
Short geodesic loops on complete Riemannian

manifolds with a finite volume.

Regina Rotman

August 12, 2009

Abstract

In this paper we will show that on any complete noncompact Rie-
mannian manifold with a finite volume there exist uncountably many
geodesic loops of arbitrarily small length.

Introduction.

In the paper we will prove the following theorem:

Theorem 0.1 Let Mn be a complete noncompact Riemannian manifold of
a finite volume V . Then, given a point p ∈ Mn and ε > 0, there exists a
set A ⊂ (0,∞) of measure V

f(ε) , where f(ε) = ( ε
12·108n−1n!)

n−1, such that for

every t not in A ∪ (0, ε
6 ) there exists a geodesic loop on Mn of length ≤ ε

based at the distance t from the point p.

Remarks.

(1) Theorem 0.1 immediately implies that the set of distinct geodesic loops
of length ≤ ε on Mn is uncountable.

(2) As it will be seen from the proof, the theorem also applies to closed
Riemannian manifolds and ε > 0 providing that rp = maxq∈Mn dist(p, q) >

V
f(ε) + ε

3 with the conclusion valid for the values of t ∈ ( ε
6 , rp − ε

6) in the
complement of A.

Note that the existence of arbitrarily short geodesic loops on a complete
noncompact Riemannian manifold of a finite volume also easily follows from
the following theorem proven by S. Sabourau, (see [S2]):
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Theorem 0.2 ([S2]) Let Mn be a complete Riemannian manifold of di-
mension n. Then there exists C(n) > 0, such that the volume of any ball

of radius B(x0, r) of radius r ≤ sgl(Mn)
2 , where sgl(Mn) is the length of a

shortest geodesic loop on Mn, is at least C(n)rn.

It is clear from Sabourau’s argument that one can, alternatively, define
sgl(Mn) as the the infimum of lengths of geodesic loops on Mn in order to
cover the situation when there is no shortest geodesic loop on Mn. In this
case the same lower bound for the volume of metric balls will still hold. This
will immediately imply that if Mn is complete and noncompact Riemannian
manifold with a finite volume, then sgl(Mn) = 0, as otherwise, one would
have an infinite set of disjoint metric balls with volumes uniformly bounded
from below. Their combined volume will be infinite contradicting the fact
that Mn has a finite volume.

Yet, it is not clear how one can adapt the approach from [S2] to derive
more information about short geodesic loops. In particular, the existence
of uncountably many loops of length at most ε is not guaranteed by his
method.

In this paper we also prove the following result:

Theorem 0.3 Let Mn be a complete noncompact Riemannian manifold of
a finite volume V . Then given a point p ∈ Mn there exists T > 0, such that
for all t > T there exists a geodesic loop of length at most ε at the distance
t from p.

Note that, if desired, one can combine the statements of Theorems 0.1
and 0.3 by demanding that the set A in the text of Theorem 0.1 is bounded.

In view of Theorem 0.3 one can ask if given an ε > 0 there exists T > 0
such that for every t > T and every point q ∈ Mn at the distance t > T from
p there exists a geodesic loop of length at most ε based at q. The answer
to this question is negative. To see this consider a complete noncompact
manifold of a finite volume and attach to it an infinite sequence of long
cylindrical “fingers” of exponentially decreasing radii that are capped by
hemispheres Hi. Assume that the sequence of the distances from the bases
of these fingers to p are unbounded. It is clear that there are no short
geodesic loops based at the centers of Hi.

These theorems provide an answer to one of many questions about rela-
tionship between the volume of a complete noncompact Riemannian mani-
fold and lengths of various stationary objects.
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Previously, questions of a similar nature were investigated by C. B.
Croke, who has established a volume upper bound for the length of a short-
est periodic geodesic on a surface of a finite volume, (see [C]) and by S.
Sabourau, who has indicated how to bound the length of a shortest geodesic
loop on a complete Riemannian manifold by its volume, (see [S2]) as well as
by M. Gromov, (see [G]), who obtained some estimates for 1-systoles in the
case of manifolds that are essential relative to infinity and manifolds that
have essential ends.

Note that it is not known whether on any complete Riemannian manifold
of finite volume of dimension greater than two there exists a periodic geo-
desic, (though it was shown by V. Bangert and G. Thorbergsson that there
exist infinitely many geodesics on a complete surface of a finite volume, (see
[B], [T])).

In the case of a closed Riemannian manifold Mn, there are numerous re-
sults that connect the size, (i. e. the length or the area) of various stationary
objects, such as geodesic loops, minimal geodesic cycles and nets, minimal
surfaces or submanifolds to the size of a manifold as measured either by its
volume or the diameter, (see, for instance, [Bl], [NR2], [NR3], [NR4], [R2],
[R3], [R4], [S2]).

Presently there are no general curvature-free upper bounds of this nature
for the length of a shortest periodic geodesic on a simply connected manifold,
except in dimension two, (see [C], [M], [NR1], [R1], [S1]), though many
results for manifolds with nontrivial fundamental group are known, (see
[BrZ], [CK] for surveys of these results). The most notable is the result
of M. Gromov, which gives a volume estimate for the length of a shortest
periodic geodesic on closed Riemannian manifolds that are essential, (see
[G]).

Our proof will make use of the following definition and result by M.
Gromov, (see [G] as well as recent paper by S. Wenger [W]. Wenger pro-
vides a short proof of the filling volume versus volume inequality, which is
at the core of the Gromov’s original proof. His paper also implies some
improvements of the original result, in particular, an improvement of the
dimensional constant.) We will also use some ideas from Gromov’s paper
[G] and our approach of constructing “fillings” of cycles in the absence of
short geodesic loops used in [R3].

Definition 0.4 Filling Radius ([G]). Let Mn be an n-dimensional Rie-
mannian manifold in an arbitrary metric space X. Then the filling radius
FillRad(Mn ⊂ X) is the infimum of ε > 0, such that Mn bounds in the
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ε-neighborhood Nε(M
n), that is i∗(Hn(Zn)) = {0}, where i∗ is induced by

the inclusion i : Mn −→ Nε(M
n) and, where Hn(Mn) is taken with coeffi-

cients in Z, when Mn is orientable, and with coefficients in Z2, when Mn is
nonorientable. The filling radius of an abstract Riemannian manifold is then
defined to be FillRad(Mn ⊂ L∞(Mn)), where the Kuratowski embedding of
Mn into L∞(Mn) is a map that to each point p of Mn assigns a distance
function p −→ fp = d(p, q). Equivalently, FillRadMn can be defined as
the infimum of FillRad(Mn ⊂ X) over all metric spaces X and isometric
embeddings of Mn into X.

Theorem 0.5 ([G]) Let Mn be an n-dimensional manifold. Then

FillRadMn ≤ k(n)vol(Mn)
1

n , where k(n) is an explicit function of the di-
mension of a manifold.

Gromov’s dimensional constant k(n) = (n + 1)nn
√

(n + 1)! can be im-
proved to k̃(n) = 27n(n+1)! by combining the result by Wenger in [W] with
the inequality (2.6) in [G].

Note that L. Guth has recently announced an important improvement of
the above result by showing that a complete Riemannian manifold with the
filling radius R contains a ball of radius R of volume bounded from below
by c(n)Rn, (see [Gt1]).

1 Three simple lemmas

We will begin the proof of the main results with the following three lemmas:

Lemma 1.1 Let Mn be a complete noncompact Riemannian manifold of a
finite volume V , p ∈ Mn. Let σ(t) be a geodesic ray, starting at a point p.
Then given ε̃ > 0 there exists a set A = A(ε̃) ⊂ (0,∞) of measure at most
16V

ε̃
, such that for every t∗ in Ac, (the complement of A in (0,∞)), and for

every 0 < δ < min{1, ε̃
2} there exists an (n−1)-dimensional submanifold Zδ

ε̃

of Mn with the following properties:
(1) voln−1(Z

δ
ε̃ ) < ε̃;

(2) Zδ
ε̃ does not bound in Mn \ {p};

(3) the distance between Zδ
ε̃ and the geodesic sphere S̃t∗(p) = {x ∈

Mn|dist(x, p) = t∗} is at most δ.

Proof. Let S̃t(p) be a family of geodesic spheres centered at the point
p of radius t ∈ (0,∞). By the coarea formula

∫

∞

0 voln−1(S̃t(p))dt = V .
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Therefore there exists a set A = A(ε̃) of measure at most 16V
ε̃

such that for

any t∗ ∈ Ac the (n−1)-dimensional Hausdorff measure voln−1(S̃t∗) is at most
ε̃
16 . Moreover, there exists a small neighborhood (t∗ − τ, t∗ + τ) of t∗ such

that for any t ∈ (t∗−τ, t∗+τ), voln−1(S̃t(p)) < ε̃
8 . Thus,

∫ t∗+τ
t∗−τ S̃t(p)dt < ε̃τ

4 .

Let 0 < δ < min{1, ε̃
2} be given.

Let ̺σ : Mn −→ R, σ < δ be a function that is smooth on Mn\{p} and
that approximates a distance function ̺p from the point p in the following
way: (1) ̺σ = ̺ on a geodesic ball centered at p of radius smaller than the
injectivity radius of Mn at p; (2) |̺p − ̺σ| ≤ σ and (3) |grad̺σ| ≤ 1 + σ.
The details of constructing such a function can be found in M. P. Gaffney’s
work [Ga].

Let us now consider the sublevel sets St(p) of ̺σ. For some small values
of t ∈ R, they will be geodesic spheres, because ̺σ agrees with the distance
function in some neighborhood of p. Let S̃r(p) be a geodesic sphere centered
at p with radius r smaller than the injectivity radius at the point p. Then
S̃r(p) is homeomorphic to Sn−1.

By the virtue of Mayer-Vietoris exact sequence it follows that S̃r(p) does
not bound in Mn\{p}. Otherwise, Hn(Mn) 6= {0}, which would contradict
the assumption that Mn is not compact. The sublevel sets St(p), t ∈ (0,∞)
are homologous for all t. Thus, for all t, St(p) does not bound in Mn\{p}.

Without any loss of generality we can assume that τ < δ. Let σ =
τ
2 . Consider

∫ t∗+ τ
2

t∗− τ
2

voln−1(St(p))dt, which, by coarea formula is at most

ε̃τ(1+σ)
4 ≤ ε̃τ

2 . Thus, there exists a set B ⊂ (t∗− τ +σ, t∗ + τ −σ) of measure
at least τ

3 , such that voln−1(St(p)) < ε̃ for every t ∈ B.

Furthermore, when t ∈ B the distance between S̃t∗(p) and St(p) is at
most δ. Finally, note that by Sard’s theorem, St(p) is an (n−1)-dimensional
submanifold of Mn for almost all t. Thus, we can select t ∈ B so that this
St(p) is a submanifold. We will denote it Zσ

ε̃ .

2

The following two lemmas were used in [R3]. We will present them here
for the sake of completeness.

The first is a Morse-theoretic type lemma asserting that the space of
loops based at a fixed point q of length smaller than the length of a minimal
geodesic loop at q is contractible.

Lemma 1.2 Let Mn be a complete Riemannian manifold. Let q ∈ Mn.
Suppose that the length of a shortest geodesic loop lq(M

n) based at q is greater
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than L. Then given any piecewise differentiable loop γ : [0, 1] −→ Mn of
length ≤ L such that γ(0) = γ(1) = q there exists a length decreasing path
homotopy connecting this curve with q that depends continuously on initial
loop γ.

Proof. There is a standard explicit length shortening deformation of
the space of loops based at q of length ≤ L to the constant loop via the
Birkhoff Curve Shortening Process, (see [C] for the detailed description of
the Birkhoff Curve Shortening Process (BCSP) for closed curves. The only
difference between the BCSP for closed curves and the BCSP for loops is
that one fixes a base point during the homotopies in the latter case.)

2

The third lemma can be viewed as an effective version of an elementary
assertion that two curves γ1, γ2 connecting points q1, q2 are path homotopic
if and only if the loop γ2 ∗−γ1 is path homotopic to a point. Lemma 1.3 is
analogous to a similar statement in [C], namely, Lemma 3.1.

Lemma 1.3 Let γ1, γ2 be two curves with γ1(0) = γ2(0) = q1 and γ1(1) =
γ2(1) = q2 on a complete Riemannian manifold Mn of length l1, l2 respec-
tively.

Let γ2 ∗ −γ1 be the product of γ2 and −γ1 based at q1. If this curve is
contractible to q1 as a loop along the curves of length ≤ l1 + l2 then there is a
path homotopy, (i.e. a homotopy that fixes the end points), hτ (t), τ ∈ [0, 1],
such that h0(t) = γ1(t), h1(t) = γ2(t) and the length of curves during this
homotopy is bounded above by 2l1 + l2. Alternatively there exists a path
homotopy with the same properties, such that the length of curves in it is
bounded by l1 + 2l2. Moreover, when Mn has no geodesic loops of length
≤ l1 + l2, this path homotopy can be made to continuously depend on the
digon formed by γ1 and γ2, see ( 1.2).

Proof. Let h̃τ (t) be a homotopy that connects γ2 ∗ −γ1 with a point p,
(see fig. 1 (a) and (b)). Then let us consider the following homotopy
γ1 ∼ h̃1−τ ∗ γ1 ∼ γ2 ∗ −γ1 ∗ γ1 ∼ γ2, (see fig. 1 (a)-(g)). The length of
curves during this homotopy is ≤ 2l1 + l2.

Note that, assuming there are no geodesic loops of length ≤ l1 + l2, one
can contract γ2 ∗ −γ1 via the BCSP, which continuously depends on the
initial curve, (see Lemma 1.2). Thus, the path homotopy between γ1(t) and
γ2(t) will also continuously depend on the initial digon.
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Also, one can reverse the role of γ1 and γ2 and construct a path homotopy
between γ2 and γ1 passing through curves of length l1+2l2. Then we reverse
the direction of this path homotopy obtaining a path homotopy from l1 to
l2 with the required properties.

γ1(t) γ2 (t)

p

q

γ2(t)γ1(t) γ2 ∗ _ γ1

p

q

h   (t)τ
~

(c) (d) (e) (f) (g)

(a) (b)

Figure 1: Illustration of the proof of Lemma 1.3.

2

2 Proof of Theorems 0.1 and 0.3.

In the following definition, (Definition 3.1 in [R3]), we let σm+1 denote the
standard (m + 1)-dimensional simplex, and C(X,Y ) denote the space of
continuous maps from X into Y .

Definition 2.1 Given l > 0 and a positive integer m, let Km,l be a space
of piecewise smooth maps of the complete graph with (m + 2) vertices into
Mn, such that each edge is mapped into a curve of length ≤ l. We define
an N -filling of K∗,l as a a collection of continuous maps φm : Km,l −→
C(σm+1,Mn),m = 1, 2, . . . , N , satisfying the following properties:

(1) For every k ∈ Km,l the restriction of φm(k) to the 1-skeleton of σm+1

coincides with k, that is, each φm(k) extends k.

(2) For every k ∈ Km,l, (m ≤ N), the restriction of φm(k) to an m-
dimensional face of σm+1 coincides with φm−1 evaluated on the element
of Km−1,l obtained from k by restricting k to the set of all 1-dimensional
simplices in the 1-skeleton of this face of σm.
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Here is an informal description of the above definition: we are “filling”
graphs with “short” edges, (i.e. of length ≤ l) that correspond to the im-
mersed 1-skeleton of a simplex of dimension m + 1 by discs of dimension
m + 1, so that the map of the disc extends the map from 1-skeleton. More-
over, this extension is done in a coherent way, that is, if we consider the
restriction of this map to a face of the simplex, it will be a “filling” of the
1-skeleton of the face. In particular, that means that each N -filling agrees
with its subfillings and depends continuously on its 1-skeleton.

Lemma 2.2 Suppose that the length of a shortest geodesic loop on Mn is
greater than 3 · 4n−1l. Then there exists an n-filling of K∗,l. Moreover, if
k ∈ Km,l, (m ≤ n), the disc that fills k will lie in the 6 · 4n−2l-neighborhood
of the set of vertices of k, that is, the maximal distance between points of
the disc and the set of vertices of k is at most 6 · 4n−2l.

Proof. We will prove the existence of the i-fillings of K∗,l for every i ≤ n.
The proof will be by induction with respect to i. The base step corresponds
to i = 1. Let k1 ∈ K1,l. By Definition 2.1 it is an immersion of a full graph
that consists of three vertices and three edges. Let v0, v1, v2 be the vertices
of this immersed graph. The three edges form a loop based at v0. Since we
have assumed that there are no “short” geodesic loops, (and, in particular,
no geodesic loops of length ≤ 3l), this loop is contractible to v0 via shorter
loops based at v0. This homotopy generates a disc that “fills” k1.

At each subsequent step, to construct φj we consider its restriction to
∂σj+1. This restriction is uniquely determined by the definition of N -fillings
and, if i > 1, by the previous steps of the induction. That is, the previous
step of the induction results in a filling of elements of Kj−1,l obtained from
elements of Kj,l by deleting a vertex. Consider k ∈ Kj,l. Then the fillings of

j+2 elements of Kj−1,l that are obtained from k by deleting a vertex are
discs of dimension j provided by the previous step of the construction. They
together form a j-dimensional sphere, which, according to our definition, is a
restriction of φj to ∂σj+1. The required disc is then generated by a homotopy
that contracts this sphere to a point. To construct this homotopy we begin
by constructing a 1-parameter family kt of immersed graphs connecting k =
k0 with a complete graph k1 with (j + 2) vertices immersed in Mn such
that all of its edges are mapped to some paths in a tree. This path kt

should continuously depend on the initial graph k. Next, we construct a 1-
parameter family of spheres S

j
t by filling all kts. This result in a homotopy

between the sphere φj(∂σj+1) and the degenerate sphere S
j
1 that lives in
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a tree and is, therefore, contractible. (In order to contract this degenerate
sphere we contract k1 over itself and fill it by the n-sphere at each moment
of the homotopy).

v
3

2

v
0

v
1

v

Figure 2: Collapsing triangles

For every t kt is constructed by several applications of an operation of
a collapsing of a triangle: Let ka, kb, kc be any of the three edges of k. As
there are no geodesic loops of length ≤ length ka+ length kb+ length kc in
Mn, we can apply Lemma 1.3 to construct a path homotopy between ka

and kb ∗ kc. This homotopy passes through paths of length ≤ 2length(ka) +
length(kb)+length(kc) ≤ 4l. This homotopy induces a homotopy of triangles
(ka)t, kb, kc, t ∈ [0, 1] that we call a collapsing of the triangle ka, kb, kc. At
the end of this homotopy ka is being replaced by another edge that goes
along kb ∗kc, and the considered triangle becomes thin. Note that when one
is given a triangle with the sides ka, kb, kc there is a freedom of what side is
being deformed and which vertex is used as a base point for contracting a
loop. To avoid the ambiguity we can assume that the side ka that is being
deformed is the one that connects vertices with the smallest indices, and the
loops are always being contracted to a vertex with the smallest index.

After collapsing finitly many triangles, we can obtain an element of Kj,4l,
where all edges run along the tree-shaped union k1 of edges of k adjacent
to one vertex of k, let’s say the vertex with the highest number, (see fig.
2 , which illustrates that the edge [v0, v1] is being collapsed to the path
[v0, v3, v1], the edge [v1, v2] is being collapsed to [v1, v3, v2], and the edge
[v0, v2] is being collapsed to [v0, v3, v2]).
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Now we can continue the homotopy of complete graphs by contracting
all edges of k1 to a point, (to v3 on fig. 2) along the tree by a length
non-increasing homotopy.

The resulting graphs are filled by j-spheres using the induction assump-
tion on Km,4l, since the length of edges that result in the process of collapsing
of triangles is bounded above by 4l.

Let k ∈ Km,l. Then k is a (map of) the complete graph with m + 2
vertices v0, v1, ..., vm+1. Let kt1 denote a one parameter family of graphs
obtained from k by collapsing triangles. We define ki1

t1
to be a subgraph of

kt1 obtained from it by removing a vertex vi1 . In general, let k
i1,...,ij−1

t1,...,tj
be a

family of complete graphs with m + 3 − j vertices obtained from k
i1,...,ij−1

t1,...,tj−1

by collapsing triangles and let k
i1,...,ij
t1,...,tj

be complete graph with m + 2 − k

vertices obtained from k
i1,...,ij−1

t1,...,tj
by removing a vertex vj . Let a(j) be the

maximal possible length of an edge of k
i1,...,ij
t1,...,tj

. Note that a(1) ≤ 4l and that

a(j + 1) ≤ 4a(j). Thus, a(m − 1) ≤ 4m−1l. So, the length of loops that one
contracts in the recursive process described above is at most 3 × 4n−1l.

Note also, that as all the homotopies are constructed by contracting
loops to one of the vertices of k, the maximal distance from the points of
the resulting disc to one of the vertices is at most half the maximal length
of such loops. 2

Remark 2.3. Assume that we are applying the above proof to fill an
individual k ∈ Km,l. In the course of the construction we need to contract
the loops that are based at the vertices of k by path homotopies that pass
through loops that are short. Moreover, two vertices with the highest order
are never used. Therefore to fill k only the absence of “short” geodesic loops
based at all vertices of k but the two with the highest indices is required.

Here is the informal description of the above proof when m = 2. We
would like to show that in the case when the length of a shortest geodesic
loop is > 12l we can fill K2,l. Let us recall that K2,l is the space of immersed
1-skeleta of simplices of dimension 3, such that the length of each edge
does not exceed l. We would like to extend each of the immersions to a 3-
simplex, so that these extensions are continuous with respect to the original
graph, and so that they are coherent. The last requirement means that
if we consider a restriction of the immersion to a subcomplex, which is a
1-skeleton of a 2-face, it will agree with the earlier extension. Thus, the
procedure is inductive and we will begin by filling K1,4l. In this case, if
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k ∈ K1,4l then its total length is at most 12l. However, since the length of
a shortest geodesic loop is greater than 12l each such curve is contractible
via the BCSP as a loop to any of the vertices of k. Let us, however, choose
to contract to vertices with the smallest index. Here we use Lemma 1.3
to construct the required path homotopy between one side of k and its two
other sides. Next let us consider k2

v0,v1,v2,v3
∈ K2,l. Note that, as we know

how to extend each k1
v0,,,,v̂i,...,v3

we, as the result of these extensions and a
natural identifications of the four 2-discs have a map of the 2-sphere into Mn

naturally assigned to k2
v0,v1,v2,v3

. Let us denote this (map of the) 2-sphere
by S2

0 . We would like to construct a map of a 3-disc that fills 2-sphere. It
will be constructed as a 1-parameter family of 2-spheres S2

τ that begins with
the original sphere obtained in the previous step S2

0 and ends with a point.
Here is how we will construct S2

τ . Let us begin by constructing a 1-parameter
family of graphs k2

τ , τ ∈ [0, 2]. We will let k2
0 = k2

v0,v1,v2,v3
. Next, by Lemma

1.3 there is a homotopy that moves edges [vi, v(i+1) mod 3], 0 ≤ i ≤ 2 to
[vi, v3] + [v3, v(i+1) mod 3]. This path homotopy passes through curves of
length ≤ 4l. Let us denote the curves in these homotopies by ei

τ . So,
we will continuously replace edges ei = [vi, v(i+1) mod 3] by the edges ei

τ

respectively, thus forming k2
τ . Let us now consider all the subcomplexes of

k2
τ that correspond to elements of K1,4l. By the previous step they can all

be ”filled” by 2-discs. Gluing these discs together results in a 2-sphere S2
τ .

When τ = 1 this sphere will degenerate to (a map of the 2-sphere into)
a tree with root at v3 and three edges connecting v3 with v0, v1, v2. This
sphere fills a degenerate element of K2,2l where all edges are mapped into
this tree. This element can be contracted over itself to the constant map of
the complete graph into v3. Filling the resulting homotopy by spheres we
obtain a family of 2-spheres S2

τ , τ ∈ [1, 2] that connects S2
1 and S2

2 = {v3}.
Thus, we obtain a 3-disc that “fills” any k2

v0,...,v3
∈ K2,l.

Proof of Theorem 0.1. Let p ∈ Mn and ε > 0 be given. Let
ε̃ = ( ε

6·4nk(n−1))
n−1, where k(n − 1) = 27n−1n!.

Then by Lemma 1.1 there exists a set A(ε̃) satisfying the following: at
each t∗ in the complement of A(ε̃) in (0,∞), there exists a geodesic sphere
S̃t∗(p) of radius t∗ centered at the point p such that for any δ > 0 there
exists a smooth submanifold Zδ

ε̃ that has voln−1(Z
δ
ε̃ ) < ε̃ and that is within

distance δ from the sphere. Moreover, Zδ
ε̃ does not bound in Mn − p.

Take t∗ > T = 4nk(n − 1)ε̃
1

n−1 = ε
6 .

Let iS = infq∈S̃t∗(p) injqM
n, where injqM

n is the injectivity radius of

Mn at q. We will consider δ < iS
100n and we will let it eventually go to 0.
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Let X = L∞(Zδ
ε̃ ). By Definition 0.4, Zδ

ε̃ isometrically embedds into X

and for every δ > 0 there exists a singular chain c in the (FillRad(Zδ
ε̃ )+ δ)-

neighborhood of Zδ
ε̃ in X, such that Zδ

ε̃ bounds c. Without loss of generality
we can take c to be an n-dimensional polyhedron, (see Statement 1.2.C on
page 10 in [G].) Also, recall that the Kuratowski embedding of Zδ

ε̃ in X is
an isometry.

Assume that lengths of all nontrivial geodesic loops in Mn based at the
points of Zδ

ε̃ are greater than

ε = 6 · 4n−1k(n − 1)ε̃
1

n−1 > 6 · 4n−1k(n − 1)voln−1(Z
δ
ε̃ )

1

n−1 (∗).

Gromov’s Theorem 0.5 further implies that ε > 6 · 4n−1 FillRad(Zδ
ε̃ ).

We will construct an n-chain in Mn − p that has Zδ
ε̃ as its boundary,

thus obtaining a contradiction. This chain will be constructed in two steps.
During the first step we will construct a simplicial map f : Zδ

ε̃ −→
Mn − p the image of which will lie in a small neighbourhood of S̃t∗(p).
This neighborhood is so small that f∗([Z

δ
ε̃ ]) = i∗([Z

δ
ε̃ ]), where [Zδ

ε̃ ] is the
fundamental homology class of Zδ

ε̃ and i∗ is the inclusion homomorphism
from Hn−1(Z

δ
ε̃ ) into Hn−1(M

n − p). During the second step we will extend
the constructed map from Zδ

ε̃ = ∂c into Mn − p to a map τ : c −→ Mn − p,
which would imply Zδ

ε̃ bounds in Mn − p.
We will begin by triangulating Zδ

ε̃ into simplices of diameter at most δ.
We will define the map on the 0-skeleton, by mapping each vertex vi ∈ Zδ

ε̃

to a closest point wi ∈ S̃t∗(p). Next, we will map 1-edges. The boundary
of each edge [vi, vj ] consists of two vertices vi, vj . The image of each such
vertex was established during the previous step. The distance between them
is at most 3δ. We will connect corresponding images by a minimal geodesic
segment in Mn.

To extend to the 2-skeleton we proceed as follows. Consider a 2-simplex
[vi1 , vi2 , vi3 ]. Its boundary is mapped to a closed curve of length at most
9δ. As this curve is much smaller than the injectivity radius of Mn on
S̃t∗(p), it is contractible as a loop without the length increase to any of the
vertices. The 2-simplex is mapped to the disc generated by the homotopy
of contracting the loop.

Now suppose we have extended to the (i − 1)-skeleton of Zδ
ε̃ . We will

next extend to the i-skeleton, which is accomplished by filling the image of
its 1-skeleton as described in Lemma 2.2.

First enumerate all the vertices of the chosen triangulation of Zδ
ε̃ by

increasing successive integers. Next apply Lemma 2.2 to previously con-
structed images of 1-skeleta of all i-dimensional simplices of Zδ

ε̃ .
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In order to do that we need to renumber vertices of every i-dimensional
simplex of c by numbers 0, 1, ..., i. To do this we take the numbering of all
of the vertices of c and then renumbering the vertices of every i-simplex
by {0, 1, ..., n} in the increasing order. Now apply Lemma 2.2. This will
be possible, because our choice of δ insures that there is no geodesic loops
based at points of S̃t∗(p) of length smaller than 9 · 4i−1δ for all i ≤ n − 1.

Note that after we finish the construction of the map, the image of each
(n − 1)-simplex will lie in the 18 · 4n−3δ-neighborhood of one of wis. This
also follows from Lemma 2.2.

The second step of extending the map to c is almost identical to the first
one. Let us triangulate c into simplices of the diameter at most δ > 0, that
will eventually approach zero. The extension will be done by induction on
the skeletal dimension of c.

Each of the 0-simplices of c, (excluding those in Zδ
ε̃ ), will be mapped to

one of the closest vertices in Zδ
ε̃ (in the metric of the ambient space X). It

will then be mapped to a closest point in S̃t∗(p).
Each of the 1-simplices of c \ Zδ

ε̃ will be mapped into a minimiz-
ing geodesic in Mn between the images wi1 , wi2 of the vertices ṽi1, ṽi2

respectively of this simplex. Then by applying the triangle inequality
twice dist(wi1 , wi2) ≤ dist(wi1 , vi1) + dist(vi1 , vi2) + dist(vi2 , wi2) ≤ 2δ +
dist(vi1 , ṽi1) + dist(ṽi1 , vi2) + dist(ṽi1 , ṽi2) ≤ 2FillRad + δ̃, where δ̃ = 3δ.
Thus, the length of the image of each 1-simplex of c \ Zε̃ is at most
2FillRad(Zδ

ε̃ ) + δ̃, where δ̃ can be made arbitrarily small by selecting a
sufficiently small δ and by refining the chosen triangulation of c.

Now suppose we have extended the map to the (i − 1)-skeleton of c.
The extension to the i-skeleton is likewise accomplished by an application
of Lemma 2.2.

For instance, the desired extension of τ to any closed n-dimensional sim-
plex of c \Zδ

ε̃ is accomplished by filling the image of its 1-skeleton described
in Lemma 2.2. One, however, has to take care to fill every k-simplex in
the same way, when it is considered as a k-face of different n-simplices. To
achieve this we just need to number them identically by 0, 1, ..., k every time
when we fill this k-simplex.

Let us begin by enumerating all the vertices of the chosen triangulation of
c by increasing successive integers. We will apply Lemma 2.2 to previously
constructed images of 1-skeleta of all n-dimensional simplices of c. In order
to do that we need to number vertices of every n-dimensional simplex of c by
numbers 0, 1, ..., n. To do this we take the numbering of all of the vertices of
c and then renumbering the vertices of every n-simplex by {0, 1, ..., n} in the
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increasing order with respect to their number in the list of all vertices of c.
Next apply Lemma 2.2 using (∗) and taking δ̃ to be sufficiently small. As the
result, we obtain an extension to the n-skeleton of c. Note that the resulting
image does not pass through the point p, because the distance between p

and the image is sufficiently large. Thus, we have reached a contradiction
refuting the assumption in (∗), and so there must be a geodesic loop of
length at most ε based at some point of S̃t∗(p).

2

Next we will present a proof of Theorem 0.3, which is very similar to
that of Theorem 0.1.

Proof of Theorem 0.3. Let ε > 0 be given. Without any loss of generality
we can assume that ε ≤ 1. Let ε̃ = ( ε

12·4n−227n−1n!
)n−1. First we will show

that there exists T > 0, such that for all t > T there exists a t̃, such that
|t̃ − t| < ε̃

100n and voln−1(S̃t̃(p)) < ε̃
16 . This is easily seen from the fact

that the number of intervals of size 2ε̃
100n , such that the measure of every

geodesic sphere with the radius in one of these intervals is greater than ε̃
16

is finite. Let {(ai, bi), i = 1, ...,N} be the collection of all such intervals and
take T = max{bi, i = 1, ...,N}.

Now suppose t > T is given. Then there exists t̃ satisfying the above
property. Moreover, by Lemma 1.1 for every δ that is small enough there
exists a submanifold Zδ

ε̃ such that voln−1(Z
δ
ε̃ ) < ε̃ within distance δ from

S̃t̃(p) that does not bound in Mn − p.
The proof of Theorem 0.3 now goes by contradiction. Suppose there

is no geodesic loop of length smaller than ε based at some point of S̃t(p).
We will show that then we can construct an n-dimensional chain on Mn − p

that has Zδ
ε̃ as its boundary, thus reaching a contradiction. The construction

of this chain will be done in three steps. In the first step we construct a
simplicial map f : Zδ

ε̃ −→ Mn − p.
During the second step we extend the map f from Zδ

ε̃ to the n-
dimensional chain c that fills Zδ

ε̃ in L∞(Zδ
ε̃ ).

Finally we show that the image of the fundamental class [Zδ
ε̃ ] under the

inclusion homomorphism to Hn−1(M
n − p) and f∗([Z

δ
ε̃ ]) are equal.

The first and the second steps are similar to the constructions in the
proof of Theorem 0.1.
Step 1. Triangulate Zδ

ε̃ into simplices of size at most δ. We will first define
a map on 0-skeleton of Zδ

ε̃ . Each vertex ṽi ∈ Zδ
ε̃ is mapped to a closest point

in S̃t(p), which is located within distance δ + ε̃
100n . Next we define a map
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on the 1-skeleton. Let [ṽi−1, ṽi−2] be an arbitrary 1-simplex. Its boundary
is mapped to a pair of points within distance 2ε̃

100n + 3δ. We connect them
by a minimal geodesic segment. We can now, by induction, extend to an
i-skeleton for i ≤ n − 1 by applying Lemma 2.2, since, by our assumption
there are no short loops based at S̃t(p).

Step 2. Next let c be a chain that fills Zδ
ε̃ in the FillRadZδ

ε̃ +δ-neighborhood
of Zδ

ε̃ in the L∞(Zδ
ε̃ ). Let us triangulate it, so that the diameter of each

simplex is smaller than δ. We extend to the 0 skeleton by mapping each
vertex w̃i to a closest vertex ṽi in Zδ

ε̃ and, subsequently, mapping it to a
closest point vi in S̃t(p). To extend to the 1-skeleton, consider an arbitrary
edge [w̃i1 , w̃i2 ]. Its boundary is mapped to a pair of points, distance between

them being at most 2FillRadZδ
ε̃ +3δ+ 2ε̃

100n , which is at most 27n−1n!ε̃
1

n−1 +
3δ+ 2ε̃

100n . Next we once again apply Lemma 2.2 to extend to the remaining
skeleta. This extension is possible, because of our assumption on the length
of short geodesic loops with vertices at the points of S̃t(p).

Step 3. This is the only step that was skipped in the constructions of
the proof of the previous theorem. We will now construct an n dimen-
sional polyhedron that has as its boundary Zδ

ε̃ and f(Zδ
ε̃ ). This step was

almost trivial in the proof of Theorem 0.1. There we have chosen S̃t∗(p)
and then were able to choose Zδ

ε̃ that was iS
100n -close to S̃t∗(p), (recall that

iS = minq∈S̃t∗(p) injqM
n). However, in the present situation we have no

means to ensure that dist(S̃t(p), Zδ
ε̃ ) is sufficiently small compared to the

minq∈S̃t(p) injqM
n.

The procedure will be an induction on the dimension of the skeleta that
will go as follows: for each pair of simplices of dimension i − 1, i.e. σ̃i−1

j of

Zδ
ε and its image σi−1

j = f(σ̃i−1
j ) we will construct a cell τ i

j of the dimension
i that “connects” them.

It will be done by the filling technique similar to the one described in
Lemma 2.2.

We will begin with the 1-skeleton. The 1-skeleton will consist of minimal
geodesic segments connecting a vertex of Zδ

ε̃ with its image under the map
f . Next we will construct the 2-cells. Consider the closed curves composed
of a simplex [ṽi1 , ṽi2 ], its image [vi1 , vi2 ] and two minimal geodesic segments
joining the corresponding vertices. This closed curve can be contracted as
a loop to either one of the vertices vi1 or vi2 because by our assumption
there are no geodesic loops of sufficiently small length based at the points
of S̃t(p). This homotopy generated a 2-cell. These 2-cells will comprise the
2-skeleton of the polyhedron we are constructing.
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To construct an i-skeleton of the polyhedron we use the procedure similar
to the one described in Lemma 2.2. Let us consider “prisms” P i−1

j that

consist of the two simplices σ̃i−1
j of Zδ

ε̃ and its image σi−1
j together with the

“walls”, that is cells of dimension i− 1 that connect simplices of dimension
i − 2 in the boundaries of σ̃i−1

j and σi−1
j . We will construct a “filling” of

this “prism”, thus obtaining cells of dimension i. The filling is obtained by
first, regarding the simplex σ̃i−1

j as a point. (A formal argument, similar
to the Remark on pg. 504 in [R3] allows one to treat it in such a way. In
this argument, one essentially constructs a homotopy between P i−1

j and a

polyhedron in which σ̃i−1
j is replaced by a point. It is done by gradually

decreasing the size of σ̃i−1
j ). One then enumerates vertices of Zδ

ε̃ and its
image, starting from the vertices in the image and then applies Lemma 2.2.
The main idea of this lemma is that one can fill the 1-skeleta by discs in the
absence of short geodesic loops. In our case, the absence of short geodesic
loops based at points of the sphere S̃t(p) is sufficient, (see Remark 2,3).
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