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Abstract

Local ADIHM theory has been discussed, alter making some general
retnark about Penrose transform and methods of monad we construct
holomorphic vector bundles on neighbourhooh of a projective line in
the twistor space. By inverse Ward transformation this corresponds
to local solution space of sell dual Yang-Mills equation. In the final
section we discuss some possible applications of this theorem.



1 Introduction

Supposc 7 is a Hermitian vector bundle over a compact Riemannian
four maniflold and £ has a unitary connection V whose curvature is
fundamental form F, a two form with values in the endomorphism
bundle ol 7 i.¢.

Fe AY(M)® End(E).

The Riemannman metric allows us to decompose F into two com-
ponents Iy and F_, due to the Hodge decomposition of A%(M). The
total energy of the field F is given by the Yang - Mills action

VM (F) = /‘ G

The Euler-Lagrange equation for this action gives us the Yang - Mills
equation

|2 = —f Lr(F AT Fdge.
M

VAT F=0.

he conformal invariance of the | ¢ star * operator on show
T fi Iinv of the Hodge star * operator on A? shows
that Yang-Mills equations are conformally invariant in four dimen-
sions. The quantity

[owtrary= [ i
N Af

is a topological invariant of the bundle £, whose value is 872k, where

L= 1Py

J is the characteristic number ¢; — $¢i. This action will be a minimum
when cither
Py =0ie "F=—F

or
Fo=0ie "F=F

depending on whether & 2 0 or & < 0, such connections are called
anti-instanton or instanton respectively. From the Bianchi identity,
VA F =10, one can readily see that instanton satisfy the Yang - Mills
equation.

When G is SU(2) and & =1, the spherically symmetric solutions
about the origin in R* were discovered by Belavin et.al [BPST]. For
Ak > 1, this has been extended by t'Hooft [unpublished] and Jackiw
ct.al. [INR]. These solutions can be imagined as superpositions of
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k single instantons located at different points of R* and the super-
positions are achieved through some ansatz. But this ansatz failed
to yicld solutions for general & instantons. Penrose twistor theory
([AL),[WW])provides a complete solution of the instanton problem for
all classical groups.

The Penrose fibration ( sce[PR1],[PR2],[At],[BE]L[WW]) 7 : CP? —

S* tells us that each point of 8' corresponds to CP! in CP* and the
anti-self dual (or self-dual) solution of the Yang-Mills equation in the
conformally compactified Buclidean d-space in 8% corresponds to cer-
tain global real algebraic bundles on the complex projective space
CP2. The Atiyah-Ward correspondence ([At],[Wall) says, giving an
SU(2) anti instanton (sotutions of anti self dual Yang-Mills equation)
bundle on 1 is equivalent o giving a holomarphic rank 2 vector bun-
dle & whose restriction to each projective line is trivial and carrying
a suitable real structure. In a celebrated paper Atiyah et.al. [AHMD]
have shown using Ward correspondence and algebro-geometric tech-
niques ‘methods of monads’ introduced by Horrocks and Barth [OSS)
that all instantons have a unique description in terms of linear algebra
for any arbitrary compact classical group.

Soon alter the discovery of ( global) ADHM construction [AHMID]
Hartshorne [Hal ] put forwarded a list of problems about the alge-
braic vector bundles on projective spaces. In that list he also stated
the problem of local ADHM as the problem of understanding vector
bundles on a tubular neighbourhood of a projective line in the twistor
space CP®. As a hint he stated that this problem could also be tackled
via Penrose transformations. The local problem is different from the
global problem in a number of ways: for example one loses the second
Chern class and the moduli space becomes infinite dimensional.

Barlier Witten [Wil] studied this problem in two different ap-
proclics. The first part of his paper heavily dependent on physics
and it is difficult to follow. Of course he used mathematical tech-
niques in the second part but in many ways this part is incomplete
and incorrect, for example his twistor argument, the vector bundles of
the monad etc. But we must admit the fivst, part of the paper is cor-
rect, although it is hard to follow. We present a correct mathematical
proof in this chapter.

Our main result is:



Theorem .1 Lel [7 be a veclor bundle defined locally on the neigh-
bourhood of a projective line L in CP? such that the bundle E is trivial
when it is restricted lo the line. Then bundle 15 is realized from the
cohomology of following monad

Vi(=1) < w2 U

where
Vo= HY Q1) HY(E(-2))
W=n"(renh
U=H"((=1))

ie = Kerb/ Ima

Acknowledgement: Above all author is grateful to Prof. Sitnon
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their critical remarks and helpful suggestions. Most of the work has
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2 Preliminaries

In this scction we disenss some basic features of twistor geometry
([PRILIPR2],[WW]) connected 1o our problem and some definitions
regarding monads. So for convenience we split this section into two
parts, first part is related to twistor theory and the sccond one deals
with methods of monads.

2.1 Some features of twistor theory

The idea of twistor theory is quite old and goes back to the famous
Pliicker-Klein relationship [WW] where it describes the straight lines
in CP? by the points of a quadric hypersurface @ in CP® In the
Penrose twistor programme one uses the holomorplic geometry of the
twistor space to produce solutions to differential equations. Recall the



Penrose fibration defined by 7 : CP? — $7 with fibre 77! (%) at each
point. 2 € 8% is CP! which precisely gives the compatible complex
structure in 7°S*. We can pull back an $U/(2) bundle I on 81 by 7 to
obtain an associated rank 2 bundle /2 on CP?. The connection V on
15 is anti self dual il and only if the putled back connection determines
a holomorphic structure on /2 = 7=(£2) This is the basis of the Ward
transformation [Wa]. A connection with antiself dual curvature on the
original SU(2) bundle gives an alimost complex structurc on % and the
anti self duality condition provides the integrability condition needed
for I7 to be a holomorphic rank 2 vector bundle on CP? and since the
bundle comes from the bundle over $* it carries a real structure. The
relevant, anti-holomorphic involution is given by & : CP* — CP?,

k(z1, 29, 23, 24) = (=22, + 51, — 24, +23)

where z;s are homogeneous coordinates on CP>. This map is conju-
gate linear in the sense that £(Az) = Ak(z) for any A € C and z € CY.
[Zach fibre 7= ') is a k- invariant projective line and the restriction
of the pullback bundle 7 on each real line #=1(x) is trivial. Also one
can easily sec that the induced antomorphism of the space of lines can
be realized as the complex conjugate of Pliicker co-ordinates of the
quadric, thus real points Qg of the quadric Q correspond o real lines
in CP? (of. {[WW]).

So the liolomorphic vector bundles £ coming from instantons over
CP” have zero first. Chern class (which is clear sinee the structure
group is SU(2) so detfy is trivial) and the instanton mumber & is the
sccond Chern class ¢ (/7). We know from GAGA [Se] that all holomor-
phic bundles on the projective spaces have unique algebraic structures.
Fixing ¢; = 0 and ¢ = & (say) we can define the modult space Ay
of stable algebraic rank 2 vector bundles on CP3.The bundles com-
ing from instantons have some characteristic features which we will
discuss in the next part.

2.2 Methods of monads

There are two main ways of studying vector bundles over complex
projective spaces. One is via curves and jumping line, the other is
by monads [OSS]. The idea is twist the bundle £ by O{n) such that
the new bundle f£(n) has plenty of global sections. 1l s is a generic
section then the set of points in CP? where s becomes zero will be

(1]



a curve, C, in CP?. With the given curve and some algebraic data
and machinery one can recover 2. The second method is the most
successful and widely used technique.

A monad is a pair of maps of holomorphic vector bundle over a
complex manifold M

L{=1) =% M =5 N (1)

such that « s injective and b is surjective and the composite map
ba = 0 everywhere. The bundle £2 = Ker o/Im « is the ‘cohomology’
The idea of
this method is to construct complicated bundles from three simpler
bundles L, M and N over the M. The process of taking cohomol-
ogy of a complex is in general functorial, so that two monads which

of the monad. The word monad was used by Horrocks,

are isomorphic ( in the categorical sense ) define isomorphic vector
bundies.

In order to see how the connection arises from the monad we shall
follow Donaldson [Do]. Let X be the two dimensional vector space
underlying P(X) = P'. Here 7«” is an clement of X~ @ Hom (L, M)
and 707 is an clement of X* @ Hom (M, N). So the composite map
will be X~ @ XN*Hom(L,N). Since ba = 0 sarisfies everywhere and
this requirement allows us to say that this is a skew symmetric on X'~
When we impose the condition that the bundle 7 be holomorphically
trivial on the projective line we obtain an isomorphism

ATX=@ Hom(L,N)= Hom(L, N).

Following Donaldson, this triviality condition can be re-expressed by
choosing two distinct points n,n in the projective line. Thus we obtain
four lincar subspaces of the vector space M, given by

Ima,, | kerd,,

Imay, | kerb,

Elementary lincar algebra shows that the restriction of I to is natu-
rally isomorphic to the subspace

kerb,, N kerb, C M
and also to the quotient,

M/ Tmagy, + [ma,.
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Above two description mean that the fibre of the associated bundle /27
comes as a projective subspace of the fixed vector space M equipped
with maps

ot
B M

Now using these projective maps we know how to define define con-
nection of a subbundle of a lixed vector space. Suppose M has the flat
connection ¥V and we have a smooth bundle projection 7 : M — £,
which is a left inverse to the inclusion map 7. Then we get an induced
connection A on B with covariant derivative:

moVoi(s).

Thus we get a connection on any bundte [7 associated to monad on
the twistor space.

In principle the use of monads reduces the study of vector bundles
to linear algebra. Once we obtain a vector bundle from the monad
then the inverse Ward correspondence [Wa] gives the general ADHM
description of all self dual gauge fields over 84,

When the bundles have some additional structure then this addi-
tional structure goes into the monad automatically [Ma2]. Let & be
the sheal of holomorphic ( or algebraic ) sections of 7*(f2) over CP.
Suppose the coberent sheaves have following vanishing cohomologies

HY(E(m)) =0 for m < ~1

for m < =2

0
HA(E(m)) = 0 for m > =
0 form > =3

The coherent sheaves on CP? with these property are called ad-
missible sheaves( see [MD],[Hal]) and the corresponding monad will
be a special monad. There is a functorial equivalence between the
category ol special monads and the category of admissible sheaves. 1o
order to prove the vanishing of this cohomologies it is suffices to show
the vanishing of the first two cohomologics. The other two follow from
the Serre duality,

HY(EGm)™ = H3HE (=4 = )



The fibres of 7 : CP? — S* are the projective lines in CP? and the

restriction of £ to them is holomorphically trivial and for that reason
HY(CPY, O(r)) = 0 when mi < 0, hence HY(CP', E(m)) = 0.

Since in the entire calculation we have used the local version of
Beilinson’s spectral sequence ([Be],[OSS]). To keep the paper self con-
cise we give the statement of the theorem without proof ( for proof

sec [OSS)).

Theorem .2 (Beilinson) (see 8.1.4 [OSS]) Let I5 be a m dimen-
sional holomorphic bundle over the Zariski open subset U of CP"

then there exist « spectral sequence P with 2y - lerm

EY = HY(U, @ QP(~p)) @ Op, (4)

which converges to

B =12 forj=0
and otherwise 0. This means that
EXI =0 forp+qg#0
and

S
p=uU @

s the associated graded sheaf of a filtration of I7.

Beilinson’s work has enabled us to construct an inverse functor, i.c
it helps us to construct monads {rom the admissible sheaves. Consider
for example the global ADHM case [AHMD], the monads coming from
instantons always have a special structure

Al=1) = 5 2oy

where A(=1) = A @ O(=1) ete and A, B and C are three complex
vector spaces. Barth observed that corresponding bundles £ on CP?
with ¢ = 0 and ¢y = k are stable and satisfies H'(£(=2)) = 0, using
Penrose transform we can deduce that it is equivalent to the condition
that there are no non-zero solutions of the equation.

[
(A+-M)s=0
G
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has no global solutions. Here A denotes Laplace - Beltrami operator
coupled to the connection, f2 > 0 is the positive scalar curvature of
S* and s is a section of .

But in the local case this vanishing argument does not apply so
the cohomology group H'(E£(=2)) # 0 in the local case moreover this
will appear in the vector spaces of the monad and since the bundle is
supported on a non compact space we can’t use Serre duality either.
Instead of that we will use some techniques of several complex variable
to deduce the vanishing of the cohomologies in the spectral sequence.

3 Construction of monads for local

bundles

In this section we coustruct the monads of holomorphic bundles on a
tubular neighbourhood of a projective fine in CP?. It has been known
that Penrose transformation deals with double fibration of a general-
ized flag variety [BIZ]. This transformation has been used in the local
ADHM problem by localization at a point in S* which corresponds to
localization near a line in CP?. Let us recall the basic double fibration

i}
cp?
where F is the flag variety and Q is the complexification of 8%, As

we choose the image variety of the transforim a Stein subset [GR] of
the complexification of S*.

Definition .3 A closed subsel in 'V of @ complex space X is called
Stein sel (in X ) if Cartar’s “theorem I3 7 holds good. This says for

every coherent analytic sheaf =
HYV.ZY=0 for all ¢ > 1

is valid on V. A complez space which is itself a Slein set is called
Stein space.

Given a open subset of the complexification of S* and with the
help of the map f we can pull back this Stein set to flag variety. Let



S be the stein subset of @. Suppose F® = f~18¢ is the open subset
of flag variety then by pushing down this open subset, we obtain the
corresponding open subset of the twistor space P4, So the basic double
fibration incuces a double fibration among the open subset.
F(l f , Sﬂ
g

Ptl

Here P* is the open subsct of the twistor space and this can be
covered by two Stein subsets cutting out the centre and two subsets
thickenings at the lower and upper stratum of P2, In the case of Stein
subset which is cut out, from the centre, the first cohomology does not,
vanish.

Let ¥y and Y, be the two open centrally cutl out Stein subsets of

P and let P = Y, U Y, such that H1(Y;, Z) # 0.
Lemma .4 Let X be « complex space and Vy and Vo be two Stein
subspaces of X. Then Vi NV, is Stein too.

For proof one must consult Grauert and Remmert [GR]. a

Proposition .5 Let P be the open subsel of lwistor space constructed
above. Euvery coherent analylic sheaf F on P salisfies

HIYP*, F)=10
Jor dl ¢ 2> 2
Proof :: Since P* = ¥, U Y, using Maver-Vietoris sequence [BT)]
we obtain
— HI7Y Y (Y2, E) — HU(PY,Z) — HI(Y,, 2)@H (Y, E) — ...
By the theorem B of H.Cartan we already know

H(Y;,Z) =0 for ¢ > 1
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and

HT Y NYe,Z)=0

by lemma 4. So H7(P",Z) = 0 for any coherent sheal = when ¢ > 1.
This completes the proof. a

The resuly of this proposition will be nsed to establish the vanishing
of relevant cohomology groups in the spectral sequence.

Now we follow Drinfeld and Manin’s procedure in [MD] where
they liave given a nice procedure of constructing vector bundle using
monad. Let Q' denotes the cotangent bundle of CP* and Q" denote
the corresponding n-th exterior product of the cotangent bundle. We
obtain following sheal exact sequence

[TC]:’S(—])]V — C)CI’3 — (:)p — 0.

Resolving into locally free modules we obtain the [ollowing Koszul
complex in our case

0P (3) — Q%2) — (1) — Opps — Op — 0

Following Drinfeld-Manin {M1D] we tensor the above sequence with
an arbitrary vector bundle Z(—=1) so we obtain following exact se-
quence from the Noszul complex

PR — QO — Q' QL — (=1)|gpe — B(=1)|p — 0

In order to extract the information of the bundle £7 we have to go
the for spectral sequence developed by Beilinson [Be]. In our case the
spectral sequence associated with the double complex would be the
following one

P2 L) | Qe E) | H3 Q' @ £) | HYE(-1)) |
HAH QPR I2) | HHQ*(1) @ E) H?(Q‘@u) H*(E(=1))
HIPQ) e ) [ HIQE e ) | HIQ e E) | HI(E(-1))
HY(Q2)o k) | HY Q)@ 1) | HOQ e B) | HY(E(-1))

The two cohomologies are related by the operators satisfying

d, 1 PP —y [pEra-rt]

11



such that 4?2 = 0. When r = 1 we have the cohomology of the rows
above.

Our strategy is to find the monad corresponding to this bundle F.
T'his 1s possible provided sufficient number of cohomology groups arce
zero in the spectral sequence. The vanishing of higher cohomologies
follow from our earlier result. ( proposition 5 )

HYQP2)@ )= H*( QX)) @ ) = HA Q' @ )= H*(E(=1))=0
and
HAHQP2)Q B) = HHQA() @ )= HXQ' @ ) = H2(E(-1)) =0

Therefore we conclude that the first two rows of the spectral sequence
vanish identically. Our next task is to show the hottom most row also
vanishes.

Lemma .6 Lel I7 be the bundle defined on the tubular neighbour-
hood of projective line. If 1t is (rivial on the line then it satisfies
HYE(=E)) =0 for all k> 0.

Proof :: This is a trivial case of Kodaira vanishing theorem [GIH],
hence we obtain

HY(O(=k)) =0

for all & > 0. So the result follows immediately. m]

Claim .7
HYP2)@ E)= HY Q1)@ L) = H' Q' @ E) = HY(E(=1)) =0
Proof :: Restricting 1o a line the tangent bundle of the CP? fits
into the exact sequence
O2) — Tl — O(1) & O(1)
Hence we obtain the following splitting of the tangent bundle

Tep:l = 02)® O1) & O(1).

12



Then the dual of this splitting will be the splitting of the cotangent
bundle.

[Tepe]¥ = Q' = 0(-2) & O(-1) & O(-1)
EQQ |, =E(=2)8 E(-1)® E(-1)

So we conclude from the previous lemma
HQ'@ E)= HY(E(-1))=0

Since 2 = O(-4) i.c the canonical bundle of CP3 then the first
coliomology gronp reduced to

HY Q) @ B) = HY(F(-2))=0

Hence we obtain HY(Q2(1)® E) = 0 from the spectral sequence. Then

in the spectral sequence the whole 0-th row vanishes Thus we prove
the lemma. O

Thus we have left with sccond row only which is expressed as
follows

HY(Q' (2)@ B) — HY QA1) By — H(Q'Q ) — H'Y(E(=1))

Observe that the first element in the sequence is H'(Q?(2) @ F) =
HY(E(=2)), since Q2 stands for canonical line bundle of CP? and
hence Q% = O(=4). This element vanishes identically in the case of
bundle over S*, but in the local case it contributes to the monad.
This sequence of four vector spaces can be casily transformed in to
standard monad, i.e a pair of morphism and three vector spaces. The
monad of the local bundle [ is

(HY QU)LY HN(E(-2)]00(~1) = HY(Q'@F) -5 [H'(E(-1))]e0(1),

where a and b are two morphisms and the bundle is recovered from
the cohomology of the monad.



Remark .8 If we compare our chapler with the earlier paper of Wit-
ten [Wit]( he attempted this calculation for Minkowski spuce time )
we find the following replacements (1) the first vector space is the quo-
tient space H'(Q2(1) @ K}/ H'(I2(=2)) not the space H'(Q}(1) ® F)
which was found by Witten. (2) Witten used long exact sequence which
is wrong instead of Beilinson’s spectral sequence. Moreover he didn’t
show explicitly why the cohomologies were vanished. (8) Moreover, we
want to point oul thal unlike in the global case, the veclor space A s
not duad to C' in the local case.

Putting all the result. concerning monad and local vector bundie to-
gether we obtain our main theorem.

4  Identification of the cohomologies

In this scction we will identily the vector spaces appearing in the
monads. In the local case all the vector spaces forming the monads
are infinite dimensional vecvor spaces. They are the solutions of the
three auxiliary equations as Witten showed. e showed in the first
hall of his paper that two of the vector spaces are the solutions of
Dirac equations and other one is the solution of some scalar equation.

In order to see this in detail we inust apply the Penrose transform.
In this section we will demonstrate how to obtain the information
about, H1(Q").

This approach is based on local twistor theory as shown by Lionel
Mason. Let us consider the Euler sequence on the twistor space:

0—25 o (t)y —T — 0

One can regard Z° is the tautological section. Dualizing the above
sequence, we obtain

0— Q' — 0, (=) 25 0 —0.
So from the long exact sequence we obtain
0— HY(P*,0) — H' (P, Q") — H' (P, 0,(-1)) — H'(P*,0)
Penrose transformation of H'(P®, O, (—1)) satislies

VB g, =0

14



where V is the spin connection and o is the twistor index.

The definition of the local twistor and their construction then give
us that ¢pg s equivalent to a pair of fields Eg4¢, a4 and these are
the sections of Qg and Oga[—1] respectively. These satisfy

ngfBA’ - iffB’A"Ig =0
VBB,':;B,\ =1
This tells us &g 4+ is the potential for the left handed Maxwell field.
0 — HY(P*, O) — H'(P%, Q') — H'(P*, Ou4(-1)) — H(P,0).

Then H'(P*, ) is isomorphic to potentials modulo gauge for such
fickds.
We are interested

0— HP*, Q) — HY (P, Q") — HY(P*,O,(-1)) — H' (P, 0)

0 — HY (P, Q)Y H' (P 0) — H' (P, O,(-1)) — H'(P*,0).
We waunt to seck the kernel of the map H1Y{Pe, O, (~1)) — H(P¢, O).

Ear=Vpaf
for some function f. If we write
HBA = BA T TEBA

So we obtain _
VEpaa+ Vgar=0

Af+dir =0

Then applying once again A we obtain

A% =0.

Similarly the cohomology groups have been identified by Lionel
Mason and Mike Singer [MS] which are nothing but the solutions of
some differential equation as predicted by Witten [Will.

15



Hence we can identify the monad with the Witten complex [Wil].
NE@SH/T(B) — (£ — T(E®ST)

Where T @ §+)/I'(£2) : space of harmonic section to the section
Dirac equation.

['(17): space of solutions of some scalar equation.
(/@ 57): space of solutions of Dirac equation ( opposite parity )

Remark .9 The first part of the Witten’s paper completely agrees with
our resull.

Now we are in the position to lay out explicitly the local ADHM
theorem. Pirst we must define the data of local ADFHM construction
which have alrcady gathered from the last two sections.

Data (Local) iz (1) Three infinite dimensional vector spaces A, 3
and C where A and C are the solution spaces of Dirac equations and
B is the solution spaces of scalar equations.

(2) D be another vector space formed by the solution of the Laplace
equation on 8%,

(3) The quotient space A/ D, solutions ol Dirac equation modulo the
harmonic solution.

(4) Two linear maps a and b , where a @ A/D — B is an injective
map and b : B — C'is the surjective map and these give us a strue-
ture monad. These maps are linear over the complex projective space.
(5) "The cohomology of the monad or the quotient space [m « / Ker b
gives the bundle from the local monad.

Please note that the equivalence classes of monad means equiva-
lenee classes of ADHM (local) data and this give rise to equivalent
classes of local vector bundles on the neighbourhood of a line.

Theorem .10 There exist a one lo one correspondence between ()
equivalence classes of local ADHM data or the equivalent classes of
local vector bundles on the formal completion of the projective line
on CP? (b) gauge equivalence classes of local solutions of self-dual
Yang-Mills equation.

16



5 Applications , discussions and open
problem

In this section we have attempted to show some applications of local
ADHM, particuiarly from the point of view ol reduction of self dual
Yang-Mills equation. At the end of this section we have focused on
some of the interesting problem concerning local vector bundles.

During the last few years Ward, Mason (see for example [Wa2],[MS])
and others have shown that many integrable systems particularly in
141 dimensions are symmetry reductions of self-dual Yang-Mills equa-
tion. The motivation of these ‘phenomenological’ works show that it
could be possible to view the self-dual Yang-Mills equation is the uni-
versal integrable system. But it is to carly to say since so far math-
ematical physicists have failed to show famous cquations like KP or
Davey-Stewartson are the reductions of the sell~dnal Yang-Mills equa-
tion. But it would be rather interesting to know how the geometry
of sclf dual Yang - Mills equation is related to the geometry of the
reduction equations. Here we picked up KdV as an example to show
how its geometry fits with local ADHM construction. We choose to
work on R? with coordinates (x, y, z,4) and the metric

ds? = da? — dy? — ddzdt

The Yang-Mills connection D := J— A where A takes values in the Lie
algebra of SL(2,C) and these are defined upto gauge tranformation

A— hA™ = (Oh)h™!

Following Belavin and Zakharov{BZ], the sell-duality conditions be-
comes

Dy — Dy, D] =0
(Dy+ Dy, D) =0
[0y = Dy, Do+ Dy) + (D2, D) =0

Then performing two dimensional reduction, one null and the other
timelike and by imposing gauge lixing condition, Mason-Sparling [MS]
and Bakas-Depireux [BD]showed that SDYM equation reduces to KdV
equation.

We have already encountered one dimensional reduction (here only
one non null translation symmetry along dy, is imposed ) in the case



of Bogomolny equation in R® where Hitchin[Hil] and Nahm [Na] have
shown this is equivatent in R*, which is in addition invariant, under
the action of the additive group R of translation in the z direction.
By means of twistor correspondances Hitchin showed that the SU(2)
Bogomoluy equation on R? corresponds to a holomorphic rank 2 vec-
tor bundle /£ on TP, which is quaternionic and trivial ou every real
section of 7 : TPy — P.

In the KAV case we have gone one step further, KdV in R? is
equivalent to a solution of the self duality equation in R* which is in
addition invariant under the action of the additive group R + R of
translation which is a pair of orthogonal space time translation one
timelike and one null direction. On top of that, it satisfics some gauge
fixing conditions which we have listed below.

Proposition .11 [f we reduce the self-dual Yang-Mills equation by
the pair of two orthogonal Killing vectors (one is space like and other

is timelike ) Jy and 9, and fizing the gauge A, = _01 8 and
0 0 0 |1
Ag+ 4, = I and Ay - A, = _—

we obtain the KdV equation as the veduction of self-dual Yang-Mills
equalion.

Let us call this data as a reducuion data. Recall the monad of the
local vector bundle

HY Q) @ E)/HY(E(=2)) = HY(Q' @ B) - H'(£(=1))

and the morphisms « and b arve lincar over the projective space. Now
in the reduced case these morphisims must be two translation imvariant
and the corresponding vector bundle is also two translational invari-
ant. As Mason and Sparling {MS] showed, a solution of SU(2) KdV
equation on R? corresponds to a holomorphic rank 2 holomorphic vee-
tor bundles over TP! on which we have the action of an additional
symmeltry, correspands to extra symmetry.

In the reduction case, one important point should be noted which
tells us not every two transltion invariant solution of self dual Yang-
Mills equation are the solutions of KdV, since we have imposed a null
translation along J, and the gange fixing in the same direction. This



is finiteness condition which is similar to what Hitchin [Mi3] showed
in the harmouic case.

'here are some open problems in the case of tocal vector bundle.
As Hartshorne [Hal] pointed out, a global bundle on CP? is deter-
mined by its restriction to the formal neighbourhood of a projective
line so the local problem gives us a new perspective on the global
problei.

There is another celebrated problem in the gange theory that is also
a local problem. This is the construction of vector bundles from the
full fledge Yang-Mills sheaves (see [HM][IYG],[Wi2]) in the neigh-
bourhood of some CP!' x CP! inside the hypersurface lying inside
CP? x CP*.
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