# Symmetric spaces, adapted complex structures and hypercomplex structures 

Andrew S. Dancer ${ }^{1}$<br>Róbert Szöke ${ }^{1,2}$

## 2

Department of Analysis
Eötvös L. University
Múzeum krt. 6-8
1088 Budapest

## I

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany
Hungary

# Symmetric spaces, adapted complex structures and hypercomplex structures 

Andrew S. Dancer ${ }^{1}$, Róbert Szöke ${ }^{1,2}$
${ }^{1}$ Max-Planck-Institut fiir Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany
${ }^{2}$ Department of Analysis, Eötvös L. University, Múzeum krt. 6-8, 1088 Budapest, Hungary.


#### Abstract

We study two complex structures, $l_{*}$ and $J$, defined on domains in the tangent bundle of a hermitian manifold. We define $l_{*}$ using the complex structure on $M$, while $J$ is constructed using the Riemannian metric on $M$. We show that if $M$ is a hermitian symmetric space associated to a classical group then the pullback of $J$ by a suitable diffeomorphism of domains in $T M$ anticommutes with $I_{*}$. A corollary is the existence of a hypercomplex structure on a domain in $T M$.


## 0. Introduction.

Let ( $M, g$ ) be a Riemamian manifold and $0<S \leq \infty$. We shall denote by $T^{S} M$ the subset of the tangent bundle $T M$ consisting of those vectors whose norm is less than $S$. We similarly define the subset, $T^{*} S$ of the colangent bundle.

The second author [5] (see also [2], [4]) has shown that for each compact real-analytic Riemannian manifold $(M, g)$ there is a positive real number $S$, such that we may define a canonical complex structure $J$ on $T^{S} M$ (see section 1 for details). We can use the metric to identify $T M$ and $T^{*} M$, and so also define a complex structure $J^{*}$ on $T^{-s} M$. The zero section $M$ is totally real with respect to $J$ and $J^{*}$. We call $J$ the adapted complex structure. It was shown in [5] that if $(M, g)$ is a compact symmetric space then $J$ can be defined on the entire tangent bundle.

On the other hand, if $M$ is itself a complex manifold, then the complex structure on $M$ induces complex structures $I, I^{*}$ on the tangent, and cotangent bundles respectively. The zero section is a complex submanifold with respect to these complex structures, so they are distinct from $J$ and $J^{*}$.

In this paper we make a first step towards exploring the relation between the adapted complex structure and that induced by a complex structure on $M$. For technical reasons we prefer to work on the tangent bundle instead of the cotangent bundle. Again using the metric to identify $T M$ and $T^{*} M$ we can pull back $I^{*}$ to obtain a complex structure $I_{*}$ on then tangent bundle. We shall prove the following theorem.

## Theorem 0.1

Let $M$ be a compact irreducible hermitian symmetric space $U / K$ where $U$ is one of the classical groups. Let $I_{*}, J$ denote the complex structures on TM discussed above.

Then there exists a real-analytic diffeomorphism $\phi$ of $T M$ such that the pullback $J^{\phi}$ of $J$ by $\phi$ anticommutes with $I_{*}$.

When $M$ is a noncompact irreclucible hermitian symmetric space of classical type we shall introduce in $\S 4$ a continuous non-negative function $G: T M \rightarrow \mathrm{R}$, invariant with respect to the isometry group of $M$, such that

$$
1 \quad G(t X)=|t| G(X)
$$

whenever $t \in \mid \mathrm{R}$ and $X \in T M$. The open unit disc bundle $T^{1} M$ is contained in $G^{-1}((0,1])$.

## Theorem 0.2

Let $M$ be a noncompact irreducible hermitian symmetric space $U^{*} / K$ associated to a classical group. Then $J$ is defined on $G^{-1}\left(\left[0, \frac{\pi}{4}\right)\right)$ and there exists a real-analytic diffeomorphism $\phi$ of $G^{-1}([0,1))$ onto $G^{-1}\left(\left[0, \frac{\pi}{4}\right)\right)$ such that $J^{\phi}$ anticommutes with $I_{*}$ on $G^{-1}([0,1))$.

It follows that the endomorphism $a I_{.}+b J^{\phi}+c I_{.} J^{\phi}$ is a complex structure on $T M$ (respectively $G^{-1}([0,1))$ ) whenever $a^{2}+b^{2}+c^{2}=1$, so $I_{*}$ and $J^{\phi}$ generate a hypercomplex structure on $T M$ (respectively $G^{-1}([0,1))$ ).

In fact, we shall see that the diffeomorphisms of Theorems $0.1,0.2$ can be chosen to be equivariant with respect to the isometry group of $M$. As $I$. and $J$ are invariant with respect to this group, we
can deduce the existence of a hypercomplex structure on $T^{1} M$ whenever $M$ is a locally symmetric: quotient of a classical irreducible hermitian symmetric space.

The adapted complex structure for a product of manifolds is just obtained by taking the product of the individual adapted complex structures. It is straightforward therefore to make the appropriatic generalisations of Theorems 0.1 and 0.2 to arbitrary symmetric spaces.

Hypercomplex (indeed hyperkähler) structures have been shown to exist on the cotangent bundles of compact hermitian symmetric spaces by Burns [1] using twistor methods. We conjecture that the hypercomplex structure generated by $I_{*}$ and $J^{\phi}$ coincides with that of Burns.

It easily follows from the results of $\S 1$ that if $M$ is a hermitian symmetric space then $I_{*}$ and $J$ anticommute only if $M$ is flat. This explains why we need to conjugate $J$ by a suitable diffeomorphism in the statements of Theorems 0.1 and 0.2 .

## 1. Complex structures.

We shall briefly discuss the theory of adapted complex structures developed in [4], [5]. Consider a complete Riemannian manifold $(M, g)$. If $\gamma: \mathbb{R} \mapsto M$ is a geodesic, we can define a map $\psi_{\gamma}: \mathbb{C} \mapsto$ $T M$ by

$$
\psi_{\gamma}(\sigma+i \tau)=\tau \dot{\gamma}(\sigma)
$$

For each $\gamma$ the image of $\mathbb{C} \backslash \mathrm{R}$. under $\psi_{\gamma}$ is a leaf of a foliation of $T M \backslash M$, called the Riemann foliation.

## Definition 1.1

Let $D$ be a domain in $T M$ containing the zero section. Assume moreover (to avoid problems with analytic continuation) that for every geodesic $\gamma$ in $M$ the open set $\psi_{\gamma}^{-1}(D)$ is a simply connected domain in $\mathbb{C}$.

A complex structure $J$ on $D$ is called adapted if for every geodesic $\gamma$ in $M$, the map $\psi_{\gamma}$ is holomorphic on $\psi_{\gamma}^{-1}(D)$.

Theorem 1.2 [4], [5]
If an adapted complex structure exists it is unique. Moreover if $(M, g)$ is a compact or homogeneous real-analytic Riemannian manifold then there exists $S>0$ such that $T^{S} M$ admits an adapted complex structure.

If $M$ is locally symmetric we can be more precise.

## Theorem 1.3 [4]

Let $M$ be a complete locally symmetric space.
(i) If $M$ has nonnegative sectional curvature (in particular if $M$ is compact and symmetric) then an adapted complex structure exists on the whole tangent bundle.
(ii) If the sectional curvatures are bounded below by $\theta<0$, then an adapted complex structure exists on $T^{S} M$ where $S=\pi /(2 \sqrt{-\theta})$.

The adapted complex structure can be described more explicitly as follows.
Let $z$ be a point of $T M \backslash M$; here we regard $z$ as a tangent vector to $M$ at a point $m$. Using the Levi-Civita connexion defined by the Riemannian metric on $M$ we can express $T_{z}(T M)$ as the direct sum of horizontal and vertical spaces $T_{z}^{H I}$ and $T_{z}^{V}$. The latter is just the tangent space of the fibre $T_{m} M$ through $z$, and can be canonically identified with $T_{m} M$. Moreover the derivative of the projection map $\pi: T M \rightarrow M$ identifies $T_{z}^{H}$ with $T_{m} M$.

Therefore any vector $v$ in $T_{m} M$ defines tangent vectors $\bar{\xi}_{v}$ in $T_{z}^{H}$ and $\bar{\eta}_{v}$ in $T_{z}^{V}$; these are the horizontal and vertical lifts of $v$ respectively.

Now let $\gamma$ be the geodesic in $M$ with $\gamma(0)=m$ and $\dot{\gamma}(0)=z /\|z\|$. Let $v_{2}, \ldots v_{n}$ be tangent vectors to $M$ at $m$ such that $\dot{\gamma}(0), v_{2}, \ldots, v_{n}$ is an orthonormal basis of $T_{m} M$. We shall let $v_{1}=\dot{\gamma}(0)$.

We can associate to $v_{i}$ Jacobi fields along $\gamma$. We let $\xi_{i}, \eta_{i}$ be the Jacobi fields along $\gamma$ with initial conditions

$$
\begin{array}{ll}
\xi_{i}(0)=v_{i}, & \nabla_{i} \xi_{i}(0)=0, \\
\eta_{i}(0)=0, & \nabla_{\dot{\gamma}} \eta_{i}(0)=v_{i} .
\end{array}
$$

In particular, $\xi_{1}(t)=\dot{\gamma}(t)$ and $\eta_{1}(t)=l \dot{\gamma}(t)$.
If $i>1$ the Jacobi fields $\xi_{i}, \eta_{i}$ are normal, that is, orthogonal to the velocity vector field of the geodesic.

The $\xi_{i}$ are pointwise linearly independent (except possibly on a discrete subset of $\mid \mathrm{R}$ ) so there exist smooth functions $\Phi_{j k}$ such that

$$
\eta_{k}=\sum_{j=2}^{n} \Phi_{j k} \xi_{j}, \quad(k=2, \ldots, n)
$$

Now suppose that $T^{S} M$ admits an adapted complex structure for some $S \leq \infty$. Then the functions $\Phi_{j k}$ have meromorphic extensions $F_{j k}$ to the strip $D_{S}=\{\sigma+i \tau \in \mathbb{C}:|\tau|<S\}$ such that, the poles of $F_{j k}$ lie on $\mid \mathrm{R}$ and the matrix ( $\operatorname{lm} F_{j k}$ ) is invertible on $D_{S} \backslash \mathrm{R}$. Now let. ( $e_{j k}$ ) be the matrix whose inverse is ( $\mathrm{Im} F_{j k}$ ).

The adapted complex structure at $z$ is now given by

$$
\begin{gather*}
J_{z} \bar{\xi}_{v_{h}}=\sum_{k=2}^{n}\left(e_{k h}(i\|z\|) \times\left(\|z\|{\overline{\eta_{v k}}}-\sum_{j=2}^{n} \operatorname{Re} F_{j k}\left(i\|z\| \bar{\xi}_{v_{j}}\right)\right),(h=2, \ldots, n),\right.  \tag{1}\\
J_{z} \bar{\xi}_{v_{1}}=\bar{\eta}_{v_{1}} .
\end{gather*}
$$

This formula is slightly different from that given in [5], because the vectors $\bar{\eta}$ as defined in [5] are obtained by multiplying the $\bar{\eta}$ of our definition by a factor of $\|z\|$.

If $M$ is locally symmetric our formula simplifies dramatically. The Jacobi operator $R_{\dot{\gamma}(t)}$ : $T_{\gamma(t)} M \rightarrow T_{\gamma(t)} M$ defined by

$$
v \mapsto \mathcal{R}(v, \dot{\gamma}(t)) \dot{\gamma}(t),
$$

(where $\mathcal{R}$ is the curvature tensor) is symmetric at each $t$, so can be diagonalised at $t=0$ by an orthonormal basis of eigenvectors $v_{j}$ with eigenvalues $\Lambda_{j}$. We can take $v_{1}=\dot{\gamma}(0)$. Let, $V_{j}$ be the vector field obtained by parallelly transporting $v_{j}$ along $\gamma$. If $M$ is locally symmetric then the curvature tensor is parallel, so $R_{\gamma}\left(V_{j}\right)$ and $\Lambda_{j} V_{j}$ are parallel vector fields along $\gamma$ agrecing at $t=0$, and hence agreeing everywhere. That is, $V_{j}(t)$ is an orthonormal basis of eigenvectors of the Jacobi operator for each $t$. Note that $V_{1}(t)=\dot{\gamma}(t)$.

The Jacobi equation

$$
\nabla_{\dot{\gamma}}^{2} X+R_{\gamma}(X)=0
$$

is thus diagonalised, and splits into a set of first order ODEs. For $r V_{j}$ is a Jacobi field precisely when

$$
\begin{equation*}
\ddot{r}+\Lambda_{j} r=0 . \tag{2}
\end{equation*}
$$

Therefore the Jacobi fields $\xi_{j}, \eta_{j}$ are defined by $\xi_{j}=g_{j} V_{j}, \eta_{j}=h_{j} V_{j}$, where $g_{j}, h_{j}$ satisfy (2) and

$$
\begin{array}{ll}
g_{j}(0)=1, & \dot{g}_{j}(0)=0 \\
h_{j}(0)=0, & \dot{h}_{j}(0)=1
\end{array}
$$

We find that $\Phi_{j k}=0$ for $j \neq k$, and

$$
\Phi_{j j}(t)=\left\{\begin{array}{ccc}
t & \text { if } & \Lambda_{j}=0 \\
\frac{\tan \left(\sqrt{\Lambda_{j}} t\right)}{\sqrt{\Lambda_{j}}} & \text { if } & \Lambda_{j}>0 \\
\frac{\tanh \left(\sqrt{-\Lambda_{j}} t\right)}{\sqrt{-\Lambda_{j}}} & \text { if } & \Lambda_{j}<0
\end{array}\right.
$$

These equations, together with formula (1), yicld (for $j=2, \ldots, n$ )

$$
\begin{gather*}
J_{z} \bar{\xi}_{v_{j}}=\bar{\eta}_{v_{j}} \text { if } \Lambda_{j}=0  \tag{3}\\
J_{z} \bar{\xi}_{v_{j}}=\sqrt{\Lambda_{j}}\|z\| \operatorname{coth}\left(\sqrt{\Lambda_{j}}\|z\|\right) \bar{\eta}_{v_{j}} \text { if } \Lambda_{j}>0  \tag{4}\\
J \bar{\xi}_{v_{j}}=\sqrt{-\Lambda_{j}}\|z\| \cot \left(\sqrt{-\Lambda_{j}}\|z\|\right) \bar{\eta}_{v_{j}} \text { if } \Lambda_{j}<0 \tag{5}
\end{gather*}
$$

We also have

$$
\begin{equation*}
J_{2} \bar{\xi}_{v_{1}}=\bar{\eta}_{v_{1}} \tag{6}
\end{equation*}
$$

If ( $M, g$ ) is locally symmetric then its universal cover splits isometrically as a product of a Euclidean space $\mathrm{IR}^{n}$, a compact symmetric space ( $M^{(1)}, g^{(1)}$ ) and a noncompact symmetric space $\left(M^{(2)}, g^{(2)}\right)$. The adapted complex structure is defined everywhere on $T\left(\mathrm{R}^{n} \times M^{(1)}\right)$ and the formulae (3)-(6) are valid away from the zero section. If $X$ is a tangent vector to $M^{(2)}$ at $m$, let $\theta(X)$ be the most negative value of the sectional curvatures of planes in $T_{m} M^{(2)}$ containing $X$. Then the maximal domain in $T M^{(2)}$ where the adapted complex structure exists consists of those vectors $X$ whose norm in the metric $g^{(2)}$ is less than $\pi / 2 \sqrt{-\theta(X)}$. Our formulae (3)-(6) are valid for all such nonzero $X$.

We shall conclude this section by discussing the complex structure on $T M$ arising from a complex structure on $M$. We shall restrict ourselves to the case of Kähler manifolds.

Consider a Kähler manifold $M$ with metric $g$ and complex structure $I_{0}$. At each point $z$ in $T M$ we split the tangent space at $z$ as

$$
\begin{equation*}
T_{z}(T M)=T_{z}^{I I} \oplus T_{z}^{V^{\prime}} \tag{7}
\end{equation*}
$$

as discussed carlier. The kähler condition on $M$ implies that the complex structure $I$ on $T M$ induced by $I_{0}$ preserves $T_{z}^{H}$ as well as $T_{z}^{V}$. With respect to the decomposition (7) it is just given by

$$
I=I_{0} \oplus I_{0}
$$

Now, $I_{0}$ also induces a complex structure $I^{*}$ on the cotangent bundle $T^{*} M$. Identifying $T M$ with $T^{*} M$ using the metric we can pull back $I^{*}$ to obtain a new complex structure $I_{n}$ on $T M$. With respect to (7), I. is defined by

$$
\begin{equation*}
I_{.}=I_{0} \oplus\left(-I_{0}\right) \tag{8}
\end{equation*}
$$

## 2. Symmetric spaces.

We now restrict ourselves to the case when $M$ is a Hermitian (hence $\mathcal{K}$ ähler) irreducible symmetric space. Our aim is to find a diffeomorphism $\phi$ of the tangent bundle of $M$ such that the pullback of $J$ by $\phi$ commutes with $I_{*}$.

Our strategy is to first consider a diffeomorphism of the tangent space at one point, equivariant with respect to the isolropy action, and then extend it to the whole tangent bundle by homogeneity.

We first review the Cartan theory for symmetric spaces. Our reference for this material is Helgason [3] and we follow his notation.

Let $M=U / K$ be a compact irreducible symmetric space, with Cartan decomposition

$$
\begin{equation*}
\mathfrak{u}=\mathfrak{p}_{0}+\mathfrak{p}_{*} \tag{9}
\end{equation*}
$$

where $u, k_{0}$ are the Lie algebras of $U$ and $K$ respectively.
If we fix a basepoint $o$ in $U / h^{\prime}$, then we can identify $p_{*}$ with the tangent space at this point. Denote by $\mathcal{R}$ the curvature tensor on $U / K$, so [3, Ch. IV, §4] if $X, Y, Z \in \mathfrak{p}$. we have

$$
\mathcal{R}(X, Y) Z=-[[X, Y], Z]
$$

It follows that the Jacobi operator $R_{X}=\mathcal{R}(., X) X$ is equal to $-\left(\mathrm{ad}_{X}\right)^{2}$.
Letting $\mathfrak{p}_{0}=i \mathfrak{p}$. we have the Cartan decomposition

$$
\begin{equation*}
\mathfrak{g}_{0}=\mathfrak{p}_{0}+\mathfrak{p}_{0} \tag{10}
\end{equation*}
$$

for the noncompact dual symmetric space $U^{*} / K$.
We denote by $\mathfrak{g}$ the complexification of $\mathfrak{u}$, so $\mathfrak{u}$ and $\mathfrak{g}_{0}$ are real forms of the complex Lic algebra $\mathfrak{g}$.

Let $\mathfrak{h}_{\mathfrak{p}}$, be a maximal abelian subspace of $\mathfrak{p}_{*}$; then $\mathfrak{h}_{\mathfrak{p}_{a}}=i \mathfrak{h}_{\mathfrak{p}}$. is a maximal abelian subspace of $\mathfrak{p}_{0}$. The dimension $r$ of $\mathfrak{h}_{\mathfrak{p}}$. is the rank of the symmetric space.

Let $\mathfrak{h}_{0}$ be a maximal abelian subalgebra of $\mathfrak{g}_{0}$ containing $\mathfrak{h}_{\mathfrak{p}_{0}}$. Then the subalgebra $\mathfrak{h}$ of $g$ generated by $\mathfrak{h}_{0}$ is a Cartan subalgebra of $\mathfrak{g}$. Finally, we denote by $\mathfrak{h}_{\mathfrak{p}}$ the subspace of $\mathfrak{g}$ generated by $\mathfrak{h}_{\mathfrak{p}_{\mathbf{0}}}$.

Let $\Delta_{p}$ be the set of nonzero roots of $\mathfrak{g}$ with respect to $h$ whose restriction to $h_{p}$ is not identically zero. For each $\alpha \in \Delta_{p}$ the kernel of the restriction of $\alpha$ to the abelian subspace $h_{p}$. is a hyperplane $L(\alpha)$ in $\mathfrak{h}_{\mathfrak{p}}$. The elements of $\Delta_{p}$ take real values on the subspace $\mathfrak{h}_{\mathfrak{p}_{0}}$. We let $\Sigma$ be the set of elements of the dual of $\mathfrak{h}_{\mathfrak{p}_{\mathrm{a}}}$ obtained by restriction of elements of $\Delta_{p}$. We call $\Sigma$ the set of restricted roots.

## Definition 2.1

(i) The Weyl group $\mathcal{W}(U, K)$ is the quotient of the group of elements of $K$ preserving $h_{p}$. by the subgroup of elements of $K$ acting trivially on $\mathfrak{h p}_{\mathrm{p}}$.
(ii) The open Weyl chambers are the comected components of the complement in $\mathfrak{h p}_{\mathfrak{p}}$. of the union of hyperplanes $\bigcup\left\{L(\alpha): \alpha \in \Delta_{\mathfrak{p}}\right\}$.

## Theorem 2.2 ([3] Ch. V §6, Ch. VII §2)

Each orbit of $K$ on $\mathfrak{p}_{*}$ intersects the maximal abelian subspace $h_{p}$. Moreover if two points of $h_{p}$. lie in the same orbit of $K$, they lie in the same orbit of the Weyl group.

## Theorem 2.3 ([3] VII §2)

The Weyl group is generated by the reflexions in the hyperplanes $L(\alpha)$, and acts simply transitively on the set of Weyl chambers. Moreover, the closure of any Weyl chamber contains exactly one point from each orbit of the Weyl group on $\mathfrak{h}_{\mathfrak{p}}$.

## Corollary 2.4

The closure of any Weyl chamber is a transversal for the action of $K$ on $\mathfrak{p}_{*}$.
We shall construct $K$-equivariant diffeomorphisms of $p_{*}=T_{o}(U / K)$ by extending maps of a closed Weyl chamber onto itself.

## Lemma 2.5

Let $C$ be a Weyl chamber with closure $\bar{C}$. Let $\int$ be a bijection of $\bar{C}$ onto itself, such that for any $x \in \bar{C}$ the stabiliser of $x$ for the $K$ action equals the stabiliser of $f(x)$. Then we can extend $f$ to a $K$-equivariant bijection of $p_{*}$.

## Proof

Let $y \in \mathfrak{p}_{*}$; then from Corollary 2.4 there exists $k \in K$ and $x \in \bar{C}$ with $y=k . x$. Define $\phi(y)=k \cdot f(x)$. If $k_{1} \cdot x_{1}=k_{2}, x_{2}$ for $k_{j} \in k^{\prime}, x_{j} \in \vec{C}^{\prime}$ then $k_{2}^{-1} k_{1} x_{1}=x_{2}$ so by Corollary 2.4 we must, have $x_{1}=x_{2}$, and $k_{2}^{-1} k_{1}$ stabilises $x_{1}$. By our hypothesis $k_{2}^{-1} k_{1}$ stabilises $f\left(x_{1}\right)$ also, so $\phi(y)$ is well defined. Clearly $\phi$ is $K$-equivariant. If we define $\phi^{-1}$ in the same way using $f^{-1}$, then $\phi^{-1}$ is an inverse for $\phi$.

The closure $\bar{C}$ of a Weyl chamber $C$ is a convex subset of $h_{p}$. bounded by hyperplanes $L\left(\alpha_{1}\right), \ldots$, $L\left(\alpha_{m}\right)$ where $L\left(\alpha_{j}\right)=\operatorname{Ker} \alpha_{j}$. If $\mathcal{S}$ is a subset of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ we let $L_{\mathcal{S}}=\cap\{L(\alpha): \alpha \in \mathcal{S}\}$. If $\mathcal{S}$ is empty we take $L_{\mathcal{S}}=\mathfrak{h}_{\mathfrak{p}}$.

Let, $\mathrm{Stab}_{x}^{U}$ denote the stabiliser of $x \in \mathfrak{p}$. with respect to the action of $U$, and let Stab ${ }_{x}^{K}$ be the stabiliser of $x$ with respect to the action of $K$.

The argument of Lemma 2.14 of Chapter VII of [3] shows that Stab ${ }_{x}^{U}$ depends only on the set of roots vanishing at $x$. Taking the intersection of Stab $_{x}^{U}$ with $K$ we see that this conclusion also holds for Stab ${ }_{x}^{K}$. Equivalently, the stabiliser Stab $b_{x}^{K}$ depends only on the set of hyperplanes $L\left(\alpha_{j}\right)$ which contain $\boldsymbol{x}$. We have thus established the following Lemma.

## Lemma 2.6

Let $f$ be a bijection of $\bar{C}$ onto itself which maps $\bar{C} \cap L_{s}$ bijectively onto itself for each subset $\mathcal{S}$ of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Then we can extend $f$ to a $K$-equivariant bijection of $p$. onto itself.

Identifying $\mathfrak{p}$. with the tangent space to $U / K$ at our basepoint, we have a bijection of $T_{o}(U / K)$ which is equivariant with respect to the isotropy action of $K$. We can now extend this map using the action of $U$ t.o a $U$-equivariant bijection $\phi$ of $T(U / K)$.

We can argue similarly for the noncompact dual symmetric space $U^{*} / K$, whose Cartan decomposition is given by (10). We can take $\mathfrak{h}_{\mathfrak{p}_{0}}=i \mathfrak{h}_{\mathfrak{p}}$. as a maximal abelian subspace in $\mathfrak{p}_{0}$, and if $\bar{C}$ is the closure of a Weyl chamber in $\mathfrak{h}_{p_{0}}$, then $i \bar{C}$ is a transversal for the action of $K$ on $\mathfrak{p}_{0}$. Then any bijection satisfying the hypotheses of Lemma 2.6 will extend to a $K$-equivariant bijection of $p_{0}$, and hence define a $U^{*}$-equivariant bijection of $T\left(U^{*} / \kappa^{*}\right)$.

More generally, let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be domains in $\mathfrak{h}_{\mathfrak{p}_{0}}$ and let $f$ be a bijection of $\mathcal{D}_{1} \cap i \bar{C}$ onto $\mathcal{D}_{2} \cap i \ddot{C}$ mapping $\mathcal{D}_{1} \cap i \bar{C} \cap L_{s}$ bijectively onto $\mathcal{D}_{2} \cap i \bar{C}^{\prime} \cap L_{s}$ for each $\mathcal{S}$. Let $\mathcal{E}_{1}, \mathcal{E}_{2}$ be the subsets of $T\left(U^{*} / K^{*}\right)$ associated to $\mathcal{D}_{1} \cap \bar{C}_{,}, \mathcal{D}_{2} \cap \bar{C}$ by the $U^{*}$-action. Then $f$ extends to a $U^{*}$-equivariant bijection of $\mathcal{E}_{1}$ onto $\mathcal{E}_{2}$.

In sections 4 and 5 we shall consider special choices of $f$ whose equivariant extensions are realanalytic diffeomorphisms of appropriate clomains in the tangent bundle.

Finally, we prove a lemma which will be neded for the calculations of the next section.
Given a real-valued linear functional $\lambda$ on $\mathfrak{h}_{\mathfrak{p}}$. we define a linear functional $\tilde{\lambda}$ on $\mathfrak{h}_{\mathfrak{p}_{\mathrm{o}}}$ by seting $\tilde{\lambda}(w)=\lambda(-i w)$.

## Lemman 2.7

Let $\lambda$ be a real-valued linear functional on $\mathfrak{h}_{\mathfrak{p}}$, and suppose there exists a nonzero vector $X \in \mathfrak{p}_{*}$ with the property that

$$
\begin{equation*}
[[H, X], H]=\lambda(H)^{2} X \quad \text { for all } H \in \mathfrak{h}_{\mathfrak{p}} . \tag{11}
\end{equation*}
$$

Then $\bar{\lambda}$ is a restricted root, and

$$
\begin{equation*}
\left[\left[H_{1}, X\right], H_{2}\right]=\lambda\left(H_{1}\right) \lambda\left(H_{2}\right) X \quad \text { for all } H_{1}, H_{2} \in \mathfrak{b}_{\mathfrak{p}} . \tag{12}
\end{equation*}
$$

## Proof

Let $\tilde{H} \in \mathfrak{h}_{\mathfrak{p}_{0}}$. Then $-i \tilde{H} \in \mathfrak{h}_{\mathfrak{p}}$. and

$$
[\tilde{H},[\tilde{H}, i X]]=-i[-i \tilde{H},[-i \tilde{H}, X]]=i \lambda(-i \tilde{H})^{2} X=\tilde{\lambda}(\tilde{H})^{2} i X
$$

As $\tilde{H}$ was arbitrary, it follows from Corollary 2.10 of Chapter VII of [3] that $\tilde{\lambda}$ is a restricted root.

We obtain (12) by putting $H=H_{1}+H_{2}$ in (11) and using the Jacobi identity and the relation $\left[H_{1}, H_{2}\right]=0$.

## 3. Equivariant diffeomorphisms

In this section we shall establish two lemmas which will enable us to calculate the derivative of a $U$-equivariant diffeomorphism of the tangent, bundle of a symmetric space $U / K$. We shall use these results in $\S 4$, when we study the pullback of the adapted complex structure by a diffeomorphism of $T(U / K)$.

## Lemma 3.1

Let $M=U / K$ be a symmetric space, and $\phi$ a $U$-equivariant diffeomorphism of $T M$. Let $o$ be the basepoint $[K]$ of $M$, and identify $p$. with $T_{o} M$. Suppose that $\phi$ restricts to a diffeomorphism of $\mathfrak{h}_{\mathrm{p}}$. onto itself.

Let $v \in \mathfrak{p}_{*}$ and let $z$ be a nonzero element of $\mathfrak{h}_{p_{0}}$. Let $\bar{\xi}_{v}(z), \bar{\xi}_{v}(\phi(z))$ denote the horizontal lifts of $v$ to $z$ and $\phi(z)$ respectively. Then

$$
\phi_{v} \bar{\xi}_{v}(z)=\bar{\xi}_{v}(\phi(z)) .
$$

## Proof

Let $\gamma$ be the geodesic with $\gamma(0)=o$ and $\gamma^{\prime}(0)=v$. As $M$ is a symmetric space, $\gamma$ is given [3] by

$$
\begin{equation*}
\gamma(t)=\exp (t v) o . \tag{13}
\end{equation*}
$$

Moreover, on a symmetric space, parallel transport along the geodesic with equation (13) is given by $Y \mapsto \exp (t v)_{*} Y$. (We are regarding $\exp (t v) \in U$ as clefining a iransformation of $M$ ).

Therefore the vector field $x$ defined by

$$
\chi(t)=\exp (t v)=z
$$

is parallel along $\gamma$ and satisfies $\chi(0)=z$. We deduce that $\xi_{v}(z)=\dot{\chi}(0)$.

Now, using the equivariance of $\phi$ we have

$$
\begin{equation*}
\phi(\chi(t))=\phi\left(\exp (t v)_{*} z\right)=\exp (t v) . \phi(z) \tag{14}
\end{equation*}
$$

so the vector ficld $t \mapsto \phi(\chi(t))$ is also parallel along $\gamma$. Differentiating (14) proves our clain. $\square$.

## Lemma 3.2

Let $M, \phi, o, v, z$ be as in Lemma 3.1. Let $R_{H}$ be the Jacobi operator defined by $R_{H} v=\mathcal{R}(v, H) H$, where $\mathcal{R}$ is the curvature tensor.

Suppose that $\lambda$ is a linear functional on $h_{p}$, and that

$$
R_{H} v=\lambda(H)^{2} v
$$

for all $H \in \mathfrak{h}_{\mathfrak{p}}$. Assume moreover that $\lambda(z) \neq 0$. Denote by $\bar{\eta}_{v}(z)$ and $\bar{\eta}_{v}(\phi(z))$ the vertical lifus of $v$ to $z$ and $\phi(z)$ respectively.

Then

$$
\phi_{*} \bar{\eta}_{v}(z)=\frac{\lambda(\phi(z))}{\lambda(z)} \bar{\eta}_{v}(\phi(z)) .
$$

## Proof

Consider the curve in $\mathfrak{p} .=T_{o} M$ defined by

$$
\kappa: t \mapsto A d(t \Theta) z
$$

where $\Theta=\lambda(z)^{-2}[z, v]$. Now $[\Theta, z]=v$, so $\kappa^{\prime}(0)$ is the vertical lift $\bar{\eta}_{v}(z)$ of $v$ to $z$.
Using the equivariance of $\phi$ again, we have

$$
\phi(\kappa(t))=\phi(A d(t \Theta) z)=A d(t \Theta) \phi(z)
$$

Differentiating at $t=0$ shows that $\phi_{=} \bar{\eta}_{v}(z)$ is the vertical lift to $\phi(z)$ of $[\Theta, \phi(z)]$, but by Lemma 2.7

$$
[\Theta, \phi(z)]=\frac{1}{\lambda(z)^{2}}[[z, v], \phi(z)]=\frac{\lambda(z) \lambda(\phi(z))}{\lambda(z)^{2}} v
$$

giving the required result.

## 4. Anticommuting complex structures.

For any compact hermitian symmetric space $M=U / K$ we have an adapted complex structure $J$ on $T M$. If $\phi$ is a diffeomorphism of $T M$ we can pull back $J$ to obtain a new complex structure $J^{\phi}$, defined by

$$
J_{z}^{\phi} \zeta=\phi_{*}^{-1} J_{\phi(z)} \phi_{*} \zeta
$$

where $z \in T M$ and $\zeta \in T_{z}(T M)$. Our aim is to show the existence of a $U$-equivariant diffeomorphism of $T M$ such that the complex structure $I_{*}$ anticommutes with $J^{\phi}$. We slatl simplify the calculations by making a suitable choice of bases for the tangent space to $T M$ at the points $z$ and $\phi(z)$, and by exploiting the equivariance of $\phi$.

## Definition 4.1

Let $M$ be a compact, irreducible hermitian symmetric space of rank $r$, with its complex structure defined by an endomorphism $I_{0}$ of $\mathfrak{p}_{\mathbf{-}}$, We shall say that $M$ satisfies condition (*) if there exists a maximal abelian subspace $\mathfrak{h}_{\mathfrak{p}}$. in $\mathfrak{p}_{*}$, an orthonormal basis $e_{1}, \ldots, e_{r}$ for $\mathfrak{h}_{\mathfrak{p}}$, and an orthogonal direct sum decomposition
satisfying the following conditions.
(i) Let $x$ be an arbitary element of $\mathfrak{h}_{\mathfrak{p} .}$, with coordinates $\lambda_{k}(x)$ with respect to the basis elements $c_{k}$, so $x=\sum \lambda_{k}(x) e_{k}$. Denote by $R_{x}$ the Jacobi operator associated to $x$. Let $v$ and $q$ be arbitrary elements of $\mathcal{V}_{j k}$ and $\mathcal{Q}_{k}$ respectively. Then

$$
\begin{align*}
R_{x} I_{0} e_{j} & =4 \lambda_{j}^{2}(x) I_{0} e_{j}  \tag{16}\\
R_{x} v & =\left(\lambda_{j}(x)-\lambda_{k}(x)\right)^{2} v  \tag{17}\\
R_{x} I_{0} v & =\left(\lambda_{j}(x)+\lambda_{k}(x)\right)^{2} I_{0} v  \tag{18}\\
R_{x} q & =\lambda_{k}(x)^{2} q \tag{19}
\end{align*}
$$

(ii) Each $\mathcal{Q}_{k}$ is $I_{0}$-invariant (and possibly zero).

## Theorem 4.2

Every compact irreducible hermitian symmetric space associated to one of the classical groups satisfies condition (*).

## Proof

This is established by a casc-by-case check. For future reference we record the appropriate choices of $\mathfrak{h p}_{\mathrm{p}}, \mathcal{V}_{j k}$ and $\mathcal{Q}_{k}$, as well as the complex structure $I_{0}$. We let $E_{j k}$ denote the matrix of appropriate size with 1 in the $j k$ position and zeroes in all other positions.
(i) Complex Grassmannians $S U(p+q) / S(U(p) \times U(q))$ with $p \leq q$.

The rank of the symmetric space is $p$.
Let

$$
\mathfrak{p}_{*}=\left\{\left(\begin{array}{cc}
0 & -\bar{Z}^{T} \\
Z & 0
\end{array}\right): Z \in M_{p \times q}(\mathbb{C})\right\} .
$$

The complex structure is given by multiplication of $Z$ by $i$.
We let $\mathfrak{h}_{p}$. be the subset of $\boldsymbol{p}_{*}$ obtained by taking

$$
Z=\left(\begin{array}{ll}
\Delta & 0
\end{array}\right)
$$

where $\Delta \in M_{p \times p}(\mathrm{R})$ ) is diagonal. Letting $Z=E_{j j}(j=1, \ldots, p)$ defines an orthonormal basis $e_{1}, \ldots, e_{p}$.

For $1 \leq j<k \leq p, \nu_{j k}$ is spanned (over $\mid \mathrm{R}$ ) by the two elements of $p$. defined by taking $Z=E_{j k}+E_{k j}$ and $Z=i\left(E_{j k}-E_{k j}\right)$. For $1 \leq k \leq p$ we obtain a basis for $\mathcal{Q}_{k}$ over $\mathbb{C}$ by taking $Z=E_{k l} ;(l=p+1, \ldots, q)$.
(ii) $S O(2 n) / U(n)$.

Here the rank is $\left[\frac{n}{2}\right]$.
Let

$$
\mathfrak{p}_{*}=\left\{\left(\begin{array}{cc}
Z & W \\
W & -Z
\end{array}\right): Z, W \in M_{n \times n}(\mathrm{R}): Z^{T}=-Z, W^{T}=-W\right\} .
$$

The complex structure sends ( $Z W$ ) to $(-W Z)$.
We choose $h_{p}$. to be the subspace of $\mathfrak{p}$. where $W=0$ and $Z$ belongs to the standard Cartan algebra of $\mathfrak{g o}(n)$. The matrices where one of the $2 \times 2$ blocks on the diagonal of $Z$ is

$$
\left(\begin{array}{cc}
0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

and the other blocks are zero, form an orthonormal basis for $\mathfrak{h}_{\mathfrak{p}}$.
In order to define the other spaces in the decomposition (*) we must introduce some more notation.
Let $\mathcal{A}$ be an $n \times n$ real skew-symmetric matrix. If $n$ is even, we write $\mathcal{A}$ as

$$
\left(\begin{array}{ccc}
\mathcal{A}_{11} & \ldots & \mathcal{A}_{1 r} \\
-\mathcal{A}_{12}^{T} & \ldots & \mathcal{A}_{2 r} \\
\cdot & \ldots & \cdot \\
-\mathcal{A}_{1 r}^{T} & \ldots & \mathcal{A}_{r r}
\end{array}\right)
$$

where each $\mathcal{A}_{j k}$ is a $2 \times 2$ matrix.
If $n$ is odd, we write $\mathcal{A}$ as

$$
\left(\begin{array}{cccc}
\mathcal{A}_{11} & \cdots & \mathcal{A}_{1 r} & \mathcal{B}_{1} \\
-\mathcal{A}_{12}^{T} & \ldots & \mathcal{A}_{2 r} & \mathcal{B}_{2} \\
\cdot & \ldots & \cdot & \cdot \\
-\mathcal{A}_{r 1}^{T} & \cdots & \cdot & \mathcal{A}_{r r} \\
-\mathcal{B}_{r}^{T} & \ldots & -\mathcal{B}_{r}^{T} & 0
\end{array}\right)
$$

where the $\mathcal{A}_{j k}$ are as above and the $\mathcal{B}_{j}$ are $2 \times 1$ matrices.
For every $2 \times 2$ matrix $\Psi$, let $E_{j k}^{\Psi}$ be the $n \times n$ matrix with $\mathcal{A}_{j k}=\Psi$ and all the other $\mathcal{A}_{m q}(m \leq q)$ , as well as all the matrices $\mathcal{B}_{m}$, equal to zero.

If $\Omega$ is a $2 \times 1$ matrix, let $E_{j}^{\Omega}$ be the $n \times n$ matrix with $\mathcal{B}_{j}=\Omega$ and all the other $\mathcal{B}_{k}$, as well as all the $\mathcal{A}_{m q}$, equal to zero.

Then for $1 \leq j<k \leq r$,

$$
\nu_{j k}=\left\{\left(\begin{array}{cc}
E_{j k}^{\Psi} & E_{j k}^{\Upsilon} \\
E_{j k}^{\Upsilon} & -E_{j k}^{\Psi}
\end{array}\right): \Psi=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right), \Upsilon=\left(\begin{array}{cc}
c & d \\
d & -c
\end{array}\right), a, b, c, d \in \mathrm{R}\right\}
$$

Also, for $k=I, \ldots, r$ we have

$$
\mathcal{O}_{k}=\left\{\left(\begin{array}{cc}
E_{k}^{\Omega} & E_{k}^{\Xi} \\
E_{\hat{k}}^{\Xi} & -E_{k}^{\Omega}
\end{array}\right): \Omega, \Xi \in \mid \mathbb{R}^{2}\right\}
$$

The $\mathcal{Q}_{k}$ terms only occur if $n$ is odd.
(iii) $S p(n) / U(n)$.

The rank is $n$.
Let

$$
\text { p. }=\left\{\left(\begin{array}{cc}
Z_{1} & Z_{2} \\
Z_{2} & -Z_{1}
\end{array}\right) Z_{1}, Z_{2} \in i M_{n \times n}(\mathrm{R}): Z_{1}, Z_{2} \in \mathfrak{u}(n)\right\} .
$$

The complex structure sends $\left(Z_{1} Z_{2}\right)$ to $\left(-Z_{2} Z_{1}\right)$.
We choose $h_{p}$. to be the subspace defmed by taking $Z_{1}$ to be diagonal and $Z_{2}$ to be zero. Letting $Z_{1}=i E_{j j}(j=1, \ldots, n)$ defines an orthonormal basis for $h_{p}$.

We define a basis for $\mathcal{V}_{j k}$ over $\mid \mathrm{R}$. by letting $Z_{1}=i\left(E_{j k}+E_{k j}\right), Z_{2}=0$. There are no $\mathcal{Q}_{k}$ terms.
(iv) Quadrics $S O(n+2) / S O(n) \times S O(2), \quad(n \geq 2)$.

The rank is 2 .
Let

$$
\mathfrak{p}_{*}=\left\{\left(\begin{array}{cc}
0 & -Z^{T} \\
Z & 0
\end{array}\right): Z \in M_{n \times 2}(\mathrm{R})\right\}
$$

and let $h_{p}$. be defined by taking $Z$ to be of the form

$$
\left(\begin{array}{cc}
a & b \\
b & a \\
0 & 0 \\
\cdot & \cdot \\
\cdot & . \\
0 & 0
\end{array}\right) \quad(a, b \in \mathrm{R})
$$

We define an orthonormal basis for $\mathfrak{l}_{\mathfrak{p}}$. by taking $a=1 / \sqrt{2}, b=0$ and $a=0, b=1 / \sqrt{2}$.
If we write $Z$ as $\left(Z_{1} Z_{2}\right)$ where $Z_{1}, Z_{2}$ are column vectors, then the complex structure is defined by

$$
I_{0}:\left(Z_{1} Z_{2}\right) \mapsto\left(-Z_{2}, Z_{1}\right)
$$

As the rank of the symmetric space is two, the only $\mathcal{V}_{j k}$ term which occurs is $\mathcal{V}_{12}$. A basis of $\mathcal{V}_{12}$ over IR is defined by taking $Z=E_{k 1}-E_{k 2}(k=3, \ldots, n)$. There are no $\mathcal{Q}_{k}$ terms.

Condition (*) will enable us to choose a good basis in which to do the calculations of the next theorem.

## Theorem 4.3

Let $M=U / K$ be a compact hermitian symmetric space satisfying condition (*). Let $h_{p}$. be a maximal abelian subspace of $p_{*}$ and $e_{1}, \ldots, e_{r}$ an orthonormal basis for $\mathfrak{h}_{p}$, as in (15).

Let $\phi$ be a $U$-equivariant diffeomorphism of $T M$, restricting to a diffeomorphism of $\mathfrak{h}_{\mathfrak{p}}$. outo itself which preserves each open Weyl chamber.

Then $J^{\phi}$ anticommutes with $l_{0}$ if and only if there exists a positive constant $p$ such that

$$
\begin{equation*}
\phi(z)=\frac{1}{2} \sum_{j=1}^{r} \sinh ^{-1}\left(p \lambda_{j}\right) e_{j}, \tag{20}
\end{equation*}
$$

when

$$
z=\sum_{j=1}^{r} \lambda_{j} e_{j} \in \mathfrak{h}_{\mathfrak{p}} .
$$

## Proof

We regard the coordinates $\lambda_{j}$ on $\mathfrak{h p}_{\mathrm{p}}$, as defining real-valued linear functionals on this space. As discussed in section 2 , to each $\lambda_{j}$ we can associate a linear functional $\tilde{\lambda}_{j}$ on $\mathfrak{h}_{\mathfrak{p}_{0}}$ by setting $\tilde{\lambda}_{j}(w)=\lambda_{j}(-i w)$.

We see from Corollary 2.10 of Chapter VII of [3] that the set of restricted roots is

$$
\mathbf{\Sigma}=\left\{ \pm 2 \overline{\lambda_{m}}, \pm\left(\tilde{\lambda_{j}}-\tilde{\lambda_{k}}\right), \pm\left(\tilde{\lambda_{j}}+\tilde{\lambda_{k}}\right), \pm \tilde{\lambda_{m}}: 1 \leq m \leq r, 1 \leq j<k \leq r\right\}
$$

so

$$
C=\left\{x \in \mathfrak{h}_{\mathfrak{p} .}: \lambda_{1}(x)>\ldots>\lambda_{r}(x)>0\right\}
$$

is an open Weyl chamber in $\mathfrak{h}_{\mathfrak{p} .}$. The set of points conjugate to points in $C$ by the action of $U$ is an open dense subset of $T M$.

The action of $U$ on $T M$ is holomorphic with respect to both $I_{*}$ and $J$, so it is sufficient to see when anticommutation holds on $C$. Let $z$ be a point of $C$. We shall choose special bases of $T_{z}(T M)$ and $T_{\phi(z)}(T M)$, with respect to which we shatl calculate $\phi_{*}, I_{* z}$ and $J_{z}^{\phi}$.

For each pair $(j, k)$ with $l \leq j<k \leq r$ choose an orthonormal basis for $\mathcal{V}_{j k}$. Applying $I_{0}$ to these vectors gives an orthonormal basis for $I_{0} \mathcal{V}_{j k}$. Finally, for each $k$ pick an orthonormal basis for $\mathcal{Q}_{k}$. Then the union of these bases, logether with the elements

$$
e_{j}, I_{0} e_{j} \quad(j=1, \ldots, r)
$$

forms an orthonormal basis for $\mathfrak{p}$. The horizontal and vertical lifts of this basis to $z$ and $\phi(z)$ give bases for $T_{z}(T M)$ and $T_{\phi(z)}(T M)$ respectively.

As discussed earlier, we can split tangent spaces to $T M$ into vertical and horizontal spaces. From (3)-(6), (8) and Lemmas 3.1 and 3.2, we see that $I_{-z}$ and $\phi$. preserve horizontal and vertical spaces while $J$ interchanges them. Using the above bases we have that $\phi_{*}: T_{z}(T M) \rightarrow T_{\phi(z)}(T M)$ is represented by a matrix of the form

$$
\left(\begin{array}{cc}
I d & 0 \\
0 & B
\end{array}\right) .
$$

The maps $J_{\phi(z)}: T_{\phi(z)}(T M) \rightarrow T_{\phi(z)}(T M)$ and $I_{* z}: T_{z}(T M) \rightarrow T_{z}(T M)$ are represented by

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & -A^{-1} \\
A & 0
\end{array}\right), \\
& \left(\begin{array}{cc}
I_{0} & 0 \\
0 & -I_{0}
\end{array}\right),
\end{aligned}
$$

respectively, for some $A$.
It readily follows that the pulled back complex structure $J_{z}^{\phi}$ commutes with $l_{* z}$ if and only if

$$
\begin{equation*}
I_{0} A^{-1} B=A^{-1} B I_{0} . \tag{21}
\end{equation*}
$$

We shall use the decomposition of Definition 4.1 to calculate $A, B, I_{0}$ explicitly and see when the anticommutation relation (21) holds. We shall see that each of the spaces $\mathcal{V}_{j k} \oplus I_{0} \mathcal{V}_{j k}, \mathcal{Q}_{k}$ and $\mathfrak{h p}_{\mathrm{p}}+I_{0} \mathfrak{h p}_{\mathrm{p}}$. is invariant under $I_{0}, A, B$ so it is sufficient to work on each of these spaces scparately.

We shall denote by $\phi_{k}(z)$ the $k$ th. component of $\phi(z)$ with respect to the basis $c_{1}, \ldots, e_{r}$.
Let us first study the space $\mathcal{Q}_{k}$. From condition (*) we know that, for any $\llbracket \in \mathcal{Q}_{k}$ and any $x \in \mathfrak{h}_{\mathfrak{p}}$. we have

$$
R_{x} q=\lambda_{k}(x)^{2} q .
$$

In particular $R_{\phi(z) /\|\phi(z)\|}$ is a scalar operator on $\mathcal{Q}_{k}$ with eigenvalue $\phi_{k}(z)^{2} /\|\phi(z)\|^{2}$. The equations (3)-(6) defining the adapted complex structure now show that

$$
\left.A\right|_{\mathcal{E}_{k}}=\phi_{k}(z) \operatorname{coth}\left(\phi_{k}(z)\right) I d .
$$

Moreover, by Lemma 3.2 we have

$$
\left.B\right|_{\mathcal{Q}_{k}}=\frac{\phi_{k}(z)}{\lambda_{k}(z)} I d
$$

so the relation (21) holds automatically on $Q_{k}$
On the subspace $\hat{\mathfrak{h}}=\mathfrak{h}_{\mathrm{p}} .+I_{0} \mathfrak{h}_{\mathfrak{p}}$. with respect to the basis $e_{1}, \ldots, e_{r}, l e_{1}, \ldots, l e_{r}$ the complex structure $I_{0}$ has matrix

$$
\left(\begin{array}{cc}
0 & -I d \\
I d & 0
\end{array}\right)
$$

Now, for any $x \in \mathfrak{h}_{\mathfrak{p}}$, we have

$$
\begin{array}{ccc}
R_{x} e_{j} & = & 0 \\
R_{x} I_{0} e_{j} & = & 4 \lambda_{j}^{2}(x) I_{0} e_{j}
\end{array}
$$

so, applying equations (3)-(6), we find that

$$
\left.A^{-1}\right|_{\dot{\mathfrak{h}}}=\left(\begin{array}{cc}
I d & 0 \\
0 & \nu
\end{array}\right)
$$

where $\nu=\operatorname{diag}\left(\nu_{1}, \ldots, \nu_{r}\right)$ and

$$
\nu_{j}=\frac{\tanh \left(2 \phi_{j}(z)\right)}{2 \phi_{j}(z)}
$$

It. follows from Lemma 3.2 that

$$
\left.B\right|_{\bar{h}}=\left(\begin{array}{cc}
d \phi & 0 \\
0 & \mu
\end{array}\right)
$$

where $d \phi$ is the derivative of $\phi: \mathfrak{h}_{\mathfrak{p} .} \rightarrow \mathfrak{h}_{\mathfrak{p}}$. in the coordinates given by the basis $e_{1}, \ldots, e_{r}$. Here $\mu=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{r}\right)$, and

$$
\mu_{j}=\frac{\phi_{j}(z)}{\lambda_{j}} .
$$

We fund that $\hat{h}$ is indeed invariant mucler $A, B$ and $I_{0}$, and on $\hat{\mathfrak{h}}$ (21) is equivalent, to

$$
d \phi=\nu \mu
$$

which in turn is equivalent to

$$
\begin{align*}
2 \lambda_{i} \frac{\partial \phi_{i}(z)}{\partial \lambda_{i}} & =\tanh \left(2 \phi_{i}(z)\right)  \tag{22}\\
\frac{\partial \phi_{i}(z)}{\partial \lambda_{j}} & =0, \quad \text { if } i \neq j \tag{23}
\end{align*}
$$

where $z=\sum \lambda_{j} e_{j}$, and $\lambda_{1}>\ldots>\lambda_{r}>0$.
The solution to (22-23) is

$$
\begin{equation*}
\phi_{i}=\frac{1}{2} \sinh ^{-1}\left(p_{i} \lambda_{i}\right), \tag{24}
\end{equation*}
$$

where $p_{i}$ are constants. In fact, as $\phi$ is equivariant with respect to the action of the Weyl group, the $p_{i}$ must all be equal to some constant $p$. The requirement that $\phi$ preserves each open Weyl chamber means that $p$ is positive.

Equation (24) shows that the restriction of $\phi$ to $h_{p}$. must be of the form (20). As $\phi$ is $U$ equivariant, we see that $\phi$ is determined up to the choice of constant $p$.
(ii) We shall now demonstrate the converse implication. In order to show that the anticommutation relation (21) holds we must look at the spaces $P_{j k}=\mathcal{V}_{j k} \oplus I_{0} \mathcal{V}_{j k}$. We see that

$$
\left.I_{0}\right|_{P_{j k}}=\left(\begin{array}{cc}
0 & -I d \\
I d & 0
\end{array}\right)
$$

Using condition (*) and equations (3)-(6) as before we find that

$$
\left.A^{-1}\right|_{P_{j k}}=\left(\begin{array}{cc}
\rho_{1} I d & 0 \\
0 & \rho_{2} / d
\end{array}\right)
$$

where

$$
\rho_{1}=\frac{\tanh \left(\phi_{j}(z)-\phi_{k}(z)\right)}{\phi_{j}(z)-\phi_{k}(z)}, \quad \rho_{2}=\frac{\tanh \left(\phi_{j}(z)+\phi_{k}(z)\right)}{\phi_{j}(z)+\phi_{k}(z)} .
$$

Lemma 3.2 tells us that

$$
\left.B\right|_{P_{j k}}=\left(\begin{array}{cc}
\sigma_{1} I d & 0 \\
0 & \sigma_{2} I d
\end{array}\right)
$$

where

$$
\sigma_{1}=\frac{\phi_{j}(z)-\phi_{k}(z)}{\lambda_{j}-\lambda_{k}}, \quad \sigma_{2}=\frac{\phi_{j}(z)+\phi_{k}(z)}{\lambda_{j}+\lambda_{k}}
$$

It follows that $I_{\text {a }}$ and $J^{\phi}$ anticommute on $P_{j k}$ precisely when

$$
\begin{equation*}
\frac{\tanh \left(\phi_{j}(z)+\phi_{k}(z)\right)}{\lambda_{j}+\lambda_{k}}=\frac{\tanh \left(\phi_{j}(z)-\phi_{k}(z)\right)}{\lambda_{j}-\lambda_{k}} \tag{25}
\end{equation*}
$$

We have already secn that if $\phi_{i}=\frac{1}{2} \sinh ^{-1}\left(p \lambda_{i}\right)$ for each $i$ then the anticommutation relation holds on each $\mathcal{Q}_{k}$ and on $\hat{\mathfrak{h}}$. It is easy to check that for this choice of $\phi$ the equation (26) holds, so anticommutation holds on each $P_{j k}$ also. It follows that $I_{*}$, and $J^{\phi}$ anticommute at all points of the open Weyl chamber $C$, and hence everywhere on $T M$.

The final ingredient we need for the proof of Theorem 0.1 is to show that the map

$$
\begin{equation*}
\sum \lambda_{j} e_{j} \mapsto \sum \frac{1}{2} \sinh ^{-1}\left(p \lambda_{j}\right) e_{j} \tag{26}
\end{equation*}
$$

extends to a real-analytic $U$-equivariant diffeomorphism of $T M$.

## Proposition 4.4

Let $M=U / K$ be a compact irreducible hermitian symmetric space of classical type. Defme a real-analytic diffeomorphism of $\mathfrak{h}_{\mathrm{p}}$. by

$$
\sum \lambda_{j} e_{j} \mapsto \sum \frac{1}{2} \sinh ^{-1}\left(p \lambda_{j}\right) e_{j}
$$

Then this map extends uniquely to a $K$-equivariant real-analytic diffeomorphism of $p_{\text {. }}$, and hence to a $U$-equivariant real-analytic diffeomorphism of $T M$.

## Proof

The existence and uniqueness of a $U$-equivariant bijective extension $\phi$ follows from Lemma 2.6 . We must show that $\phi, \phi^{-1}$ are real-analytic. We proceed case-by-case. Without loss of generality we take the constant $p$ to be 1 .

Case (i) $S p(n) / U(n), S O(2 n) / U(n), S U(p+q) / S(U(p) \times U(q))$.
As discussed in the proof of Theorem 4.2, we regard $\mathfrak{p}_{\text {. }}$ as a subspace of the vector space $\mathfrak{u}(N)$ for suitable $N$. Under this identification, each element $X$ of $\mathfrak{p}_{*}$ has pure imaginary spectrum.

It is easy to verify that the restriction of $\phi$ to $\mathfrak{h}_{p}$. is given in some neighbourhood of the origin by a power series

$$
\phi(X)=\sum a_{j} X^{j}
$$

with scalar coefficients. The $a_{j}$ are the coefficients of the Taylor expansion about $x=0$ of the function $F(x)=-\frac{1}{2} i \sinh ^{-1}(i x)$. Now $F$ is holomorphic on some open set $D$ containing the imaginary axis, so we can defme a real-analytic function $\tilde{F}: u(N) \rightarrow M_{N \times N}(\mathbb{C})$ by

$$
\tilde{F}: X \mapsto \frac{1}{2 \pi i} \int_{\Gamma} F(\lambda)(\lambda I d-X)^{-1} d \lambda
$$

where $\Gamma$ is a contour in $D$ enclosing the spectrum of $X$. Then $\tilde{F}$ agrees with $\phi$ on a neighbourhood of the origin in $\mathfrak{h}_{\mathfrak{p} .}$. As $\phi$ is also real-analytic on $\mathfrak{h}_{\mathfrak{p}}$, it follows that $\phi$ and $\vec{F}$ are equal on $\mathfrak{h}_{\mathfrak{p}}$. Since $\tilde{F}$ is Ad $K$-equivariant, we deduce that. $\tilde{F}$ and $\phi$ agree on $\mathfrak{p}_{*}$, so $\phi$ is real-analytic on $\mathfrak{p}_{*}$, and hence on $T M$.

Similarly the restriction of $\phi^{-1}$ to $\mathfrak{h}_{\mathfrak{p}}$, is given by

$$
\phi^{-1}(X)=\sum b_{j} X^{j},
$$

where $-\frac{1}{2} i \sinh (i x)=\sum b_{j} x^{j}$. It follows that, the equivariant extension of $\phi^{-1}$ to $\mathfrak{p}_{*}$ is also given by this formula, so $\phi^{-1}$ is real-analytic on $\mathfrak{p}_{*}$, and hence on $T M$. (As the power series of $-i \sinh (i x)$ converges everywhere we do not need to use the symbolic calculus in this case).
(ii) $S O(n+2) / S O(n) \times S O(2)$.

As in 4.2, we identify points of $\mathfrak{p}_{\mathbf{2}}$ with pairs ( $Z_{1}, Z_{2}$ ) of $n \times 1$ column vectors.
With the choice of $\mathfrak{h}_{\mathfrak{p}}$. made in 4.2 , it is straightforward to calculate that the restriction of $\phi$ to $p_{*}$ is given by

$$
\phi:\left(Z_{1} Z_{2}\right) \mapsto\left(Z_{1} Z_{2}\right)\left(\begin{array}{cc}
\beta_{1} & \beta_{2} \\
\beta_{2} & \beta_{3}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \beta_{1}=\frac{\delta_{1}+\delta_{2}}{2}+\frac{\left(\delta_{1}-\delta_{2}\right)<Z_{2}, Z_{2}>}{2 \sqrt{\omega}} \\
& \beta_{2}=\frac{\left(\delta_{2}-\delta_{1}\right)<Z_{1}, Z_{2}>}{2 \sqrt{\omega}} \\
& \beta_{3}=\frac{\delta_{1}+\delta_{2}}{2}+\frac{\left(\delta_{1}-\delta_{2}\right)<Z_{1}, Z_{1}>}{2 \sqrt{\omega}}
\end{aligned}
$$

$$
\begin{gathered}
\delta_{1}=\frac{\sinh ^{-1}\left(\epsilon_{1}\right)}{2 \epsilon_{1}}, \\
\delta_{2}=\frac{\sinh ^{-1}\left(\epsilon_{2}\right)}{2 \epsilon_{2}}, \\
c_{1}=\frac{1}{2} \sqrt{<Z_{1}, Z_{1}>+<Z_{2}, Z_{2}>+2 \sqrt{\omega}} \\
\epsilon_{2}=\frac{1}{2} \sqrt{<Z_{1}, Z_{1}>+<Z_{2}, Z_{2}>-2 \sqrt{\omega}}
\end{gathered}
$$

and

$$
\omega=<Z_{1}, Z_{1}><Z_{2}, Z_{2}>-<Z_{1}, Z_{2}>^{2}
$$

Here $\epsilon_{1}, \epsilon_{2}$ are the coordinates of the point in the closed Weyl chamber $\bar{C}$ conjugate to $\left(Z_{1}, Z_{2}\right)$ under the adjoint, action of $S O(n) \times S O(2)$. We have $\epsilon_{1} \geq \epsilon_{2} \geq 0$.

It is sufficient to check that $\delta_{1}+\delta_{2}$ and $\left(\delta_{1}-\delta_{2}\right) / \sqrt{\omega}$ are real-analytic.
Now, the function $t \mapsto \sinh ^{-1}(t) / 2 t$ is real-analytic and even, so it may be written as $l\left(t^{2}\right)$ where $l$ is real-analytic on some open interval of $\mid R$. including the closed half-line $\{t: t \geq 0\}$.

It can be readily checked that, for such a function $l$, the functions $l_{1}$ and $l_{2}$ defined by

$$
\begin{aligned}
& l_{1}(x, y)=l(x+\sqrt{y})+l(x-\sqrt{y}) \\
& l_{2}(x, y)=\frac{l(x+\sqrt{y})-l(x-\sqrt{y})}{\sqrt{y}}
\end{aligned}
$$

extend to real-analytic functions on some open neighbourhoods of the region $\{(x, y): x, y \geq 0 ; x \geq$ $\sqrt{y}\}$.

Taking $x=\frac{1}{4}\left(<Z_{1}, Z_{1}>+<Z_{2}, Z_{2}>\right.$ ) and $y=\frac{1}{4} \omega$ (so $x \geq \sqrt{y}$ ) concludes the proof.
The only properties of $\phi$ that were needed for this argument were that $\sinh ^{-1}$ is odd and realanalytic. Hence the same argument, also applies to $\phi^{-1}$. $\square$.

We can now finish the proof of Theorem 0.1 .

## Proof of Theorem 0.1

The map

$$
\sum \lambda_{j} e_{j} \mapsto \sum \frac{1}{2} \sinh ^{-1} \lambda_{j} e_{j}
$$

is a real-analytic diffeomorphism of $\mathfrak{h}_{\mathfrak{p}}$. onto itself, preserving each open Weyl chamber. Proposition 4.4 shows that it extends to a $U$-equivariant real-analytic diffeomorphism of $T M$, and Theorem 4.3 now implies that the pullback of $J$ by $\phi$ anticommutes with $I_{*}$.

We have shown the existence of two anti-commuting complex structures $J_{*}$ and $J^{\phi}$ on $T M$. It follows that $a I_{*}+b J^{\phi}+c I_{*} J^{\phi}$ is a complex structure whenever $a^{2}+b^{2}+c^{2}=1$. In other words $I_{*}$ and $J^{\phi}$ generate a hypercomplex structure.

## 5. The noncompact case.

The arguments of the preceding section can be adapted with only minor changes to the case when $M$ is a noncompact irreducible hermitian symmetric space asociated to a classical group. Such spaces are precisely the duals of the compact examples we have already considered.

In each case we have a decomposition of $p_{0}$ analogons to that of (15), but now the eigenvalues of the operator $R_{x}$ have the opposite sign to those of (16)-(19).

The orthonormal basis $e_{1}, \ldots, e_{r}$ for $\mathfrak{h}_{\mathfrak{p}}$. determines an orthonornal basis $e_{1}, \ldots$, ie $e_{r}$ of $\mathfrak{h}_{\mathfrak{p}_{0}}$. If $w \in \mathfrak{h}_{\mathfrak{p}_{0}}$ has coordinates $\lambda_{1}, \ldots, \lambda_{r}$ with respect to this basis, let

$$
G(w)=\max \left|\lambda_{j}\right| .
$$

We can extend $G$ to a contimuons $U^{*}$-equivariant function (which we shall also denote by $C$ ) defined on $T M$ and taking values in $[0, \infty)$. We have the equation

$$
G(t X)=|t| G(X) \quad(t \in \mathbb{R}, X \in T M)
$$

Let

$$
\begin{aligned}
& \mathcal{D}_{1}=\left\{w \in \mathfrak{h}_{\mathfrak{p}_{0}}: G(w)<1\right\}, \\
& \mathcal{D}_{2}=\left\{w \in \mathfrak{h}_{\mathfrak{p}_{0}}: G(w)<\frac{\pi}{4}\right\}, \\
& \mathcal{E}_{1}=\{X \in T A: G(X)<1\},
\end{aligned}
$$

and

$$
\mathcal{E}_{2}=\left\{X \in T M: G(X)<\frac{\pi}{4}\right\}
$$

The map

$$
\begin{equation*}
\lambda_{j} \mapsto \frac{1}{2} \sin ^{-1}\left(\lambda_{j}\right) \quad(j=1, \ldots, r) \tag{27}
\end{equation*}
$$

is then a real-analytic diffeomorphism of $\mathcal{D}_{1}$ onto $\mathcal{D}_{2}$.
The discussion after Lemma 2.6 shows that the map defined by (27) extends to a $U^{*}$-equivariant bijection $\phi$ between the regions $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$. Moreover, the arguments of Proposition 4.4 show that $\phi$ and its inverse are in fact real-analytic. From $\oint 1$ and the decomposition in 4.1 it follows that the maximal domain on which the adapted complex structure $J$ is defined is $\mathcal{E}_{2}$. Therefore the pulled back complex structure $J^{\phi}$ is defined and is smooth on $\mathcal{E}_{1}$.

Proceeding as in the proof of Theorem 4.3, we find that the relations that $\phi$ must satisfy for $J^{\phi}$ to anticommute with $I_{*}$ on $\mathcal{E}_{1}$ are

$$
\begin{aligned}
2 \lambda_{i} \frac{\partial \phi_{i}(z)}{\partial \lambda_{i}} & =\tan \left(2 \phi_{i}(z)\right) \\
\frac{\left.\partial \phi_{i}(z)\right)}{\partial \lambda_{j}} & =0 \text { if } i \neq j \\
\frac{\tan \left(\phi_{i}(z)-\phi_{j}(z)\right)}{\left(\lambda_{i}-\lambda_{j}\right)} & =\frac{\tan \left(\phi_{i}(z)+\phi_{j}(z)\right)}{\left(\lambda_{i}+\lambda_{j}\right)}
\end{aligned}
$$

where $z=\sum \lambda_{i} e_{i} \in \mathcal{D}_{1}$ and $\phi(z)=\sum \phi_{i}(z) e_{i}$. It is casy to verify that these equations are satisfied if the restriction of $\phi$ to $\mathcal{D}_{1}$ is given by (27), so we have established Theorem 0.2.

It is clear that $G^{-1}([0,1))$ contains the open unit disc bundle $T^{1} M$, so Theorem 0.2 shows the exisience of a hypercomplex structure on $T^{1} M$.

In Thcorems 0.1 and 0.2 the diffeomorphism $\phi$ is equivariant with respect to the action of the isometry group of $M$. Moreover this action preserves the complex structures $I_{.}, J$. We see therefore that a hypercomplex structure exists on $T^{1} M$ whenever $M$ is a locally symmetric quotient of a classical hermitian symmetric space.

## Acknowledgements.

Both authors thank the Max-Planck-Institut für Mathematik, Bonn for its support, and for providing a pleasant environment for the writing of this paper.

## References

[1] D. Burns. Some examples of the twistor construction, in "Contributions to several complex variables, in honour of Wilhelm Stoll" (eds. A. Howard and P.-M. Wong, Friedr. Vieweg, Braunschweig 1986).
[2] V. Cuillemin and M. Stenzel. Girauert tubes and the homogeneous Monge-Ampère equation. J. Diff. Geom. 34 (1991) 561-570.
[3] S. Helgason. Differential geometry, Lie groups and symmetric spaces Academic Press, New York 1978.
[4] L. Lempert and R. Sröke. Gilobal solutions of the homogencous complex Monge-Ampère equation and complex structures on the tangent bundles of Riemanmian manifolds. Math. Ann. 290 (1991) 689-712.
[5] R. Szöke. Complex structures on tangent bundles of Riemannian manifolds. Math. Ann. 291 (1991) 409-428.

