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Abstract. We study two complex structures, I, and J, defined on domains in the tangent bundle
of a hermitian manifold. We define /. using the complex structure on A, while J is constructed using
the Riemannian metric on M. We show that if A/ is a hermitian symmetric space associated to a
classical group then the pullback of J by a suitable diffeomorphism of domains in TM anticommutes
with .. A corollary is the existence of a hypercomplex structure on a domain in TAf,

0. Introduction.

Let (A1, g) be a Riemannian manifold and 0 < S < co. We shall denote by 75 A the subset. of the
tangent bundle T'Af consisting of those vectors whose norm is less than §. We similarly define the
subset. 75 M of the colangent bundle.

"The second author [5] (see also [2], [4]) has shown that for each compact real-analytic Riemannian
manifold (A,g) there is a positive real number S, such that we may define a canonical complex
structure J on T M (see section 1 for delails). We can use the metric to identify 7'M and 7™M,
and so also define a complex structure J* on 79 A/ . The zero section M is totally real with respect
to J and J=. We call J the adapted complez structure. It was shown in [5] that if (M,q) is a
compact symmetric space then J can be defined on the entire tangent bundle.

On the other hand, if A is itself a complex manifold, then the complex structure on A induces
complex structures [,/ on the tangent and colangent bundles respectively. The zero section is a
complex submanifold with respect to these complex structures, so they are distinct from J and J*.

In this paper we make a first step towards exploring the relation between the adapted complex
structure and that induced by a complex structure on M. TFor technical rcasons we prefer to work
on the tangent bundle instead of the cotangent bundle. Again using the metric to identify TA and
T M we can pull back /* to obtain a complex structure /. on then tangent bundle. We shall prove
the following theorem.

Theorem 0.1

Let A be a compact irreducible hermitian symmetric space U/ where U is one of the classical
groups. Let I., J denote the complex structures on "M discussed above.

Then there exists a real-analytic diffeomorphism ¢ of TAf such that the pullback J% of J by ¢

anticommutes with [, O

When A is a noncompact irreducible hermitian symmetric space of classical type we shall intro-
duce in §4 a continuous non-negative function G : TM — IR, invariant with respect to the isometry
group of M | such that

) CUX) = [ L] G(X)
whenever ¢ €IR and X € TA{. The open unit disc bundle 7'M is contained in G~1((0,1]).

Thecorem 0.2

Let A be a noncompact irreducible hermitian symmetric space U~/K associated to a classi-
cal group. Then J is defined on G~1([0, %)) and there exists a recal-analytic diffeomorphism ¢ of
G~'([0,1)) onto G=*([0, X)) such that J# anticommutes with I, on G=([0,1)). D

It follows that the endomorphism al, 4+ bJ%¢ + cI.J¢ is a complex structure on TAf (respectively
GH[0,1))) whenever a? + 6% 4+ ¢* = 1, so I, and J? generate a hypercomplex structure on T'M
(respectively G1([0,1))).

In fact, we shall see that the diffeomorphisms of Theorems 0.1, 0.2 can be chosen to be equivariant
with respect to the isometry group of A/. As [, and J are invariant with respect to this group, we



can deduce the existence of a hypercomplex structure on 7'M whenever M is a locally symmetric
quotient of a classical irreducible hermitian symmetric space.

The adapted complex structure for a product of manifolds is just obtained by taking the product
of the individual adapted complex structures. [ 1s straightforward therefore to make the appropriate
generalisations of Theorems 0.1 and 0.2 to arbitrary symmetric spaces.

Hypercomplex (indeed hyperkahler) structures have been shown to exist on the cotangent bundles
of compact hermitian symmetric spaces by Burns [1] using twistor methods. We conjecture that the
hypercomplex structure generated by f. and J® coincides with that of Burns.

It easily follows from the results of §1 that if M is a hermitian symmetric space then /. and J
anticommute only if M is flat. This explains why we need to conjugate J by a suitable diffeomorphism
in the statements of Theorems 0.1 and 0.2.

1. Complex structures.

We shall briefly discuss the theory of adapted complex structures developed in [4], [5]. Consider a
complete Riemannian manifold (A4, ¢). If v:IR — M is a geodesic, we can define a map ¢y : C —
TM by

Yolo +i7) = T(0).

For each v the image of € \R. under - is a leaf of a foliation of TM\M, called the Riemann
foliation.

Definition 1.1

Let D be a domainin 7'M containing the zero section. Assume moreover (to avoid problems with
analytic continuation) that for every geodesic 4 in M the open set gb;l(D} is a simply connected
domain in C .

A complex structure J on D is called wdapted if for every geodesic v in M, the map ¢y is
holomorphic on !/;,:l{D).

Theorem 1.2 [4], [5]

If an adapted complex structure exists it is unique. Moreover if (M, g) is a compact or homoge-
neous real-analytic Riemannian manifold then there exists S > 0 such that 7% A admits an adapted
complex structure. O

If M is locally symmetric we can be more precise.
Theorem 1.3 [4]
Let M be a complete locally symmetric space.

(i) If M has nonnegative sectional curvature (in particular if M is compact and symmetric) then
an adapted complex structure exists on the whole tangent bundle.

(11) If the sectional curvatures are bounded below by § < 0, then an adapted complex structure
exists on T5M where S = n/(2/=0). O

The adapted complex structure can be described more explicitly as follows.

Let z be a point of TM\M; here we regard z as a tangent vector to M at a point m. Using
the Levi-Civita connexion defined by the Riemannian metric on M we can express T;(7'M) as the
direct sum of horizontal and vertical spaces T and TV . The latter is just the tangent space of the
fibre T A through z, and can be canonically identified with 7, M . Moreover the derivative of the
projection map 7 : TM —= M identifies TF with 7,, M .



Therefore any vector v in Tj, M defines tangent vectors €, in TH and 7, in TV ; these are the
horizontal and vertical lifts of v respectively.

Now let 4 be the geodesic in M with y(0) = m and ¥(0) = z/ || z ||. Let vy, ...v, be tangent
vectors to Af at m such that 4(0), ve, ..., v, is an orthonormal basis of 7}, A/ . Weshall let v; = v(0).

We can associate to v; Jacobi fields along v. We let &, n; be the Jacobi fields along v with initial
conditions

&i(0) = v, V3&(0) =0,

T],'(O) = 0, \_’;',I},'(O) = v;.
In particular, & () = %(¢) and 5 (1) = t4(¢).

If # > 1 the Jacobi fields &, arc normal, that is, orthogonal to the velocity vector field of the
geodesic.

The & are pointwise linearly independent (except possibly on a discrete subset of IR ) so there
exist smooth functions ¢;; such that

n
e = Z‘I’jk‘fj, (k=2,...,n).

ij=2

Now suppose that 7°M admits an adapted complex structure for some S < oco. Then the
functions @®;; have imeromorphic extensions Fjg to the strip Ds = {o+ir € C :|r| < S} such that
the poles of Fjy lie on IR and the matrix (Im Fji) is invertible on Dg\R . Now let (ejx) be the
matrix whose inverse is (Im Fj).

The adapled complex structure at z is now given by

n

Je€o =) el 2 1) % [ 211 5oe = D BeFielifl = Do, | | (h=2,...,m), (1)

k=2 j=2

J:va = Tu, -

This formula is slightly different from that given in [3], because the vectors 4 as defined in [5] are
obtained by multiplying the 7§ of our delinition by a factor of || z |].

if M is locally symmetric our forinula simplifies dramatically. The Jacobi operalor Ryq) :
Tﬂ;)ﬂ'] —}T.T(t)ﬁ’f defined by

v Riv, 7(1))7 (1),

{where R is the curvature tensor) is symmetric at each ¢, so can be diagonalised at { = 0 by an
orthonormal basis of eigenvectors v; with eigenvalues A;. We can take v, = (0). Let V; be the
vector field obtained by paralielly transporting v; along 7. If M is locally symmetric then the
curvature tensor is parallel, so R, (V;) and A;V; are parallel vector fields along ~+ agrecing at £ = 0,
and hence agreeing everywhere. That is, V;(t) is an orthonormal basis of eigenvectors of the Jacobi
operator for each t. Note that Vi(#) = ¥(¢).

The Jacobi equation
ViX + Ry(X) =0

is thus diagonalised, and splits into a set of first order ODEs. For »V; is a Jacobi field precisely when



t 4 Ajr=0. (2)

Therefore the Jacobi fields &;, n; are defined by &; = g;V;, 15 = h;V;, where g;, h; satisfy (2) and

g;(0)=1, 4;(0)=0,

h;(0) =0, h;j(0)=1.
We find that &, =0 for j # &, and

t il A; =0,
o3501) = e A‘:f‘) it A; >0,
tanh( _‘_\jt] if Aj; <O.
— 1y
These equations, together with formula (1), yield (for j =2,...,n)
Jibo, = i, if A =0, (3)

J,,E_‘,j = VA; || 2 || coth(3/Aj || z ||)ipe; T A; >0, (4)
JEu, = /R 2 el /=A5 Il = D, i A < 0. (5)

We also have

sz_ul = 7_]111- (6)

If (M,g) is locally symmetric then its universal cover splits isometrically as a product of a Eu-
clidean space IR"”, a compact symmetric space (M) ¢(1)) and a noncompact symmetric space
(M("’),g(:')). The adapted complex structure is defined everywhere on TGR." X M(l)) and the formu-
lae (3)-(6) are valid away from the zero section. H X is a tangent vector to M) at m, let §{X)
be the most negative value of the sectional curvatures of planes in T, M(?) containing X . Then the
maximal domain in TM?) where the adapted complex structure exists consists of those vectors X
whose norm in the metric g(?) is less than 7/2,/=8(X). Our formulae (3)-(6) are valid for all such
nonzero X .

We shall conclude this section by discussing the complex structure on 7'M arising from a complex
structure on M. We shall restrict ourselves to the case of Kahler manifolds.
Consider a K ahler manifold M with metric ¢ and complex structure fy. At each point z in TA
we split the tangent space at z as
T(TM) =T &1}, (7)
as discussed carlier. The Kahler condition on A{ implies that the complex structure 7 on TM
induced by Io preserves TH as well as T . With respect to the decomposition (7) it is just given by

]:[u@fo.

Now, I also induces a complex structure f* on the cotangent bundle 7M. Identifying TM
with T* M using the metric we can pull back /* to obtain a new complex structure [, on 7M. With
respect to (7), 1. is defined by

I. = lo®(—1Ip). (8)



2. Symmetric spaces.

We now restrict ourselves to the case when Af is a Hermitian (hence Kahler) irreducible symmetric
space. Our aim is to find a diffeomorphisin ¢ of the tangent bundle of M such that the pullback of
J by ¢ commutes with I, .

Our strategy is to first consider a diffeomorphism of the tangent space at one point, equivariant
with respect to the isotropy action, and then extend it to the whole tangent bundle by homogeneity.

We first review the Cartan theory for symmetric spaces. Qur reference for this material is Helgason
[3] and we follow his notation.

Let M = U/K be a compact irreducible symmetric space, with Cartan decomposition

u:E0+p—r (9)

where u, kg are the Lie algebras of U and K respectively.
If we fix a basepoint o in U/K, then we can identify p, with the tangent space at this point.
Denote by R. the curvature tensor on U/K',s0 [3, Ch. IV, §4] if X|Y,Z € p_ we have

R(XN,Y)Z = =[X, Y], Z].

It follows that the Jacobi operator Ry = R(., X).X is equal to —(adx)?.

Letting py = ip, we have the Cartan decomposition

8o =Fo+pg (10)
for the noncompact dual symmetric space U*/K .

We denote by g the complexification of u, so u and g, are real forms of the complex Lic algebra

Let be a maximal abelian subspace of p, ; then =i is a maximal abelian subspace of
p'. . . l ’ . pﬂ po
po. The dimension » of By is the rank of the symmetric space.

Let by be a maximal abelian subalgebra of g; containing h . Then the subalgebra h of g
generated by by is a Cartan subalgebra of g. Finally, we denote by hp the subspace of g generated
by hpo.

Let Ap be the set of nonzero roots of g with respect to h whose restriction to hp 1s not identically
zero. For each o € Ap the kernel of the restriction of o to the abehan subspace hp 1s a hyperplane
L{e) in by . The clements of A, take real values on the subspace hy . We let & be the set of

elements of the dual of by, obtained by restriction of elements of A, . We call £ the set of restricted
roots.

Definition 2.1

(i) The Weyl group W(U, K) 1s the quotient of the group of elements of K preserving hp, by the
subgroup of elements of K acting trivially on bp, -

(11) The open Weyl chambers are the connected components of the complement in bp_ of the union
of hyperplanes [ J{L(a) : o € Ap}.

Theorem 2.2 {[3] Ch. V §6, Ch. VII §2)

Each orbit of K on p. intersects the maximal abelian subspace hy . Moreover if two points of
hp, e in the same orbit of /', they lie in the same orbit of the Weyl group.O

Theorem 2.3 ([3] VII §2)

The Weyl group is generated by the reflexions in the hyperplanes L(«), and acts simply transitively
on the set of Weyl chambers. Moreover, the closure of any Weyl chamber contains exactly one point
from each orbit of the Weyl group on bp, . D



Corollary 2.4

The closure of any Weyl chamber is a transversal for the action of K on p,. O

We shall construct K -equivariant diffeomorphisms of p, = T,(U/K) by extending maps of a
closed Weyl chamber onto itself.

Lemma 2.5

Let C be a Weyl chamber with closure C. Let f be a bijection of C' onto itsell, such that for
any x € (' the stabiliser of 2 for the K action equals the stabiliser of f(z). Then we can extend f
to a A -equivariant bijection of p, .

Proof

-

Let y € p,; then from Corollary 2.4 there exists k € I\' and x € C with y = k.z. Define
G(y) = k.f(z). If ky.zy = kp.xy for k; € K, z; € C then k3 'kiz; = 22 so by Corollary 2.4 we must
have x; = x5, and k3 k) stabilises x;. By our hypothesis ky 'k; stabilises f(z;) also, so ¢(y) is
well defined. Clearly ¢ is A -equivariant. If we define ¢~ in the same way using 7!, then ¢l is
an inverse for ¢. O

The closure C of a Weyl chamber C' is a convex subset of bp, bounded by hyperplanes Lion),.. .,
L{a;) where L{aj) = Ker «v;. If § is a subset of {ay,...,am} welet Lg =N{L(a):a € S}. IT &
i1s empty we take Ls = by, -

Let Staby denote the stabiliser of z € p, with respect to the action of U/, and let Stab® be the
stabiliser of = with respect to the action of A,

The argument of Lemma 2.14 of Chapter VII of [ U] shows that Stab! depends only on the set of
roots vanlahmg at . Taking the intersection of Stab; with K we see that this conclusion also holds
for SLab . Equivalently, the stabiliser Stab depends only on the set of hyperplanes L{a;) which
contain . We have thus established the followmg Lemma.

Lemma 2.6

Let f be a bijection of C' onto itself which maps C' N Ls bijectively onto itself for each subset &
of {a1,...,am}. Then we can extend f to a K-equivariant bijection of p. onto itself. D

Identifying p. with the tangent space to U/KN at our basepoint, we have a bijection of 7, (U/K)
which is equivariant with respect to the isotropy action of X'. We can now extend this map using the
action of U to a U-equivariant bijection ¢ of T(U/K).

We can argue similarly for the noncompact dual symmetric space U*/R, whose Cartan decom-
position is given by (10). We can take bp, = ibp as a maximal abelian subspace in pg, and if C is
the closure of a Weyl chamber in fp_ . then iC is a transversal for the action of K on po. Then any
bijection satisfying the hypotheses of Lemma 2.6 will extend to a K -equivariant bijection of p,, and
hence define a U* -equivariant bijection of T(U*/K).

More generally, let D;, D2 be domains in by, and let f l)e a bijection of Dy NiC onto Py NiC

mapping D1 NiCN Ls bijectively onto DyNiCN Ls foreach 8. Let &, &, be the subsets of T(U*/K)
associated to Py NC, DN C by the U*-action. Then f e.\tends to a U*-equivariant bijection of &
onto &.

In sections 4 and 5 we shall consider special choices of f whose cquivariant extensions are real-
analytic diffeornorphisms of appropriate domains in the tangent bundle.
Finally, we prove a lemma which will be neded for the calculations of the next section.

Given a real-valued linear functional A on bp, we define a linear functional A on bpo by seting
A(w) = M—iw).



Lenuna 2.7

Let A be a real-valued linear functional on by, , and suppose there exists a nonzero vector X € p,
with the property that

((H,X), H)= A(H)*X forall H € by . (11)

Then X is a restricted root, and
[[[{1, .-\'], 1:{2] = /\(f]l))\(ilg);\' for all H[, ”2 € bp. . (12)

Proof
Let € hpo. Then —ifl € hp, and

(H,[H,iX]] = —i[=ill ,[-iH, X)) = iX(—iH)2 X = A(H)4 X,

As H was arbitrary, it follows from Corollary 2.10 of Chapter VII of [3] that X is a restricted
root.

We obtain (12) by putting H = Hy + Hy in (11} and using the Jacobi identity and the relation
[Hi, Hp)=0. O

3. Equivariant diffeomorphisms

[n this section we shall establish two lemumas which will enable us to calculate the derivative of a
U -equivariant diffeomorphism of the tangent bundle of a symmetric space I//K . We shall use these

results in §4, when we study the pullback of the adapted complex structure by a diffeomorphism of
TU/K).

Lemma 3.1

Let M = U/K be a symmetric space, and ¢ a U-equivariant diffeomorphism of TM . Let o be
the basepoint [K] of M, and identify p, with T,A. Suppose that ¢ restricts to a diffeomorphism
of by onto itsell.

Let v € p. and let z be a nonzero clement of by . Let £4(2),&,(6(2)) denote the horizontal lifts
of v to z and ¢(z) respectively. Then

$.&u(2) = & (9(2)).
Proof

Let v be the geodesic with ¥(0) = 0 and ¥/(0) = v. As M is a symmetric space, v is given [3]
by

~(t) = exp(tv)o. (13)

Moreover, on a symmetric space, parallel transport along the geodesic with equation (13) is given
by Y — exp(tv).Y . (We are regarding exp(tv) € U as defining a transformation of A ).

Therefore the vector field y defined by

x(t) = exp(tv).z

is parallel along v and satisfies x(0) = z. We deduce that £,{z) = x(0).



Now, using the equivariance of ¢ we have

d(x(t)) = é(exp(tv).z) = exp{tv). (=), (14)

so the vector field ¢t — @(x(¢)) 1s also parallel along . Differentiating (14) proves our claim. 0.
Lemma 3.2
Let M,¢,0,v,z be asin Lemma3.1. Let Rj; be the Jacobi operator defined by Ryv = R(v, H)H,

where R. is the curvature tensor.

Suppose that A is a linear functional on hp, and that

Rpv = MH)v
forall H € hp . Assume moreover that A(z) # 0. Denote by () and iy (é(z)) the vertical lifis of
v to : and @(z) respectively.

Then

s.m() = SFL g, 60,

Proof
Consider the curve in p, = T, M defined by
Kol Ad(1O)z,

where © = A(z)72%(z,v]. Now {©,z] = v, so x'(0) is the vertical lift 7,(z) of v to z.

Using the equivariance of ¢ again, we have

¢(x(l)) = ¢(Ad(1O)2) = Ad(tO)¢(2).

Differentiating at ¢ = 0 shows that ¢.7,(z) is the vertical lift to ¢(z) of [0, ¢(z)], but by Lemma
2.7

! (2)A(8(2))

(0,62 = grzyells. o) o) = 57

U,

giving the required result. O

4. Anticommuting complex structures.

For any compact hermitian symmetric space M = U/K we have an adapted complex structure J on
TM. If ¢ is a diffeomorphism of TM we can pull back J to obtain a new complex structure J¢,
defined by

JEC = 47 g9,

where z € TM and ¢ € T, (T'M). Our aim is to show the existence of a I/ -equivariant diffeomorphism
of T'M such that the complex structure 7, anticommutes with J¢. We shall simplify the calculations
by making a suitable choice of bases for the tangent space to T'M at the points » and ¢(z), and by
exploiting the equivariance of ¢.



Definition 4.1

Let M be a compact irreducible hermitian symmetric space of rank », with its complex structure
deflined by an endomorphism /g of p., We shall say that A satisfies condition (*) if there exists
a maximal abelian subspace hp in p., an orthonormal basis ey, ... e, for by, , and an orthogonal
direct sum decomposition

p. =bhp @ lohp Dicicngr (Vir ® loVik) Bi=y Qs (15)
salisfying the following conditions.
(1) Let z be an arbltary element of by , with coordinates Ay (x) with respect to the basis elements

ex, 50 £ =y Ax(z)ex. Denote by R, Llie Jacobl operator associated to . Let v and ¢ be arbitrary
elements of Vi and Q;, respectively. Then

RIIUEJ; = 4 f(.l)]oej, (16)
Rev = (Aj(z) = Ax(2)) %y, (17)
R:lov = (A5(2) + M(2))* Lo, (18)
Reqg = M(2)q. (19)

() Each Q@ 1s fg-invariant (and possibly zero).

Theorem 4.2

Every compact irreducible hermitian symmetric space associated to one of the classical groups
satisfies condition {*).

Proof

This is established by a case-by-case check. For future reference we record the appropriate choices
of bp., Vix and Qx, as well as the complex structure fo. Welet Ejx denote the matrix of appropriate
size with 1 in the jk position and zeroes in all other positions.

(i) Complex Grassmannians SU(p + ¢)/S(U(p) x U(q)) with p <yq.

The rank of the symmetric space 1s p.

p,:{(g _OZT):ZEMPW(G)}.

The complex structure 1s given by multiplication of Z by i

Let

We let h, be the subset of p, obtained by taking

Z=(4a 0),
where A € ﬂffpxpdﬁ,) is diagonal. Letting Z = E;; (5 = 1,...,p) defines an orthonormal basis
€1,---4€p.

For 1 < j < k < p, Vi is spanned (over IR} by the two elements of p, defined by taking
Z = Ej+ Ey; and Z = i(Ej, = Eyj). For 1 < & < p we obtain a basis for Qp over € by taking
4= E.Ua(‘,:p'{' 17"':Q)'

(i) SO(2n)/U(n).
Here the rank is [3].

Let

10



zZ W
p,={( w _Z) 1 Z,Wed ,,x,,dR):ZTz—Z,WT=~W}.

The complex structure sends (Z W) to (=i 7).

We choose hp to be the subspace of p. where W = 0 and Z belongs to the standard Cartan
algebra of so(n). The matrices where one of the 2 x 2 blocks on the diagonal of Z is

0
_7250'

and the other blocks are zero, form an orthonormal basis for by, -
In order to define the other spaces in the decomposition (*) we must introduce some more notation.

Let A be an n x n real skew-symmetric matrix. If n is even, we write A as

A o Ay,
—A’lrg AQ,-
"‘ATF e Arr
where each Aj; is a 2 x 2 matrix.
If n is odd, we write A as
Al] “ee Alr B]_
—A’lrg ./421- 32
-AL .. Ay B
gt It g

where the Aj; are as above and the B; are 2 x 1 matrices,

For every 2x2 matrix ¥, let E'J"L be the nxn matrix with A;, = ¥ and all the other A, (m < ¢)
, as well as all the matrices B, , equal to zero.

If Q isa 2x 1 matrix, let E? be the n x n matrix with B; = and all the other By, as well as
all the Apmq, equal to zero.

Then for 1 < j< k<,
EY EL a b c d
o= Jk [ — R
ng {( JJTI\ —Eﬁ.) M \p (—b (I),T—(d _C),a,b,c,d€| }

Also, for k= 1,...,r we have

EY} Ef 2
0, — k. k . = iR

The Qi terms only occur if n is odd.

(iii) Sp(n)/U(n).
The rank is n.

Let

11



p- = {( gl _AZEI ) ZI:ZB € i!\’lnxudR) . ZlJZQ € u(ﬂ)} .

"The complex structure sends (Z; Z2) to (—Z2 £1).

We choose hy Lo be the subspace defined by taking Z) to be diagonal and Z, to be zero. Letting
Zy=1iE;; (j = 1,...,n) defines an orthonormal basis for bp. -

We deline a basis for V;; over R by letting Z, = (556 + Eg;), Z2 = 0. There are no Q terms.
(iv) Quadrics SO(n + 2)/S0(n) x SO(2), (n>2).
The rank is 2.

Let

_f{o -zTY
pt_{(Z O )AEMHXQﬂR)}y

and let by be defined by taking Z to be of the form

¢ b
b «a
0 0 (a,b €IR).
0 0

We define an orthonormal basis lor bp. by taking a = 1/\,/;2_,1) =0and a=0,b=1/V2.

If we write Z as (Z; Z2) where Z, 74 are column vectors, then the complex structure is defined
by

lo:(Z1 Z2) = (=22, 2y).

As the rank of the symmetric space is two, the only V;i term which occurs is Via2. A basis of Vi,
over IR is defined by taking Z = Ex| — Eya (k =3,...,n). There are no Q terms. O

Condition (*) will enable us to choose a good basis in which to do the calculations of the next
theorem.

Theorem 4.3

Let M = U/R be a compact hermitian symmetric space satisfying condition (*). Let bp, be a
maximal abelian subspace of p, and ey,...,e. an orthonormal basis for f, asin (15).

Let ¢ be a U-equivariant diffeomorphism of TM | restricting to a diffeomorphism of bp  onto
itself which preserves each open Weyl chamber.

Then J?¢ anticommutes with /. if and only if there exists a posilive constant p such that

b(5) = %Zsinh-l(p)\j)ej, (20)
i=1

when
= Z/\j&j c bp.
i=1

12



Proof

We regard the coordinates A; on by as defining real-valued linear functionals on this space.
As discussed in section 2, to each A; we can associate a linear functional A; on hpn by setting
Aj(w) = Aj(—iw).

We see from Corollary 2.10 of Chapter VII of [3] that the set of restricted roots is

U= {20, 2 (N = M), (8 + M) kA - F<m < 1 < i<k <),
80
C={xehp Afz)>...> A(x) > 0}

1s an open Weyl chamber in by - The set of points conjugate to points in € by the action of U/ is an
open dense subset of T'M .

The action of I/ on T'M 1is holomorphic with respect to both I, and J, so it is sufficient to see
when anticommutation holds on C'. Let z be a point of C'. We shall choose special bases of T, (T'M)
and Ty0.y(T'M), with respect to which we shall caleulate ¢., L.; and J?.

For each pair (j,k) with 1 < j < k < 7 choose an orthonormal basis for V;i. Applying Iy to
these vectors gives an orthonormal basis for foV;x. Finally, for each k pick an orthonormal basis for
Q. Then the union of these bases, together with the elements

ej, loe; (J=1,...,7)

forms an orthonormal basis for p,. The horizontal and vertical lifts of this basis to ¢z and ¢(z) give
bases for T (TM) and Ty(.)(TM) respectively.

As discussed earlier, we can split tangent spaces to TA into vertical and horizontal spaces. From
(3)-(6), (8) and Lemmas 3.1 and 3.2, we see that [., and ¢. preserve horizontal and vertical spaces
while J interchanges them. Using Lhe above bases we have that ¢. @ T;(T'M) — Ty )(TM) is
represented by a matrix of the form

Id 0
(¢ 5)

The maps Jgzy : T (TM)Y = Tey(TAM) and L, : T, (TM) - T,(T'M) are represented by
&(z) - Lo(z) #(z)

0 —-A"!
A 0 '

g O
0 -5y /-’
respectively, for some A.
It readily follows that the pulled back complex structure J# commutes with /., if and only if
IpA™'B = AT'BI,. (21)

We shall use the decomposition of Definition 4.1 to calculate A, B, Iy explicitly and see when
the anticommutation relation (21) holds. We shall see that each of the spaces V;x @ foV;x, Qx and
bp, + lobp, 1s invariant under /o, A, B so it is sufficient to work on each of these spaces scparately.

We shall denote by ¢x(z) the & th. compouent of ¢(z) with respect to the basis ey,... e,.

Let. us first study the space Q. From condition (*) we know that for any ¢ € Q@ and any z € bp
we have

13



Ryq= /\k(m)Eq.

In particular Ry(.)/¢(z)) is & scalar operator on @y with eigenvalue ¢x(z)?/ || ¢(2) ||*. The equations
(3)-(6) defining the adapted complex structure now show that

Ao, = ¢r(z) coth(du(2))Id.

Moreover, by Lemma 3.2 we have

$x(2)
Blo.= Id
|Qk /\k (Z) bl
so the relation {21) holds automatically on @ .
On the subspace h = fp, + lobp, with respect to the basis ey,..., e, Jer, ..., Je, the complex

structure fg has matrix
0 -—Id
Id O ’

0,
4N (@) Ioe;,

Now, for any = € by we have

Rzej
R_n Igej

so, applying equations (3)-(6), we find that

1, _[1d 0
A |h...(0 u)’

where v = diag (v1,...,¥) and

e = tanh{2¢;(z))
TT 2¢5(2)

1 d¢ 0

B |h_ ( 0 nu )’
where d¢ is the derivative of ¢ : hp, — fp, in the coordinates given by the basis e;,...,e.. Here
pu = diag (p1,..., ¢#+), and

It follows from Lemma 3.2 that

i = qﬁi\(;:)

We find that Fj is indeed invariant under A, B and Ig, and on 6 (21) is equivalent Lo

d¢ = vp,
which in turn is equivalent to
25— n2si(e), (22)
OA;
d¢i(z) ey ¢
vl (23)
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where z =3 Ajej, and Ay >...> A, > 0.
The solution to (22-23) is

¢; = %sillh_l(pw\;), (24)

where p; are constants. In fact, as ¢ is equivariant with respect to the action of the Weyl group, the
pi must all be equal to some constant p. The requirement that ¢ preserves each open Weyl chamber
means that p is positive.

Equation (24) shows that the restriction of ¢ to hp must be of the form (20). As ¢ is U-
equivariant, we see that ¢ is determined up to the chou:e ‘of constant p.

(i1) We shall now demonstrate the converse implicaiion. In order to show that the anticommutation
relation (21) holds we must look al the spaces Pji = Vi @ oV . We see that

0 -Id
10"’:‘*2(1(1 0 )

Using condition (*) and cquations (3)-{6) as beforc we find that

-1 _{ mld 0
A |ij“" ( 0 pgn’(l )1

where
L= tanh(g;(2) — éi(2)) py = tanh(é;(z) 4+ ¢x(z ))
$i(z) — ¢ (z) ’ ¢i(2) + éx(2)
Lemma 3.2 tells us that
o1ld 0
B lpy= ( 0 aald ) ’
where
_ ¢il2) — ¢x(2) _ 6i(2) + ds(2)
7= Jz\j—)\k » 02 = J)xj+/\k '

It follows that /. and J? anticommute on Pji precisely when

tanh(@;(z) + ¢x(z)) - tanh(g;(z) - d’k(z))
Aj + A Aj = Ak

(25)

We have already scen that if ¢; = -é;sinh'l(p,\,-) for each 7 then the anticommutation relation

holds on each Qg and on f) It is easy to check that for this choice of ¢ the equation (26) holds, so
anticommutation holds on each Pjx also. It follows that /. and J¢ anticommute at all points of the
open Weyl chamber €', and hence everywhere on TA . T

The final ingredient we need for the proof of Theorem 0.1 is to show that the map
|
Z Aje; — Z §smh (pAj)e; (26)
extends to a real-analytic U -equivariant ciffeomorphism of TAf .

Proposition 4.4

Let M = U/K be a compact irreducible hermitian symmetric space of classical type. Define a
real-analytic diffeomorphism of by by
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Z,\jcj — Z % sinh ™ (pA;)e;.

Then this map extends uniquely to a K -equivariant real-analytic dilfeomorphismof p_, and hence
to a U-equivariant real-analytic diffeomorphism of T'M .

Proof

The existence and uniqueness of a U -equivariani bijective extension ¢ follows from Lemma 2.6.
We must show that ¢,¢~1 are real-analytic. We proceed case-by-case. Without loss of generality we
take the constant p to be 1.

Case (i) Sp(n)/U(n), SO(2n)/U(n), SU(p+q)/S(U(p} x Ulq)).

As discussed in the proofl of Theorem 4.2, we regard p, as a subspace of the vector space u(N)
for suitable N . Under this identification, each element X of p, has pure imaginary spectrum.

[t is easy to verify that the restriction of ¢ to hy is given in some neighbourhood of the origin
by a power series

$(X) =D e X7,
with scalar coefficients. The «; are the coefficients of the Taylor expansion about « = 0 of the function

F(x) = —%isinh-l(i;n). Now F is holomorphic on some open set D containing the imaginary axis,
so we can define a real-analytic function F: w{N) = Myxn(C ) by

FoXo —l-f FOYAMd - X)~'d),
2mi r

where I is a contour in D enclosing the spectrum of X . Then F agrees with ¢ on a neighbourhood
of the origin in bp,- As ¢ 15 also real-analytic on byp. » it follows that ¢ and /' are equal on by, -
Since F is Ad K -equivariant, we deduce that F and ¢ agree on p, , so ¢ is real-analytic on p, , and
hence on TAf .

Similarly the restriction of ¢! to bp, is given by

$HN) =) biX,
1

where —gisinh(iz) = 3~ bj2/ . It follows that the equivariant extension of ¢~' to p, is also given by
this formula, so ¢~! is real-analytic on p,, and hence on TM. (As the power series of —isinh(ix)
converges everywhere we do not need to use the symbolic calculus in this case).

(11) SO(n + 2)/SO(n) x SO(2).
As in 4.2, we identify points of p, with pairs (Z;, Z2) of n x 1 column vectors.

With the choice of bp made in 4.2, it is straightforward to calculate that the restriction of ¢ to
p. is given by

¢1(21Z2)'—)(lez)(g; g;)a

where

4 + da + (01 —82) < 22,22 >
2 2w '
(62 =81) < 21,25 >

182 = 2\/07 )

8, + 4 + (61 —62)( VARVARDS
2 Nz '

B

Bz =



sinh™!(¢;)

& =
L 261
sinh !¢
62 = 26‘1( 2)’
1 ]
q = a\/(Zl,Zl>+<ZQ,ZQ>+2\/J,
1
€2 = 5\/<Zl,zl>+<Zg,Zg>—'2\/w—,

and

w=< 21,2y >< 0,09 > — < 2y, Za >° .

Here €;, €5 are the coordinates of the point in the closed Weyl chamber €' conjugate to (21, Zs)
under the adjoint, action of SO(n) x SO(2). We have ¢; > ¢ > 0.
It is sufficient to check that &) 442 and (6, — &2)/\/w are real-analytic.

Now, the function ¢~ sinh™'(}/2¢ is real-analytic and even, so it may be written as [{t?) where
I is real-analytic on some open interval of IR including the closed half-line {¢:¢ > 0}.

[t can be readily checked that, for such a function {, the functions {; and {» defined by

hiz,y) = s+ vy +i(z— V),
Iz + v/y) = Uz = VY)
\/?7 1
extend to real-analytic functions on some open neighbourhoods of the region {(z,y) iz, y > 0;z >
Vit

Taking x = %(( 2\, 2y >+ < Z2,Z2>) and y = jw (so = 2 \/y) concludes the proof.

12(2"»1’)

The only properties of ¢ that were needed for this argument were that sinh™" is odd and real-
analytic. Hence the same argument also applies to ¢=1. 0.

We can now finish the proof of Theorem 0.1.

Proof of Theoremn 0.1

The map

1.,
Z,\jej — ZESIHII Ajej

is a real-analytic diffeomorphism of hp_ onto itself, preserving each open Weyl chamber. Proposition
4.4 shows that it extends to a U -equivariant real-analytic diffeomorphism of T'Af | and Theorem 4.3
now implies that the pullback ol J by ¢ anticommutes with /.. O

We have shown the existence of two anii-commuting complex structures /, and J® on TM. IL

follows that af, +bJ% + ¢l.J? is a complex structure whenever a? + b2 + ¢2 = 1. In other words I,
and J? generate a hypercomplex structure,
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5. The noncompact case.

The arguments of the preceding section can be adapted with only minor changes to the case when AM
is a noncompact irreducible hermitian symmetric space asociated to a classical group. Such spaces
are precisely the duals of the compact examples we have already considered.

In each case we have a decomposition of p, analogous to that of (15}, but now the eigenvalues of
the operator R have the opposite sign to those of (16)-(19).

The orthonormal basis ey, ..., e, for by determines an orthonorimal basis ey, ..., ie, of bpo. [
we bpo has coordinates Aj, ..., Ar with respect to this basis, let

G(w) =max | A; | .

We can extend (' to a continuous U/"-equivariant function (which we shall also denote by &)
defined on TA and taking values in [0,00). We have the equation

GUX)=|t|G(X) (telR, X€eTM).

Let.
Dy ={weby, :Glw) <1},
Dy = {we by, Glw) < 7)
2={webp Glw) <7},
S ={XeTM: :G(X) <1},
and

E,={XeTM : G(X)<

1.
The map

. _ .
/\jr—)gsm ') U=1,...,7) (27)
is then a real-analytic diffeomorphisin of D; onto Da.

The discussion after Lemma 2.6 shows that the map defined by {27) extends to a U/*-equivariant
bijection ¢ between the regions & and &;. Moreover, the arguments of Proposition 4.4 show that
¢ and its inverse are in fact real-analytic. From §1 and the decomposition in 4.1 it follows that the
maximal domain on which the adapted complex structure J is defined is £. Therefore the pulled
back complex structure J¢ is defined and is smooth on & .

Proceeding as in the proof of Theorem 4.3, we find that the relations that ¢ must satisfy for J¢
to anticommute with [, on & are

2)\.-33‘/\(:) = tan{2¢:(z)),
@ai%)) = 0 ifi+],
tan{¢;(z) — ¢;(2)) _ tan(gi(z) + ¢;(2))

(A = Aj) (hi+A)

18
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<
—-

{

where z = Y Aie; € Dy and ¢(z) = 3 ¢i(z)e; . It is casy to verify that these equations are satisfied
if the restriction of ¢ to D, is given by (27), so we have established Theorem 0.2.
It is clear that G~1([0, ) contains the open unit disc bundle T A7, so Theorem 0.2 shows the
existence of a hypercomplex structure on TP AL,
In Theorems 0.1 and 0.2 the diffeomorphism ¢ is equivariant with respect to the action of the
isometry group of Af. Moreover this action preserves the complex structures f.,J. We see therelore

that a hypercomplex structure exists on T'M whenever M is a locally symmetric quotient of a

classical hermitian symmetric space.
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