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by
Conrad Plaut

A corollary of the Rauch Comparison Theorem ([CE]) 1s that,
in a Riemannian manifold M of sectional curvature £ K, the
exponential map at any point p has maximal rank on B{(O, "//K) =
Tp. One can then "1lift" the metric of M to B(0, ®/YK), so that
exp, becomes a local lsometry. For K £ 0 this procedure yields a
covering map from R" to M and proves the Hadamard-Cartan Theorem.

The main result of this paper is that the exlstence of a
"1ift" of the distance function can be proved using only general
distance-angle comparisons, which- allows the Hadamard-Cartan
Theorem to be géneralized to the class of inner metric spaces of
locally bounded curvature. This lifting of the metric is also
applied in {Pl] to construct a local action in the tangent space
similar to Gromov's "fundamental pseudogroup”" ([GLP]).

An Inner metric space (X,d) 1is a metrlc space X with
distance ‘d such that for all x, y € X, d(x,y) is the infimum of
the lengths of curves a joining x and y in X. Such spaces occur,
in particular, as Gromov-Hausdorff limits ([G]) of Riemannian
manifolds, and understanding their geometry can be useful in
convergence and finiteness problems. For example, the
Convergence Theorem for Riemannian manifolds of bounded secticnal
curvature {(above and below), volume {below)} and diameter (above)
([GW], [Pe)) follows easily from:.the results of {([N]) (cf.
comments in [P2] and [PD}). The_main theorem in the present

paper implies that the Gromov-Hausdorff 1limit of Riemannian



n-manifolds Ml having a) sectional curvature 2 k and < Kl. with

Ki —> 0, b) volume 2 v, and c) diameter £ D, is covered by R",

A few definitions and will be recalled below. For more
details, and examples, see [P2]. All curves are assumed
parameterized proportional to arclength. Let X be a locally
compact, metrically complete inner metric space. Every pair of

points x, y € X can be connected by a minimal curve whose length
realizes d(x, y); a curve which is locally minimizing is called a
geodeslic. The notation Ton is reserved for a geodesic from a to
b. In a space with locally bounded curvature {([P2)) there existsa
an angle «(y, P) between any two geodesics 7y, F starting at a
common point, and every point x € X is contained in a strictly
conQéx ball B, that is, every y, 2z € B can be joined by a unique
minimal curve lying in B, For any K, the upper (resp. lower)
comparison radius cx(x) {resp. cx(x)) is defined to be the
largest r such that the following hold for any curves Topr Vao in

B(x, r) (SK ig the simply connected two dimensional space form of

constant sectional curvature M}:

Al. There 1is &a uniquely determined (up to congruence)

triangle ABC in S, (resp. SK) with AB = d(a, b), BC = d(b, ¢c),

and AC = d(a, c), and this triangle satisfies
(¥ s ¥,/ 5 (respz) o(y,., ¥, ).
A2, There 1is a uniquely determined (up to congruence)

triangle A'B'C’ in S, (resp. Sx) with side B C of minimal

length, such that A'F = df(a,b), AC = d(a, «c¢}), and

(Y, 0 Vo) = *(V Y ), and this triangle satisfies d(b, c) 2

ac ap’ AC

(resp. ) B C .



.For any fixed K, the upper aﬁd lower comparison radii are
either everywhere infinite, or continuous into ([0, ®). At each
point X in a space of locally bounded curvature there exist K, k
such that cK(x) > 0 and ck(x) > 0,

The following lemma is well known ([CE]); it is stated here

because it is used several times later.

Lemma 1., For a triangle ABC in SK having side lengths

-1/2 . . . . .
< n-K , the distance BC is a monotone increasing function of

the angle at A, on [0O,n].

A (geodesic) triangle is a set of three geodesics

(1.b.1a°,7 ). By Al, every triangle T of minimal geodesics in a

be¢

region of curvature £ K satisfies the following property:

Property A. There exists a triangle T in S, whose sides
are geodesics having the same lengths as the sides of 7T, such

that the angles of T' are 2 the corresponding angles in T,

Definition. Let cK > 0 on U (assumed compact), and let € be
the Lebesque number for the cover of U by (open) balls which are
regions of curvature S K of maximal radius. A triangle

(71; ¥ 73) in U such that 41 = £(71) and Ca = 5(72) are both <

zl
"nH/K is called thin if for all t, d(v,(t), v, (t)) < &

min (e/4, 2n/NK - (t+2,))

Any triangle in U whose sides are minimal curves of length <«
26 is contained in a region of curvature £ K. Furthermore, if T
is a thin triangle, then there exists a triangle T  in S, whose

sides are minimal geodesics having the same lengths as the sides

of T.



Thin Triangles Lemma. Let U be a relatively compact subset

of a metrically complete inner metric sapace of locally bounded

K
curvature. If ¢ > 0 on the closure of U then every thin

triangle (YI. Y 73) in U such that 13 is minimal satisfies

2)

Property A.

Proof. For each k = 1,2 partition Y, into m minimal

segments L of length < &, where 6 is as in the definition of

' with end points denoted by a and a Let

"thin triangle,"’ ki k(1+1) '

Gl] denote a minimal geodesic from 8, to azj. which 18, for
11 - ji £ 1, wunique and of length < 286, The angles
satisfy ([R], (pP21) G(TIl. U‘j) + aiﬂij, 71(i+1’) =
“(Taj, alj) + 0!(Ofu.fz(“,“) = m, Finally, let B, denote the

segment of rk from p to a and TiJ denote the triangle with

ki!

T lies in a region of curvature £ K

o, .
and i 11

sides Bil' sz.

and therefore has Property A. Assume Tll has Property A for some

i =2 1, and denote the objects on T;l by adding primes to the

notation for the corresponding objects on Tll' By the
observation preceding the lemna, T(1+n1 has a representative
T;l*i)l in SK having the required side lengths; only the three

angle conditions need be established.

Extend B;l past a; to a minimal curve of length £(f ),

i 10i+1)

denoting by 7;1 the added segment and Bie1) the new end point.
By Property A, a(ﬁh,azi) 2 u(ﬁ“,uil), which implies
a(vy o) $ aly,,,« )i by A2 and Lemma 1, dl(aj ., a,) <
d(31(|+1)’ 321)' It now follows from Lemma 1 that the angle

condition holds for «a{f ) of T A gimilar

1(1»1)’ﬂ21 (i+1)1°

argument proves the angle condition for off ). For

a
11+ i+

the last angle, choose gecodesics ﬂ;l. in S, having a

o o
i (h+1)1

4



common end point aél having the lengths of their unprimed

counterparts and such that u(ﬂz’, a‘l) = a(ﬂ;l, a;l) and
“(C‘“: ‘X“”“) = C‘(‘X;l. C!;“‘“).' Then Property A and Lemma 1
imply that d(p ’511) < L(ﬁ‘i) and d(a1',a{“'1)) < C(rl). Since
“(521’ u(141)1) < G(Bzx’ all) + a(alx’ a(n+1:1)

= (B, o« ) ol o)

= G(Bat' a(1+1)|)'
Property A is now established for T(1+n1 by the triangle
inequality and Lemma 1. An analogous argument shows that
Property A for T implies Property A for T and

(1+1)1 (1+1)1{1+1)?

the induction step is finished.

A space X of locally bounaed curvature 1s said to have
curvature = K if every point 13 contained 1in a region of
curvature < K. X is said to be geodesically complete if every

geodesic in X is defined on all of R.

Theorem 1. Suppose (X,d} 1s a geodegically complete inner
metric space with curvature £ K and locally bounded below, and
let r = u//? if K > 0, or r = ® otherwise. Then there exists an
n such that for each p € X, there is a mapping expp : R —=> x
with the following properties:

a) expp(tv) is an arclength parameterization of a geodesic
7, starting at p, for all v € R" with vl = 1,

b) for every v,w # 0, the angle between v and w i$ a(yv,vw),

c) theré exists an equivalent metric d' on B(O,r)} < R" ‘such

that exp

o B(O, 1) is a local isometry.

Proof. Different proofs of the existence of expP with



properties a) and b) can be found in [Bel, [P2], and [PD]. The
domain of exp_ will be denoted by Tp.
Suppose expp is not locally 1-1 on B(0, r) c Tp. Then there

exist diastinct vectors v_, v

o ' Vv

++«+» €T 8uch that v. —> v_ and.
p 1 0

2'
expp(vl) = expp(vj) for all i, J. But then for sufficiently
large i, the geodesics expp(tvl)) and expp(tvo), together with a
minimal geodesic from expp((l—c}vl) to expp((l—c)vo) form thin

triangles T, which, for small €, violate the Thin Triangles

€
Lemma .

Define a new metric on B{(0O,r) as follows: For any x, y €

B(O,r), let d'(x,y) = inf {C(expp(a)), where the infimum is taken

over all curves in B(0,r) from x to y. The fact that expp is a
local homeomorphism implies that d’ is a metric, and is
equivalent to the Euclidean metric on B(0,r). Moreover, very

short minimal c¢urves can always be lifted via expp, and so

exppIB“Lr) is a local isometry.
Letting K = ¢ in Theorem 1 the exponential map is a local
isometry on all of (R",d'); [R], Satz 7, 827, implies that such a

map is a covering map. In other words:

Corollary 1. The wuniversal cover of any geodesically
complete inner metric space with curvature £ 0 and locally

bounded below is homeomorphic to Euclidean space.
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