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Abs tract. \Ve sI.udy t,wo CO 111 plex strud ures, I. aIlCI J , c!efinec! Oll elomai IlS in the t.angent bundle
of a hermitian manifold. \Ve define I. using the complex struet.ure Oll 1\1, while J is cOllstructec! llsing
the Riemannian metric Oll M. \Vc show that if 1"1 is a hermitiall symmetrie space associatec! to a
classical group thclI the pullback or J by a suitablc c!iffeomorphism or clomaim:; in TAt! CLllticOlllll1Utes
with f •. A corollary is the existellce of a hypercomplex struet.ure Oll a domain in T1H.

O. Introduction.

Let (1H 1 g) be aRieman nian man irold ancl 0 < S :5 cx). \Ve sh all dcnote by TS 1"1 the su bset. of t.he
tangent bundle T1\1 cOllsisting of those vectors whose norm is less than S. \Ve similarly define the
subset. T· s At! or the cot.angellt bUllc!le.

The second author [5] (see also [2]: [4]) has shown that, ror each cOlllpact real-analyt.ic Riemannian
manifolcl (1\1, g) there is a posit.ive real IllllIlber S 1 such t,hat we llIay defille a canonical complex
structurc J on 1'5 !vI (sec sedion 1 for details). \Ve call IISC the ll1et.ric 1,0 ic!cntiry Tkf allel T· M 1

alld SO also define a complex structure J. on T- s A! . The zero sedion 1\1 is totally real with respect
1,0 J allel J-. \Ve call J the a(/eJpted comple:L' s/.l'uctw'e. I t was shown in [5] thai if (1"1, g) is a
compae.:t symmct.ric space then J can be c!efillecl Oll tbe ent.ire tangcnt buncllc.

On the other hand, if lH is itself a complex manifold , then the complex structure Oll 1"1 induces
complex strudures J, /* on the t,angent, allel cotangent bundles respee.:tively. The zero section is a
complex submanifold wit,h respcct 1,0 these complcx structurcs, so thcy are c1istinct from J alld J •.

In this paper we ma.ke a first ster towarels exploring the relation between the adapted complex
structure anel t,hat induceel by a cOlllplex st.ructure Oll Al. For technical rcasolls wc prefer to work
on the tangen I. bundle iIIstead 0 r the cotallgent bu ndle. Agai 11 usi ng the met ric to identi fy T AI a.lld
T· Al we can pull back /* to obtain a complex structure I. Oll then tangent bundle. \Ve shall prove
the following theorem.

Theorelll 0.1

Let AI be a compacl. irreducible hermitian symmetric space U/ J{ where U is one of the c1assical
groups. Let J., J denote thc complcx struetures Oll TAt! discussed above.

Then there exists a real-analytic diffeomorphism tP of T1H such thaI. thc pullback JrP of J by tP
anticommutes with I •. 0

\Vhen 1\1 is a noncompact irreducible hermitian symmet,ric space of c1assical type we shall intro
duce in §4 a contillllouS non-negative fundion G : Tlvf ~ IR , invariant with rcspeet to the isometry
group or 1\1 1 such thaI.

G(LY) = 11 IG(X)

whenever l. E IR anel X E T1H . Thc open unit disc bundle TI A'! is contained in C- 1((0,1]) .

Thcorelll 0.2

Let JH be a nOllcompact irreducible hermitian symmetrie space U· /]{ associat.ed to a c1assi
cal group. Then J is e1efined Oll C- 1([O, ~)) anel Lhere cxists a rcal-analytic diffeomorphism 4> of
0-1([0, 1)) onto C-1([0 , *)) such t,hat J<p anticommutes wi th I. Oll C- 1([0 I I)). 0

11. follows that the endomorphism aJ. + bJ<P + cl.J<P is a complcx strueturc on Tl"! (respeetively
0- 1 ([0, 1))) whcnever (J2 + b'2 + c2 = 1 , so I. allCl J<p generate a hypercolllpiex st.rllcture Oll TAl
(respectively c;-1([O, 1))).

In fact 1 we sha 11 see t,h at the cl ifreomorph isms of Theorems 0.] , 0.2 can be chosen 1,0 be eq uivarian t
with respect 1,0 the isometry grollp or Al. As J. allel J are invariant with respect 1.0 this grollp, we
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can deduee thc existenee of a hypereomplex strueture on T l /l.1 whenever .M is a loeally symmetrie
quotien t of a classical irreel lIei ble hermit ian sy II1met.rie spaee.

The adapted eomplex structure for a procluct of manifolds is just obt,ainecl by t.aking {,he procluct.
of t he i11 eI iv idu al ael apted COI 11 plex 8 Lrud ures. IL is sI, raigh tforwarel theref0 re 1,0 m ake the appropriatc
generalisations of Theorems 0.1 ami 0.2 1,0 arbitrary symmetrie spaees.

Hypereomplex (i ndeeel hy perk ä hier) strue"ures have been shown to exis t on th e cotangen t bund les
of compaet herillitian sYllllnetric spaccs by Hurtls [1] llsing twistor methocls. \Vc cOlljeeturc that tllc
hypereomplex structure generatecl by f. and JifJ coincieles with timt of Bums.

It easi ly follows from the result.s of §1 th at if AI isa herm iti an sy mmetric space then I. and J
anticommute only ir Al is flat. This explains why we neecl to conj ugate J by a suitable cliffeomorphism
in the statements of Theorems 0.1 anel 0.2.

1. Complex structures.

\Ve shall briefty e1iseuss the theory of adapted eomplex struetures developed in [4], [5]. Consider a
eomplete Riemannian manifold ()\tl, g). If "I : IR. ~ 1"1 is a geoclesie, we can define a mapl/;') : l[; ~

TlH by

1/;')(a + ir) = r-Y(a).

For eaeh "I thc image of C \IR. lIneler 1/;1 is a leaf of a foliaLion of TiH \ Al , callecl t.he Iliemallll
foliation.

Defini tion 1.1

Let D be a domain in Ti\rf cont.aining the zero seetion. Assume moreover (to avoid problems wit,h
analytie continuation) that for every geodesie "I in J.\1 the open setl/;:; 1(D) is a simply eonneeted
domain in C .

A eomplex structure J on D is called (ulopted if for every geodesie "I in Al, the mapl/;"f is
holomorphic on if;:; 1(D).

Theorenl 1.2 [4], [5]

If an adapted complex structure exists it is u nique. ,M oreover if (J.H,!I) is a eom pact or homoge
neous real-analytie Hjemannian manifold then there exists S > 0 such that T S 1\1 admit,s an adapt,ed
complex st,ructure. 0

]f AI is loeally symmetrie we ean be more preeise.

Theorenl 1.3 [4]

Let 1\'1 be a complete loeally symmetrie spaee.

(i) If 1\1 has nonnegati ve sect.ional eurvat.l1re (in particular if 1\'1 is eOlllpact anel symmet.ric) then
an adapteel complex strueture exists Oll thc wllole t.angent buncllc.

(ii) If the sectiOllal eurvatures are bounded beim\' by 0 < 0, then an adapted eomplex structure
exists on T S Al where S = rr/(2~). 0

The adapted eomplex structure can be describecl more explicitly as folIows.

Let z be a poi 11 t, of TAl \ At!; here we rcgarcl z as a tangen t vector 1.0 A1 at a point lI/. Using
t.he Levi-Civita connexion defined by the Riemannian metric Oll A1 we can express Tz ('Ti\1) as the
direet SUIll of horizontal ami vertieal spaces Tl l and Tzl' . Thc latter is just the tangent space of the
fibre Tm 111 through z I anel can be eanonically identified wi th Tm A1. fvloreover t he derivati ve of th e
projectioll map rr : T1H -+ /14 idelltillcs Tl! with TmA'f .
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Therefore any vedor v in T,nM defines tangent vect.ors €v in Tfl and r;v in Tz
v ; these are thc

horizontal anel vertieal lifts of v respeetively.

Now let, be the geodesic in M with ,(0) = m ami 1'(0) = z/ 11 z 11. Let V2,'" V lI be tangent
vectors to AI at 1n such that 1'(0), V2! ••• ! V n is an orthonormal basis of 'l~nAI. \Vc shalilet VI =1'(0).

\Vc can assoeiate to Vi J acobi fields along ,. \Ve let ~i! 1]i be the J aeobi fields along , with ini tial
cond i tions

',dO) = 0, V'.:y1}i(0) = Vi·

In particular, Edt) =1'(t) alld 17dt.) =/.i'(t).

If i > 1 t.he .J acobi fields ~i! l}i are llOnnal, that is, orthogonal to tllc veloeity vector Held of the
geodesie.

The Ei are pointwise linearly independent (except. possibly on a discrete subset of IR) so tilere
exist smooth functions <I>jk slich thaI,

11

17k = 2::~jkf.j, (k=2, ... ,1l).
j=2

Now suppose that T S M aclmits all adaptecl complex structure for some S :::; 00. Then the
fundions <I>j k have IHerOInOrpli ie extensions Pj k to the strip Ds = {O" + i TEe : 1TI< 5} such loh al.
the poles of Fj k lie on IR ami the matrix (Im Fj d is invertible on f)s ~R. Now let. (e j k) be the
matrix whose inverse is (Im Fjd.

The adapteel complex structure at z is BOW given by

This forlllllia is slightly dirferent frolll that given in [5], because the vectors 1/ as deflnec! in [5] are
obtained by multiplying t.he ry of our definition by a fador of 11 z 11.

If AI is locally symmetrie our ronnula silllplifies clramatically. The Jacobi operator Ri(1)
T-y(t)A1 --+ T"}(t)JH defined by

V f-t n(v, 1'(t))1'(t),

(where 'R. is the cu rvature tensor) is sy l1l met.ric at eaeh t, so can be eI iagonal ised a.t l = 0 by an
orthonormal basis of eigenvedors Vj with eigcllvalues Aj . We can take 'VI = 1'(0). Let. Vi bc thc
vector field obtained by parallclly tra Ilsport ing Vj along ,. If 1\'1 is locally sy mmetric then t.he
curvature tensor is parallel, so R-y (\Ij) and Aj Vi are parallel vector fields along I agreeillg at t = 0,
and hence agreeing evcrywhere. TImt is, \1; (1.) is an orthollormal basis or eigellvcctors of tbe .1acobi
operator for each t. Note that VI (t) = 1'(t) .

The .Iacobi equation

is thus d iagoll al ised, allel spli t,s iIl to a set of Hrst. oreler 0 DEs. ,For l' \!j is a J acobi Held precisely when
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l:+Aj1'=O. (2)

Therefore the J aeobi fields ~j,'7i are defi 11 ed by ~j = 9i Vi 1 1/j = hj Vj 1 W here 9i, hj satisfy (2) alld

\Ve find that $jk = 0 for j i- k, alld

<l>jj(/) = ! if Aj = 0,
tan( Aj!)

if Aj > 0,
Aj

tanh( -Ajt)
if Ai < 0.

-Aj

These equations, together with formula (1), yicld (for j = 2, . , . In)

(3)

(4)

(5)

\Ve also have

(6)

If (M,9) is loeally symmcLrie then its ullivcrsal eover splits isometrieally as a produet of a Eu
cl idean spaee IR n, a eompaet symmetrie spaee (A1 (1) , 9 (1) ) and a no neolll paet sym Illetrie spaee
(lH (2),9(2)). The adapted complex structure is c1efined everywhere on T~R. n X JU(l)) anel the formu
lae (3)-(6) are valid away from the zero seetion. If X is a tangent veetor to /I'f(2) at m, let B(.X)
be the most negati ve value of the sedion al eu rvat.ures of pi alles in Tm A1 (2) eont.ai ning ,:Y. Th Cll the
maximal domain in T M(2) w here the adaptcd complcx storndll rc cxists eOJlsists of those vcctors X
whose norm in the metrie 9(2) is less than rr/2J-B(X). Our formulae (::q-(ö) are valid for all such
Ilonzero X .

\Ve shall eOllclude this seetioll by c1iseussing t,he eomplex strueture on 1'1"1 arising from a complex
strueture Oll 1"1. \Ve shall restrict oursel ves 1,0 the case of K ä hier manifolcls.

Considcr a J( ä hier manifolcl A1 with metrie !J and complex strueture 10 . At each POiHt z in T A1
we split the tangent space at z as

(7)

as discussed carlier. The J( ählcr conditioll Oll AI implies that the complex strueture 1 Oll T1Vf
indueed by 10 prcserves TI! as weil as T;;v. \Vith respect. to thc c1ecompositioll (7) it is just givcn by

1 =10 EB 10 .

Now, 10 also induees a cOlllplex st,ructure /* on the cotallgent bundle r· A1. Identifying Tl\1
with T· M using t,he metrie wc can pull back 1* 1,0 obtain a new complex strlleture I .. on TM. \Vith
rcspect to (7), I. is definecl by

I. = 10 EB (-/0 ).
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2. Symmetrie spaces.

\Ve now restrict ourselves to t.hc case when Al is a Hermitian (hence 1\ ähler) irredueible symmet.rie
space. Our aim is to finel a diffeomorphislll fjJ of thc tangent bundle of M such that the pullback of
J by fjJ COIl1mutes with J•.

Our strategy is to first cOllsider a cliffeomorphism of the tangent spaee at olle point, eq ui variant
with respect to the isot,ropy actioll, anel then extencl it to the whole tangent bllndle by hOlllogeneit,y.

\Ve first review the Cartan thcory for symmetrie spaces. Ou r referellce for this material is Helgason
[3] and we follow his notation.

Let 111 =U/ K be a compact irredllcible symmet.ric space, with CarLan decomposition

u:::::: ~o + P., (9)

(10)

where ll, ~o are the Lie algebras of U allel !{ respect.ively.
If wc fix a basepoint 0 in U/ !{ 1 thCIl we call ielcntify P. wit,h thc tangent, space at t!I is point.

Denote by 1(. the curvature tensor on U/ !{ , so [3, eh. IV, §4] if X 1 Y, Z E P. we have

'R.(X , }'")Z = -[[X, YL Z].

It follows that thc Jacobi operator R.x =RL X)X is equal to -(aelx )2.

Letting Po = ip. we have t,he Cartan decomposit,ion

00 = ~o + Po

for thc noneompact dual symmetrie space U· /](.

We dellote by 0 lohe complcxification of u , so U anci 00 are real fOrlns of the complex Lic algebra

o·
Let ~P. be a maximal abelian subspace of P. ; t.hen ~Po = i~p. is a Inaxima.l abelian subspace of

Po' The dimension l' of ~P. is t.he rank of the sYllllnetric space.

Let ~o be a maximal abelian subalgebra of 00 containing ~Po' Then the subalgebra ~ of 9
generated by ~o is a Cartan subalgebra of O. Fina.lly, we dcnote by ~P the subspace of 9 gCllerated

by ~Po'

Let ~p be the set of 1l0llzero roots of 9 with respect to ~ whose restrietion to ~p is not identically
zero. For eaeh Q E ~p the kernel of the restrietion of Q' to t,he abelian subspace ~P. is a hyperplane

L(cr) in ~P.' The elements of ß p ta.ke real valucs on the subspace ~Po' We let ~ be lohe set of
elements of t,he dua.l of ~Po obt.ained by restrietion of elements of ß p . \Ve call E the set of restrietecl
roots.

Definitioll 2.1

(i) The Weyl gmup W(U, ]() is the quotient of thc group of elements of J-( preservlllg hp• by the
subgroup of element.s of I\ aet.ing triviallyon I)P •.

(ii) The open Weyl chambel's are t.he conneetecl cOlIlponents of the cOIllplemcnt in ~P. of t.he unioll

of hyperplancs U{ L(o') : 0' E ~p}.

Theol'eIll 2.2 ([3] eh. v §6, eh. VII §2)

Each orbit of f( Oll P.. intel'seets t.he maximal abelian subspace ~P.' Moreovcr if two points of
~P. lie in the same orbit of b,:, they lie in the same orbit of the \Veyl group. 0

Theol'eIll 2.3 ([3] VII §2)

The \Veyl group is generated by the reflexions in t.he hyperplanes L(O') 1 and aets simply transitively
on the set of \Veyl chambers. ~'loreover, t.he closure of any \Veyl chamber contains exactly one point
from each orbit of t,he \Veyl group on ~P.' 0
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Corollary 2.4

The closure of any \Veyl eh amber is a transversal for thc action of [{ on P... 0

\Ve shall eonstrllet [{ -eq lIivariant diffeolllorphisllls of P. = To (U / I ..... ) by extending maps of a
closecl \Veyl chamber onto itself.

Lenuua 2.5

Let C bc a Weyl chambcr with c10sure C'. Let J be a bijeetioll of C' onto itself, slich thaI, far
any x E Cf the stabi Iiser of ;1.: for t he I..... adion eq1I als the st,abiliser of f (x). Then we ean extend j
to a K -equivariant bijection of P•.

Proof

Let y E P.; then from Corollary 2.4 t,here exists k E I( ami x E C' with y = k.x. Defillc
4>(y) = k·f(x). If k1·XI = k2 .x'2 for kj E K,J:j E C' then k"21klxI = X2 so by Corollary 2.4 we must,
have Xl = x2, anel k"21kI stabilises Xl. By our hypothesis k"2 I 1.: 1 stabilises f( x d also, so rjJ(y) is
weIl defined. Clearly r:P is }\" -eq ui vari ant. If we den ne 4> -1 in the same way lIsing j- 1 1 t il Cll r:P - 1 is
an inverse for 4>. 0

The c10sure C' of a \Veyl cllamber C is a convex sllbset of OP. bOllnded by hyperplanes L(CVIL . . "
L(üm) where L(Qj) = Ker C'lj. If S is a subset of {C'lI,"" C'l m} we let Ls = n{L(a) : Q: E 5} _ If S
is empty we take Ls = OP •.

Let, Stab~ denote the st.abiliser of X E P. with rcspect to the action of U , and let Stab~ be thc
stabiliser of x with respect to the aetion of 1\".

The a:gl~l1lent of ~eml~la 2.14 .of Chap~,er VII of [~ sl~ows ~hat Stab~ c1ep.ends only. on thc set of
roots valllsill ng at x. Taklllg the III tersectlon of Stabr WI th 1\ we see that t,h IS eOllel U510n also holds
far Stab:-. Equivalently, thc stabiliser Stab:: depends only on the set of hyperplanes L(oj) whieh
eontain x. \Ve have thus establi5hed the following Lemma.

Lmuma 2.6

Let f be a bijcction of Cf onto itself whieh maps Cf n Ls bijeetively onto itself for eaeh sllbset 5
of {o I, ... , 0- m} - Then we ean extend f 1,0 a K -eq 11 ivaria nt, biject.ioll of P.. onto it.sel f. 0

Identifying P. wi t.h the t.angent space 1.0 U/ g at our basepoint, we havc a bijection of 7~ (U/ J()
which is equivariallt, with respeet to t,he isot.ropy act.ion of K. \Ve ean now extend this map using thc
action of U 1,0 a U -equivariant bijection 4> of T(U / K).

\Ve ean argue similarly for the 1I0neompaet dual symmetrie space U· /}( , whose Cartall decom
posit,ion is given by (10). \Ve can take OPo = iOp• as a maximal abelian subspace in Po, and if C' is

the c10sure of a \Veyl chamber in OP. ' then iC' is a transversal for the action of J( on Po' Then any
bijection satisfying the hypotheses of Lemma 2.6 will extend to a ]( -equivariant bijeetion of Po, aJl(I
henee define a U· -equivariant bijeetion of T( U· / ]\") .

f\'lore generally, let VI, V 2 be domains in OPo alld let f be a bijection of VI niC' onto 1'2 n iC'
mapping VI niC'n Ls bijeetively onto 1'2 niC'n Ls for eaeh S. Let E1 , E2 be the Sll bsets of T( U· / }()
associated to VI n C\ 1'2 n Cf by thc lJ· -action. Thcll f extends 1,0 a U* -eqllivariant bijeet.ioll of EI
onto [2-

In sectiolls 4 aJl(l 5 we shall eOllsidcr spccial ehoiecs of f whose equi variant extcnsions are real
analytic diffeomorphisms of appropriate domains in t,he tangent bundle.

F'inally, we provc a lemma whieh will be neded for the calculatiolls of t,hc next sccLion.

Given a real-valued linear functional ,,\ on OP. we define a linear fundional .x on OPo by seting

.x(tu) = ,,\ (- hu) .
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LennllH. 2.7

Let A be a real-valued linear fundional on ~P. ' and suppose there exists a nonzero vector X E PO'
with the property timt

((II, X], 11] == )"(1l)'2 X for all H E ~P.'

Then ).. is a restrieted root, anel

Proof

Let ii E hpo ' Then -il! E ~p. anel

(11)

(12)

As H was arbitrary, it. follows from Corollary 2.10 of Chapter VII of [3] that ~ is a rest.ricted
root.

\Ve obtain (12) by pu t ti ng H == H1 + H'2 in (11) ami using the J acobi identi ty ami the rel at.ioll
(H 1,H2]=0. D

3. Equivariant diffeomorphisms

[n this sedion we shall est,ablish two lemmas whieh will enable us to calclilate the derivative of a
U -equivariant, diffeomorphism of the tangent. blilldle of asymmetrie spaee Uj ]{. \Ve shall use these
results in §4, WhCll we study the pullbaek of the adapt.ecl eomplex struct,urc by a c1ifrcomorphislll of
T(Uj K).

L ellllllH. 3.1
Let NI = Uj j{ be asymmetrie spaee, allel 4> a U -equivariant, diffeomorphism of T1\1. Let 0 be

the basepoint [K] of 1\1, ami identify PO' with To1\1. Suppose that. 4> rest.rids to a c1iffeomorphism
of ~P. onto itself.

Let v E P.. anel let, z be a Ilonzcro dement of hp•. Let ~v (z ), ~v (4) (z)) denote the horizoll tal liFts

of v to z and 4>(::) respectivcly. Then

Proof

Let'Y be the geodesic with ,(0) == 0 anel ')"(0) = v. As 1Vf is asymmetrie spaee, ')' is given [3]
by

,(t) = exp(tv)o. (13)

rvIoreover, on asymmetrie space, parallel transport along the geodesie wi t,h equatioll (13) is gi vcn
by }!" 1---7 exp (tv)O' Y. (We are regarcl i IIg cxp(tv) E U as clefilling a transformation of Ar).

Therefore thc veetor fielcl X definecl by

x(t) = cxp(tv)O' z

is parallel along ')' alld satisfies X(O) == z. \Ve deduee that ~v(z) = ;\.'(0).
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Now, Ilsing t,he equivariance of rjJ we have

<jJ(X(l)) = rjJ(exp(t.v).=) = exp(tv).<jJ(::), (14 )

so t,he vcctor fickl l I---t rjJ (X (l )) is also parallel along 'Y. Ditreren j, iat.illg (14) proves our clai In. D.

LellllllR 3.2

Let A1, rjJ, 0, V, :: be as in Lemma ::l.l. Let }f'1J be the .Jacobi operator deflned by Hl/u = 'R,( V, H)H I

where 'R. is the curvature tensor.

Suppose t,hat, ). is a linear funct,ioll~l Oll hp• allel t,ha/'

for all H E ~p •. Assume Illoreover that >.(z) =J. O. Denote by I/v(::) anel ~v(<jJ(::)) the verticallifts of

v to z and tP( z) respectively.

Thell

_ >'(<jJ(z))_
rjJ.11v (Z) = >.(z) 11v (rjJ(Z)).

Proof
Consider the curve in P. = To J\1 elefined by

1{ : ll---t Ad(t.G)z,

where 8 = >'(Z)-2[Z ,v]. Now [8,::] = v, so 1{'(O) is the verticallift ijv(z) of v to z.

Using the equivariance of rjJ agaill, we have

rjJ(1{(t.)) = <jJ(Ad(t.G)z) = Ad(tG)<jJ(z).

Differentiatillg at, t = 0 shows th at. tP. T7v (z) is the vert.ical lift, 1,0 .p (::) of [e,.p (z)] I bu I, by Lemlll a
2.7

1 >.(z)>.(.p(z))
[G, .p(::)] = >'(zF ((z, v), rjJ(z)] = "\(zF v,

giving the requireel resliit. 0

4. Anticommuting complex structures.

For any compact hermitian symmetric spa.ce A'1 = U/]{ we havc an adapted cOlllplex strllct.ure J Oll
TAl. Ir.p is a cl iffeomorph iSIll of T A1 we can pu II back J 1,0 0 btain a Be.,\, COIll plex stTucl, II re J 4> I

defined by

where z E T 1\1 anel ( E T.: (TA'!). Our aim is 1,0 show t,he existence of a U -equivariant diffeolllorphism
of T1Vf such thaI, the complcx strllct.ure I. anticomlllllLcs with JrP. \Ve shall simplify the calculations
by making a suitable choice of hases for the tangent space to T fl.1 at the points z and cP (z) ,and by
exploiting the equi variance of cP.
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Defini tioll 4.1

Let !VI be a eompact. irreellieible hermitian symmetrie spaee of rank l' I with it.s eomplex structllre
defined by an endomorphism 10 of P.. 1 \Ve shall say tllat 1H satisfies eondition (*) if there exists
a maximal abelian subspaee flp• in P.! an orthonormal basis Cl , ... , er for ~P.' a.nd an orthogonal
cl ireet sum decomposition

(15)

satisfying the followi Hg eonditiolls.
(i) Let x be an arbitary element of ~P. I W ith coorel iaates >'d x) with respeet to the basis clements

ek I so x =L >'dx)ek. Denote by Hz the Jaeobi operator assoeiated to x. Let v and q be arbit.rary
elements of Vjk ancl Qk respect.ively. Thcn

H;rJoej ::;:: 4>'J (;I:) loej 1 (16)

R.r v (>.j (x) - >'dx) )2V 1 (17)

Rxlov 2 (18)(>.j (x) + >'dx)) 10 v,

Rxq ::;:: >'dxfq· (19)

(ii) Each Qk is Ja-invariant (and possibly zero).

Theorelll 4.2

Every compact irrecillcible hcrmitian symmet.rie space assoeiatecl 1,0 one of the classical grollps
satisfies eonel ition (*).

Proof

This is establisheel by a casc-by-case check. For future referenee we record the appropriate c1lOices
of ~P. 1 Vjk and Qk 1 as weil as the eomplex structure 10. \Ve let Ejk denote the matrix of appropriate
size with 1 in the jk position allel zeroes in all ot.her positions.

(i) Complex Grassmannians SU(p + q)/S(U(p) x U(q)) with P:S q.

The rank of t.he symmetrie space is p.

Let

The complex structure is given by mliitiplication of Z by i.

\Ve let hp • be t,he sn bset of P. obtainccl by taking

Z=(ß 0),

where ~ E A1p Xp ~R.) is diagonal. Let,ti llg Z ::;:: Ejj (j ::;:: 1, ... ,]J) c1efines an orthononnal basis
ei, ... I ep '

For ] :s; j < k :S PI Vjk is spanned (aver IR) by the t.wo elements of P. defined by taking
Z ::;:: Ejk + Ekj and Z ::;:: i(Ejk - Ekj ). For 1 :s; k :S p we obtain a basis far Qk over l[; by taking
z= Ekl;(/::;::p+ ll, .. ,q).

(ii) SO(2n)/U(n).
Here thc rank is [~].

Let

10



The cornplex strueture sends (Z ~V) to (- ~V Z).

\Ve choose hp• to be the subspace of p. where ~V =0 and Z belongs to the standard Cartan
algebra of 50 ( Tl). The matrices w here one of the 2 x 2 blocks on the diagon a1 of Z is

and the other blocks are zero, form an orthonormal basis for fJ p•.

In order to define the other spaces in the decomposition (*) we must introduce some more notation.

Let A be an 11 x n real skew-symmetric matrix. Ir n is even, we write A as

[

All AIr J-AT:? A2r

-AT, A"

where each Ajk is a 2 x 2 matrix.
Ir n is odd, we write A as

Au AIr BI
-AT2 A2r B2

-A;l Arr Br
BT -B; 0- I

where the Ajk are as above and the Bj are 2 x 1 matrices.

For every 2 x 2 matrix \11' , let Efk be the Tl x n matrix with Ajk = \11' and all the other A mq (m ::; q)
, as weil as all the matrices Bm , equal to zero.

Ir n is a 2 x 1 matrix, let Ef be the n x n matrix wi th Bj =n and all the other Bk, as \\-'eH as
all the A mq , equal to zero.

Then for 1 ::; j < k ::; r,

:h )·W= (::6 :), T = (~ ~c), a, 6, C, d EIR }

Also, for k = l, ... , r we have

The Qk terms on1y occur if Tl is add.

(iii) Sp(n)fU(n).

The rank is n.

Let

E=k-Er

11

) • fl, :::: E IR 2 } .



The eomplex st,rueture seneIs (Zl Z2) (,0 (-Z2 Zd.
\Ve ehoose hp• to be the subspace defilled by takillg Zl to be diagonal ancl Z2 1,0 be zero. LeUing

Zl = i Ejj (j = t, ... , 11) c1efines an orthonormal basis for OP•.

'Ne deHne a basis for Vjk over IR by letting Zl = i(Ejk + EkjLZ2 = O. 'Ihere are 110 Qk terms.

(iv) Quadries 50(n + 2)/5'0(n) x 5'0(2),

The rank is 2.

Let

(n ;::: 2).

alld let ~P. be defincd by taking Z 1,0 be of t,he form

a b
b Cl

o 0

o 0

(a,bEIR).

\Ve define an orthonorlllal basis for IJp. by t.akillg a = 1/;2, b = 0 ami a = 0 1 b = 1/;2.

Ir we write Z as (Zl Z2) where Zl, Z2 are eolullln vectors, then the complcx strueLure is defincd
by

As the ral1k of the symmetrie spaee is I,wo, t.he only Vjk term whieh oeeurs is V12 _ A basis of V12
over IR is defined by taking Z = Ekl - Ek2 (k = 3, ... , n). Thcre are 110 Qk terms. 0

CondiLion (*) will enable HS 1,0 ehoose a good basis in whieh to do the ealeulations of the next
theorem.

TheoreU14.3

Let 1"1 = U / f{ be a eompaet herlllit,ian s)'mmet,rie spaee satisfying eondit,ion (*). Let, hp• be a

Inaxi mal abcl ian sn bspace of P. allel e1, ... 1 er an or (,honormal bas is for ~P. as in (15).

Let <p be a U -equivariallt, eliffeomorphism of Tl'! I restrieting Lo a eliffeoll1orphislll of OP. outo
itself whieh preserves eaeh open \Veyl ehamber.

Then J<p antieommutes with I. if allCl only if Lhere exists a positive eonstant p such timt

when

1 r

,t,(.) - - "'""sinh- 1(pA-)e.'f'. -2~ ) )1

j=l

r

:: = L Ajej E OP •.
j=l

12

(20)



Praaf

\Ve regard the coordinates Aj on OP. as defining real-valued linear fllnctionals on this space.

As discussed in section 2 1 to each Ai we can associate a linear functional ~i on OPo by setting

-Xj(tu) = Aj(-iw).
\Ve see from Corollary 2.10 of Chapter VlI of [3] t,hat the set, of restricteel roots is

so

c = {x E hp• : Adx) > ... > Ar(X) > O}

is an open \Veyl chamber in hp•. The set, of points conjugate to points in C by the action of U IS an
open elense subset of T!'vl .

The action of U on T1H is hololllorphic with respcct to boLh I. ami J 1 so it. is sufficicnt to sec
w hen anticom muta tion holds on C. Let : be a poi nt, of C. \Ve sh all choose speci al bases of Tz (Tk1)
alld T<p( z) (T AI) , wi t h respect {,O wh ich we sh all calculate <P. 1 1. z allel J!.

For each pair (j, k) with 1 ::; j < k ::; l' choose all ort.hollonnal basis for Vjk. Applying 10 1,0

these vectors gives an ort,honormal basis for 10 Vjk. Finally, for eaeh k pick an ort.hollormal basis for
Qk. Then the IInion of t,hese bases, Logether with the elements

fonns an orthollormal basis for P•. The horizontal ami vertieal lifts of this basis to : anel <jJ(:) gl \'c
bases for Tz (TA1) alld T4J (:) (TAt!) respectively.

As discusseel earl ier1we cau split tangent spaees to T 111 into vert ieal aud hori zontal spaces. From
(a)-(6), (8) and Lemmas 3.1 anel 3.2, we see that l .. z and <jJ. preserve horizontal and vertical spaccs
while J interehallges them. Using the above bases we have thai <jJ. : Tz (Tlv!) --+ T4J{:)(Tkf) is
representeel by a matrix of the form

(
1e! 0)
OB'

(
0 _A- 1

)

A 0 I

respectivelY1 for some A.
It readily follows tImt the pulled back complex structure J! commutes with I..: if allel only if

(21 )

\Ve shall use the dccom posi tion of Defin jtion 4.l to caleu Iate A, B, 10 expl ici tly anel see when
thc antieommutation relation (21) holds. \Ve shall see t.hat each of the spaces Vjk EB 10 Vik 1Qk and
OP. + 10 0p• is invariant undcr 101 A, B so it is suffieient t.o work Oll each of these spaces separately.

\Ve shall denote by <Pd:) the k th. component, of <p(z) with respect to tlie basis Cl,'·" er'

Let, us first study the space Qk. From conelition (*) we know that, for any (/ E Qk alld any x E ~P.

we have



In particlliar R.p(z l/II.p(z)1I is a scalar operator on Qk with eigenva]ue cPk (Z)2 / 11 cP( z) 11
2

. The equat,ions
(3)-(6) e1efining the aelapted complex structure 1I0W show that

Moreover , by Lemma 3.2 we havc

so {,he relation (21) holds automatically on Qk.

Oll the subspa.ce h= ~p. + 10 ~p. with respcct to Lllc basis ei"", er, 1ei, .. . ,1er tha complcx
strllcture /0 has matrix

(
0 -ld)
Id 0 .

Now, for any x E flp• we have

R-xej

Hx [oej

so, applying equatiolls (3)-(6L we find that

0,
= 4).; (:t:) Joej ,

where v =diag (Vll .. " vr ) allel

tanh(2cPj(z))
Vj = 2q'Jj(z) .

H, f01l0W5 f rom Lemma :1.2 th at,

B1_. = (dcP 0)fl 0 /1. l

where dq'J is the derivative of t/J : ~.p. ~ h.p. in thc coordinates given by the basis ei"", er' Here

Jl =diag (/111 ... , Pr) ,and

rPj(Z)
/lj = -).-.-.

)

\Vc fiHd thaI, h is indeed invariant under A, ß alld 10 l anel Oll ~ (21) is eqllivalent, Lo

dt/J = vp,

which in turn is equivalent, 1,0

0, ifi-j=j,

(22)
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where z = L AjCj, ami Al > ... > Ar > O.

The solution LO (22-2:~) is

.+.. = ~sinh -1 (P'A')
'f'1 2 I I , (24)

where Pi are constants. In fad, as tP is equivariant with respect Lo the action of the \Veyl group, the
Pi Ilmst all be eq1I al Lo some constan I, p. The requirelllent t, hat <P prese rves each open \VcyI eh alll bel'
means that P is positive.

Equation (24) shows thaI, the l'estridion of <P to ~P. must be of the form (:20). As <p is lJ
equivariant, we see that <p is determined up to the choice of const,ant p.

(ii) \Ve shalillow denlOIlstrate the converse implication. In order 1,0 show thaI, the anticolllmutation
rel ation (21) holds we m 11St look aL t.he spaces Pj k = Vj k EB 10Vj k. \Ve see th at.

(
0 -ld)

10 IPjk = Id 0 .

Using conditiotl (*) and equatiolls (3)-(6) as before we find that

where

tanh(<pj(z) + tPdz))
P2 = .

tPj(z) + tPdz)

Lemma 3.2 teils us t,hat

where

(25)

11, follows thaI, 1. alld Jrp anticommute Oll Pjk precisely when

tanh(<pj(z) + <pdz)) _ tanh(<pj(z) - <pdz))
Aj + Ak - Aj - Ak

\Ve have already secn that, if ,pi = tsinh -1 (pAd for each i then t.he anticollllllU taLion relation

holds on each Qk and on 6. It is easy to check that, for t,his choice of rjJ t,he equation (26) holeIs, so
anticommutation holds Oll each Pjk also. It, follows timt 1. and JrP anticollllllute at all points of the
open \Veyl eh amber C, and hence everywhere on TJVf. 0

The final ingredient. we nccd for the proof of Theorem 0.1 is 1,0 show that the Illap

L AjCj t-+ L ~sinh-l(PAj)ej

extends to a real-analy tic U -cqu ivar ian t cl ifreoillorph ism 0 f T 1\1 .

(26)

Proposition 4.4

Let 1V! = U / [\" be a compact irreducible hermitian symlllet,ric space of classical t,ype. Defille a
real-analytic diffeomorphism of ~P. by
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E>'jej t-t E ~ sinh-
1 (p>'j)ej.

Then this map extenels uniqllely to a f{ -equivariant real-analyt,ic c1ifreomorphism of P. ) allel heuce
to a U -equivariant real-ana Iytic diffeomorph ism of T /vI .

Proof

The existence anc! uniqueness of i-\ U -eq 11 ivariant biject.i ve exten8ion 1J follows frorn LeIllma 2.6,
\Ve must show timt 1jJ) IjJ-I are real-analytic, \Ve proceec! case-by-case. \Vithout loss of generality we
take the constant p to be 1.

ease (i) S'p(n)jU(nL 50(2n)jU(nL SU(p + q)jS'(U(p) x U(q)).

As discussed in tlte proof of Theorem 4.2, wc regarcl P. as a subspace of the vedor space u(N)
for suitable N. Uncler this identification, each element X of P. has pure imaginary spcdrum.

It is easy to verify that the restriction of 1J 1,0 flp. is givcn in some neighbollfhood of thc origill
by apower series

with scalar coefficients. The (Lj are the coefficients of the Taylor expansion about x = 0 of j,he function
F (x) = - ~i sinh -1 (ix). Now F is holomorphic on some open set D cOlltai 11 ing tohe imaginary axis,

so we can deHne areal-an aly tic function F: u( N) --+ iHN x N (~ ) by

F : X t-t ~1F(>')(>'ld - X)-lel>',
2m r

where r is a contour in D cnclosing thc spedrum of X. Thcn F agrees with 1J on a neighbourhood
of t.he origin in flp •. As 1J is also rcal-analytie on Op., it follows that 1J amI F are eqllal Oll Op.·
Since F is Ad [\" -equivariant, we declnce that F ancl rjJ agree on P., so ljJ is l'cal-analytic on P., alld
hence on T 111 .

Similarly the restrietion of ljJ-l 1,0 flp. is given by

where - ~ i si nh (ix) = L bj xi. Jt, follows thaI. thc equivariantextension of ljJ - 1 to P. is also gi ven by
this form ula, so rjJ - 1 is real-an alytic on P., and hence on T AI[. (As the power series of - i si nh (iJ: )
converges everywhere we do not. need to use t,he symbolic calculus in this ease).

(ii) SO(n + 2)jSO(n) x 50(2).

As in 4.2, we identify points of P. wit.h pairs (Zl, Z2) of 11 x 1 COlUlllll ycctors.

\Vi th the choice of bp. m acle in 4.2, it is straightforward to ca!cu late that the res triction of 1J 1,0

P.. is given by

where

01 +02 (01 - 02) < Z2, Z2 >
-2- + 2.jW

(o:! - 6d < Zl, Z2 >
2.jW

61 + 6:! (01 - 62 ) < Zl, Zl >
-2- + 2.jW
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sinh- 1(ft}

2fl

sinh- 1
(f2)

2f2

(1 ~J< Zl, ZI > + < 2'2, Z2 > +2yW,

(2 ~J<ZI,ZI>+<Z2,Z2>-2yW,

and

Here fl, (2 are the coordinates of the point in the elosed \Veyl chall1ber C' conjugate to (Zl, Z2)
under the adjoint. action of SO( n) x 50(2). \Ve havc Cl 2 (2 2: O.

It is sufficient to check that 61 + 62 ancl (61 - 62 )/.jW are real-analytic.

Now, the function t t-t Sillh- l (t)/2t is real-analytic allel cvcn, so it may bc written as l(/.2) whcre
is real-an al)' 1, ic on some open inte rval of IR. iIlclucli ng the c10secl half-I ille {t : 1. 2 O} .

[t can be read ily checked timt, for such a function l, t.he [unctions II and 12 definecl by

11 (x,y)

l2(X, y)

l(x + JY) + l(x - ViiL
l(x + /y) - l(x - y'Y)

VY
extend to real-analytic fllllctions on some open ncighbourhoods of the region {(x, y) : x, Y 2: 0 ; x 2:
/y}.

Taking x = ~ « Z1, ZI > + < Z2, Z2 » allel y = ~w (so x 2 -!Y) conclucles t,he proof.

Thc only properties of ,p t.hat were needecl for this argUll1ellL were t,hat, sinl! -1 is odd ;-md real
analytic. Hcncc the same argument. also applies to ,p-l. O.

\Ve cau uow fi 11 ish t.he proo[ of Theorem O. I.

Proof of Theorelll 0.1

The map

is a real-analyt,ic diffeomorphism of 1JP. onto itself, preserving each opcn \Veyl chamber. Proposition
4.4 shows th at i t extenels to a U -eg uivariant real-analytic di ffeol11orph ism of T 111 , an cl Theorem 4.a
now implies that the pullback of J by ,p anticommutes with 1... 0

\Ve !Jave shown t.he existencc of t.wo anLi-cOll1Illuting complex st.rucLures 1.. allel J<p on T.M. It
follo\'vs that a 1.. + bJ<P + c1.. J rjJ is a com plex st rucLure whenever a 2 + b2 + c2 = 1. In other woreIs 1..
allel J<p generate a hypercomplex stnlctul'€.
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5. The noncompact case.

The arguments of the preeeding sedion can be adapted with only minor changes 1..0 the case when 111
is a nOlleompad irredueible hertnit,ian symIlletrie space asociatecl 1,0 a c1assical group. Such spaces
are preeisely the duals of the eompact examples we have already considered.

In eaeh ease we have a deeolllposit.ioll of Po analogons 1.0 t,hat, of (15), Imt 1l0W (.he eigenvalue.s of
the operator Rx have t,he opposi te s ign to those of (16)- (1 g) .

Thc orthonormal basis eI" .. I er for flp• eletermines all orthonortnal basis 'ie 1, ... ,icr of ~Po' [r
w E ~Po has eoord inates Al, ... , Ar With respect tothis basis I let

G (w) :;::: IIIax 1 Aj 1 .

\Ve ean extend G 1..0 a eOIl j, inlIons U· -eq 11 ivari aH I, fundioll (wh ich we shall also elcnote by G)
defilled on Tl\! alld taking vallIes in (0 ,00). \Ve have the equation

Let

G(tX) =1 t. 1G(X) (t E IR 1 X E TA1).

anel

The Illap

V j ={w E ~Po : G(w) < l},

[1 = {X E T 1"1 : G(X) < 1} I

1T
[2 :;::: {X E TAl : G(X) < 4"}'

(27)A' ~ ~ sin- I (,,\.) (J' - 1 1')) 2 ) - I""

is then a real-analytie diffeomorphism of 'D 1 onto V 2 .

The eliscllssion after Lemma 2.6 shows that the map defined by (27) ext.ends 1,0 a U* -equivariant
bijection ifJ between the regions [1 alld E2 . Moreover, the argu men1.s of Proposition 4.4 show that
ifJ alld its inverse are in fact real-an alytie. From §1 allel the deeomposi tion in 4.1 it follows th at 1.. he
maximal domain Oll whieh the adapted complex st.rudure J is clefinecl is &2. Thcreforc the pulled
back complex structure Jrp is dcfineel allel is smooth on [;1.

Proceeding as in the proof of Theorem 4.:3, we find that t.he relations that ifJ must satisfy for Ji/J
1..0 anticollllllllte with I. Oll &1 are

2A. oifJdz)
I BAi

ö4Jdz))
BAj

tan(4Jj(z) -Ijlj(z))
(Aj - Aj)

= 0 if i 1= j,

tan(ifJd z) + ifJj(z))
(Ai+Aj)
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where z = L.Ai ej E V 1 ancl cP (z) = L tPi (z )ei. Jt is easy to yeri fy that these equatiolls are satisfied
if the restrietion of tP to VI is giyen by (27), so we hayc established Theorem 0.2.

It. is e1ear thai. (,'-1 ([0, l)) (;011 tains the open uni t, disc bundle T I 1H , so Theorem 0.2 shows the
exist,ence of a hypercom plex sl,ruetme on Tl kf .

In Theorems 0.1 ami 0.2 thc diffeomorph ism <p is eq uiyariant with respect to the action of the
isometry group of kf. !vloreover this action preserves the complex strudures I., J, We see therefore
that a hypercomplex st,ructure exists on T I 1H whenever AI is aloeall)' symmetrie quotient of a
classicaJ hermitian symmetrie spacc.
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