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INTRODUCTION

A elassieal theorem of Sehur asserts that a Riemannian spaee

of dimension greater than two that is isotropie at all its points

(i.e.the seetional eurvature of the spaee at every point does not

depend on 2-dimensional direetions) i5 a spaee of eonstant

eurvature (see [Ca]). Further, it is required that the spaee under

eonsideration be a Riemannian manifold with at least triee

eontinuously differentiable metrie tensor. Here we present a purely

metric variant cf this theorem. We sMall not assume that the spate

is a smooth Riemannian manifold er even a topological manifold. We

shall show that in faet the only essential condition is that of

existente at every point of the space of isotropie eurvatura what

ean be expressed in terms of exeesses of geodesie triangles

aeeording to Aleksandrovts theory [AJ.

In the elassieal case the constaney of the curvature of an

isotropie spaee is established on the basis of the second Bianchi

identity. That is why the third derivatives of a metric tensor are

required. Taking advantage of the concept of current [Rh] we prove

generalized Bianchi identity in order to bring into eonsideration

the derivatives of a metric tensor of order not greater than two.

This and also application of the Smoothness Theorem for metric

spaces of bounded curvature [Nl,2] are crucial steps of the proof

of Generalized Schur's Theorem.

In the second part of the paper we consider the problem of

stability in Schur's theorem, that is the problem of stability of

the differential structure and also the stability of the metric

of almost isotropie Riemannian space (i.e.the spate whose

curvature is almost tonstant at every point w. r.t.
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directions) w.r.t. the class of spaees of constant curvature.

Loosely speaking we prove that every compact almost isotropie

Riemannian space is diffeomorphie to aspace form whenever one

controls the injectivity radius and curvature bounds. Roughly

speaking the stability is a consequence of Generalized Sehur's

Theorem via Gromov's eompaetness ([Grl]) and Cheeger's

([eh]) theorems. We also make use of the faet that the

finiteness

"bounded

curvature elosure" of the set of compact Riemannian spaees

coincides with the set of compact spaces of bounded curvature

[N4. ,5].

We prove the weak convergence of curvatures in Gromoy's (lass

m(n,d,V,AJ and construct example showing that i t (an not be

convergence ofWeakimproved to L -convergence in general case.
p

curvatures bring us that every sequence of almost isotropie

Riemannian spaces with anisotropy converging to zero can converge

only to aspace of constant eurvature. This is a crucial

our work.

step in

The same approach based on Generalized Schur's Theorem and

Gromov's theorem is used to prove the stability of the metrie of

almest isotropie spaces. Namely we are interesting in the

following question: is it true that almost isotropie Riemannian

space has almest constant curvature? The answer is "yes" provided

that the curvature deviation is estimated in L -classes for
p

pe[t,a0. The application of the compactness theorem requires a

stronger convergence than in Gromov's theorem and we made use of

ideas of work [Ruh] to improve the convergence of curvatures in

our situation. Taking advantage of Generalized Schurfs Theorem,

Gromov1s eompaetness theorem and the bound of
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eurvature we obtain wZ-bound for the deviation of ametrie
p

from the metric tensor of aspace of eonstant curvature.

tensor

We would like to mention that our generalization of Schur's

theorem solves a problem posed by A.D.Aleksandrov in 1982 at a

symposium on geometry "in the Large" and foundations of the theory

of relativity (see also [Me] and Remark 1.6).

E.Ruh [Ruh] has proved the stability of the differential

structure of almost isotropie spaces of positive curvature (see

also the papers [M-RuhJ and [HuJ). We want to mention the recent

paper due to [Ye] in which R.Ye constructed deformations of

anisotropy to aspace form through the Ricci

positively and negatively curved manifalds with

f low.

LZ-small

We do not

obtain the explicit bounds in our stability results. However, our

Theorem A. 1 is applicable to Riemannian manifolds without

restrictions on the sign of a eurvature and gives bounds w.r.t.

Lt-small anisotropy (see also Remark A. 1).

The authar learned the problem of stability of ametrie in

Schur's theorem fram E.G.Poznyak, Yu.G.Reshetnyak and

V.A.Toponogov. This problem was eonsidered.earlier by I.V.Gribkov

and that of a constant curvature w. r.t.

[Gri 1-3] who constructed example showing that in general the

problem of metric stability in 5chur's theorem is not weIl posed

and found same suffieient eonditions ensuring stability, and

V.V.Slavskii [SI] who has estimated the differenee between the

metric of a conformally flat almost isotropie Riemannian manifold

oC -norm relying on the

integral representation due to Yu.G.Reshetnyak.

Results concerning metric generalization of Sehur's theorem

and stability of differential structure were announced in [N3,6J.
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1. METRIC VERSION OF SCHUR"'S THEOREM

i.i.Basic concepts. For more details see original paper by

A.D.Aleksandrov CAJ,CRiJ and surveys CA-B-NJ and CB-NJ.

Let C~,p~ be a metric space. The metric p is called intrinsie

if for any X,Y~ the distance pCX.Y~ is equal to the greatest

lower bound of the lengths of curves (measured in the metric p)

joining X and Y.

A curve ~ in (~.p/ joining points X,Y~ is called a 6sodesic

sssment if its length is equal to pCX.YJ.Both pCX.Y/ and the

geodesic segment with ends X and Y are denoted by XY.

A trian8le T = XYZ in a metric space (~.P/ (where X,Y,ZE~) is

a set consisting of points of geodesic segments XY,XZ and

YZ,called the sidss of T.The points X1Y,Z are called the vertices

of T.

Let 2 and Y be two geodesic segments in (~.p/ that have

common starting point O.On 2 and P respectively we choose

arbitrary points X and Y (X1Y ~ 0) and x = OX.y = OY1z = XY.We

consider a triangle T' = X'Y'O' in a Euclidean plane.with lengths

of sides O'X' = x, O'Y'= Y,X'Y' = z and denote by r~p(x.y/ the

angle in T' at the vertex T'.The (upp9r) an8~e between 2 and P is

by definition the quantity

The ar9a oCT/ of a triangle T = OXY is understood as the area

of the Euclidean triangle T' = X'O'Y'.
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Th6 6XC6S5 0/ the trian8Le T = XYO is the quantity

6CT~ = a + ß + r - n ,

where by Ojß and r we denote the angles of T at the vertices

o/X,Y.

Define the upper and lower curvatur65 KCT~ and KCT~ of a

triangle T as foliows. If oCT~ ~ O,then

KCT~ = KCT~ = 6CT~/oCT~.

For adegenerate triangle (i.e.oCT~ = O)/set

}(CT~ = { + 00

- 00

if 6CT~ > 0

i f 6CT~S: 0,
KCT~

= { + 00 if 6CT~ ~ 0

- 00 i f 6CT~ < o.

The upper and Lower curvatures of a local1y compact metric

space C..M..P~ with intrinsic metric p at a point P in .At. are

introduced as foliows:

where triangles T contract arbitrarily to the point P.

The upper and Lower curvatures 0/ C..M.,p~ are defined as

KC.Al) = in/ (~CP~),Pe.A\.

1.2.Spaces of bounded curvature. A locally compact metric space
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with intrinsic metric is called a space 0/ bounded curvature if it

satisfies the conditions:

Ci) The condition 0/ local 9xtendability 0/ ($90desic

sesmsnts: For each point of ~ there is a ball of

small radius with center at this point such that i f

sufficiently

two points

lying inside the ball can be joined by a geodesic,then this can be

extended so that these points become interior points of the

extended geodesic,

(ii) The condition 0/ ~oca~ curvature boundedness: For each

point P6M the upper and lower curvatures at P satisfy the

inequalities: K~(P~ < + 00, ~(P~ > - 00 .

Smoothness Theorem CN1,N2J.ln a space 0/ bounded curvature

(~,p~ it is possib~G ta introduce the structure 0/ a Ri emanni an

manifo~d with the he~p 0/ ~oca~ harmonic coordinates,which form an

'h I 3, a h .
at~as ~ 0 smoothness C ,and the metric tensor in the armDnLC

coordinates belon($s at ~9ast to lor each pe [f , +

functions having

and OE (0, t~.

Here by w2 we denote Sobolev's class of
p

second generalized derivatives summable to the power p.As

usually we use the notation Ct,Q for

c 1ass.

the corresponding Hölder

The Smoothness Theorem enables us lo define the sectional

2-dimensional direclionscurvatures K/(U~ V) w.r.t.

and bivector U~ V is not equal lo zero) which

u~ V

are formally

calculaled "almest everywhere" in ..M. by the compenents (8 ..) ef a
LJ

metric tensor w. r. t. atlas l). We shall also bring into

consideration the formal curvature tensor R/(U,V~W that is defined

almost everywhere in A w.r.l. n-dimensional Hausdorff measure {n=
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dirn. ~). The following theorem shows a geometrical meaning of the

formally introduced curvature tensor.

Let V/V be vectors at a point P of aspace of bounded

curvature C~?p~ such that

lVI = lVI = t and 0 = VA V ~ o. ( 1 . 1 )

Let T = P8C be a triangle in C~?p~ .We introduce the notation

UC8~
-t= exPp C8~/P8, uec~ = -t

exPp ec~/pc.

This notation is meaningful provided that the triangle T is

small enough.

Theorem 1.1 [N4 J . Le t ( ~? p:J bG a space 01 botinded

curvattire.Then there is a set 0 ~ ~ 01 zero n-dim.ensional

Hav.sdor11 msastire (n = di m ",+L) tha t i nc t tiMS the 59 t ([) t 0/ at l

points in ~ at which ths m.etric tensor does not have second

derivatives. At each point Pe ~'O the loltowine condition i5

sat iS/iGd:

For arbitrary pairs 0/ vectors U,Ve ~p satis/yinS (t.t:J there

i50 a s9qtienCe (T
m = PB C )

m m m=l, 2? .. 0/ non-de89nerated

trianete50 that contract to P in the direction 0/ the pair CU,V:J

(that is, U(B :J--..+U, U(C )--..+V and 0 = ue B ~A vec :>--"+0 = UA V )
m m. m. m. m

stich that the limit 01 the ratios 6(T :>/o(T :> exists and
m m

= l im o(T :>/o(T :J, m--..+ 00.
m m

1.3.Generalized Bianchi identity. Let x :U ~ ~

8
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harmonie system of coordinates in a neighborhood U of a point Pe ~

of aspace of bounded curvature C~,p~ (here ~ is a domain in ~n,

n = dirn. ~,
t 2 nx = Cx ,X, ... ,x J We keep the notation

for the components of the metric tensor

R 1<1.coordinates x. We also denote by r .. ,r. , 1 and R, '1 IR . . L..1 I
t) tJ,~ t,J~ t),~~

i,},k, t = 1,2, ... ,n, the Christoffel symbols and the components

(8. ,). . 1 2
t) t,)= , , ... ,n

W. r. t.

of the formal curvature tensor RfCU, v~w. It follows from

the Smoothness Theorem that 8, ,6~C~~ ,and hence , r~ ., r, . kE'; ('§~
tJ P tJ tJ , p

for any pelt,+ co.),i,},R = 1 ,2, ... , n. Theorem 1 . 1 ensures that in

addition k.
R. l . IR. . L..l E L C'§:J I

t, J tJ,~ co
provided that u is small

enough.Therefore, the numbers

k
IR. l.1

t, J co
R

= 9SS su.p ( IR. l'( xJ I), IR. . 1.0.2. 1 =
t, } tJ,~

ess su.p ( IR. . l-l (XJ I ) I
tJ,~ co

(XE '§; i , ) , k, l = t, 2, . . . , n) are f i n i te .

To explain motives of our generalization of Bianchi identity

let us first assume that 8 . .,i,} = 1,2, ... ,n, belong ta class C
co

•
tJ

We introduce differential forms of degree l,namely

and i
wk.

k. .
= r . .ct.xl,

t}
i, R = t .. 2,. ... , n ..

t 2 n iNote that we consider collections Cdx ,dx , ... ,dx :J and (w
k

)

as the tensor differential forms

dx
1 2 n= (dx ,d.x ,~ ~. ~dx ~ and

(see [Ca]).We want to recall also the concept of Cartan's absolute

exterior differential D.By definition the absolute exterior
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differential DY of a vector field Y is the following tensor

differential form of degree 1 : DYCX,) = is the

Levi-Civita connection in T~. In terms of coordinates this formula

can be rewritten as fellows:

D~ = dyk + w~ yi, k = 1,2, ... ,n,
t

( 1 .2)

where d means Cartants exterior differential.

Let Z = (Zt ,2
2

" .. ,Zn,) be a co-vecter field.One can easi ly

show that

( 1 . 3)

We mention that the curvature form is defined as foliows:

nl.' =
t

2 ~'
L, rs dx

r
" dx5 ,

where U"II means the exterior product of differential forms.

One can easily obtain the formula for the exterior absolute

formdifferential of a tensor differential (~~'] ef the second

order frem (1.2), (1.3) and the following equation

t _2 n
where X = (X ,X-, ... ,X,) and CYt'Y2"" ,Yn,) are parallel vector

fields.For smooth Riemannian manifolds the Bianchi identity means

10



or roLj = O,i,j = 1,2, ... ,n,

(see [Ca]), where OLj is the form OL, with raised subscript j.
J

We recall that

(1.4)

m 00We denote by ~ocy~ the set of C -smooth scalar differential

forms ~ of degree m,which are compactly supported in the domain y.

Making use of the obvious equation

and (1.4) we get the following equation:

( 1 . 5)

for any lfJE ,,~-3C~;>.

We can generalize this situation as foliows. Let (~Lj) be a

tensor differential form of degree 2.We assume that the

coefficients of ~ij = ~ij dxr
" dxs belong to class L , C~;> for

rs p,~oe

every pel1,+a0, that is

~ijE L (~' [t-'w ,;;y./ , pe , +u.A..-' ,
p, "oe

i , j, r, S :::; t, 2, ... , n.

Then ~ defines the tan50r currant:

1 1



So, in the case of Coo-Riemannian manifold Bianchi identity

can be rewritten as

( 1 . 6)

Let us now turn to the case of aspace of bounded curvature.

Lemma 1.1. GensraLieed Bianchi identity Ct.6~ hoLds in a

space 0/ bo'Unded c'Urvat'Ure.
&

Proof. 0 We construct a collection (8, ,) of Coo-Riemannian
l.)

metrics converging to the metric of the space of bounded curvature

under consideration taking advantage of the operation of the

Sobolev averaging.

Without lass of generality we may assume that harmonie

can be extended to chartx x':Ut~~t such that
&

(CU ~ ?J.t , '§ ~ '§t)' The averaged metr i c (8··), '-t 2
l.J t,J-, , ... ,nx' I = xU

coordinates

is introduced as follows:

8· ,tJ
- U

&

where ~ : ~n~~n is the averaetns kerneL,that is,a function for

which the following conditions are satisfied:

(i) The support of ~ is contained in the unit ball ~(O,t~~ ~n

( i i) 4>e Coo([Rn~

12



(iii) f ~~ du = i.
[Rn

Components of the averaging metric (8, ,) belong to class
l-J

Coo(~) and the following bounds hold for any pe[i,+aV, oe(O,i):

&

let')' - 8· .1 t
tJ C ,oC~':>

&

I8, . - 8, . I_2 -----400 a 5 &--..+0 +.
t) tJ W-C~.:>

p

This fellows from the Smoothness Theorem and standard

properties of Sobolev averaging CG-RJ.
&. &.

We denote by w~ and n~ connection and curvature forms that
t t.

&

are calculated by metric tensor (8, .).Relying on the latter
l-J

bounds one can easily prove the following estimates:

& . ,

IwJ. - wJ.1
t t f' 0 (~.:> '

&, ,

InJ. - nJ.1
t t

as &---+0 + ( 1 . 7)

for every pe [t, +00)

&

and oe (O,t~.Since (1.6) holds for n,the

following equation holds (see (1.5) ):

G ..

-ntJ 1\ )" ~ ] = o "I n-3VJE"0 C~~ ,& >0.

The bounds (1.7) ensure that both sides of the latter

equation converge to the same expression for & = O.So, we conclude

that for & = 0 the same equation holds, what means that

Generalized Bianchi identity is true for the metrie

completes the proof of the lemma .•

(e, ,). This
tJ

1.4.Isotropic metric spaces. We reeall that a neighborhood of a

point in ametrie spaee is Linear if it is isometrie to a straight

1 i neo

13



We say that the isotropie curvature KCP/ exists at a point P

of a loeally eompaet metrie spaee C~,p~ with intrinsie metrie p if

the following eonditions are satisfied:

(i) No neighborhood of the point is linear

(ii) For every sequenee (T ) of triangles in C~,p~,
m.. m = t,2, ...

that contraet arbitrarily to the point P (i.e.the vertiees of the

triangles eonverge to P w.r.t.p: notation T ~P) the following
m

limit exists:

KCP~ = tim 6CT ~/oCT ~, T ~P
m m m..

and does not depend on the ehoiee of the sequence.

( 1 . 7)

Remark 1.1. In the ease when oCT/ = 0 the expression (1.7)

does not make sense. Therefore, the existence of the limit in (1.7)

is understood in the sense that for an arbitrary & > 0 there

exists a 0 > 0 sueh that if T is an arbitrary triangle sueh that

the distanee from P to each of its vertiees does not exceed 0,

then CKCP~ - &~ o(T~ ~ 6CT/ S CKCP/ - &~ &CT~.

A loeally eompact metrie space C~,p~ with intrinsie metrie is

said to be isotropie if the isotropie eurvature exists at eaeh

poi nt 0 f ..M.

Remark 1.2. It is easy to prove that the eurvature KCP~ of an

isotropie metrie spaee is eontinuous function.

Rernark 1.3. An isotropie metrie spaee in whieh geodesie

segments are loeally extendible is a spaee of bounded curvature.

This immediately follows fram Remark 1.1.

Remark 1.4. In distance 6eometry [81] a large role is played

by the Wald curvature KwCP~ [WJ.The curvature KW(P~ is applicable

14



only in 2-dimensional ease. A.Wald modified the definition of

~CP~ in sueh a way that it is suitable also in the

multidimensional case.We recall this definition.

A quadruple of points in ametrie space has embedded

curvature equal to h if it is isometrie to some quadruple of

points on a surface of eonstant eurvature R.A tripie of points is

called linear if it is isometrie

straight line.

to a tripie of points in a

Let C~,p~ be a metric space with intrinsic metric in whieh no

neighborhood is linear. Then C~,p~ has WaldIs eurvature K'wfP~ at

an aceumulation point P if for eaeh & > 0 there is a 0 > 0 such

that each quadruple Q of points that eontains a linear tripie of

points and is in the ball of radius 0 about P has imbedded

eurvature h(~ admitting the estimate

One CDuld also define the existence of a eurvature taking

advantage of imbedding of quadruples in aspace of eonstant

eurvature.This would bring U5 the curvature K"W(P~,

It follows from Theorem 3.1 in CKJ that

K( p~ = K' lJfp~

whenever one of these eurvature exists.So, one may replaee in the

definition of isotropie space the existenee of K(P~ at each point

P with the existente of Wald eurvature K'WCP~.The

statement eoneerning the eurvature K" (P~ is also true.
W

15
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1.5. Generalization of SchUT'S theorem to metric spaces.

Generalized Schur' s Theorem. SUPPOS9 that (..M. p:> is an

isotropie m.etrie space with Urysohn-Henser dimension (sge [H-lV]:>

sreater than two in whieh the eondition 01 toeat extendabitity 0/

Riemannian8eodesie s9smsnts hotds.Then CA.p:> is isometrie to a

manilotd 0/ eonstant eurvature.

Corollary 1.1. Let (~.p) be a toea~ty eompact matrie space

with intrinsie matrie and Urysohn-Henser dimsnsion sreater than

two. Ass'UT116 that the Wa~d eurvature J(' ltfP:> exists at each point in

..M. Then (A.p) is isometrie to a Riemannian manilotd 01 eonstant

curvature.

Remark 1.5. One may replaee loeal compaetness and loeal

extendability of geodesie segments with the condition that

be a topologieal manifold of finite dimension.

of bounded curvature. In view

what information about a spate gives the existence

Schur's Theorem.

answers a question

to

of

[K] :

Wald

thein

in

the

posed

of

o According

spatetheofpoint

Remark 1.6. Corollary 1.

curvature K'W(P:> at each

multidimensional case?

Proof ~ the Generalized

Remark 1.3 (.A\.p) is aspace

Theorem 1.1 the equality

holds for almost all points P6M.8ut then it is possible to

out a.e. the identity

write

nij = 2 K dxi~ dxi.i.j = t,2•... • n,

16



for the form nij with " ra ised ll index j (see CCaJ,p.193>'

Sy Lemma 1.1 Generalized Bianchi identity (an be written for

~ lJ,p .... ·.(ooi. j = 0,' ., t 2 ) Th' abi'" ..m. ./ t , J = , , ... ~ n. 1 s en es us

equation

to write the

f~ X(-dx i
" Wi!''' dVl + (dx""" cJ.x1'" w~ + dx i

" dx""" w~)" VI] = 0 (1.8)

for any ~ E A~-3<:~::>. We specify the form ~OE A~-3(~::> as foliows:

A ndx ,

where Re (t,2~ ... ~n)'(i~j), Je A°<:~::>j the sign
o

means that xi. is missed in this expression.

11 above ix

In consequence of the definition of w~
J

, i
,1. e. W .

J

i
= rjk.

k.
dx land

the choice of ~O equation (1.8) can be written

where we have introduced the notation

( 1 .9)

Since r t = r t
I we conclude that

1..5 s1..

17



(here and in what follows there is no summation w.r.t. i,j and R ).

Similarly we obtain

and (1.9) turns to the equation

f~ KCXJ :~RCXJ dx = 0 k = 1, ... , n
j

where we denote by dx the volume element dx1~ dx2~ ... ~ dxn
.

The latter equation means that a generalized derivative of

the distribution

---+J CK,jJ = f KCx) fCxJ dx

~

w.r.t. k is equal to zero for each ke (1,2, ... ,nJ.This implies

that the distribution K(x) is constant (see Theorem

3. 1.4).The latter implies that KCxJ is equal to a constant for

almost all xe ~.Sinee the funetion K is eontinuousjthis means that

K(XJ coincides with the eonstant for every x.8y a theorem of

A.D.Aleksandrov CA] CA,pJ is isometrie to aspace of

curvature .•

eonstant

Remark 1.7. In faet,one ean replaee the existenee of

isotropie eurvature at every point with the condition:

CA,pJ is a spaee of bounded eurvature sueh that a.e.the

formal sectional curvature does not depend on the two-dimensional

18



directions.

Ta argue the statement

Coo-Riemannian manifald and

canstant.

abserve that by

by hypathesis

19
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2. STABILITV IN SCHUR'S THEOREM

2.1.Weak convergence of curvatures in Grornov's class.We want to

recall the statement of Gromov's compactness theorem.

diam. (...+t.) S

Let us consider class m(n,d,V,AJ of n-dimensional compact

connected Coo-Riemannian manifolds ~ with diameter

d, volume Vol (.Al) ~ V :> 0 and sectional curvatures lJe.A\1 S A. We

now introduce a distance in the space m(n,d,V,A~ that specifies a

natural convergence.

Let C~t'Pt~1 (.A\2'P2~ be metric spaces with metrics Pt and PZI

f:(~t'Pt)---4(.A\2'P2~ a Lipschitz map. Then

dil I =

is called dilatation of f.

= inf l
{

bi.-Li.pech. hom.
Iln dil I1 + lln dil I- t I>

thatis the Lipschit2 distanc9 between ~t and ~2 provided

bi-Lipschitz homeomorphisms exist.Otherwise dL(~t,.A\2~ = + 00

Gromov's compactness theorem states (see Theorems 8.25 and

8.27 of [GrlJ):

suchsubsequenc9 {~~ ),=t 2
I'<.l (, " ••.

Given a s9quence (~~) in mCn,d,V,AJ there exists
No k=t,2, ...

and a CO-Riemannian manifold ~
00

a

that (.A\k) converS6>s to ..Moo in tN;; Lipschit2 distanc9 d
L

; th.a.t is
l
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mCn,d,V,1V is precompact in a lar8er c lass 0/ non-re8'lJ.. lar

Riemannian manijolds.

In fact, every limit in Gromov's theorem is compact space of

bounded curvature and the Smoothness Theorem can be applied.Hence,

the metric tensor 8 belongs to class w2n Ct,a for any pe[t,+a0
00 P

proved

or more

wastensorsmetricof

and aeCO,t~.The precompactness of Gromov's class w.r.t.

11 C
t ,agenera y -convergence

independently by S.Peters [PJ,O.Durumeric [DJ and R.E.Greene and

H. Wu [G-WJ. We would like to emphasize that while the

t Ot
C ' -smoothness of the metric tensor of the limit space in

compactness theorem is obviously a special case of the earlier

Smoothness Theorem, that part of the work of the authors mentioned

above that concerns the precompactness of class mCn,d,V,AJ w.r.t.

t Cl(
the C ' -convergence was not known before.

Due to the SmoothneS5 Theorem one could hope lo improve the

Lipschitz convergence in Gromov's compactness theorem

to the we-convergence. The following example shows that this is
p

not true in general.Yet we shall formulate in a moment the

statement in which our wZ-result manifests itself.
p

Example 2.1. Let us consider the sequence of 2-dimensional

COO-Riemannian metries which are introduced as fellows.

+ C05

x, ye[ - t , t] ; k = t, 2, . . .

k.-+oo.

(d.s
2 )
k.

as

It is not difficult to show directly that the sequence

Cdx2 + dy2~ in ct,Ot norm for every OteCo,t~converges to

So, the diameters and the areas of the Riemannian manifelds
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2
<l-t,tJxl-t,tJ,ds

k
> converge to the diameter and the area of

[-f,tlxl-t,tJ w. r.t. Euclidean metric.A direct computation shows

that the curvature of ds~ is equal to

-t
2 (cos kx + cos ky~

andjhence j is uniformly bounded. In the meantime j the curvature can

not converge to zero in L -norm j since otherwise a subsequence of
p

(KCds~~) would converge to zero almost everywhere.

We complete the consideration of the example by the

observation that the metrics ds; can be realized on a torus r2,
since Ak(x,y~ are periodic functions of x and y.SOj on account of

the properties of the metrics ds~ the manifolds <y2,ds~> belang ta

Gromav's class m(2,4,t,t~ for sufficiently large k.

Now we are going to state the weak convergence of curvatures

tof a C -convergent sequence of Riemannian manifolds in Gromovls

(lass mCn,d,V,AJ. Since the manifolds ~k are diffeomorphic to each

other for sufficiently large R j we (an assume that the metrics Sk

are given on a fixed Coo-manifold.

Let «~'8k»k=t,2,... be a sequence of Riemannian manifolds

in mCn,d,V,AJ that converges to aspace of bounded curvature <~'S>

(seemanifoldsRiemannianofthe

in the Lipschitz distance.We shall use the following statement

tC -convereencethat we call

COJ,Theorem 5.5);

There is a subsequence «~,8R » 01 the sequence «~,8k»

l

such that eiven any point p~, there is an open set U ~~

22



containin8 P and and a local coordinate chart x :U~IRn such that

x is a Cl-limit 01 harmonie (w.r. t.8k~ coordinate charts x
k

.There

1.S also an open set ~ ~ n:=l xk(~ such that il 6k is considered

n -1 1tf -1 *
as ametrie on xk(W 9R as 8

k
= (x

k
;) 8

k
• then 8k~8:; (x ~ 8

1in thG C sense on ~. namely

(2. 1 )

It goes without saying that ~ is bounded domain in ~n and the

estimate (2.1) can be extended to a bounded domain ~'2 ~ in {Rn.

We want to remark that the chart x:U~~n is harmonie w.r.t.

the metric tensor 8. This follows fram the equations

8
ij r~ . = 0, l ::;;: 1.2•... , n,

LJ

n
for components (8 ..) of the metric tensor 8 w. r. t. chart x :U~IR I

1.)

which are ensured by (2.1) and the faet that Xk:U~IRn is harmonie

system of coordinates w.r. t. Sk' k = 1,2, ... In particular,the

(formal) sectional curvature K(8~ is defined almost everywhere in

U.

We denote by K(8k~ the sectional curvature of the manifold

<~.8k> .The sequence of sectional euryatures K(8k~ is said to be

weakly convertJent to the sectional curvalure K(8~ (the notation

K(8k~~K(8~ ) if for any pair of Ct-smooth vector fields X and

y on ~ such that 6 :; in/xe& (IX(x~ A Y(x~l) >0 the sectional

curvatures of Sk' k = 1,2•... , satisfy
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Proposit.ion 2.1.

c 'Urva t ure <..At., 8>. Then

Le t ( <.Alk' 8 k» k=1 ,2, ... be a sequence in

1
C -conv9r8ent to a compact Spac9 01 bounded

Proof.D Let us denote by Rk(X.YJZ. k= 1,2•... , the curvature

tensor of the Riemannian space <..M.
k

,8
k

>.We express the

curvature KXA y(8kJ as foliows:

sectional

where we denote by IXA Yl
k

the norm of the bivector XA Y w. r.t.8Jr<'

Taking into account (2.1) we observe that the inequality

IX" y\2 2: 6 2 /2
k

holds for sufficiently large ~.

The latter bound and (2.1) imply that

On account of the uniform boundedness of the norm of X and Y

w.r.t.the metric tensor Bk (see (2.1) ) and K(6k~ we arrive at the

equality

Lim I<RkcX.Y~Y,X>/IX"YI~ - <RkCX,Y~Y,X>/IX" YI2ICC~J = O.
~-+co
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Hence
l

the desired statement fellows from the equality

for any infinitely smooth cempactly supported in ~ function f.

To simplify the notation let us denote j/IXA Yl
c by~. It is

tobvieus that ~ is C -smooth and compactly supported function in ~.

Let X~k) be the k-th basis vector
L

field of the harmonie

coordinates x
k

. We introduce the quantities

as follows:

k. i
(Co. ;).). . t ~t t,J= ,o:::::, ••• ,n

X~kJ ::::
L

Co.R:>~· X
1.. j

Since the sequence «~,6k.» is ct-convergent to <~,8>1 the

functions Cak.;)! uniformly converge to 6! . 501 the coordinates of
L t

the vector fields X and Y w.r.t. the basis converge

uniformly in ~ to the corresponding coordinates of these vector

fields w.r.t. the basis (X,}.Hence, we only need to prove that
t

S (RCk) R ) dx = 0
~ rs,pq - rs,pq ~

tfor any C -smooth compactly supported in ~ function ~I

(2.2)

where we

have introduced the notation R(k;) I

rs,pq
R for components of
rs,pq

the curvature tensor of <~'8R> and <A,8> w.r.t. charts xk. and x

respectively.

Let us denote by and so on corresponding

Christoffel symbols w. r. t. metric tensor 8
k

. Then the integral in
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the right-hand side of

transformed to the integral

(2.2) by integration by parts is

J~ { -( - r
sp,q ) iJvJr

iJx
- r

rp,q ) ~ +
8x

- ( r(JV~ r eJV - r~ r
rp 5 ~ , q rp s~, q

which converges to zero as ~~OO (see (2.1)

and completes the proof of the proposition .•

).This proves (2.2)

Similarly to the weak convergence of the curvatures one can

introduce the concept of the weak convergence of the scalar

eurvatures Se8~J to SC6J and so on.The following statement

obviously follows from (2.1) and Proposition 2.1.

2.2.Almost isotropie Riemannian spaces. Let <~'6~ be n-dimensional

Coo-Riemannian manifold (~3). Suppose that the curvature of <~,8~

is almost isotropie at a point P.Then any seetional curvature at P

is almost equal to sePJ/nCn-tJ, where we denote by $ePJ the scalar

curvature of <~,8~.

meaningful.

Hence, the following definition is

We call the quantity
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curvature anisotropy 0/ <~,8> at a point P6M.

The curvature anisotropy 0/ <~,8> is defined as foliows:

Let us make the following trivial remark.

We introduce the notation:

where l!, VE~p J V" V ~ o.

In consequence of the formula for sectional curvatures we

have that

use the notation

for any non-zero bivector 0 = X" Y. Here and in what follows we

8 rs ,}qh = 8 rk 8 sh - 8 rh 8 sk·

Following the arguments of (CaJ,sec. 172,we obtain that

R
rs, Jtifl. = - CK + & ~kJ 8 ~k.

rS,r<Jt. rS,r<JI"
(2.3)

where & L.k = &rs, r<JI" sr, kh. = &kk ,k,h,r,s
~"rs

= t,2~. ~ ll.n and

& = &CX " X J,rs,rs r s & = &CXr " CXs+XhJJ,rs,rh
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provided that r.s.k and h are different.

It follows fram the definition of &(8~ that

(2.4)

The above computations enables us to write the bound for the

tensor EC8~ that (an be written in a loeal system of coordinates

as foliows:

E ..
1.,)

5= Rt ~ - 4
t) n °ij .

Lemma 2.1. For any <~.8~ in m(n,d,V,~ thsre is a constant C

dependin8 on n,d,V and A such that

Proof. 0 Sy (2.3) and (2.4) we only need to know the bounds

for Isijl and leijl. Harmonie coordinates construeted in (J-K]

and estimates of 18 .. 1 t due to (J-K] bring us the desired
tJ C ,a

bound .•

We shall use the following well-known equation relating E(e~

and the scalar curvature 5, that is a consequence of the Bianchi

identity:

oS .
axt = E ,~,

pt q
(2.5)

where we denote by (Spq E .~, the covariant derivative of the
pt q

tensor field sPQ E ..
pt

We complete this section with the following statement that
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will be a crucial step in our applications of Generalized Schur's

Theorem.

be a s6quence of

Riemannian spaces in Gromov~s ctass men~d~V~~ for which the

fottowin8 condition is satisfied:

tim &e8
k

:> = O.
k---+oo

Then 6'very t imi t Spac6 01 the sequ6nce

W. r. t. the Lipschi tz distance is iso1n6'tric to a Ri6rnannian space

of constant curvature.

Proof.D First we observe that by Gromov·s compactness theorem

at least one limit space exists.As we have mentioned any limit

space in Gromov·s theorem is aspace of bounded curvature. So.' on

account of the Generalized Schur's Theorem (see also Remark 1.7)

to prove the proposition we have to establish that the formal

sectional curvature of the limit space does not depend on two-

dimensional directions.

Without 105S of generality we may assume that the sequence

1
«A~8k~)k=1~2f'" C -converges to the space of bounded curvature

<Af8~ and, hence, the statements of both Proposition 2.1 and Lemma

2.1 are applicable to the sequence «~f8k~)k=lf2f'"

Let X and Y be a pair of continuous vector fields in ~ such

that infx~ (IXex~A yex:> I) ~ O. Sy hypothesis the following bound

holds:

S<8
k

:>eW
~ KXA ye8k:>e~ - n (n-l:> ~ &C8k :> f k =

29
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Let us consider the function

= ..w--x-u) / n
"r- Y1 n I

where ~~ is the averaging kernel (see sec. 1.3), n > O.

On multiplying (2.6) by ~n,x cu) I integrating

~ and also taking into account that

J 4> C~ du = t
[Rn Tl, x

we arrive at the inequalities

over domain

Since KXA yC8h)~KXA yC8~ ,sCSh)~SC8~ (see Proposition 2.1

and Corollary 2.1) and &C8~~~O as ~~OO, we obtain that

n
SC S;)Cx;)

=
n Cn-t::>

5Cs::>CU::>
n Cn-t) ) ~Tl.x C~ du = 0,

n
where we denote by KXA y(8) and the Sobolev averaging of

corresponding functions w.r.t. parameter n.
n n

Since KXA yC6~~KXA yCS::> and sC8~~SC8) as ~~O a.e. in~,

we arrive at the equation

30
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whieh holds fer almest all x~, provided that X and Y are fixed.

Without 1055 of generality we may assume that the latter

equation holds for the following pairs of veetor fields: X
r

x '5 I

X / (X + X :.> ,; CX + X :.>
r s h r s CXJq, + where

different and take values from t~2~ ... ~n.

arguments of Lemma 2.1 we conclude that

Then following the

R
rs~Rh

5
= n (n-t) 8 rs ,kh

for almost all x~. The latter means that K(8~ is isotropie and by

the Generalized Schur's Theorem <~,8~ is a spaee of

eurvature .•

constant

2. 3. Stability of the differential strueture of al most isotropie

spaees. A Riemannian manifold <~,8~ is said to be &-isotropic if

Let us consider Gromov's elass of eompaet Riemannian

manifolds m<n,d,V/A). We claim the following statement.

Theorem 2.1. L9t n ~ 3. Then ther9 is a positive constant

&Cn,d,V,~ such that any &-isotropic Riemannian manifold

<~'8~Effi<njdjV/A) with 0 ~ & ~ &Cn,d,V,A:.> is diffeomorphic to a

compact hyperbo~ic~ f~at or spherical Spac9 form.

RemarJc 2. 1. In the case of compact positively curved

manifolds there is stronger result by E.Ruh [Ruh]. Loosely

'speaking in the theorem of Ruh & depend only on the dimension.

M.Gromov and W.Thurston eonstructed a sequence «~Jq,'8Jq,» of elosed

Riemannian manifolds with curvatures satisfying
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~ -[ I

where Ak~ -[ as h~oo and <~R,8k> carries no metric of constant

negative curvature (see [G-TJ>. In our theorem the curvature may

have arbitrary sign. The examp1e by Gromov-Thurston shows that

additional assumptions compared those of the theorem of Ruh are

abso 1ute 1y nec essary. I n Addendum we sha 11

results.

give more general

Remark 2.2. If in addition to hypothesis of Theorem 2.1

<A,8> is simply connected then it is diffeomorphic to a sphere Sn.

Proof. 0 On the contrary to the statement of Theorem 2.1 let

us assume that there are sequenc.e

numbers and a

a

sequenc.e of

<& )
k. k=[ ,2, ...

Riemannian

of positive

manifolds

c.onditions:

in mCn,d,V,10 satisfying the following

(i) &k~O as k~oo

(ii) &CBk :'> ~ &k.

(iii) For sufficient1y large k the manifo1d <Ah,B
k

> is not

diffeomorphic. to a compac.t space of constant curvature.

Making use of Cheeger·s finiteness theorem [Ch] we c.an assume

that the metries 8k.,h = 1,2•... , are given on a fixed manifold A .

Gromov·s compactness theorem and Proposition 2.2 are used to

yield the metric 8 of constant curvature on the manifold A. This

obvious1y contradicts to

Theorem 2.1 .•

( i i i ) and we comp1ete the proof of

2.4.L -bound for the deviation of a curvature from a constant. Let
p

<A,e> be a compact space of bounded curvature and pe [1,+00]. The

set of measurable functions I

32
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measure on ~ ) satisfying the inequality

will be denoted by L (.Al).
P

The average value of the scalar

curvature S(P~ of <~,6> is defined as the quantity

S :::
a.

t
Vo~(.Al)

J S(P:> d Vol( 6:>·
~

In particular
j

the notation just introduced can be applied to

COO-Riemannian spaces.

Theorem 2.2. Lat n ~ 3 and t $ p < +00 . Then eiven v :> 0

there is &(n,d~V,A,p~ :> 0 dependine only on n,d,V~A and p such

that

for every c-isotropic Riemannian manifold <~,8> in m(n~d,V,AJ with

Remark 2.3. I.Gribkov [GrilJ constructed example of (an open)

manifold with A = p =+00 for which the latter bound does not hold.

Remark 2.4. In the proof of Theorem 2.2 we are going to make

use of modifications of Lemmas and 2 in [RuhJ. We would like to

emphasis that no new ideas are needed to prove these auxiliary

lemmas besides those used by E.Ruh.However, the statements we need

are somewhat different from those in (RuhJ and for the reader's

convenience we want to give the proof.
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In what follows we shall consider a harmonie system of

coordinates x:U ~~~e4r) ~n in a compact Riemannian manifold

<~,6> (here r > 0 and ~e4r) = ( x~n lxi <4r) )1 such that the

bound (2.1) (where ~ = ~e2r~ ) holds. We shall assume that

dim .At ~ 3.

We keep the notation sep~ for the scalar curvature of <..MI 6>

and consider the averaging kernel ~z~ (see (i), (ii) and (iii) of

sec. 1.3) and a cut-off function e:~~~ with support in lei< 2r

and eez~ = t for leI S r. We introduce the notation:

sex) t= -n.r
f q; (X-Y ) Sey:> dy,

[Rn r

tXx:>

where c = -nen-2)~ ~ is equal to the volume of n-dimensional
n n' n

un i t ba 11 i n [Rn.

Lemma 2.2. LGt peCt,+a0. Th6n th6 jolZowin8 bound hoZds

where Cen,d,V,~ is a constant dependin6 on n,d,V,A,p and r.

Proof. 0 Integration by parts implies

-t 0
- c f

n [Rn ox i (
ee Ix-y I:> )

n-2
Ix-YI

-t J+ c
n [Rn ox i (

8C Ix-y I:> ]
n-2

·Ix-Yl

3.4

(2.7)



Taking advantage of the obvious equation

= r -n f 4> (Y-X) asc.y~ dy
[Rn r axl

and (2.5) we arrive at the formula

= r -n f 4> (Y-X)
[Rn r

(2.8)

(2.8) I (2.1) I Lemma 2.1 and integration by parts bring us the

estimate

asc.x::> I ~ C'Cn,d,V,A,r~ &(6~' xe$(r::>.
axl

(2.9)

Inequality (2.9) together with the smoothness property of the

kernel yield the the bound of the first integral in (2.7) claimed

in "Lemma 2. 2.

Similar trick is used to yield the bound for the second

integral in (2.7>' Namely, we replace DS/öyi by (8k l. Sy

integrating by parts we arrive at integrals the worst of which has

the kernel of the form

[
ac Ix-y I~ ] .

n-2
Ix-YI

We observe that for lx-YI < r this is a singular kernel (see

(Ca-Z]) and so, the Calderon-Zygmund inequality is applicable.This
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bring us the desired estimate of the second integral in (2.7) .•

We denote by ~ the Laplace operator, i.e. 6~t ~
axkax l .

Lemma' 2.3. Let peCt,+a0. Then the foltowin6 bound hotds

I~ Q - CS - SJI L C~Cr) $ CCn,d,V,A,p,r) &CSJ,
p

where CCn,d,V,A) is a constant dependine on n,d,V,A,p and r.

Corollary 2.2. 15 - SI
L
C~Cr) ~ 2 CCn,d,V,A,p,r) &(8)·

p

Proof ~ Lemma ~D Let (Cy) be a cut-off function such that

{Cy) = t for lyl $ 3r and (Cx) = 0 for jyl ~ 7r/2. Since Ix - Yl ~

IYI - lxi I it follows that for x~(r~ and IYI ~ 3r the function

eClx-yl~ vanishes. Hence, one may replace the function CS - S~ by

the function { es - S~ which is compactly supported in ~n and

equal to es - 5~eYJ for Iyl $ 3r.So, we can express 5

foliows:

5 as

sex) - sex) = cn-tS
mn

t ~ ([Sey) - 5Cy)] (ey) dy.
LI' Ix-y In-2

Taking into account that eClx-YI) = t for Ix-YI ~ r, one can

write the difference ~ Q - es - 5) in the form:

C -tJ {eeIX-YI) -1 A }IexJ = n n-2 u SCy) (Cy) dy-
Ix-yl~ r IX-Yl

{

- cn-tJ {eeIX-Y~~2-t A (SCy) Cey))} dy , x~Cr).
lx-yl~ r Ix-YI

36
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Similar to the proof of the estimates for the two integrals

in (2.7) after integration by parts and taking advantage of (2.5)

and (2.9) we establish the desired bounds for integrals in (2.10).

We only want to remark that the function

sc Ix-y I.:> -1
n-2Ix-YI

is at least twice-continuously differentiable for Ix-YI ~ r. So/

here we do not need the Calderon-Zygmund inequality .•

Proof QL Theorem ~ 0 On the contrary to the statement of

Theorem 2.2 let us assume that there are a sequence (& )
k. k.=1 ,2, ...

of positive numbers , a sequence of metric tensors (8 ) _
k. k-f ,2, ...

on a fixed manifold A and a positive number v satisfying the

following conditions:

(i) &k.~O as k.~oo

(ii) &(6k.) :s: &k

(iii) The sequence (<A,Sk»k=f,2, ... lies in mCn,d,V,A':>

(iv) The following inequality holds

where we denote by SCk.)CP.:> and SCk.) the scalar and average value
Cl

(R)
of the scalar curvature 5 w.r. t. the metric tensor Sk where

R = 1,2, ...

Let us consider the Sobolev averaging of the function

S(~CP~ and the constant function SCJtU w.r.t.
Q.

identities:
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t= -nr
S 4> (X-Y )

{Rn r

t-n
r

Gromov's compactness theorem and Proposition 2.2 ensure the

existence of a· subsequence «~,8~ »1=1 2 of the sequence
I'<.z. " " .••

C
l .-converglng to a spaceof constant curvature

<~,8>. Without 1055 of generality we may assume that

«~,8~ »1=1 2
I'<.l. " " •••

Corollary 2.1 yields that

=< k.:> - Ck.:>5 Cx)~ Sex), 5 ~ 5
0. 0.

as k---+ +00 (2.11)

Let us first obtain estimates for peCl,+aV.

We observe that due to standard properties of the Sobolev

averaging and (iii)

-=:C k:J
sup _ (IS (x)!L (~(r~~ ) < +00 •k-t,2,... ...0 ..........

00

(2.12)

By Lebesgue theorem (see (2.11) and (2.12) ) we conclude that

I sf}tU(x) - Sex) I L (:BCr);J ---+0, as k.~+oo .
p

The triangle inequality implies

38
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+ I~s JVCx ' - S-C 'I./ x./ L C:BCr::>::>
p

+ IS(JV - 5 I
aaL (~(r~~

p
(2.1.4)

Since <A,8> is aspace of constant curvature, S(X~ i s the

Sobolev averaging of the constant 5 and, hence
a

In the meantime, Corollary 2.2 together with (i) and (ii)

yields that the first summand in the right-hand side of (2.1.4)

converges to 0 as R~+OO. On account of (2.13) the second summand

in the same expression converges to 0 too. The equality to 0 of

the last summand in (2.1.4) is ensured by (2.11). Thus we arrive at

the equality

(2.15)

f 0 r pE( f , +00.).

Since the imbedding operator 9 :L (~::>~L (~~ (p ~ q ~f) is
pq P q

bounded with norm ~ Vo~ (~~t/q - f/p (2.15) holds also for p = t.

Because of (iii) there is a constant ro(n,d,V,~ >0 depending

only on n,d,V, and A such that r can be chosen no less than

Together with the bound on the diameter this

implies that for any pe[f,+~
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This is a contradiction with (iv) and we complete the proof

of the theorem .•

2.5. ~-stabilitY of the metric of almost isotropie space.We start
p

with the following proposition.

Proposition 2.3. Let <~,8> em(n,d,V,~ and pe[l,+a0. Then

there are positiva constants Cen,d,V,A,p~ and ren,d,V,AJ dep9ndins

on n,d,V,A,p and n,d,V,A respectively such that lor any point P6M

there is a chart nlxi < 1 ) ~ such that

componants (iS. Y 01 8 w.r. t. x satislY tha inaqua~ity:
t)

Proof. 0 Let us consider harmonie systems of coordinates

constructed in [J-K] by means of almost linear functions. Due to

what was done in this werk we only have to prove the bound claimed

in Proposition 2.3. We observe that components (8 ..) of the metr i c
t)

tensor 8 satisfy elliptic equations

Z
L 0 8· .

8 s __tl = ZR ..+ Ie8~,
oxs oxL t)

(2.16)

where Ie8~ depends only on components of the metric tensor and its

first derivatives.

Let us consider COO-smooth cut-off function { compactly

supported in lxI< 2 and equal te t in the ball lxi< t. Witheut

loss 0 f gener al i ty on may assume tha t Cl, a-bounds f or 8 .. ho I ds in
t)

the ball lxi :$ 2. Then applying theorem 15.1 in EL-UJ to the
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function { 6 .. and taking into account (2.16) we arrive at the
1.J

desired bound .•

,We keep the notation 9
0

<"8-' for the c3,a_smooth ( o.eCo,t-' )

atlas on ~ formed by charts x from Proposition 2.3.

Let us denote by m <"n,d.V.lL>
&

the subset in mCn,d.V,lL>

consisting of &-isotropic Riemannian spaces.

Theorem 2.3. Let n ~ 3 and pelt,+a0. Then /or any v > 0 there

is a positive number &(n.d,V,A,p,v':> dependin8 only on n,d,V,A.p

and v such that lor every <.At., 8> em <"n,d,V.lL>
&

with & =

&(n,d,V.A,p,v-' there extsts a metric BC 01 constant curvature on ~

/or which the /ollowins inequality holds:

w.r. t. every chart XG~O<"S-'.

Proof. 0 On the contrary to the statement of Theorem 2.3 let

tensors

us assume that there are a sequence

numbers I a sequence of metric

manifold ~ and a positive number V,

(& )
k k=t, 2, ...

(s ) _
k R-t ,2, ...

satisfying the

of positive

on a fixed

conditions

(i)-(iii) (see the proof of Theorem 2.2) and

(iv) The inequality (w.r.t. any chart xe~O(8kJ)

does not hold for every metric of constant curvature on ~.

Sy Gromov's compactness theorem and Proposition 2.2 we may

assume that the sequence «.At..Sh»k=t,2, ...
tis C -convergent to a

Ccompact space of bounded curvature <~,8 >. We want to prove that
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the metric eC satisfies the equality

where ek was defined in sec.2. 1.

According to (2.16) we consider the differential operator

L (-tV
6

Let {(x) be the cut-off function, defined in Proposition 2.3.

On account of (2.16) the function 'UCx:> = (Cx) 6. ,Cx) satisfies the
1..)

equation:

L(U:>
18

where

L ((,u.> =
8

For the sake of brevity we introduce the notation

'Uk(x) = ((x) (8k~ij(x~, L_ = Lk I L
S

= L,
8k.

Then the difference uR - U satisfies the elliptic equation
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Proposition 2.3 and the property of fC -convergence ensure

that the Lp-norm of CL R - LJCukJ converges to zero as On

the other hand, Theorem 2.2 together with the property of

f
C -convergence implies that the Lp-norm of LRCUkJ - LCtiJ converges

to zero too (see (2.17)).Hence, the function hk = u~ - u satisfies

the equation

where

(x lxi :$ 2),

with the boundary condition

h ~Cx::J = 0, Ix I = 2.

fIn addition, the property of C -convergence implies that

These equalities together with (11.8) of chapter 111 in [L-UJ

imply for p > n that

Ihklw2c~'~ ~ 0 as k~+ro.
p

(2. 18)

Boundedness of the imbedding operator 9 :L C~J~L C~::J for
pq p q

p > n ~ q ~ f (~ is bounded domain) implies that (2.18) holds also

for t :$ P :$ n and hence, for pe[t,+ocV.
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identification via harmonie coordinates XkE~o(e~~ and

namely we assign to a point P with harmonie coordinates

t 2 n
('X 7 X 7'" 7X ~ W. r. t. the chart x

k
the point p' with the same

coordinates w.r.t. the ehart x. Sy definition e~ = We

eonsider the metrie e~= i:('ec~. Due to what was done in (G-WJ the

diffeomorphism i
k

ean be extended lo a diffeomorphism i k ~~~ so

c .that in fact e
k

lS given on the whole ~ . On aeeount of (2.18) to

eomplete the proof of the theorem we only have to prove that

~ im
k---++oo

= 0 .

Ta prove the latter statement it is suffieient to establish

thal

(2. 19)

going

where id (P~ = P for P~ .

Due to (G-WJ (2.19) holds for CZ,Q-norms ( Qe(O,t~ ). We are

3 Otlo explain hew one ean improve this bound to C I -norms.

Shortly speaking the proof of (2.19) w.r. t.
2 Q

the C I -norm in

CG-WJ was as follows. The authors made use of harmonie

coordinates. Due to (J-K] one may assume that the bound

halds. Since a harmonie funetion h :U~~ satisfies the

equation
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(2.20)

it is not difficult to establish then that h ee2
,

o for any

o.E<O,t:J. In partieular I for tWD harmonie systems of coordinates

-t
x:~~~~ and Y:o/~~~t on <~,6> the function xoy belongs lo

class C2 ,o provided that ~ n ~t~ 0 and Ixoy-t I
C
2,a depends only on

n,d,V,A and o. This and also the Arcela-Ascoli Theorem bring us

2 0(
that loeal diffeomorphism i

k
converges to id in the C ' -norm as k

converges to +00 . For a given k the local diffeomorphisms i
k

can

be "glue together" to get aglobai diffeomorphism i
k

' by taking

advantage of the standard center of mass technique w.r. t. a fixed

COO-smooth Riemannian metric on ~ . We observe that in

coordinates the following equalities hold

ij L:=
Bk erk:J ij O. L := t, 2, ... , n,

and therefore (2.20) in fact brings us the stronger bound

harmonie

This completes the proof of (2.19) and hence
j

Theorem 2.3 .•
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ADDENDUM: SPACES WlTH SMALL INTEGRAL ANISOTROPV

Here we shall state a stronger version of Proposition 2.2 and

claim theorems concerning stability of differential structure and

metric of spaces with small integral anisotropy. We would like to

remark that bounds of the curvature anisotropy &(8,P~ of <~,6> at

a point P6M are equivalent to bounds of the norm of the tensor

R, . L.l ­
1. J • r<.

5

see sec.2.2 and c) of Theorem in CGr3J.So, in our statements

I&C6.P~1 can be replaced with IE(P~I.

First of all we generalize Proposition 2.2 as follows.

Proposition A.l. Let

Riemannian spaces in Gromov's class mCn.d.V,AJ for which the

jollowin8 condition is satis/ied:

lim J &C6k'P~ ~P~ d Vol(6k~ = 0
k--++oo .A\

/or 6very Coo-smooth and compactly supported function ~ on ~ .

(A. 1 )

Then every limit SpaC90/ the sequence «~.8h» k.=t ,2•...

w. r. t. the L ipschi tz distance is isometrie to a Riemannian SpaC6

0/ eonstant eurvature.

Corollary A.l. The statement 0/ Proposition A.f

provided that (A.f~ is replaced with the condition

Ie(6 k.' p~ IL (.Al) -.--+0 as k--+oo .
f
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We want to remark that convergence of the sequence

(&C8k,P~)k=t,2,... to zero in Lt-norm implies the existence of a

subsequence converging to zero a.e. Since &(6k'P~ are uniformly

bounded and P belangs to a bounded domain j the Lebesgue Theorem

yields that the subsequence converges to zero w.r.t.

any pel f , +00).

L -norm for
p

Praof ~ Proposition ~ 0 Let us keep the notation of

Proposition 2.2. On multiplying (2.6) by ~n,x (~and integrating

over domain ~ we arrive at the inequalities

(A.2)

where we denote by 18k(~1 the determinant of the matrix

(8· .(~), '-1 ?LJ t,J- ,~, ... ,n

Sy hypothesis the left-hand side and the right-hand side of

(A.2) converge to zero as ~~+oo Taking into account (2.1) we

arrive at somewhat different conclusion compared that of

Proposition 2.2: for every n > 0 the Sobolev averaging of the

function

coincides with the Sqbolev averaging of the function
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sc 8:; Ct.U I Ct.U I
n (n-l::> S

everywhere in ~. This implies the equality of these functions a.e.

in ~. Since the function 18C~1 is strietly positive everywhere in

~, we arrive at the equality of KxAy C8:; (0 to SCs:;/n (n-t:; a.e.

in ~ and the eonelusion that the limit space <~,8> is

isotropie. Then we complete the proof as in Proposition 2.2.•

As a eorollary of Proposition A. 1 we obtain the following

generalization of Theorem 2.1.

Let us introduce the set m(n,V,~:; of eompact (closed)

°Vol (.M.) ~ V >:: n,dirn. C.Al)

IKCe::>'CO(.Al) ~ ~. Here we have introduced the

IKCe:;ICOC.Al) for the maximal absolute value of sectionalnotation

COO-Riemannian manifolds <A,8> with

and diam2
C..Al)

curvatures.

We say that a compact Riemannian space <~,e> has &-smal!

intGsral anisotropy if

It is obvious that every Riemannian space <A,S> in mCn,V,~:;

is conformally equivalent to aspace in m(n,~,V,t::> Therefore,

one can repeat the proof of Theorem 2.1 and apply Proposition A.1

and Corollary A.l to get the following statement.

Theorem A.1. Let n ~ 3. Then there is a positive constant

&('n,~,V::> dependins on n,~ and V such that any Riemannian manifold

<~,8>Em(n,~,V::> with &-small inte8ral anisotropy for O~ & ~&(n,~,V::>

is difleomorphic to a compact hyperbolic, flat or spharical Spac9

form.
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Remark A.l. In the (ase of negatively (urved manifolds of

dimension greater than 3 the volume of a manifold (an be bounded

below by diameter (see [Gr2J/1.2). Therefore/ in this (ase Theorem

A.l (an be stated as foliows.

Let n ~ 4 and <H,8> be a compact na8atively curved Riemannian

manifolds, i.e. -IKe8J!cOefiD ~ KeS~ < 0 .Lat us assume that ona of

the followins conditions holds:

ei~ diam efiD2 IKes~lcOe~ ~ ~ ,

Ci~' Vol e~2/n IKe8~lcOe~ ~ ~ .

Than there is a positive number &Cn,~~ dependinS only on n

and ~ such that every n-dimensional compact Riemannian manifold

with &-srnall inteeral anisotropy for &e[O,&en,~~] satisfyinS Ci~

or Ci~' is diffeomorphic to a hyperbolic space form.

The (ase of positively curved manifolds is contained in

Theorem A.1. If one restricts himself by considering t/4-pinched

manifolds then & can be chosen depending only on n.

We want to note that while Theorem A. 1 does not give explicit

bound on &Cn,d,~~ it gives lhe stability of differential structure

under weaker assumplion of integral smallness of anisolropy and

is applicable to Riemannian manifolds with curvature of arbitrary

sign (compare with [YeJ/Theorems 4 and 4' / see also introduction

in [Ye]).

Now we turn to astability of a melric of spaces with small

integral anisolropy. We observe thal &e6~ in the estimates of

Lemmas 2.2 and 2.3 can be replaced with

and hence/ we arrive at the following statement.

Theorem A.2. Let n ~ 3 and t S P < +00 . Then siven
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there is &en,d,V,A,p~ > 0 dependine only on n,d,V,A and p such

that

for 6v6ry Riamannian mani/old <A,8> in men,d,V,~ with e-small

int68rat anisotropy tor any & e[O, &en,d,V,A,p~].

As a corollary we claim the wC-stability for spaces with
p

small integral anisotropy.

We say that metric SC is v-closa to 8 w.r. t. wZ-norm
p

i f the

bound stated in Theorem 2.3 holds.

Theorem A.3. Lat n ~ 3 and pe[l,+ocO. Th6n for any v > 0 thar6

is a positiv6 numb6r &en,d,V,A,p,v~ dependine only on n,d,V,A,p

and v such that for 6v6ry <A,e> Emen,d,V,AJ with &-smal!

0/

constant

metries

ofmetrics

sayFor the sake of brevity we shall

of mCn,d,V,~ ar6 wZ-stabl6 in th6 class 0/
p

curvature w.r. t. the int9sral anisotropy.

anisotropy for &elO,&en,d,V,A,p,v~] th6ra exists a metric eC

constant curvatura on A which is V-CLOS6 ta 8 w.r. t. w2-norm.
p

that

Let us denote by men,d,V;-A,O) the subset of men,d,V,AJ

consisting of manifolds with curvatures satisfying the bound

-A ~ Ke8~ < 0 .

Corollary A.2. Let n ~ 4. Th6n the metrics of men,d,+oo;-A,O~

and men,+oo,V;-A,O~ are wZ-stabLe in the class 0/ mstrics 0/
p

constant neeative curvature w.r. t. the int9sra! anisotropy fOT

9very pell,+ocO.

so



Let us denote by mCn,+oo,+oo;t/4,t) the set of t/4-pinched

Riemannian manifolds,i.e.

t /4 < KC 8:> :S t .

Corollary A.3. Let n ~ 3. Then ths metries of IDCn,+oo.+oo;t/4,tJ

are w2-stable
p

in the cl.ass of metries of constant pos i t ive

curvature w.r. t. the int98ral. anisotropy for 9very peft.+aV.
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