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Abstract. In this paper we study germs of holomorphic functions
f : (Cm, 0) → (C, 0) with the following two properties:
(i) the critical locus Σ of f is an isolated complete intersection

singularity (icis);
(ii) the transversal singularity of f in points of Σ\{0} is of type

A1 we first compute the homology of the Milnor fibre and
then show that the homotopy type of the Milnor fibre F of
f is a bouquet of spheres.
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1. Introduction

Let O be the ring of holomorphic germs f : (Cm, 0) → (C, 0). Let
I ⊂ O be a reduced ideal defining an icis Σ of arbitrary dimension k.
As usual J(f) denote the jacobian ideal of f , namely:

J(f) =
( ∂f

∂x1
, . . . ,

∂f

∂xm

)
.

We consider, as in [Pe-1, Pe-2], the group DI of local analytic iso-
morphisms ϕ : (Cm, 0) → (Cm, 0) such that ϕ∗(I) = I.
Let f ∈ O be a germ whose critical set contains Σ. Then by [Pe-1,

Pe-2], f ∈ I2. The group DI acts an I2, and the extended codimension
of the orbit of f with respect to this action is

ce(f) = dim
I2

I2 ∩ J(f)

we shall focus our attention on germs f ∈ I2 with ce(f) < ∞. We
are interested in the topology of Milnor fibre of f . We known if k
dimension of singular locus Σ is 1 then Milnor fibre F is homotopy
equivalent of bouquet of some dimensional sphere [Si-1, Si-2].
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If k = m− 1 i.e. codim Σ = 1, then again F is homotopy equivalent
of bouquet of some dimensional sphere [Sh-1, Sh-2, Ne-1]. If k = 2 bou-
quet theorem also are valid the Milnor fibre F is homotopy equivalent
bouquet of sphere [Za, Ne-2].
We consider case when k ≥ 3 and give the properties in which case

we can prove the

Theorem. The Milnor fibre F of f = (Cm, 0) → (C, 0) is homotopy

equivalent of bouquet of spheres F ≃ Sn ∨ Sm−1 ∨ Sm−1 ∨ · · · ∨ Sm−1,

where n = m− k.
Acknowledgements. This work was done while the author was

a guest at the Max-Planck-Institut für Mathematik. He thanks the
institute and its staff members for the support and the good mathe-
matical atmosphere. The author would like to express his gratitude to
Prof. D. Siersma for helpful discussions and suggestions.

2. Non-Isolated Singularities with Transversal Type A1

Let as above I ⊂ O be a reduced ideal defining an icis (isolated
complete intersection singularity) Σ of dimension k and suppose that
I = (g1, . . . , gn) with n = m−k. We shall assume that n ≥ 2 and k ≥ 3;
the cases k = 1, k = 2 and n = 1 are situated in [Si-2], [Ne-2, Za] and
respectively [Sh-1] and [Ne-1]. Let f ∈ O be a germ whose critical set
contains Σ. It follows that f ∈ I2 and we have decomposition

f =

n∑

i,j=1

hij gi gj

with hij = hji [Pe-1, Pe-2]. Moreover, the class of hij in O/I is uniquely
determined by f [Za].
In [Pe-1] and [Pe-2] were introduced D(k, p) singularity. Their lo-

cal equations, in a suitable coordinate system xij (1 ≤ i ≤ j ≤ p),
z1, . . . , zq, y1, . . . , yn, is

f(x, y, z) =
∑

1≤i≤j≤p

xij yi yj +

n∑

l=p+1

y2l .

Note also the singular locus of a D(k, p) singularity is smooth and of
dimension k = 1

2
p(p + 1) + q, while m = k + n. D(k, 0) singularity in

[Pe-1, Pe-2] is also called A(k)

A(k) := D(k, 0) :
n∑

l=1

y2l .

We note also:

D(k, 1) : xy21 +
n∑

l=2

y2l .
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Remark 2.1. As in [Sh-3], see also [Za], it is easy to see that following
are valid
(1) A singular point z ∈ Σ is a singular point of type D(k, 0) if the

matrix (hij(z)) has rank n.
(2) A singular point z ∈ Σ is a singular point of type D(k, 1) if the

matrix rank (hij(z)) = n− 1 and gradz(det(hij(z)))|Σ 6= 0.

Let D be defined as in [Za] by D(z) = det(hij(z))ij then if D(0) = 0
then the ideal I +D = (g1, . . . , gn, D) defines a complete intersection
in (Cm, 0), which depends only of f [Za]. Let us denote by ∆ the zero
set of I + (D).
The following result is similar to [Si-1, Sh-1] criterion of finite codi-

men.

Theorem 2.2. Let f ∈ I2, f =
n∑

ij=1

hij gi gj and I, and I + (D) is

isolated complete intersection and ∆ is an isolated singularity. Then

(a) the critical locus of f is Σ and the germ of f in every points of

Σ\{0} outside ∆ is equivalent to a D(k, 0) singularity and point an ∆
is equivalent to a D(k, 1).
(b) ce(f) < +∞.

Proof. (a) If z ∈ ∆ and z 6= 0 then rank((hij)ij) = n− 1 since Σ is icis
of dimension k = m− n. Since ∆ = det((hij)ij) is isolated singularity
on Σ so grad ∆|Σ 6= 0 at the point of ∆\{0}, which means that f at
z is of type D(k, 1) by the remark of 2.2. Let us now z∈∆ and z 6= 0.
Then we have det(hij)ij) 6= 0 at this point z, so rank((hij)ij) = n and
using Remark 2.2 f at this points z has D(k, 0) singularity.
(b) Let f be some representative of the germ of given singularity. In

the domain where it is given we define a sheaf of O modules as follows

F(u) = I2
/
τe(f),

where I2 and τe(f) are considered as modules over the holomorphic
functions on u. It is clear that F is coherent. We will use the fact:
F is concentrated in a point ⇔ dimΓ(F) < ∞. For z ∈ Cm\Σ, f is
regular at z and we have dimFz = 0 since I2z

∼= Oz and (τe(f))z ∼= Oz.
If z ∈ Σ\{0} then as we proved above f is of type D(k, p), p ≤ 1 at z
and we have dimFz = 0 since ce(D(k, p)) = 0. So F is concentrated
at 0, hence ce(f) < ∞. �

3. The Deformation of Nonisolated Singularities

First consider the case when singular locus Σ of f : (Cm, 0) →
(C, 0) is smooth k-dimensional submanifolds. Consider coordinates
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(x1, . . . , xm−n, y1, . . . , yn) in Cm. Then f =
n∑

i,j=1

hij yi yj. Let us det(hij)ij =

D(z) and D(z)|Σ is isolated singularity at 0 ∈ Σ.
In case of an ordinary isolated singularity it is useful to consider a

generic approximation g of with only ordinary Morse point [Br]. At
every Morse point one can study its local Milnor fibration, with Milnor
fibre homotopy equivalent to one n-sphere Sn (“the vanishing cycle”).
The Milnor fibre of the original f then has the homotopy type of the
wedge of those spheres.
We like to mimic the constructions in our case.
Let us Σ is k-dimensional complete intersection defining by the ideal

I = (g1, . . . , gn). Then f =
n∑

i,j=1

hij gi gj. Assume thatD(z) = det((hij)i,j)

is an isolated singularity and I + (D) is complete intersection.
Let G : (Cm × Cr, 0) → (Cm × Cr, 0) be a versal deformation of

(Σ, 0) with G(z, v) = (G1(z, v), . . . , Gn(z, v), v) and Gi(z, 0) = gi(z)
[Loo]. Consider the deformation

fs : (C
m × S, 0) = C

m × C
r × C

n × C
n(n+1)/2 × C

m−n, 0) → C

given by

fs(z) = f(z, v, u, a, b) =
n∑

i,j=1

(
hij(z) + aij +

m∑

t=1

btj xt δij

)
·

· (Gi(z, v)− ui)(Gj(z, v)− uj),

where aij = aji, and S is the space of parameters (a, b, u, v). In case
k = dimΣ = 1, 2 or m − 1, there exists a dense subset U in S such
that for every s ∈ U , the germ of fs at the points of Σs is of type
D(k, 0) or D(k, 1). Moreover, the set of points of Σs where fs is of
type D(k, 1) is exactly ∆s and this set is a Milnor fibre of the icis ∆.
[Si-2, Sh-1, Za] For an arbitrary k, we know at least two cases when
such deformation exists: i) the germ f at any point z ∈ Σ\{0} is of type
D(k, 0), ii) the matrix (hij(0))ij has rank n−1. From this page assume
the existence of such deformation for the arbitrary k. The following
are valid [Za-Bo-Ne-2].

Lemma 3.1. There exist an ε-ball Bε with center D ∈ C
m, a proper

analytic set (A, 0) ⊂ (S, 0), and a neighborhood U of 0 ∈ S, such that

for any s ∈ U\A has the following:

(a) Σs = {z ∈ Bz : Gi(x, v) = ui, i = 1, . . . , n} is the Milnor fibre of

Σ.
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(b) The zero set Ds(z) = det(hij(z) + aij + Σt btj zt δij) intersets Σs

transversally; hence ∆s = D−1
s (0) ∩ Σs is smooth. In particular ∆s is

(diffeomorphic to) the Milnor fibre of ∆.

(c) The singularities of fs in Bε\Σs are of type A1.

(d) The germ of fs at any point of Σs\∆s is of type D(k, 0) and at

any point of ∆s is of type D(k, 1).
(e) Fix ε sufficiently small and δ sufficiently small with respect to

ε. If U is sufficiently small with respect to ε and δ, then f−1
s (t) (as a

stratified set) intersects ∂Bε transversally for any s ∈ U and t ∈ Λ =
{|t| ≤ δ}. In particular, the topological type of the smooth fibres of the

maps

fs : Xs = f−1
s (Λ) ∩Bε → Λ (s ∈ U)

is independent of the parameter s ∈ U . (In fact, even the vibrations

fs : f
−1
s (∂Λ) ∩ Bε → ∂Λ are equivalent to the fibration f : f−1(∂Λ) ∩

Bε → ∂Λ. In particular, the corresponding fibres are homotopically

equivalent).
(f) The spaces Xs (s ∈ U) are contractible.

4. The Topology of Milnor Fibre

Let fs be a deformation of f obtained by Lemma 3.1 and let us
suppose that the number of A1 (Morse) points is σ. The critical set of
f consists of

(a) A manifold Σ0 with is the Milnor fibre Σs of k-dimensional
isolated complete intersection singularity Σ. The local singu-
larities of f on Σ0 are D(k, 0) and D(k, 1).

(b) Σ1 = {b1}, . . . ,Σσ = {bσ}, where the local singularity of f is
isolated of type A1.

Define B1, B2, . . . , Bσ as disjoint 2m dimensional balls in the space
Cm with centered of the points b1, . . . , bσ and D1, D2, . . . , Dσ a disjoint
two dimensional disks at the points fs(b1), . . . , fs(bσ). Choose them

such that f̃ : Bi∩f̃
−1
(Di) → Di define a locally trivial Milnor fibration,

the following transversality condition holds: f−1
s (t) ∩ ∂Bi, ∀t ∈ Di,

i = 1, . . . , σ.
The situation at the points of b1, . . . , bσ is well known we consider

the situation along Σs.
Firstly we define B0 a tabular neighborhood

B0 =
{
z ∈ Bε :

n∑

i=1

∣∣Gi(z, v)− u
∣∣2 ≤ ρ

}
of Σs ∩ Bε,
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which is diffeomorphic for sufficiently small ρ to the product (Σs∩Bε)×
Qn, where Qn is a closed n-ball in Cn with center at the origin [Si-1].
Let us denote Xt,s = f−1

s (t) ∩ Bε and F 0 = B0 ∩ Xt,s then for the
sufficiently small t we have

H∗−1(Xs,t) = H∗(Xs, Xs,t) =

{
H∗(B

0, F 0) if ∗ 6= m,

Hm(B
0, F 0)⊕ Zσ if ∗ = m,

[Si-2].
First compute the homology of the point (B0, F 0). Following [Si-2,

Za] we shall consider in B0 coordinates (w1, . . . , wn, wm−k+1, . . . , wm)
such that (w1, . . . , wn) ∈ Qn are the functions defined by wi(z) =
Gi(x, v) − ui and wm−k+1, . . . , wm ∈ Σs (recall that dimΣ = k and
m = n + k). Then (w1, . . . , wn) are holomorphic functions on B0 and
(wm−k+1, . . . , wm) are real differentiable [Si-2]. Now consider the pro-
jection π : (wm−k+1, . . . , wm) : (B0, F 0) → Σs. Then similarly [Si-2,
Za, Sh-3] we can prove

Lemma 4.1. If ρ and tubular neighborhoods U1 ⊂ U2 ⊂ Σs of ∆s ⊆ Σs

are sufficiently small then

(a) π : (B0\π−1(U1), F
0\π−1(U1)) → Σs\U1 is locally trivial fibration

with fibre equal to the pair (Cm−k, Milnor fibre of x2
1 + · · ·+ x2

n),
(b) the map given by the superposition π−1(U2) → U2 → ∆s is a

fibration of the pair (π−1(U2), F
0∩π−1(U2)) with fibre equal to the pair

(Cn+k, Milnor fibre of xn+1x
2
1 + x2

2 + · · ·+ x2
n).

For a subset W ⊆ Σs we shall denote by FW the following set:
FW = π1(W ) ∩ F 0.
The following statements holds

Lemma 4.2. Hq(FΣs\U1
) = 0 for q = n − 2 and q = n. Moreover

Hn−1(FΣs\U1
) = Z2, Hm−1(FΣs\U1

) = Z
µ∆+µΣ, H1(FΣs\U1

) = 0, q ≥
n− 2.

Proof. If n = 1 this case was studied in [Sh-1, Ne-1]. n = 2 in [Ne-2],
so n ≥ 3. We may assume that n > k + 2 because of if w is a new
variable, then the Milnor fiber Fw of f(z)+w2 is the suspension of the
Milnor fibre F of f , in particular H∗(F ) = H∗+1(Fw).
Consider the fibration π : FΣs\U1

→ Σs\U1.
The base space Σs\U1 is homotopy equivalent Σs\U1 ≃ Σs ⊔

∆s

U1 ×

S1 ≃ S1∨Sk∨· · ·∨Sk bouquet of circle S1 and k-dimensional spheres.
The number of k-dimensional spheres µ is equal same of µΣ + µ∆ [Za,
Sh-1]. The homotopy type of fibre of π is Sn−1 but unfortunately
we cold’nt use Gysin exact sequence for this fibration π because π is
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not orientable. But the total space F 0
s \FU1

is homotopy equivalent to

E ′ ∪
Sn−1

E ′′, where E ′ → S1 and E ′′ →
µ
∨
k=1

Sk
i are fibre bundles with fibre

Sn−1 and in E ′ ∪
Sn−1

E ′′ a fibre of E ′ is identified with a fiber of E ′′.

For the fibration E ′ → S1 which is nonorientable and its monodromy
is equal −1 [Ne-2] we may use Wang exact sequence. We obtain

→ Hq(S
n−1) → Hq(E

′) → Hq−1(S
n−1) → Hq−1(S

n−1) → · · ·

Finally, we receive short exact sequence

0 // Hn(E
′) // Z

α
// Z // 0,

α is multiplication by 2. Therefore Hn−1(E
′) = Z2, Hq(E

′) = 0, q 6= 0,
q 6= n− 1. �

On the other hands, we have orientable fibration E ′′ →
µ
∨
i=1

Sk
i because

of k ≥ 3. Hence we may use Gysin exact sequence we obtain

→ Hq(E
′′) → Hq(

µ
∨
i=1

Sk
i ) → Hq−n(

µ
∨
i=1

Sk
i ) → Hq−1(E

′′) → · · ·

Since n ≥ k + 2 and k ≥ 3 we receive Hn−2(E
′′) = Hn(E

′′) = 0 and
Hn−1(E

′′) ≃ Z, Hm−1(E
′′) ≃ Zµ∆+µΣ .

The total space FΣs\U1
= E ′ ∪ E ′′, where E ′ ∩ E ′′ ≃ Sn−1. Using

Mayer-Vietoris theorem we obtain

→ Hq(E
′∩E ′′) → Hq(E

′)⊕Hq(E
′′) → Hq(E

′∪E ′′) → Hq−1(E
′∪E ′′) → · · ·

After short computations we receive short exact sequence

0 → Hn(E) → Z → Z⊕ Z → Hn−1(E) → 0.

Therefore Hq(E) = 0, Hn−1(E) = Z2 and Hn−2(E) = 0.
Similarly we receive Hm−1(E) = Zµ∆+µΣ and Hq(E) = 0, q ≥ n− 2.

Lemma 4.3. Hn−2(FU2\U1
) = 0, Hn−1(FU2\U1

) = Z2, Hm−2(FU2\U1
) =

Z
µ∆

2 and Hq(FU2\U1
) = 0 if q ≥ n− 2 and q 6= n− 1, m− 2.

Proof. We have fibration π : FU2\U1
→ U2\U1 with fibre Sn−1. Since

U2\U1 is homotopy equivalent to S1 × ∆s using homotopy exact se-
quence of fibration π we receive Hn−2(FU2\U1

) = 0. Because of π is
not orientable Hn−1(FU2\U1

) = Z2. As in [Ne-2], since the base space
has a product structure, one can write FU2\U1

as a fibre bundle over
∆s with fibre Z is the total space of a fibre bundle with base S1 and
fibre Sn−1. Using Wang exact sequence we obtain Hn−1(Z) = Z2,
Hq(Z) = 0, q 6= 0, n − 1. Because ∆s is simply connected, it follows
from the Serre spectral sequence [Me] H∗(∆s;H∗(Z)) ⇒ H∗(FU2\U1

)
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that Hm−2(FU2\U1
) = Z

µ∆

2 and Hq(FU2\U1
) = 0 if q ≥ n − 2, q 6=

n− 1, m− 2. �

Lemma 4.4. Hn−1(FU2
) = 0, Hn(FU2

) = Z and Hm−1(FU2
) = Zµ∆ .

Proof. This follows from the fibration FU2
→ ∆s (cf. Lemma 3.1 (b)),

whose fibre has the homotopy type of Sn. �

Corollary 4.5.

Hq(F
0, FU2

) =





Z, if q = 0,

Z
µ∆+µΣ , if q = m− 1,

0, otherwise.

Proof. Using the long exact sequence for the pair (FΣs\U1
, FU2\U1

) we
receive

→ Hq(FU2\U1
) → Hq(FΣs\U1

) → Hq(FΣs\U1
, FU2\U1

) →

→ Hq−1(FU2\U1
) → · · ·

Since FU2\U1
→֒ FΣs\U1

is inclusion using excisionHq(FΣs\U1
, FU2\U1

) =
Hq(F

0, FU2
), and Lemma 4.2, 4.3 we obtain Hq(F

0
s , FU2

) = 0 if q 6=
0, n,m−1. For n-dimensional homology group we have exact sequence

0 → Hn(F
0, FU2

) → Z2 →֒ Z2 → Hn−1(F
0, FU2

) → 0.

So Hn(F
0, FU2

) = 0 and Hn−1(F
0, FU2

) = 0. For m − 1 dimensional
homology group we have following exact sequence

0 → Z
µ∆+µΣ → Hm−1(F

0, FU2
) → Z

µ∆

2 → 0.

As we known we have fibrations

FΣs\U1

��

FU2\U1
?
_

i1
oo

��
Σs ⊔

∆s

S1 ×∆s S1 ×∆s
?
_

i2
oo

Let b1, . . . , bµΣ
generators of Hm−1(FΣs\U1

). Take into account ∆s ≃
µ∆

∨
i=1

Sk−1
i . Let fi,± be the map

Dk
i,± =

[
0,

1

2

]
× Sk−1

i /{1} × Sk−1
i → S1 ×∆s/{1} ×∆s →

→ Σs ⊔
∆s

(S1 ×∆s), i = 1, . . . , µ0.
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The pullback of the fibration FΣs\U1
→ Σs ⊔

∆s

(S1 × ∆s) along fi,+ is

trivial. Therefore we have following diagram

(Dk
i,+ × Sn−1, Sk−1

i × Sn−1)
f̃i,+

//

��

(FΣs\U1
, FU2\U1

)

��

(Dk
i,+, S

k−1
i )

fi,+
// (Σs ⊔

∆s

(S1 ×∆s), S
1 ×∆s)

.

Let ai ∈ Hn−1(FΣs\U1
, FU2\U1

) be image of a generator of Hm−1(D
k
i,+ ×

Sn−1, Sk−1
i × Sn−1) ∼= Z under (f̃i,+). There is a homotopy between

fi,+ and fi,− (as a map of pairs), namely

Dk
i × [0, 1] =

(
[0, 1]× Sk−1

i /{0} × Sk−1
i

)
× [0, 1] → Σs ⊔

∆s

(S1 ×∆s).

([t, x], S) 7→






fi,+
(
[1− 2s)t, x

)
, 0 ≤ s ≤

1

2
,

fi,−
(
[2s− 1)t, x

)
,

1

2
≤ s ≤ 1.

Therefore (f̃i,+)∗ and (f̃i,−)∗ define the same element ai. Hence 2ai as

an element Hm−1(FΣs\U1
) is represented by f̃i,+ ∪ f̃i,−, which means

that
Hm−1(FΣs\U1

, FU2\U1
) = Hm−1(F

0, FU2
) = Z

µ∆+µΣ . �

Corollary 4.6.

Hq(F
0) =





Z, if q = q = n, q = 0,

Z2µ∆+µΣ , if q = m− 1,

0, otherwise.

Proof. Use the long exact sequence of the pair (F 0, FU2
) and above

lemmas.
Now we consider the pair (B0, F 0) and the corresponding exact se-

quence in homology we obtain H∗(B
0, F 0) = H∗−1(F

0). As we men-
tioned in the beginning of this section for the Milnor fibre F = Xt,s the
homology group is equal

H∗−1(F ) =

{
H∗−1(F

0) if ∗ 6= m,

Hm−1(F
0)⊕ Zσ if ∗ = m.

Therefore finally we receive

H∗(F ) =





Z if ∗ = 0, n,

Z2µ∆+µΣ+σ if ∗ = m− 1,

0 otherwise.
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�

Now we will show that our Milnor fibre is homotopy equivalent to a
wedge of spheres Sn ∨ Sm−1 ∨ · · · ∨ Sm−1 following are valid.

Lemma 4.7. Let X be a (n − 2)-connected CW complex of dimen-

sion n ≥ 3 with given homology Hn(X,Z) = Z, Hm−1(X,Z) = Zµ,

H̃k(X,Z) = 0 if k 6= n,m− 1. Then we have a homotopy equivalence

X ≃ Sn ∨ Sm−1 ∨ · · · ∨ Sm−1.

Proof. For n ≥ 3 we have that X is simple connected. According to
Herewicz theorem πn(X) ≃ Hn(X) = Z. We may attach an n-cell en
corresponding to a generator ϕ of πn−1(X). Let X̃ = X ∪

Φ
en. So we

have πn−1(X̃) = 0 and πk(X̃) = πk(X) = 0, k ≤ n− 2.

Moreover we can prove that X̃ is homotopy equivalent bouquet of
n− 1 dimensional µ copies of sphere (see [Si-2], Prop. 6.1).
Consider the following Hurewicz diagram

0

�� ��

Zµ = Hm−1(X)

α1

��

πm−1(X)oo

α2

��

Hm−1(X̃)

β1

��

πm−1(X̃)
∼=

oo

β2

��

Hm−1(X̃,X)

δ1
��

πm−1(X̃,X)oo

γ2
��

Hm−2(X)

��

πm−2(X)oo

��

This implies β2 = 0 so α2 is surjective. �

Let now Y = Sn∨Sm−1∨· · ·∨Sm−1, and Ỹ = Dn+1∨Sm−1∨· · ·∨Sm−1,

where ∂Dn+1 = Sn. Define h : Y → X and h̃ : Ỹ → X̃ as follows

h |Sn = generator of πn(X),

h |Sm−1 = lifted generator of πm−1(X̃),

h |D = en.
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It is obvious that Hq(X) = Hq(Y ), if q 6= m−1. For q = m−1 consider

Hm−1(X)

∼=

��

πm−1(X)

��

Hm−1(Y )

∼=

��

88
p

p
p

p
p

p
p

p
p

p

πm−1(Y )

��

88
q

q
q

q
q

q
q

q
q

q

Hm−1(X̃) πm−1(X̃)oo

Hm−1(Ỹ )

h̃

88
r

r
r

r
r

r
r

r
r

r

πm−1(Ỹ )oo
h̃

99
r

r
r

r
r

r
r

r
r

r

The following maps are isomorphisms

h̃ : πm−1(Ỹ ) → πm−1(X̃) by construction,

πm−1(X̃) → Hm−1(X̃) by Hyrevicz-theorem,

πm−1(Ỹ ) → Hm−1(Ỹ ) by Hyrevicz-theorem,

Hm−1(Y ) → Hm−1(Ỹ ) by exactness,

Hm−1(X) → Hm−1(X̃) by exactness.

It follows that h is homotopy equivalence, because of H∗(Y ) ∼=
H∗(X), X and Y are simple connected, as a consequence of whiteheads
theorem.

Main Theorem 4.8. Let Σ = {g1 = · · · = gn = 0} be a iso-

lated complete intersection and f : (Cm, 0) → (C, 0) a holomorphic

function with singular locus Σ(f) = Σ i.e. f =
∑n

i,j=1 hijgigj, with

D = det((hij)ij) isolated singularity at the origin and (g1, . . . , gn, D)
icis and deformation fs described above exists. Then the Milnor fibre

of f is homotopy equivalent of to a bouquet of µm−1(f) = 2µ∆+µΣ+σ
copies of Sm−1 and one copy of Sn, where µΣ (respectively µ∆) is the

Milnor number of Σ (respectively of ∆), and σ is the number of Morse

points which occur in a special deformation of f .

Proof. We know that Milnor fibre F is n− 2 connected (see [Ka-Ma]).
As we mansion above n ≥ 3 so F is simple connected and we can apply
Lemma 4.6 and find F ≃ Sn ∨ Sm−1 ∨ · · · ∨ Sm−1. This finishes the
proof of the main theorem. �
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