC3,a < ¢Cn,d,V, A, o0

This completes the proof of (2.19) and hence, Theorem 2Z.3.®
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ADDENDUM: SPACES WITH SMALL INTEGRAL ANISOTROPY

Here we shall state a stronger version of Proposition 2.2 and
claim theorems concerning stability of differential structure and
metric of spaces with small integral anisotropy. We would like to
remark that bounds of the curvature anisotropy &Cg,P> of <M,g> at

a point PeM are equivalent to bounds of the norm of the tensor

= _ _ s
Evjorl = Rijort T meat> Sijokl
see sec.2.2 and c¢) of Theorem 1 in {Gr3]1.So, in our statements

|eCg, P>} can be replaced with |ECP2|.
First of all we generalize Proposition 2.2 as follows.
Proposition A.1. Let {cﬁ,gh>}h=1 2 be a seguence of

Riemannian spaces in Gromov's class MCn,d,V,A> for vwhich the

Following condition i1s satisfied:

lim f &Cg, P> wCP> d VolCg, D> = 0 (A. 1)
k Rk
kR—+m M

for every c®-smooth and compactly supported function w on M .

Then every limit space of the seqguence (<m"3h>)h=z,2,._
w.r.t. the Lipschitz distance is isometric to a Riemannian space
of constant curvature.

Corollary A.1. The statemsnt of Proposition A. I is true

provided that CA. 12 is replaced with the condition
Ingk.P)I —0 as k-—w .

L1(JD
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We want to remark that convergence of the sequence

{sfgk,P)) to zero in Lz—norm implies the existence of a

k=1,2,...
subsequence converging to zero a.e. Since ngh,P) are uniformly
bounded and P belongs to a bounded domain, the Lebesgue Theorem
vields that the subsequence converges to zero w.r.t. Lp-norm for

any pelfl, +o.

Proof of Proposition A.1. o Let wus keep the notation of

Proposition 2.2. On multiplying (2.6) by ¢n x Cuw2> and integrating

i

over domain ¥ we arrive at the inequalities

- <
jg &g, "bn.x Cw g (W du =

SCg 2w

< j‘g [Kx,\ yC8 W = ey ] "mx Cw g, (w| du

A

< jg e ¢mx (W g W du (A.2)

where we denote by 1ghCu)1 the determinant of +ihe matrix
(gijCU))i,j=f,2,...,n )

By hypothesis the left-hand side and the right-hand side of
(A.2) converge to zeroc as k—+w . Taking into account ((2.1) we
arrive at somewhat different conclusion compared that of
Proposition 2.2: for every 7n > 0 the Sobolev averaging of the

function

Kyp y €82 Cw> |gCw|

coincides with the Sobolev averaging of the function
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5Cg> Cw

n (n—-12> tg<w |

everywhere in ¥ This implies the equality of these functions a.e.
in €. Since the function |glw>| is strictly positive everywhere in

2, we arrive at the equality of K (g2 Cw to SCgon Cn—-1> a.e.

XY
in ¥ and the conclusion that the limit space <M, g> is
isotropic. Then we complete the proof as in Proposition 2.2. =

As a corollary of Proposition A.1 we obtain the following
generalization of Theorem 2.1,

Let uws introduce the set iKWnV,xJ of compact (closed)
CmLRiemannian manifolds <M,g> with dim (M = n, Vol CAHA> 2V > O
and diam2 MO 1KC8J!COCJD £ 2. Here we have introduced the
notation lKCg)lCOCJD for the maximal absolute value of sectional
curvatures.

We say that a compact Riemannian space <M,g> has g-small

integral anisotropy if

<
18(8'P)IL1CAD = &

It is obvious that every Riemannian space <M, g> in 'ﬁ(n.v.x)
is conformally equivalent to a space in Wln,x,V,10 . Therefore,
one can repeat the proof of Theorem 2.1 and apply Proposition A.1
and Corollary A.1 to get the following statement.

Theorem A.1. Let n = 3. Then there 1is a positive constant
eCn,»,V> depending on n,x and V such that any Riemannian manifold
tM,g>éﬁCn,x,V) with €-small integral anisotropy for 05 & =<&ln,=,VD
ls diffecmorphic to a compact hyperbolic, flat or spherical space

form,
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Remark A.1. In the case of negatively curved manifolds of
dimension greater than 3 the volume of a manifold can be bounded
below by diameter (see [(Gr2],1.2). Therefore, in this case Theorem
A.1 can be stated as follows.

Let n 2 4 and <M, g> be a compact negatively curved Riemannian

mani folds, t.e. —|KCg>| O KCg> < o .Let us assume that one of
8¢

<
CAHMO
the following conditions holds:
e
. . <
Cid> diam CAHD IKCB)ICOCJD <

e’ n

Cid' Vol CM |KCg> | 0 < x

CHMD

Then there is a positive nunber &£(n,x> depending only on n
and » such that every n—-dimensional compact Riemannian mantifold
with s-small integral anisotropy for £€l0,eln,u>] satisfying IO
or (i2' is diffeomorphic to a hyperbolic space form.

The case of positively curved manifolds 1is contained in
Theorem A.1. If one restricts himself by considering {./4-pinched
manifolds then £ can be chosen depending only on n.

We want to note that while Theorem A.1 does not give explicit
bound on &ln,d,»> it gives the stability of differential structure
under weaker assumption of integral smallness of anisotropy and
is applicable to Riemannian manifolds with curvature of arbitrary
sign (compare with [Yel,Theorems 4 and 4°, see also introduction
in CYel).

Now we turn to a stability of a metric of spaces with small
integral anisotropy. We observe that &Cg> in the estimates of

Lemmas 2.2 and 2.3 can be replaced with

sp(g) = supp_ 4 {IECS’P)ILPCJD)

and hence, we arrive at the following statement.

Theorem A.2. Let n 2 3 and I £ p < +ow . Then given v > 0
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there its e(n,d,V,A,p> > 0O depending only on n,d,V,A and p such

that

- <
| SCP> Sa'LpC«D < v

for every Riemannian mani fold <M,g> in Mn,d,V,A> with &e-small

integral anisotropy for any € &0, &(n,d,V,A, p>2.

As a corollary we claim the Wi—stability for spaces with
small integral anisotropy.

We say that metric gc is v—close to g w.r. t. Wi—norm if the
bound stated in Theorem 2.3 holds.

Theorem A.3. Let n 2 3 and pelf,+>. Then for any v > O there
is a positive nurber £(n,d,V,A, p,v2 depending only on n,d,V,A,p
and v such that for every <M, g> €liCn,d,V,AD with e-small integral
anisotropy for e€l0,&e(n,d,V,A, p,v2] there exists a melric gc of
constant curvature on M which is v—close to g w.r.t. Wi—norm.

For the sake of brevity we shall say that metrics
of MCn.d,V,A> are Wi—stable in the class of metrics of constant
curvature w.r. t. the integral anisotropy.

Let us denote by MCr,d,V;:-A,0> the subset of Mn,.d.V,A

consisting of manifolds with curvatures satisfying the bound
-A S KCg2> < O .

Corollary A.2. Let n =2 4. Then the metrics of MCn,d, +o; -A, 0>
and MCn, +o,V;-A,0> are Wi—stable in the class of metrics of
constant negative curvature w.r. t. the 1integral anisotitropy for

every pell,+ao,

50



Let us denote by TMCn,+w,+w;f/4,1> the set of f(/4-pinched

Riemannian manifolds,i.e.
174 < KCg2> = 1
Corollary A.3. Let n = 3.Then the metrics of Mln, +w, +o; 1/4,1D

are Wi—stable in the class of metrics of constant positive

curvature w.r.i. the integral anisotropy for every pelf, +ou.
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