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Abstract. Three new examples of 4-dimensional irreducible sym-
plectic V -manifolds are constructed. Two of them are relative
compactified Prymians of a family of genus-3 curves with involu-
tion, and the third one is obtained from a Prymian by Mukai’s
flop. They have the same singularities as two of Fujiki’s examples,
namely, 28 isolated singular points analytically equivalent to the
Veronese cone of degree 8, but a different Euler number. The fam-
ily of curves used in this construction forms a linear system on a K3
surface with involution. The structure morphism of both Prymians
to the base of the family is a Lagrangian fibration in abelian sur-
faces with polarization of type (1,2). No example of such fibration
is known on nonsingular irreducible symplectic varieties.

0. Introduction

Historically, the first constructions of nontrivial compact Kähler
holomorphically symplectic varieties Y of dimension > 2 belong to
Beauville [Beau-1] and Fujiki [F]. Fujiki’s notion of nontriviality means
that Y is not obtained as a finite quotient from a product of a complex
torus with symplectic surfaces. Fujiki constructed one nonsingular ex-
ample in dimension 4, the blowup S [2] of the diagonal in the symmetric
square S(2) of a K3 surface S, and his other examples are 4-dimensional
V -manifolds, that is varieties having finite quotient singularities.

Beauville [Beau-1], [Beau-2] constructed two deformation classes of
nonsingular irreducible symplectic manifolds in all even dimensions 2n.
Here a manifold is called irreducible symplectic if it is simply connected
and has a unique symplectic structure up to proportionality; this is
equivalent to Fujiki’s condition of nontriviality at least in the cate-
gory of nonsingular symplectic varieties. The Beauville’s examples are:
1) S [n] = Hilbn(S), the Hilbert scheme of 0-dimensional subschemes of
length n in a K3 surface S, and 2) Kn(A), the generalized Kummer
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variety associated to an abelian surface A. The latter is defined as the
fiber of the summation map A[n+1] → A.

Mukai [Mu-1] showed that the moduli spaces of semistable sheaves
on a K3 or abelian surface are symplectic. According to [Hu-1], [Hu-2],
[O’G-1] and [Y], whenever such a moduli space is nonsigular, it is
deformation equivalent to S [n] or Kn(A) × T with T = A or A × A.
Thus, for years, two Beauville’s examples provided the only known
moduli components of irreducible symplectic manifolds, until O’Grady
[O’G-2], [O’G-3] constructed two essentially new such manifolds. They
are obtained as symplectic desingularizations of singular moduli spaces
of semistable sheaves. The first one is associated to a K3 surface and is
of dimension 10, the second one is associated to an abelian surface and
is of dimension 6. It is still unknown whether there exist irreducible
symplectic 4-folds that are not deformation equivalent to S [2] or K2(A).
O’Grady studies in [O’G-4], [O’G-5] the irreducible symplectic 4-folds
whose intersection 4-linear form on H2 is isomorphic to that of S [2] and
conjectures that they are deformation equivalent to S [2].

The results of [KL], [KLS], [LS], [CK-1], [CK-2] show that, infor-
mally speaking, no new examples of nonsingular irreducible symplectic
manifolds can be obtained by the method of [O’G-2], [O’G-3]. More
precisely, for any singular moduli space M of semistable sheaves on
a K3 surface, either M has no symplectic resolution, or such a reso-
lution exists and up to deformations coincides with one of the known
examples: Beauvilles’s or O’Grady’s. A weaker result, concerning only
rank-2 sheaves, is obtained for moduli of sheaves on abelian surfaces.

Thus the problem of extending the very short list of known deforma-
tion classes of irreducible symplectic manifolds is very hard. Leaving
aside this hard problem, we turn back to the original setting of Fu-
jiki, who considered symplectic V -manifolds. All of his examples, up
to deformation of a complex structure, are partial resolutions of finite
quotients of the products of two symplectic surfaces.

In the present article, we provide a new construction of irreducible
symplectic V -manifold of dimension 4, the relative compactified Prym
variety of some family of curves with involution. The fibration in Prym
surfaces is Lagrangian.

Many features of the theory of irreducible symplectic manifolds are
very similar to those of K3 surfaces, and in view of this similarity, the
manifolds with a Lagrangian fibration constitute an important class of
irreducible symplectic manifolds which is an analog of the class of K3
surfaces with an elliptic pencil. Earlier examples of Lagrangian fibra-
tions on irreducible symplectic manifolds were constructed in [Beau-3],
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[D], [HasTsch-1], [HasTsch-2], [IR], [S-2]. There are more examples if
we relax the hypothesis that the fibration map is a regular morphism,
but admit rational Lagrangian fibrations [Mar-2], [Gu].

By Liouville’s Theorem, the general fiber of these Lagrangian fi-
brations is an abelian variety. It turns out, that in all of the known
examples it is either the Jacobian of a curve, or a (1, . . . , 1, k)-polarized
abelian variety with k ≥ 3. The first possibility occurs for Lagrangian
fibrations f : Y → B with Y deformation equivalent to S [n], and the
second one for Y birational to Kn(A), where A is an abelian surface of
polarization (1, k) (see [S-1], Remark 3.9).

Thus there are no examples of Lagrangian fibrations on irreducible
symplectic 4-folds with (1, 2)-polarized abelian surfaces as fibers. On
the other hand, there are classical integrable systems integrated on
Prym surfaces of such polarization, for example, the complexified
Kowalevski top [HvM]. However, the corresponding symplectic mani-
folds, which are the (complexified) phase spaces of these systems, are
always rational, or at least unirational, and hence they are very far
from having a symplectic compactification, neither nonsingular, nor in
the class of V -manifolds. The phase space of the Kowalevski top is
identified with the relative Prym variety Prymk(C, τ) of a family C/P2

of genus-3 curves endowed with an involution τ such that the quotients
by τ form a family of elliptic curves.

In the present paper, we use this idea in taking for C/P2 the family of
τ -invariant members of a linear system |H| of genus-3 curves on a K3
surface S with an involution τ . In order that the construction might
work, τ should leave the symplectic form ω ∈ H0(S,Ω2

S) anti-invariant.

We denote by Prym
k,κ

(C, τ) (k ∈ Z) the relative compactified Prym
variety defined as a connected component of the fixed locus of some in-

volution κ in the relative compactified Picard variety Pic
k
(|H|). The

latter is a compactification of the relative Picard variety Pick(|H|)
parametrizing divisor classes of degree k on the curves from the com-
plete linear system |H| of an ample genus-3 curve H. The compactifi-
cation depends on the choice of a polarization on S, which we fix once
and forever to be H. There are at most 4 non-isomorphic compactified

Picard varieties, corresponding to k = 0, 1, 2, 3, and Pic
k
(|H|) is bira-

tional to Pic
k+2

(|H|), so there are at most two nonbirational ones. The
definiton of κ depends on some arbitrary choices if k = 1 or 3, but is
canonical for even k, so for even k, we suppress the superscript κ from
the notation. We work out in full detail the case of even k = 2m, prov-

ing that P
2m = Prym

2m
(C, τ) is an irreducible symplectic V -manifold.

3



As P
2m ' P

2m+4, there are at most two non-isomorphic compacti-
fied Prymians, P

0 and P
2. We do not know whether they are really

non-isomorphic.
The Prymian P

0 of degree 0 contains a family of groups, hence has
the zero section whose image Π is isomorphic to the base of the family,
that is to P2. Performing Mukai’s flop with center Π, we obtain a
third 4-dimensional symplecti V -manifold M ′ (see Corollary 5.7). It
has the same topological invariants and Hodge numbers as P

0, but is
conjectured to be non-isomorphic neither to P

0, nor to P
2. We also

identify M ′ as a partial desingularization of the quotient of S [2] by a
symplectic involution.

In the case of odd degree k, it is unlikely that Prym
k,κ

(C, τ) is
symplectic. We show that it is not symplectic for one of the possible
choices of κ, for which it contains a 3-dimensional rational variety, see
Remark 5.8.
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was done a part of the work on the present paper. The second author
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1. Definition and basic properties of varieties Pic
k
(|H|)

LetX be a Del Pezzo surface of degree 2 obtained as a double cover of
P2 branched in a generic quartic curve B0, µ : X−→P2 the double cover
map, B = µ−1(B0) the ramification curve. Let ∆0 be a generic curve
from the linear system |− 2KX |, ρ : S−→X the double cover branched
in ∆0 and ∆ = ρ−1(∆0). Then S is a K3 surface, and H = ρ∗(−KX) is
a degree-4 ample divisor class on S, which we fix once and forever as a
polarization of S. We will denote by ι (resp. τ) the Galois involution
of the double cover µ (resp. ρ).

The plane quartic B0 has 28 bitangent lines m1, . . . , m28, and
µ−1(mi) is the union of two rational curves `i ∪ `′i meeting in 2 points.
The 56 curves `i, `

′
i are all the lines on X, that is, curves of degree 1

with respect to −KX . Further, the curves Ci = ρ−1(`i), C
′
i = ρ−1(`′i)

are conics on S, that is, curves of degree 2 with respect to H. Each pair
Ci, C

′
i meets in 4 points, thus forming a reducible curve of arithmetic

genus 3 belonging to the linear system |H|. Throughout the paper we
assume that B0, ∆0 are sufficiently generic. This implies, in particular,
that each line `i meets only one of the two lines `j, `

′
j for j 6= i.
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Lemma 1.1. The linear system |H| is very ample and embeds S into
P3 as a quartic surface. Every curve in |H| is reduced, and the only
reducible members of |H| are the 28 curves Γi = Ci +C ′

i, i = 1, . . . , 28.

Proof. A generic curve in |H| is isomorphic to a plane quartic, for
∆ ∈ |H| and ∆ ' ∆0 ' µ(∆0) ∈ |OP2(4)|. According to Saint-Donat’s
description of ample linear systems on K3 surfaces [SD] (see also [Mor],
Section 6), |H| is very ample and embeds S into P3.

Let C ∈ |H| be reducible or non-reduced. Then the same is true for
C = ρ∗(C) ∈ | − 2KX |. If C = D1 +D2 is reducible and reduced, then
we have the following 3 possibilities: (a) µ(D1) is a line and µ(D2) is
a cubic; (b) µ(D1), µ(D2) are conics; (c) µ is of degree 2 over one or
both components Di.

In the cases (a) and (b), µ−1µ(Di) decomposes into two components
Di and ι(Di) for both i = 1, 2. Hence µ(Di) are totally tangent to B0.
Hence the family of such curves D1 + D2 is 3-dimensional in case (a)
and 2-dimensional in case (b). Similarly, ρ−1(Di) is the union of two
components permuted by τ , and Di are totally tangent to ∆0 for both
i = 1, 2. This is impossible for generic B0, ∆0 by dimension reasons.

In the case (c), let E = ρ−1(Di), where Di is the component mapped
onto the line µ(Di) with degree 2. Then E2 = 0, H · E = 2, which is
impossible by loc. cit., for then every smooth member of |H| should
be hyperelliptic.

By a similar argument, one can eliminate the case when ρ(C) is
reducible and ρ∗(C) is non-reduced. Thus, the only remaining case is
when deg ρ|C = 2 and deg µ|ρ(C) = 2, in which µρ(C) is a bitangent
to B0. �

Mukai [Mu-2] has endowed the integer cohomology H∗(Y ) of a K3
surface Y with the following bilinear form:

〈(v0, v1, v2), (w0, w1, w2)〉 = v1∪w1 − v0∪w2 − v2∪w0,

where vi, wi ∈ H2i(X). For a sheaf F on Y , the Mukai vector is
v(F) = (rkF , c1(F), χ(F)− rkF) ∈ H∗(Y ), where H4(Y ) is naturally
identified with Z. We refer to [Sim] or to [HL] for the definition and

the basic properties of the Simpson (semi-)stable sheaves. Let MH,s
Y (v)

(resp. MH,ss
Y (v)) denote the moduli space of Simpson stable (resp.

semistable) [Sim] sheaves F on Y with respect to an ample class H
with Mukai vector v(F) = v. According to Mukai ([Mu-1], [Mu-2], see

also [HL]), MH,s
Y (v), if nonempty, is smooth of dimension 〈v, v〉+2 and

carries a holomorphic symplectic structure. We will study the moduli
space Mk = MH,ss

S (v) on the above special K3 surface S with Mukai
vector v = (0, H, k − 2).
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Proposition 1.2. (i) M = Mk is an irreducible projective variety of

dimension 6. The open part M∗ = MH,s
S (0, H, k − 2) corresponding

to the stable sheaves is contained in the smooth locus of M and
is a holomorphically symplectic manifold with symplectic form α ∈
H0(M∗,Ω2) induced by the Yoneda pairing

α[L] : Ext1(L,L) × Ext1(L,L)−→Ext2(L,L)
Tr−→ H2(S,OS) ' C,

where [L] ∈ M∗ is the class of a stable sheaf L and the tangent space
T[L]M∗ is identified with Ext1(L,L).

(ii) Mk parametrizes the S-equivalence classes of pure 1-dimensional
sheaves L whose supports are curves from the linear system |H| and
such that L|C is a torsion free OC-module of rank 1 with χ(L) = k− 2,
where C = SuppL. In the case when L is invertible as a sheaf on
its support, the condition χ(L) = k − 2 is equivalent to saying that
degL = k.

(iii) For any k ∈ Z, Mk ' Mk+4. For odd k, any semistable sheaf
from Mk is stable, so Mk is nonsingular. For even k, Mk contains
exactly 28 S-equivalence classes of strictly semistable sheaves. Each of
them is the class of the sheaf OCi

(k−4
2
pt) ⊕OC′

i
(k−4

2
pt) (i = 1, . . . , 28),

where pt stands for the class of a point on either one of the conics
Ci, C

′
i.

Proof. (i) The projectivity of Mk follows by Theorem 1.21 of [Sim].
The stable sheaves being simple, the remaining assertions follow by
Theorem 0.1 of [Mu-1].

(ii) If [L] ∈ Mk, then v(L) = (0, H, k − 2), so L is, by definition,
an equidimensional torsion sheaf with c1(L) = H and χ(L) = k − 2.
Hence the support of L is a curve from |H| and the rank of L is 1 at
the generic points of all the components of H. It is torsion-free when
considered as a sheaf on C since it is equidimensional.

(iii) The isomorphism Mk → Mk+4 is given by [L] 7→ [L(1)] for
all [L] ∈ Mk. Further, if [L] ∈ Mk and C = SuppL is an integral
curve, then any rank-1 torsion-free sheaf on C is stable according to
Simpson’s definition, whether it is considered as a sheaf on C or on S,
for it has no proper 1-dimensional subsheaves. By (i), this implies that
[L] is a smooth point of Mk. Now suppose that C is not integral. By
Lemma 1.1, C is one of the curves Ci + C ′

i. Hence the only possibility
for a strictly semistable sheaf is to be the central term of an extension

0−→F−→L−→F ′−→0, (1)

where F ,F ′ are pure 1-dimensional, SuppF = Ci, SuppF ′ = C ′
i, or

vice versa, and χ(F(n)) = χ(F ′(n)) for n � 0. Hence F ,F ′ are
6



invertible on their supports, and χ(F) = χ(F ′) = k−2
2

, which implies

that k is even and F ' OCi
(k−4

2
pt), F ′ ' OC′

i
(k−4

2
pt). �

Definition 1.3. (i) A V -manifold is an algebraic variety having at
worst finite quotient singularities. We reserve the term “manifold” for
nonsingular algebraic varieties.

(ii) A symplectic variety is a normal algebraic variety Y such that
its nonsingular locus Yns has a symplecitc structure, that is a 2-form
ω ∈ H0(Yns,Ω

2
Yns

) which is closed and everywhere nondegenerate on Yns.

The nondegeneracy means that ω∧ 1
2

dimY has no zeros on Yns. If Y is
nonsingular, we also call it a symplectic manifold.

(iii) A closed irreducible subvariety W ⊂ Y of a symplectic variety Y
endowed with a symplectic structure ω is called Lagrangian if dimW =
1
2
dim Y , W0 := Yns ∩Wns 6= ∅ and ω|W0 ≡ 0.
(iv) A symplectic manifold (or V -manifold) Y is said to be irreducible

symplectic if Y is complete, simply connected, and h0(Y,Ω2
Y ) = 1.

(v) A morphism f : Y → B from a symplectic variety of dimension
2n to another variety B of dimension n is called a Lagrangian fibration
if it is surjective and if the generic fiber of f is a connected Lagrangian
subvariety of Y .

Proposition 1.4. In the above notation, the map f : Mk → |H| ' P3

sending [L] ∈ Mk to the curve CL = SuppL ∈ |H| is a Lagrangian
fibration. The following properties are verified:

(i) If C ∈ |H| is smooth, then the fiber f−1({C}) is canonically
isomorphic to Pick(C). Here {C} denotes the point of the projective
3-space |H| representing the curve C. Further, if U ⊂ |H| is the open
set parametrizing integral curves, U = |H|\{{Γ1}, . . . , {Γ28}}, then the
restriction fU : f−1(U) → U of f over U is identified with the relative
compactified Picard variety of Altman–Kleiman.

(ii) Let Γ = C+C ′ be one of the reducible curves Γi = (i = 1, . . . , 28).
If k is even, then f−1({C}) is the union of three 3-dimensional

rational components J
k−2
2

, k+2
2 , J

k
2
, k
2 , J

k+2
2

, k−2
2 .

If k is odd, then f−1({C}) is the union of four 3-dimensional rational

components J
k−3
2

, k+3
2 , . . . , J

k+3
2

, k−3
2 .

Each J
d,d′

= J
d,d′

(Γ) contains an open subset Jd,d′ = Jd,d′(Γ) '
(C∗)3 parametrizing the invertible OΓ-modules L such that degL|C = d,
degL|C′ = d′.

(iii) Let q be one of the 56 conics Ci, C
′
i (i = 1, . . . , 28). Then Mk

is birational to Mk+2 via the map ψ : [L] 7→ [L(q)]. Let us set q = Ci,
and fix the notation for the 56 conics in such a way that Ci ∩ C ′

j = ∅

and Ci ∩ Cj = 2 points for all j 6= i.
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If k is even, then the indeterminacy locus of ψ is given by the formula

Indet(ψ) = f−1({Γi}) ∪
⋃

j 6=i

J
k+2
2

, k−2
2 (Γj).

If k is odd, then the indeterminacy locus of ψ is

Indet(ψ) = J
k−3
2

, k+3
2 (Γi) ∪ J

k−1
2

, k+1
2 (Γi)∪

J
k+1
2

, k−1
2 (Γi) ∪

⋃

j 6=i

J
k+3
2

, k−3
2 (Γj). (2)

The formulas for Indet(ψ) in the case when q = C ′
i are obtained by

replacing all the J
m,n

by J
n,m

.

Proof. (i) The map f : Mk−→|H| can be defined as a map from the
moduli functor of sheaves on S to the Hilbert functor of curves on
S, using the 0-th Fitting ideal of a torsion sheaf, and it obviously
commutes with base change and descends to the schemes Mk,HilbS

representing these functors.
Let U ⊂ |H| be the complement of the 28 reducible curves, and

ϕ : CU−→U the universal curve of the linear system |H|, restricted
over U . Every fiber Ct = ϕ−1(t) for t ∈ U is an integral curve, so the

Altman-Kleiman relative compactified Jacobian J
k
ϕ : J

k
(CU/U)−→U

is defined [AK], which is the relative moduli space parametrizing the
isomorphism classes of degree-k torsion-free rank-1 sheaves on the

fibers of ϕ (d ∈ Z). It commutes with base change, so (J
k
ϕ)−1(t) =

J
k
(Ct). Since the curves Ct lie on a smooth surface, they may

have only planar singularities. Then by [AIK], J
k
(CU/U), J

k
(Ct)

are reduced and irreducible and are compactifications of the Picard
schemes Pick(CU/U), resp. Pick(Ct). By the universal property of

moduli spaces, there is a natural morphism J
k
(CU/U)−→Mk which is

bijective onto its image, equal to f−1(U). As f−1(U) is nonsingular,

J
k
(CU/U) is nonsingular (= smooth over C) as well and the last map is

an isomorphism identifying fU = f |f−1(U) with J
k
ϕ. By [Beau-3], f is

Lagrangian for k = 3, the genus of the curves from |H|. As Pick(CU/U)
is a torsor under Pic0(CU/U) in the étale topology, f is Lagrangian for
any k by [MarT], Lemma 5.7.

(ii) Let k be even; the case of odd k is completely similar. We are to
show that the special fibers f−1(ti), where {t1, . . . , t28} = |H|r U , are
unions of 3 components. Let Γi be represented by ti, and look again
at the exact triple (1), but now F ,F ′ are invertible on their supports
with χ(F) ≤ 0 ≤ χ(F ′). Let Ci ∩ C ′

i = {z1, . . . , z4}. In each point
8



zk, the stalk of the sheaf Ext 1
OS

(F ,F ′) is a 1-dimensional vector space
Czk

, so, locally at zk, there are only two non-isomorphic extensions:
Lzk

' OΓi,zk
(the non-trivial extension) and Lzk

' OCi,zk
⊕OC′

i,zk
(the

trivial one). We have

Ext1(F ,F ′) = H0(Ext 1
OS

(F ,F ′)) '
4

⊕

k=1

Czk
, (3)

so that every ξ ∈ Ext1(F ,F ′) can be viewed as a vector in C4 with
components ξzk

, and the extension with class ξ provides a sheaf L
locally free at zk as an OΓi

-module if and only if ξzk
6= 0.

Let s be the number of points zk in which L is locally free as an
OΓi

-module. Then F ' Li(−s · pt) and F ′ ' L′
i, where Li = γ−1

i L '
L|Ci

/(torsion), L′
i = γ′−1

i L ' L|C′
i
/(torsion), and γi (resp. γ′i) is the

natural inclusion of Ci (resp. C ′
i) into Γi. Thus (1) acquires the form

0−→Li(−s · pt)−→L−→L′
i−→0 (4)

Let d = degLi, d
′ = degL′

i. We will call (d, d′) the bidegree of L. Then
the semistability of L implies d− s ≤ d′. Reversing the roles of Ci, C

′
i,

we can represent the same sheaf as an extension

0−→L′
i(−s · pt)−→L−→Li−→0, (5)

which implies d′ − s ≤ d. We have χ(L) = k − 2 = d + d′ −
s + 2 and |d − d′| ≤ s ≤ 4. Taking s = 4, we obtain all
the locally free extensions; the only possible bidegrees are given by
(d − k

2
, d′ − k

2
) ∈ {(−1, 3), (0, 2), (1, 1), (2, 0), (3,−1)}. The extremal

cases (−1, 3), (3,−1) correspond to degF = degF ′ = k−4
2

, so all such
extensions represent one and the same S-equivalence class of the trivial
extension, that is the direct sum OCi

(k−4
2
pt) ⊕ OC′

i
(k−4

2
pt). For the

remaining three bidegrees, the non-isomorphic locally-free extensions
provide non-isomorphic stable sheaves. The locally free extensions
are parametrized by the complements Jd,d′ ' (C∗)3 to the coordinate
hyperplanes in P(Ext1(OC′

i
(d′pt),OCi

((d − 4)pt))) ' P3, so Jd,d′ are

mapped injectively into Mk. The non-locally-free extensions deform
in the corresponding Ext-groups to the locally free ones, so they lie in

the closures J
d,d′

of the images of Jd,d′ .
(iii) Tensoring by OS(q) for q = Ci preserves the support and the

property of being torsion-free rank-1 sheaf considered as a sheaf on its
support. Thus it preserves the stability of all the sheaves from Mk

supported on the integral curves. But it changes the distribution of
degrees on the components of reducible ones. If we denote by (d̃, d̃′)
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the bidegree of L(q) for L supported on Γj we have:

(d̃, d̃′) =

{

(d− 2, d′ + 4) if j = i
(d+ 2, d′) if j 6= i.

This immediately implies the formulas for the indeterminacy locus of ψ.
�

Remark 1.5. For odd k = 2m + 1, M2m+1 is smooth and is birational
to M3. In its turn, M3 is birational to the punctual Hilbert scheme
S [3] (see [Beau-3]). Then, by [Hu-0], M2m+1 is deformation equivalent
to S [3].

Definition 1.6. We will call Mk the degree-k relative compactified

Picard variety of the linear system |H| and denote it Pic
k
(|H|).

2. Local structure of Pic
2m

(|H|)
We will use the approach of [O’G-2] to describe the local structure

of the moduli space at a point representing a strictly semistable sheaf
F as a quotient of the versal deformation of F by Aut(F).

Let us fix an integer m and consider the relative compactified

Picard variety M = Pic
2m

(|H|). First we will describe Simpson’s
construction for M. Let L ∈ M and k � 0 a sufficiently big
integer. Then L(k) is generated by global sections, and denoting by
V the vector space H0(L(k)), we will consider the Grothendieck Quot-
scheme Q parametrizing all the quotients V ⊗OX(−k) � L′ such that
χ(L(n)) = χ(L′(n)) for all n ∈ Z. Let Qss

c ⊂ Q be the open subscheme
parametrizing the semistable pure 1-dimensional sheaves and Qc the
closure of Qss

c in Q. There is a natural action of G = GL(V ) on Q,
Qc and a G-linearized ample invertible sheaf L on Q, such that Qss

c

coincides with the set of L-semistable points of the action of G on Qc,
and M is obtained as the Mumford quotient Qc//G.

Let z ∈ Qss
c be a point with closed orbit G · z, [z] the corresponding

point in M, Lz the quotient sheaf represented by z, andH the stabilizer
of z; we have H ' Aut(Lz). Luna’s Slice Theorem ([Lu], [Sim]) affirms
that there exists a H-invariant affine subscheme W ⊂ Qss

c passing
through z such that the map W//H−→Qc//G of GIT quotients is
étale. Such a W is called Luna’s slice of the action of G. Let (W, z) be
the germ of W at z and L the restriction of the universal quotient sheaf
on Q× S to (W, z)× S. By [O’G-2], Proposition (1.2.3), ((W, z),L) is
a versal deformation of Lz.

There is a standard method for constructing a versal deformation of
a sheaf which provides the following proposition:
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Proposition 2.1. Let X be a smooth projective variety, F0 a coherent
sheaf on X. Then there exists a germ of a nonsingular algebraic variety
(M, 0) together with a morphism Υ : (M, 0)−→(Ext2(F0,F0), 0), called
the obstruction map, such that the following properties are verified:

(i) (Υ−1(0), 0) is the base of a versal deformation of F0, that
is, there exists a coherent sheaf F on (Υ−1(0), 0) × X such that
((Υ−1(0), 0),F) is a versal deformation of F0. The Kodaira-Spencer
map of this deformation provides a natural isomorphism KS :
T0M−→∼ Ext1(F0,F0).

(ii) Let

Υ =
∞

∑

i=1

Υi, Υi ∈ HomC−lin(Si(T0M),Ext2(F0,F0))

be a Taylor expansion of Υ. Then Υ1 = 0 and Υ2 is the composition

T0M
KS×KS−−−−−→ Ext1(F0,F0) × Ext1(F0,F0)

(ξ,ξ)7→ξ∪ξ−−−−−→ Ext2(F0,F0)

where ξ∪η denotes the Yoneda product of two elements of Ext1(F0,F0).

Proof. The Appendix of Bingener to [BH] provides a scheme of the
proof of this statement. The existence of a formal versal deformation
was proven in [Rim]. By [Art], the formal versal deformation is the
formal completion of a genuine versal deformation. The identification
of the obstruction Υ2 on the formal level with the Yoneda pairing was
done in [Ar], [Mu-2]. See also [HL], I.2.A.6 and historical comments,
for the case when F0 is simple. For the construction of Υi for all i,
see Proposition A.1 of [LS]. See also the paper [Lau], which provides
a similar construction in the deformation theory of modules over a
k-algebra and uncovers its relation to the Steenrod squares. �

Lemma 2.2. In the situation of Proposition 2.1, let us assume in
addition that X is a K3 or abelian surface. Then the image of Υ2 lies
in the codimension-1 subspace Ext2(F0,F0)0, defined as the kernel of

the trace map Ext2(F0,F0)
Tr−→ H2(OX).

Proof. The surjectivity of the trace map on a K3 or abelian surface is
proved in [Ar], [Mu-2]. The fact that Tr ◦Υ2 = 0 follows from [HL],
Lemma 10.1.3. �

Let now z be a point of Qss
c representing one of the 28 polystable

sheaves Lz = OCi
((m−2)pt)⊕OC′

i
((m−2)pt). To shorten the formulas,

we will denote Lz = L, L1 = OCi
((m − 2)pt), L2 = OC′

i
((m − 2)pt),

so that L = L1 ⊕ L2. As in the previous section, denote by z1, . . . , z4
the intersection points of Ci and C ′

i. The orbit of a polystable sheaf is
11



closed in Qss
c (see [LP], 2.9), so the above local description of M at [z]

applies.
We have for i = 1, 2:

Ext 1
OS

(Li,L2−i) '
4

⊕

q=1

Czq
, Ext k

OS
(Li,L2−i) = 0 if k 6= 1,

Ext 0
OS

(Li,Li) = OC , Ext 1
OS

(Li,Li) ' OC(−2pt),

Ext k
OS

(Li,Li) = 0 if k 6∈ {0, 1},
where C = Ci for i = 1 and C = C ′

i for i = 2. Thus

TzW ' Ext1(L,L) = Ext1(L1,L2) ⊕ Ext1(L2,L1), Ext1(Li,Li) = 0,

Ext1(Li,L2−i) = H0(Ext 1
OS

(Li,L2−i)) '
4

⊕

q=1

Czq
,

Ext2(L,L) =
⊕

i=1,2

Ext2(Li,Li), Ext2(Li,L2−i) = 0, i = 1, 2.

By Serre duality ([Mu-2], Proposition 2.3), Ext2(Li,Li)
Tr−→ H2(OS) is

an isomorphism, and

Ext1(Li,Lj) × Ext1(Lj,Li)
Yoneda−−−−→ Ext2(Li,Li)

Tr−→ H2(OS),

where j = 2− i, is a nondegenerate pairing. Let us fix once and forever
a generator of H2(OS), then denote by ei its preimage in Ext2(Li,Li).
Denote Ei = Ext1(Li,L2−i), E = Ext1(L,L). Our choice of the ei

allows us to identify E2−i with the dual of Ei in such a way that E =
E1 ⊕ E2 and Υ2 is given by

Υ2 : E1 ⊕ E2−→Ce1 ⊕ Ce2, (ξ1, ξ2) 7→ 〈ξ1, ξ2〉(e1 − e2) (6)

Thus we have proved:

Lemma 2.3. The first obstruction map Υ2 for the sheaf L is a
nondegenerate quadratic form on the 8-dimensional vector space E =
Ext1(L,L) with values in the 1-dimensional vector space Ext2(L,L)0 =
C(e1 − e2), given by formula (6).

This implies, in particular, that the base of the versal deformation
Υ−1(0) is at most 7-dimensional. Further, the stabilizer H of z is just
the automorphism group Aut(L) = C∗ idL1 ×C∗ idL2 acting on Υ−1(0)
via its quotient by the center, hence with 1-dimensional orbits. As
dimM = 6, we conclude:

12



Corollary 2.4. (Υ−1(0), 0) is a nondegenerate 7-dimensional quadratic
singularity with tangent cone Υ−1

2 (0). In particular, (Υ−1(0), 0) and
(Υ−1

2 (0), 0) are analytically equivalent.

The linearized action of H is given by the following lemma.

Lemma 2.5. In the above notation, let g ∈ H = Aut(L) and
g : W−→W the map given by the group action of H on W . Let
ξ ∈ TzW ' Ext1(L,L). Then g∗(ξ) = g∪ξ∪g−1

Proof. See [O’G-2], (1.4.16), or [Dr], (7.4.1). �

Thus the linearized action on E of an element (λ1, λ2) ∈ Aut(L) is
given by:

(λ1, λ2)∗ : E1 ⊕ E2−→E1 ⊕ E2, (ξ1, ξ2) 7→ (λ−1
1 λ2ξ1, λ1λ

−1
2 ξ2).

Passing to the quotient PH = PAut(L) by the center, we have:
PH ' C∗ via the map (λ1, λ2) 7→ λ = λ−1

1 λ2, and for λ ∈ PH,
λ∗ acts with weight λ on E1 and λ−1 on E2. Let us introduce
coordinates x1, . . . , x4 on E1 in such a way that the i-th coordinate
axis is H0(Czi

) ⊂ E1. Let y1, . . . , y4 be the dual coordinates on E2. We
obtain:

Corollary 2.6. The linearized action of PH on Υ−1
2 (0) is identified

with the action of C∗ on the nondegenerate quadraric cone Q = {x1y1+
. . .+ x4y4 = 0} in E ' C8 given by

λ∗ : (x1, . . . , x4, y1, . . . , y4) 7→
(λx1, . . . , λx4, λ

−1y1, . . . , λ
−1y4), λ ∈ C∗. (7)

Now we will use the birational modification π : M̃−→M of M
constructed by the method of Kirwan [Kir]. Given a GIT quotient
Z//G, Kirwan constructs its partial desingularization in blowing up
successively closed semistable orbits of G until the stability of a point
under the action of G on the blown up variety Z̃ becomes equivalent
to the semistability: Z̃ss = Z̃s. Equivalently, one may require that,
the projectivized stabilizer of any semistable point of Z̃ is finite. Then
Kirwan’s modification of Z//G is the induced birational morphism π :

Z̃//G→ Z//G.
In our case, we consider just one blowup σ : Q̃c−→Qc with center at

the union of all the closed orbits in the strictly semistable locus of Qc.
The induced map of GIT quotients π : M̃ = Q̃c//G−→M = Qc//G
is a morphism by [Kir], 3.1, 3.2.
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Proposition 2.7. In the above notation, the following assertions hold:
(i) π : M̃−→M is Kirwan’s modification of M.

(ii) M̃ is nonsingular and projective, thus π is a resolution of
singularities of M. The construction of M̃ consists in blowing up the
28 singular points ζ1, . . . , ζ28 of M taken with their reduced structure.

(iii) The exceptional divisors Ii = π−1(ζi) (i = 1, . . . , 28) can be
identified with the flag variety Fl(0, 2; P3).

(iv) The normal bundle NIi/M̃
is isomorphic to OIi

(−1), the

restriction of OP14(−1) to the flag variety Fl(0, 2; P3) in its standard
embedding into P14.

Proof. (i) We have to show that one blowup suffices to get a complete
Kirwan’s modification. For a strictly semistable point z ∈ Qc, σ
induces on the étale slice W at z the blowup σz : W̃−→W with center
z, and W̃//H is an étale neighborhood of the exceptional fiber π−1(ζ)

in Q̃c//G, where H is the stabilizer of z and ζ = [z] is the image of z
in M. By Corollary 2.6, F = σ−1

z (z) is isomorphic to the projectivized
quadratic cone PQ with PH acting by formula (7). The two projective
3-spaces PE1, PE2 contained in PQ consist of unstable points, and
the stabilizer of any point of PQ r (PE1 ∪ PE2) in PH is {±1}, so
PQss = PQs = PQ r (PE1 ∪ PE2). As all the semistable points of
PQ are stable, π is Kirwan’s modification at ζ. Remark also that the
strictly semistable points of Qc (or W ) with non-closed orbits become

unstable when lifted to Q̃c (resp.W̃ ).
(ii) The blowup W̃ at z is nonsingular over z since, by Corollary 2.4,

(W, z) is a nondegenerate quadratic singularity. As the stabilizer in
PH of all the semistable points of σ−1(z) is constant, equal to {±1},
the quotient W̃//H is nonsingular at every point of F = π−1(z) by
Luna’s slice theorem. By Lemma 3.11 of [Kir], π is the blowup of the
reduced point ζ = [z].

(iii) The exceptional fiber I = π−1(ζ) is isomorphic to the quotient
PQ//C∗ by the action (7). The algebra of invariants of this action is
generated by the quadratic monomials uij = xiyj, and the generating
relations are of two types: one linear, u11 + . . . + u44 = 0, and
the quadratic ones uijukl = ukjuil. The quadratic relations define
the standard Segre embedding of P3 × P3 in P15, and the linear one
cuts out the incidence variety: if we identify the second factor P3

with P3∨, parametrizing the hyperplanes h in the first factor P3, then
I = {(p, h) ∈ P3×P3∨ | p ∈ h}. This is just the flag variety Fl(0, 2; P3).

(iv) Let A denote the algebra of regular functions on W , so that
W = SpecA. Let M = Mz ⊂ A be the maximal ideal of z ∈ W .
As any representation of PH is completely reducible, M contains a
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subrepresentation V of PH that projects down isomorphically and
equivariantly onto M/M2 = T ∗

zW via the differential d : M → M/M2.
The map d|V extends to a PH-equivariant epimorphism of C-algebras
S qV → A giving rise to a PH-equivariant morphism W → TzW .
Its image is a hypersurface W1, and it is étale at z if considered as
a morphism W → W1. In shrinking W , we can assume that this
morphism is everywhere étale.

We can choose functions xi, yi ∈ V ' T ∗
zW on which PH acts

according to formula (7). Then W1 is defined by the equation F = 0,
where F ∈ C[xi, yi] is the sum of homogeneous components of even
degree, F = F2 + . . . + F2r, which are PH-invariant and such that
F2 = x1y1 + . . . + x4y4. We can write W1 = SpecA1, where A1 =
C[xi, yi]/(F ). Let U = W//PH, U1 = W1//PH. We have U = SpecB,
U1 = SpecB1, where B = APH , B1 = APH

1 , and the étale morphism
W → W1 descends to the quotients as an étale morphism U → U1.
Let ζ = [z] denote the image of z in U or in U1, and m = mζ the

maximal ideal of ζ in either one of the rings B,B1. The blowup Ũ of
U at ζ can be given by Ũ = ProjB(

⊕

k≥0

mk), and the exceptional divisor

I = ProjC(
⊕

k≥0

mk/mk+1), its normal bundle being OI(−1), the dual of

the Grothendieck tautological sheaf OI(1) on the latter Proj. As U and
U1 are locally isomorphic at z in the étale topology, I and its normal
bundle do not depend on whether m is considered in B or in B1. So the
wanted normal bundle NIi/M̃

can be computed as the normal bundle
to the blowup of ζ in U1.

Choosing uij = xiyj as the generators of B1 = APH
1 , we represent

U1 as a hypersurface in the cone C = {(uij) ∈ C16 | uijukl =
ukjuil, 1 ≤ i, j, k, l ≤ 4}, defined by the equation f = 0, where
f has a decomposition into homogeneous components of the form
f = f1 + f2 + . . . + fr, f1 = u11 + . . . + u44. The proper transform
Ũ1 of the hypersurface f = 0 in the blowup C̃ of C at ζ meets the
exceptional divisor E ' P3 × P3 transversely along the flag variety

I ⊂ E. Hence NI/Ũ1
'

(

NE/C̃

)

|I . But the latter normal bundle is just

the restriction of OP15(−1), and we are done. �

Remark 2.8. Our argument in part (iv) is a kind of “equivariant
deformation to the normal cone”, compare to Sect. 5 of [LS].

The exceptional divisor Ij over any of the points ζj has two distinct
projections to P3 which are P2-bundles, and which we will refer to
as rulings of Ij. By Proposition 2.7 (iv), the normal bundle to Ij

restricts as O(−1) to the fibers P2 of each ruling. By Moishezon’s
15



contractibility criterion [Mo], both projections of Ij to P3 can be

extended to a morphism f : M̃−→Y such that Y is a smooth compact
complex 6-dimensional manifold, not necessarily projective. Applying
this argument successively to different j = 1, . . . , 28, we obtain:

Corollary 2.9. There are 228 distinct bimeromorphic morphisms
f : M̃−→Y onto smooth, compact, complex, not necessarily projective
6-dimensional manifolds Y which contract each one of the divisors Ij

onto a projective 3-space f(Ij) ' P3. For any of these morphisms f ,

Kirwan’s desingularization π : M̃−→M factors through f , π = g◦f , so
that g is a small contraction, that is, a contraction without exceptional
divisors. Moreover, the symplectic form α on the nonsingular locus
M∗ of M lifts to a global symplectic form αY on Y , and hence Y is a
holomorphically symplectic manifold.

Proof. The small contraction map g induces an isomorphism g :
g−1(M∗)−→∼ M∗, so g∗(α) is a symplectic form on g−1(M∗). It extends
to a regular 2-form αY on all of Y by Riemann–Hartogs extension
theorem since the complement Y r g−1(M∗) is a union of P3’s and
thus is of codimension > 1. Finally, αY is nondegenerate, and hence is
a symplectic form. Indeed, the degeneracy locus of αY is nothing else
but the zero locus of α∧3

Y ∈ H0(Y,Ω6
Y ). The zero locus of a section of

an invertible sheaf, if nonempty, is either Y itself, or a divisor in Y , but
we know that αY is nondegenerate on an open set whose complement
contains no divisors, so αY is everywhere nondegenerate. �

In fact, there are projective varieties among the complex manifolds
Y from Corollary 2.9. One of them is given by the next proposition.

Proposition 2.10. Let Hε = H + ε
∑28

i=1(Ci − C ′
i). Then there exists

a sufficiently small ε0 > 0 such that for any ε ∈ Q∩]0, ε0[, the following
assertions hold:

(i) Hε is an ample Q-divisor on S.
(ii) The (semi-) stability of a sheaf with Mukai vector v = (0, H, 2m−

2) with respect to Hε does not depend on ε, and every Hε-semistable
sheaf with Mukai vector v is stable.

(iii) The moduli space Y = MHε,ss
S (v) = MHε,s

S (v) is an irreducible
symplectic manifold which does not depend on ε.

(iv) The natural map g : Y → M is a small resolution of singularities
such that g−1(ζj) ' P3 (j = 1, . . . , 28).

Proof. (i) follows from the openness of the cone of ample classes in
PicS⊗R. For (ii), remind that the (semi)-stability of a sheaf supported
on an integral curve does not depend on polarization. So we have only
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to examine the sheaves supported on the reducible curves Γi. This is
similar to the proof of Proposition 1.4, (iii): any Hε-semistable sheaf
which is rank-1 and torsion-free as a sheaf on its support Γi = C + C ′

is given by extensions (4) and (5) such that

(1 − 3ε)(d− s) ≤ (1 + 3ε)d′, (1 + 3ε)(d′ − s) ≤ (1 − 3ε)d,

s = 0, . . . , 4, d+ d′ = 2m.

For all sufficiently small ε > 0, the solutions of these inequalities are
the same triples of integers d, d′, s as in the proof of Proposition 1.4,
(iii), except for d = d′ = m, s = 0 which does not satisfy the second
inequality. For all the solutions, the inequalities are strict, hence there
are no strictly semistable sheaves. This ends the proof of (ii). The
assertion (iii) follows by [HL], 6.2.5. To prove (iv), remark, that by
the above argument, any Hε-semistable sheaf is also H-semistable, so
there is a natural morphism g : Y → M. Further, all the nontrivial
extensions

0−→OC((m− 2)pt)−→F−→OC′((m− 2)pt)−→0

provide Hε-stable sheaves with the same image [OC((m − 2)pt) ⊕
OC′((m − 2)pt)] = ζi in M, and two such sheaves are isomorphic if
and only if they correspond to proportional extension classes. Thus
g−1(ζi) = P Ext1(OC′((m− 2)pt),OC((m− 2)pt)) ' P3. �

3. The relative compactified Prymian Prym
k
(C, τ)

The Galois involution τ of the double covering ρ : S → X is H-linear
and induces an involution on |H| ' P3, whose fixed locus consists of
two components: a point and a plane. The plane parametrizes the
curves of the form ρ−1µ−1(`), where ` runs over the lines in P2, thus
this plane is identified with the dual of the P2 which is the image of µ.
We will denote it P2∨. The other component of the fixed locus, a point,
corresponds to the ramification curve ∆ ∈ |H|. Let ϕ : C → P2∨ be the
linear subsystem of τ -invariant curves parametrized by P2∨. A generic
t ∈ P2∨ represents a line ` = `t which is not tangent to B0, neither
to ∆0 := µ(∆0). The corresponding curve Ct = ϕ−1(t) = ρ−1µ−1(`t)
is a smooth genus-3 curve, and Et = Ct/τ is elliptic; the double cover
ρt = ρ|Ct

: Ct → Et is branched at 4 points of the intersection ∆0 ∩Et.

Definition 3.1. Let η : C → D be a double covering map of integral
projective curves and τ the Galois involution of η. Then τ acts as
a linear involution on the generalized Jacobian J(C), and the Prym
variety Prym(C, τ) is defined as im(id−τ) = [ker(id +τ)]◦, where G◦
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denotes the connected component of the neutral element in a subgroup
G of J(C).

If C is smooth, then J(C) and Prym(C, τ) are abelian varieties, but
for singular curves, they can be extensions of abelian varieties by a
number of copies of C∗ or C.

Lemma 3.2. Let C be a smooth genus-3 curve with an involution τ
such that D = C/τ is an elliptic curve. Then ker(id +τ) has only
one connected component in J(C), and the restriction of the principal
polarization from J(C) to Prym(C, τ) = ker(id +τ) is a polarization of
type (1, 2).

Proof. It is well-known that under the hypotheses of the lemma, P =
Prym(C, τ) has a polarization of type (1, 2), see [B]. A very explicit
proof of the fact that this polarization is the restriction of the standard
principal polarization of the Jacobian J = J(C) is given in the paper
[P], in which the author identifies the intersection Θa ∩P , where Θa =
a + Θ is an appropriate translate of the theta-divisor Θ ⊂ J , as a
genus-3 curve C∨ obtained by a bigonal construction from C.

Let η : C → D be the natural double covering map. As C is not
hyperelliptic, η∗ : J(D) → J is injective. Let E = η∗(JD) ⊂ J . Then
E + P = J , and K = E ∩ P ⊂ J(2), where J(n) denotes the n-torsion
subgroup of J . It is obvious that ker(id+τ) =

⋃

z∈E(2)
(z + P ), so

ker(id +τ) is connected if and only if K = E(2). By [BM], 7.6 and 7.10,
K = ker λΞ1 = kerλΞ2 , where Ξ1 = Θ|E, Ξ2 = Θ|P , and λΞ denotes
the polarization map associated to an ample divisor Ξ on an abelian
variety A. It is defined by the formula

λΞ : A−→Â = Pic0(A), a 7→ Cl[Ξa − Ξ].

Since we already know that Ξ2 is a polarization of type (1, 2), we have
#(ker λΞ2) = 4, hence K = E(2) and we are done. �

The lemma allows us to define Prym(C, τ) as the fixed locus of the
involution κ = τ ◦ ι, where ι : J(C) → J(C) is defined by [L] 7→ [L−1].
Now we will relativize the construction of κ in the linear system |H|.

Let Mk = Pic
k
(|H|) be as in the previous sections. First, let k = 2m

be even. The naive extension of ι to the sheaves that are not invertible
on C = SuppL is [L] 7→ [Hom OC

(L,OC(mH))]. But this does not
commute with base change. The proper definition is

ι : M2m−→M2m, [L] 7→ [Ext 1
OS

(L,OS((m− 1)H))].

This duality functor for pure 1-dimensional sheaves was used by
Maruyama in [Maru], Proposition 2.9, over P2, but it can be applied
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on any smooth surface. The fixed locus Fix(κ) of κ = τ ◦ ι has
one connected component of dimension 4, parametrizing sheaves with
supports Ct, t ∈ P2∨, and 26 = 64 isolated points representing the
invertible sheaves L on ∆ such that L2 ' OS(mH)|∆.

To define ι for k = 2m+1, we need to fix a class c ∈ Pic(S) of degree
2, that is such that (c ·H) = 2. Then we define

ι = ιc : M2m+1
99K M2m+1, [L] 7→ [Ext 1

OS
(L,OS((m− 1)H − c))].

This is a rational involution whose indeterminacy locus consists of
H-stable sheaves L ∈ M2m+1 such that L ⊗ OS(−c) is unstable. One
can choose for c one of the 56 conics Ci, C

′
i. For example, if c = C ′

i, then
the indeteminacy locus of ι coincides with Indetψ as given by formula
(2). Thus κ = τ ◦ ι is a rational involution in this case and we define
Fix(κ) as the closure of the fixed point set of the restriction of κ to its
regular locus. It also has one 4-dimensional and 64 zero-dimensional
components.

Definition 3.3. The relative compactified Prymian Prym
k,κ

(C, τ), or

simply Prym
k
(C, τ), is the 4-dimensional component of Fix(κ) in Mk.

We will study in more detail the variety Prym
k
(C, τ) for even k =

2m, which we will denote by P
2m, or simply P when there is no risk

of ambiguity. Remark that P
2m ' P

2m+4 via the map F 7→ F(H),
so that there are at most two different varieties P

2m: P
0 and P

2.
We ignore if they are really non-isomorphic, or even non-birational.

Theorem 3.4. Let P = Prym
2m

(C, τ) with m ∈ Z. Identifying, as
above, the 2-dimensional linear subsystem of τ -invariant curves in |H|
with P2∨, let fP = f 2m

P
denote the map P → P2∨ sending each sheaf

to its support. Let Ct = ϕ−1(t), Et = Ct/τ , and ρt = ρ|Ct
: Ct → Et,

where ϕ : C → P2∨ is the natural map and t ∈ P2∨.
Then the following assertions hold:
(i) P is nonsingular out of the 28 points ζi = [Li] representing the S-

equivalence classes of the sheaves Li = OCi
((m−2)pt)⊕OC′

i
((m−2)pt),

i = 1, . . . , 28. The singularities (P, ζi) are analytically equivalent to
(C4/{±1}, 0).

(ii) P is a symplectic V -manifold, and fP is a Lagrangian fibration
on it. The generic fiber f−1

P
(t) is the (1, 2)-polarized Prym surface

Prym(Ct, τ) of the double covering ρt : Ct → Et.

Proof. (i) It is obvious that the fixed point set of any biregular
involution on a smooth variety is also smooth. The sheaves Li are
invariant under τ and ι, hence also under κ. So ζi ∈ P , and we only
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have to determine the analytic type of the singularity at ζi. To this
end, we will write out the action of κ on the tangent cone of M2m at
ζi.

Let us change, for convenience, the notation, so that C+ = Ci, C− =
C ′

i, C = Γi = C+ ∪ C−, L± = OC±
((m − 2)pt), L = L+ ⊕ L−, ζ =

ζi = [L]. As τ leaves invariant both curves C±, it has two fixed points
on each of them, which we will denote by λ1±, λ2±. We can choose
homogeneous coordinates (x0±, x1±) on C± ' P1 in such a way that
λ1± = (0 : 1), λ2± = (1 : 0), and τ is given by τ : (x0±, x1±) 7→
(x0±,−x1±). As the cross-ratio of 4 points of intersection of two conics
is the same on both of them, we can adjust the choice of the above
coordinates in such a way that the 4 points z1, . . . , z4 of C+ ∩C− have
equal coordinates on both curves, and we will number them in such a
way that they are permuted by τ in pairs z1 ↔ z2, z3 ↔ z4.

The 4-dimensional vector space F = Ext1(L+,L−) parametrizes the
extensions 0 → L− → F → L+ → 0. Let xi, resp. yi be the coordinates
on F , resp. F ∨ = Ext1(L−,L+) obtained in the same way as those used
in Corollary 2.6. The choice of xi made in Section 2 is not unique, it
depends on the choice of a basis in each of the 1-dimensional stalks
Czi

of the sheaf Ext 1(L+,L−). Now we will make this choice more
precise. Let s be the number of the points zi in which F is locally free.
Then F is the result of gluing of the sheaves L−(s · pt) and L+. The
gluing consists in the identification of the fibers at zi via isomorphisms
ϕi : L+,zi

= L+ ⊗ Czi
−→∼ L−(s · pt),zi

= L−(s · pt) ⊗ Czi
for those i,

for which the Czi
-component of the extension class is non-zero. Let us

denote the resulting sheaf F by L−(s · pt)#(ϕi)L+.
Consider the case s = 4. Let us fix some isomorphisms L−(4 · pt) '

OP1(m + 2) and L+ ' OP1(m − 2). Now, fix e+ = xm−2
0+ , resp. e− =

xm+2
0− as a trivializing section of L+, resp. L−(4 · pt) over an open set

containing all the points zi. Define the four isomorphisms ϕi as above
by e+,zi

7→ e−,zi
. Finally, we fix the choice of (xi) by the condition that

(xi) are the coordinates of the extension class of the sheaf

F(x1,x2,x3,x4) = L−(s · pt)#(xiϕi)L+

whenever xi 6= 0 for all i = 1, . . . , 4. This determines also the
coordinates yi, dual to xi.

The action of τ lifts to L± in such a way that it preserves e−, e+.
Further, τ interchanges z1 with z2, z3 with z4, hence τ ∗(F(x1,x2,x3,x4)) '
F(x2,x1,x4,x3). From here we deduce the action of τ on E = Ext1(L,L) =
F ⊕ F ∨:

τ : (x1, x2, x3, x4, y1, y2, y3, y4) 7→ (x2, x1, x4, x3, y2, y1, y4, y3).
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As ι interchanges xi with yi, we obtain

κ : (x1, x2, x3, x4, y1, y2, y3, y4) 7→ (y2, y1, y4, y3, x2, x1, x4, x3).

The tangent cone to M2m is obtained by taking the quotient of the
quadric

∑

xiyi = 0 by C∗ (see the proof of Proposition 2.7, (iii)).
The quotient is identified with the cone over the hyperplane section
∑

uii = 0 of the Segre variety, given by the parametrization uij = xiyj

in P15. As we have already noticed, this hyperplane section is the flag
variety Fl(0, 2; P3) embedded in P14. Restricting further to the fixed
locus of κ is equivalent to intersecting with 6 hyperplanes

u11 = u22, u33 = u44, u13 = u42, u14 = u32, u23 = u41, u24 = u31.

These equations cut out the Veronese image of P3 in P9. Thus the
tangent cone to M2m is the cone over the the Veronese image of P3, or
in other words, the quotient C4/± 1. This ends the proof of (i).

The assertions of (ii) follow from (i), Lemma 3.2 and [Mar-1],
Section 6. �

We can use some of the settings of the above proof to determine the
fiber of fP over a point t ∈ P2∨ representing a reducible quartic Ct.

Lemma 3.5. Let, in the notation of Theorem 3.4, t ∈ P2∨ be a
point representing a reducible quartic C = C+ ∪ C−, and P 2m =
(f 2m

P
)−1(t). Then P = P 2m is an irreducible projective surface having

a stratification P = P0 tP1 tP2 such that P0 ' C∗×C∗, P1 ' C∗ tC∗

and P2 is a single point. The isomorphism class of P does not depend
on m.

Proof. We choose the coordinates (x0±, x1±) on C± as in the proof of
Theorem 3.4. Letz± = x1±/x0± denote the associated affine coordinate
on C±\{λ1±}. Then the 4 points of C+∩C− have the same values of the
coordinates z±: zi+ = zi− = zi for i = 1, . . . , 4. Moreover, z2 = −z1,
z4 = −z3, for the involution τ acts by z+ 7→ −z+, z− 7→ −z−.

Consider first the case m = 0. Any invertible sheaf of degree
0 on C can be represented as the result of gluing OC+(a pt) with
OC−

(−a pt) at the 4 points of C+ ∩ C−. Let us fix the convention
that the sheaf OC±

(n pt) is trivialized by the rational section e± = xn
0±.

Denote the result of the above gluing via the maps e+,zi
7→ λie−,zi

as
F(a;λ1, . . . , λ4) or OC−

(−a pt) #
(λ1 ,...,λ4)

OC+(a pt). We have F(a; (λi)) '
F(a′; (λ′i)) if and only if a′ = a and λ′

i = cλi (i = 1, . . . , 4) for some
c ∈ C∗. Since τ ∗ preserves the value of a and ι : F 7→ F∨ changes a
to −a, we have: F(a; (λi)) ∈ P ⇒ a = 0. Let P0 be the open subset
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in P that parametrizes the locally free sheaves. To determine P0, we
compute the action of κ = ι ◦ τ ∗ on F = OC− #

(λ1 ,...,λ4)

OC+:

F �

τ∗

// OC− #
(λ2,λ1,λ4,λ3)

OC+

�

ι
// OC−

#
( 1

λ2
, 1
λ1

, 1
λ4

, 1
λ3

)

OC+ ,

thus F ∈ P0 ⇔ rk

(

λ1 λ2 λ3 λ4

λ−1
2 λ−1

1 λ−1
4 λ−1

3

)

= 1, and P0 is the

quotient of the subtorus of (C∗)4 with equation λ1λ2 = λ3λ4 by the
diagonal action of C∗. Hence P0 ' C∗ × C∗.

We define the next stratum, P1, as the locus of the sheaves in
P that are invertible in at least one of the points zi, but are not
invertible in all of them. If F ∈ P1, then either F ' F ′(a;λ3, λ4) =
OC−

((−a − 1)pt) #
( · , · ,λ3,λ4)

OC+((a− 1)pt), or F ' F ′′(a;λ1, λ2) =

OC−
((−a− 1)pt) #

(λ1,λ2, · , · )

OC+((a − 1)pt), where we put a dot on the

i-th place to indicate that the gluing in zi is not effectuated, that is,
Fzi

= OC−
((−a− 1)pt)zi

⊕OC+((a− 1)pt)zi
.

To determine the dual of such a sheaf, represent it as the direct image
σ∗(L), where σ : S̃ → S is the blowup of S at the two points in which
F is not locally free, and L is supported on the proper transform C ′ of
C and is invertible as a OC′-module. Then, by the relative duality for
σ (see [Ha], p. 210),

F∨ ' σ∗(Ext 1
O

S̃
(L,OS̃(−σ∗(C)) ⊗ ωS̃/S)) ' σ∗(L∨(−E · C ′)),

where E is the union of two (−1)-curves which form the exceptional
locus of σ. Let, for example, F = F ′(a;λ3, λ4). Then L is the result
of gluing OC′

−
((−a − 1)pt) #

(λ3,λ4)

OC′
+
((a− 1)pt) at the two points of

C ′
+ ∩ C ′

−, where C ′
± is the proper transform of C±, and L∨ = L−1 '

OC′
−
((a + 1)pt) #

(λ−1
3 ,λ−1

4 )

OC′
+
((1 − a)pt). Thus we obtain:

F ′(a;λ3, λ4)
∨ = σ∗

(

OC′
−
((a− 1)pt) #

(λ−1
3 ,λ−1

4 )

OC′
+
((−a− 1)pt)

)

'

F ′(−a;λ−1
3 , λ−1

4 ).

It is much easier to determine the action of τ : obviously,
τ ∗

(

F ′(a;λ3, λ4)
)

' F ′(a;λ4, λ3). We conclude that F ′(a;λ3, λ4) ∈ P1

if and only if a = 0, and the sheaves F ′(0;λ3, λ4) fill a component of
P1, isomorphic to C∗. The other copy of C∗ contained in P1 is formed
by the sheaves F ′′(0;λ1, λ2).
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Finally, define P2 as the locus of sheaves which are noninvertible in
all the 4 points zi. By Theorem 3.4, P contains only one such sheaf
with support C: F = OC−

(−2pt) ⊕ OC+(−2pt). This ends the proof
for m = 0. As P

2m ' P
2m+4, it remains to consider the case m = 1.

An isomorphism P 0−→∼ P 2 can be given by F 7→ F ⊗ θ, where θ is
a τ -invariant theta-characteristic on C. One easily verifies that there
are two such theta-characteristics: θ = OC−

(pt) #
(1,1,ε,ε)

OC+(pt), where

ε = ±1.
�

4. Compactified Prymians of integral curves

We will use the notation of the previous section. Thus P will denote

Prym
2m

(C, τ), and fP or f 2m
P

the map P → P2∨ sending each sheaf to
its support. For t ∈ P2∨, let Ct = ϕ−1(t), Et = Ct/τ , and ρt = ρ|Ct

:
Ct → Et, where ϕ : C → P2∨ is the natural map. We call the fiber
Pt = (f 2m

P
)−1(t) of the support map the compactified Prymian of the

pair (Ct, τ). In this section, we will describe the structure of Pt for all
irreducible singular members Ct of the linear system C/P2∨.

Lemma 4.1. Let us assume that S is generic, that is, the curves B0 ∈
|OP2(4)| and ∆0 ∈ |− 2KX | are generic. Let ∆0 = µ(∆0) ⊂ P2, and let
B∨

0 , ∆
∨

0 denote the dual curves in P2∨. Let T be the finite set of points
which are singularities of the curve B∨

0 ∪ ∆
∨

0 . Then the linear system
C/P2∨ contains the following singular members Ct:

(i) Ct has a unique node p if t ∈ ∆
∨

0 \ T ; p is τ -invariant, and τ
permutes the branches of Ct at p.

(ii) Ct has a unique cusp if t is one of the 24 cusps of ∆
∨

0 .
(iii) Ct has two nodes permuted by τ if t ∈ B∨

0 \ T .
(iv) Ct has two τ -invariant nodes if t is one of the 28 nodes of ∆

∨

0 .
(v) Ct has two cusps permuted by τ if t is one of the 24 cusps of B∨

0 .
(vi) Ct has 3 nodes, only one of which is invariant under τ , if t is

one of the 128 points of transversal intersection of B∨

0 and ∆
∨

0 .
(vii) Ct has one tacnode if t is one of the 8 points of tangency of B∨

0 ,
∆

∨

0 .
(viii) Ct is a union of two smooth conics meeting transversely in 4

points if t is one of the 28 nodes of B∨

0 .

Proof. The proof is obvious. Remark that B0, ∆0 are totally tangent to
each other; if f4(u0, u1, u2) = 0, g4(u0, u1, u2) = 0 are their equations,
then the pencil 〈f4, g4〉 contains the square q2 of some quadratic form q
in u0, u1, u2. This follows from the fact that the inverse image of ∆0 in
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X decomposes into two components, one of which is ∆0. The number
28, resp. 24 is the number of bitangents, resp. flexes of a smooth plane
quartic. The eight tangency points of B0, ∆0 are sent by the Gauss
map to 8 tangency points of B∨

0 , ∆
∨

0 . As the degree of each of the two
dual curves is 12, there remains 122 − 8 · 2 = 128 points of transversal
intersection, corresponding to the non-tacnodal common tangents of
B0, ∆0. �

Lemma 4.2. Let t ∈ P2∨ and Pt = (f 2m
P

)−1(t). Assume that Ct is
irreducible. Then the following assertions hold:

(i) The varieties Pt constructed for different values of m are
isomorphic to each other.

(ii) Pt has an action of the 2-dimensional algebraic group Gt =
Prym(Ct, τ), and the locus P ∗

t of invertible sheaves in Pt is a finite
union of orbits of G◦

t on which the action is free.

Proof. (i) There is a canonical isomorphism Prym
2m

(C, τ) '
Prym

2m+4
(C, τ) given by [F ] 7→ [F ⊗ OS(H)]. Thus it suffices to

consider only the values m = 0 and 1. In this case there is no
isomorphism of the relative Prymians, but there are noncanonical
isomorphisms of the individual fibers P 0

t = (f 0
P

)−1(t) ' P 2
t =

(f 2
P

)−1(t). Such an isomorphism can be associated to any of the τ -
invariant theta-characteristics θ of Ct by [F ] 7→ [F ⊗ θ]. One can
choose θ = ρ−1

t (ξ), where ξ is a ramification point of the double cover
µt : Et → `t ' P1, and µt = µ|Et

.
(ii) In the case when L is an invertible sheaf on Ct and F is a rank-1

torsion-free sheaf, we have τ(F ⊗ L) = τ(F) ⊗ τ(L), and similarly
for ι. This implies that Gt acts on Pt by tensor multiplication of the
corresponding sheaves. The action is obviously free on P ∗

t .
By (i), we can assume that m = 0. By [AIK], J(C) is irreducible.

Further, P is the 4-dimensional fixed locus of the involution κ on M
whose differential has exactly 2 eigenvalues −1 at any point of P ∗

t = P∩
J(Ct), and one of these eigenvalues corresponds to the reflection with
respect to a plane in the base P3, while the other to a reflection in the
fiber J(Ct). Thus every connected component of P ∗

t is 2-dimensional,
hence isomorphic to G◦

t . �

Remark that we have not proved that Pt has no 2-dimensional
components contained entirely in the non-locally-free locus. We will
get this as a consequence of a case-by-case description of a natural
stratification of Pt for the degenerate curves Ct listed in Lemma 4.1.
Let us fix t and omit the subscript t from the symbols Ct, Pt, etc. In this
section, we consider only the case when C is irreducible. By Lemma 4.2,
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(i), P does not depend on m, so we can assume m = 0. According to
[Cook-1], J(C) has a stratification in smooth strata whose codimension
is equal to the index i(F) of the sheaves F represented by the points
of these strata. The index is defined as follows. Let ν : C̃ → C be the

normalization map. Then there exists a factorization C̃
ν′′

−→ C ′ ν′

−→ C
of ν such that ν ′∗(F)/(torsion) is invertible, and i(F) is the minimum
of length(ν ′∗OC′/OC) over such factorizations. The index takes values
between 0 and δ(C) = length(ν∗OC̃/OC) = pa(C) − g(C), and F is
invertible if and only if i(F) = 0.

Let Ji(C) be the union of strata of codimension i in J(C) (0 ≤
i ≤ 3); obviously, J0(C) = J(C). We will denote by Pi the intersection
Ji(C)∩P . Then P0 = Prym(C, τ) is an algebraic group of dimension 2,
which we denoted by Gt in Lemma 4.2. As we will see, for i > 0, the
value of i may differ from the codimension of Pi in P . We will determine
the strata Pi for all the singular members of the linear system C/P2∨.

Proposition 4.3. Assume that m = 0. In the notation of Lemma
4.1, let t ∈ B∨

0 ∪ ∆
∨

0 . Denote by ν : C̃ → C the normalization of
C = Ct. The map [F ] 7→ [ν∗(F)/(torsion)], when restricted to Ji(C),
is a morphism Ji(C) → Pic−i(C̃), which will be denoted by υi. The

involution τ lifts to C̃ or to any partial normalization of C, and we
will use the same symbol τ to denote such a lift.

In the first seven cases of Lemma 4.1, all the nonempty strata Pi are
described as follows:

(i) P = P0 t P1, P0 = υ−1
0 (Prym(C̃, τ)), P1 ' Prym(C̃, τ). Here

Prym(C̃, τ) is an elliptic curve lying in the abelian surface J(C̃), and
υ0 : J(C) → J(C̃) is a group morphism with kernel C∗. Thus P1 is an
elliptic curve, and P0 is an extension of an elliptic curve by C∗.

(ii) P = P0tP1, P0 = υ−1
0 (Prym(C̃, τ)), P1 ' Prym(C̃, τ) as in (i),

but now ker υ0 ' C and P0 is an extension of an elliptic curve by the
additive group C.

(iii) P = P0tP2, P0 is a C∗-extension of the elliptic curve J(C̃) ' C̃,
and P2 ' J(C̃) (thus codimP P2 = 1).

(iv) P = P0 t P1 t P2, P0 '
4
⊔

k=1

C∗ × C∗, P1 '
8
⊔

k=1

C∗, and P2 is a

finite set, consisting of 4 points.
(v) P = P0 tP2, P0 is a C-extension of the elliptic curve J(C̃) ' C̃,

and P2 ' J(C̃) (thus codimP P2 = 1).
(vi) P = P0 t . . . t P3, P0 ' C∗ × C∗, P1 ' P2 ' C∗, and P3 is one

point, corresponding to the sheaf ν∗(OP1(−3)), where we have identified

C̃ with P1.
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(vii) P = P0 tP2, P0 is an irreducible extension of the elliptic curve

J(C̃) ' C̃ by C × (Z/2Z), and P2 ' C̃.

Proof. (i) Here δ(C) = 1, so J(C) = J0(C)tJ1(C), hence P = P0tP1.
Let {p′, p′′} = ν−1(p), {p} = SingC. If F ∈ J0(C), then L = ν∗(F) is
invertible and F is a subsheaf of ν∗(L) with quotient Cp. For fixed L,
the invertible subsheaves of ν∗(L) with quotient Cp are parametrized
by C∗. One can easily describe them in terms of the corresponding
line bundles. We will not distinguish in the notation the invertible
sheaves and the corresponding line bundles. So, we represent the line
bundle F as the result of gluing together the fibers L,p′,L,p′′ of the
line bundle L. To this end, we choose some rational section e of L
which trivializes L on an open set containing both p′ and p′′, and then
the gluing is determined by a factor λ ∈ C∗ by the following rule:
F = L/(e,p′ ∼ λe,p′′). Let us denote it by L[λe ]. In the language
of sheaves, F = L[λe ] is described as the subsheaf of ν∗(L) with the
following stalks:

Fz = (ν∗(L))z ∀ z ∈ C \ {p}, and Fp = Op · (ep′ + λep′′) .

Now we will seak the triples (L, e, λ) for which L[λe ] ∈ P , that
is, τ ∗(L[λe ]) ⊗ L[λe ] ' OC . The involution τ : C̃ → C̃ lifts in
a natural way to a map τ# : τ ∗(L) → L, understood as a map
of the total spaces either of sheaves, or of line bundles, and we
choose eτ := τ−1

# (e) as a trivialization of τ ∗(L) in the neighborhood

of p′, p′′. As τ permutes p′, p′′, we have τ ∗(L[λe ]) = τ ∗(L)[λ
−1

eτ ] and
τ ∗(L[λe ]) ⊗ L[λe ] = (τ ∗(L) ⊗ L)

[

1
eτ⊗e

]

. Thus the necessary condition

for L[λe ] ∈ P is τ ∗(L) ⊗ L ' OC̃ . Assume it is satisfied, then fix
an isomorphism and denote by g the image of eτ ⊗ e in OC̃ . Then

(τ ∗(L) ⊗ L)
[

1
eτ⊗e

]

' OC̃

[

g(p′′)/g(p′)
1

]

. Using the canonical isomorphisms

τ ∗(L) ⊗ L = L ⊗ τ ∗(L) and τ ∗(τ ∗(L)) = L, we may claim that
τ# ◦ τ# = idL and that eτ ⊗ e is τ -invariant. Hence g is also τ -invariant
and g(p′′)/g(p′) = 1. Thus (τ ∗(L) ⊗ L)

[

1
eτ⊗e

]

' OC̃

[

1
1

]

= OC , and we

conclude that L[λe ] ∈ P as soon as L ∈ Prym(C̃, τ), and this does not
depend on the choice of e, λ. We have proved the part of (i) concerning
P0.

Let now F ∈ J1(C). Then F ' ν∗(L) for L ∈ Pic−1(C̃). To express
the dual F∨ = Ext 1

OS
(F ,OS(−C)) in terms of L−1, we consider ν as

an embedded resolution: let σ : S̃ → S be the blowup at p, C̃ the
proper transform of C in S̃, and ν = σ|C̃. Then, by the relative duality
for σ (see [Ha], p. 210),

F∨ ' σ∗(Ext 1
O

S̃
(L,OS̃(−σ∗(C)) ⊗ ωS̃/S)) ' ν∗(L−1(−p′ − p′′)).
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We have:
[F ] ∈ P1 = Fix(κ) ∩ J1(C)

⇐⇒ (τ ∗F)∨ ' F
⇐⇒ (τ ∗L)−1(−p′ − p′′) ' L
⇐⇒ [L(p′)] ∈ Prym(C̃, τ).

Thus P1 ' Prym(C̃, τ) via the mutually inverse maps

P1 −→ Prym(C̃, τ) , Prym(C̃, τ) −→ P1 .
[F ] 7−→ υ1(F) · [OC̃(p′)] [L] 7−→ [ν∗(L(−p′))]
(ii) As in (i), δ(C) = 1, so P = P0 t P1. Denote by p the singular

point of C and set p′ = ν−1(p). Fix a local parameter t of OC̃,p′ in such

a way that τ ∗(t) = −t, and an invertible sheaf L on C̃ together with
a local trivialization e at p′. Then any invertible sheaf F on C such
that ν∗(F) ' L can be represented as the subsheaf of ν∗(L) given by
its stalks:

Fz = (ν∗(L))z ∀ z ∈ C \ {p}, and Fp = Op · (1 + bt)ep′

for some constant b ∈ C. Denote this sheaf by L
[

b
e;t

]

. Similarly to

the proof of part (i), τ ∗(L
[

b
e;t

]

) = L
[

−b
eτ;t

]

, and one easily verifies that

L
[

b
e;t

]

∈ P0 if and only if L ∈ Prym(C̃, τ) independently of the choice
of e, t, b. This implies the assertion about P0. The proof for P1 is based
on the formula for the dual (ν∗(L))∨ ' ν∗(L−1(−2p′)), which implies
that ν∗(L) ∈ P1 ⇔ L(p′) ∈ Prym(C̃, τ).

(iii) Here δ(C) = 2 and C has two singular points p1, p2 permuted
by τ . Let ν−1(pi) = {p′i, p′′i }. We can choose the notation in such a way
that τ(p′1) = p′2. J(C) has three strata, but P1 = J1 ∩ P = ∅, because
if a sheaf belonging to P is not locally free at p1, it is not locally free
at p2 either. Hence P = P0 t P2. Let L be an invertible sheaf on C̃,
e its rational section, regular at p′i, p

′′
i , and (λ1, λ2) ∈ C∗×C∗. Then we

define L
[

λ1,λ2

e

]

as the subsheaf F of ν∗(L) which coincides with ν∗(L)
over C\{p1, p2} and such that Fpi

= Opi
·(ep′i

+λiep′′i
), i = 1, 2. Similarly

to the part (i), one easily verifies that τ ∗(L
[

λ1,λ2

e

]

) = (τ ∗(L))
[

λ2,λ1

eτ

]

.

This implies that L
[

λ1,λ2

e

]

∈ P0 if and only if L ∈ Prym(C̃, τ) and

λ1λ2 = 1. Here C̃ is elliptic and C̃/τ ' P1, hence Prym(C̃, τ) '
J(C̃) ' C̃, and thus P0 is an extension of C̃ by C∗.

Further, any sheaf from J2(C) is of the form F = ν∗(L) for L ∈
Pic−2(C̃), and its dual is given by F∨ ' ν∗(L−1(−p′1 − p′′1 − p′2 − p′′2)).
This implies that P2 consists of the sheaves ν∗(J (−p′1 − p′′1)), where J
runs over J(C̃).
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(iv) Here δ(C) = 2 and C has two τ -invariant nodes p1, p2, in which

τ permutes the branches. Let ν−1(pi) = {p′i, p′′i }. When lifted to C̃,
τ is fixed point free. As τ(p′i) = p′′i , τ is a translation on C̃ by a

point of order two [p′′1 − p′1] = [p′′2 − p′2], so that C/τ = C̃/τ = E is
an elliptic curve. J(C) has three strata, and we first consider a sheaf
F ∈ J0(C). As in (iii), we represent it in the form F = L

[

λ1,λ2

e

]

with

(λ1, λ2) ∈ C∗ × C∗. Then τ ∗(F) = (τ ∗(L))
[

λ−1
1 ,λ−1

2
eτ

]

and τ ∗(F) ⊗ F =

(τ ∗(L) ⊗ L)
[

1 , 1
eτ⊗e

]

. On C̃, τ ∗(L) ' L for any degree-0 invertible L, so

L ∈ P0 if and only if L is of order 2 in J(C̃). Thus P0 = υ−1
0 (J(C̃)(2))

is the disjoint union of 4 copies of C∗ × C∗.
J1(C) consists of the subsheaves F ⊂ ν∗(L) with L ∈ Pic−1(C̃),

which coincide with ν∗(L) over C \ {pi} and such that Fpi
=

Opi
· (ep′i

+ λep′′i
) for one of the values of i = 1 or 2 (λ ∈ C∗). Let

us denote such a sheaf by L
[

λ, ·
e

]

if i = 1 and L
[

· ,λ
e

]

if i = 2. Let,

for example, F = L
[

λ, ·
e

]

. We have F∨ ' (L−1(−p′2 − p′′2))
[

λ−1, ·
ě

]

,

so that κ(F) = (τ ∗(F))∨ '
(

τ ∗(L)−1(−p′2 − p′′2)
)[

λ, ·
(eτ )̌

]

. A necessary

condition for F ∈ P1 is τ ∗(L)−1(−p′2 − p′′2) ' L, or equivalently,
(τ ∗(L(p′2)))

−1 ' L(p′2). Let it be satisfied, and let us fix such an
isomorphism. Via a natural embedding L ↪→ L(p′2), we can consider e
as a rational section of L(p′2), regular and nonvanishing at p′1, p

′′
1, and

the latter isomorphism sends (eτ )∨ to ge for some g ∈ C(C). Then

F ∈ P1

⇔ (τ ∗(L(p′2)))
−1

[

λ, ·
(eτ )̌

]

' L(p′2)
[

λ, ·
e

]

⇔ L(p′2)

[

g(p′′1 )

g(p′
1
)
λ, ·
e

]

' L(p′2)
[

λ, ·
e

]

⇔ g(p′1) = g(p′′1)

It is easily seen that g is τ -invariant, so the last condition is satisfied.
Thus L

[

λ, ·
e

]

∈ P1 if and only if L(p′2) is one of the 4 points of second

order in J(C̃), independently of e, λ, and this gives 4 components of
P1, each isomorphic to C∗. The other four are given by the sheaves
L

[

· ,λ
e

]

for which L(p′1) is a point of second order in J(C̃).

Finally, P2 consists of 4 sheaves ν∗L, for which L(p′1 + p′2) ∈ J(C̃)(2).
(v) As in (iii), P1 = ∅. Denote SingC = {p1, p2}, p′i = ν−1(pi).

We represent the sheaves from J0(C) in the form L
[

b1,b2
e;t1,t2

]

, where L
runs over J(C̃), e is a rational section of L trivializing it at p′1, p

′
2, and

ti are local parameters at p′i such that τ ∗(ti) = t3−i (i = 1, 2). The
sheaf F = L

[

b1,b2
e;t1,t2

]

is defined as the subsheaf of ν∗L which coincides

with ν∗L over C \ {p1, p2} and such that Fpi
= Opi

· (1 + biti)ep′i
for
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i = 1, 2. Then τ ∗(F) = τ ∗(L)
[

b2,b1
eτ ;t1,t2

]

, and the stalk of τ ∗(F) ⊗ F at

pi, as an Opi
-submodule of the stalk of ν∗(τ

∗(L) ⊗ L), is generated by
(1+ b1ti)(1+ b2ti)e

τ
p′i
⊗ ep′i

. As t2i ∈ mpi
, we conclude that τ ∗(F)⊗F =

(τ ∗(L)⊗L)
[

b1+b2,b1+b2
eτ⊗e;t1,t2

]

and that F ∈ P0 ⇔ b1 + b2 = 0. Thus P0 is a

C-extension of J(C̃).
The stratum J2(C) consists of the sheaves ν∗(L), where L runs over

Pic−2(C̃), and (ν∗(L))∨ ' ν∗(L−1(−2p′1 − 2p′2)). This implies that P2

consists of the sheaves ν∗(J (−p′1−p′2)), where J runs over J(C̃), hence

P2 ' C̃.
(vi) Here δ(C) = 3 and J(C) has 4 strata. We set SingC =

{p0, p1, p2}, τ(p0) = p0, τ(p1) = p2, ν
−1(pi) = {p′i, p′′i }, τ(p′0) = p′′0,

τ(p′1) = p′2. As C̃ ' P1, the open stratum J0(C) consists of the
subsheaves OC̃

[

λ0,λ1,λ2

1

]

of ν∗OC̃ which coincide with ν∗OC̃ over Cns

and whose stalk at pi is generated by 1p′i
+ λi1p′′i

. We have τ ∗F '
OC̃

[

λ−1
0 ,λ2,λ1

1

]

and τ ∗F ⊗ F ' OC̃

[

1,λ1λ2,λ1λ2

1

]

. Thus P0 ' (C∗)2 is
the subtorus of J(C) ' (C∗)3 singled out by the equation λ1λ2 = 1.
Similarly, we can describe the other strata:

P1 =
{

OC̃(−pt)
[

·,λ,λ−1

1

]

}

λ∈C∗

' C∗;

P2 =
{

OC̃(−2pt)
[

λ,·,·
1

]}

λ∈C∗
' C∗;

P3 = {ν∗(OC̃(−3pt))} = 1 point.

To clarify the notation, we remind that C̃ ' P1, so that τ has
two fixed points on C̃. We use one of them, denoted pt, to embed
the sheaves ν∗F/(torsion) with F ∈ Pi into OC̃ as the τ -invariant
subsheaves OC̃(−ipt), and the section 1 of OC is considered as a rational
trivialization of OC̃(−i pt).

(vii) Here C has one tacnode p, δ(C) = 2, so that J(C) has three

strata. Denote by p1, p2 the preimages of p in C̃ and fix some local
parameters ti at pi. The points pi are τ -invariant, and we can choose
the ti in such a way that τ ∗(ti) = −ti. We will identify the formal
completion B = (ν∗OC̃)p̂ of ν∗OC̃ at p with C[[t1]] × C[[t2]]. We
can further restrict the choice of the ti so that the formal completion
A = Op̂ is given by

A = {(a0+a1t1+a2t
2
1+. . . , b0+b1t2+b2t

2
2+. . . ) ∈ B | a0 = b0, a1 = b1}.

Denote by c the conductor of Op in (ν∗OC̃)p:

c = {u ∈ Op | u(ν∗OC̃)p ⊂ Op}.
For its completion, we have ĉ = A(t21, 0) + A(0, t22) = B(t21, t

2
2).
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The description of J(C) that we will expose here is similar to that
given in [Cook-1]. To each F ∈ J(C), we have assigned the invertible

sheaf L = ν∗F/(torsion) on C̃. Let us fix a local trivialization of L by
a rational section e, regular and nonvanishing at p1, p2. Then F can be
described as a subsheaf of ν∗L which coincides with ν∗L out of p and
such that Fp ⊂ (ν∗L)p is an Op-submodule of colength 2 − i(F).

Consider the case when F ∈ J0(C). Then L is of degree 0 and
Fp is of colength 2. Quotienting by c, we obtain the vector plane
Fp/cFp in the 4-dimensional vector space V = (ν∗L)p/c(ν∗L)p. This
gives a one-to-one correspondence between the sheaves F ∈ J0(C) with
the same assigned L and the vector planes in V which are principal
Op/c-modules. Such planes form a locally closed subset UL of the
Grassmannian G(2, V ), and to describe it, we can go over to the formal
completions. Let A = A/ĉ, B = B/ĉ. Using e as a generator of (ν∗L)p,
we will identify V with B.

Thus we can choose (1, 0), (t1, 0), (0, 1), (0, t2) as a basis of V ,
where the bar over ti means taking the coset modulo ĉ. Then the
2-planes in B, invariant under the multiplication by the elements of
A = 〈(1, 1), (t1, t2)〉, form a 2-dimensional quadratic cone QL. If we
introduce the Plücker coordinates pij associated to the above basis of
B, then G(2, B) = G(2, 4) is the Plücker quadric in P5 with equation
p12p34 − p13p24 + p14p23 = 0, and QL is the linear section of G(2, 4)
defined by p13 = p14 + p23 = 0. The 2-planes that are principal
A-modules are parametrized by the open subset of QL, the complement
of two generators of the cone: UL = QL \ (`1 ∪ `2). If we denote by eij

the point of G(2, 4) for which pij = 1 and all the other pkl are zero, then
`1 = 〈e12, e24〉 and `2 = 〈e24, e34〉. The following map is an isomorphic
parametrization of UL:

Π : C∗ × C−→UL, (λ, b) 7→ [A · (1, λ+ bt2)],

or in Plücker coordinates,

(p12 : p13 : p14 : p23 : p24 : p34) = (1 : 0 : λ : −λ : −b : λ2).

Remark, that UL is an orbit of the group of units B
×

and does not
depend on the choice of e, for different e’s differ by a unit of (ν∗OC̃)p.

Thus J0(C) is a C∗×C-bundle over J(C̃). We will denote the invertible
sheaf on C corresponding to the plane Π(λ, b) by L

[

λ,b
e;t2

]

.

Now we compute the acton of κ = ι ◦ τ ∗ on UL:

L
[

λ,b
e;t2

]

�

τ∗

// (τ ∗L)
[

λ,−b
eτ ;t2

]

�

ι
// (τ ∗L)−1

[

λ−1, bλ−2

(eτ )̌ ; t2

]

.
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As C̃/τ ' P1, we have (τ ∗L)−1 ' L for any L ∈ J(C̃). Fix such an
isomorphism; then it sends (eτ )̌ to ge for some g ∈ C(C). The τ -
invariance of g implies that it has no linear terms in ti, and we deduce

that κ
(

L
[

λ,b
e;t2

]

)

= L
[

aλ−1 , abλ−2

e ; t2

]

, where a = g(p1)
g(p2)

6= 0. Hence the fixed

locus of κ in UL is given by λ = ±√
a, which singles out two generators

of the cone (with deleted vertex). Remark, that κ is a restriction of a
linear involution on P5:

(p12 : p13 : p14 : p23 : p24 : p34)
�

κ
//

(p34 : p13 : ap14 : ap23 : ap24 : a2p12) (8)

Thus P0 is fibered over J(C̃) with each fiber the disjoint union of
two copies of C. To see that the family of components of the fibers is
an irreducible double cover of J(C̃), one can argue as follows. Write

down the double cover C̃ → C̃/τ ' P1 in coordinates:

C̃ = {y2 = (x− x1)(x− x2)(x− x3)} → P1, (x, y) 7→ x.

It is ramified at the 4 points pi = (xi, 0) (i = 1, 2, 3) and p4 = ∞.

Parametrize J(C̃) by the map C̃ → J(C̃), q 7→ [O(q − p4)]. Embed
O(q − p4) into the constant sheaf C(C) in the natural way and use
1 ∈ C(C) as the rational trivialization e of L. Then the function g
introduced in the previous paragraph is given by g = x − x(q), where

q = (x(q), y(q)), and the equation λ2 = g(p1)
g(p2)

, whose two solutions

provide two components of the fiber of the fibration f : P0 → J(C̃)

over [O(q − p4)], becomes λ2 = x1−x(q)
x2−x(q)

. Varying x = x(q), we obtain

the curve Γ with equation λ2 = x1−x
x2−x

, and the connected components

of fibers of f are parametrized by the normalization of Γ ×P1 C̃. The
latter is a nonramified double cover of C̃.

Now we will determine the lower-dimensional strata of P . Instead
of looking for the non-invertible sheaves F in J(C) as OC -submodules
of colength 2 − i in ν∗L with degL = −i, we can get all of them as
OC-submodules of colength 2 with L of degree 0, parametrized by the
points of QL \ UL. In fact, it is easy to see that the cones QL fit into
an algebraic family over J(C̃) and that this family is the normalization
of J(C) (see [Cook-2]), thus any non-invertible sheaf in J(C) is in the

closure of UL for some L ∈ J(C̃).
As follows from (8), κ permutes `1 and `2, thus the only fixed point

of κ in QL \ UL is the vertex e24 of the cone. It corresponds to the
2-plane 〈(t1, 0), (0, t2)〉 in B. Thus the associated sheaf F has for its
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stalk at p

Fp = Op · t1ep1 + Op · t2ep2 = (ν∗(L(−p1 − p2)))p,

and as F , ν∗L, ν∗(L(−p1 − p2)) coincide on C \ {p}, we conclude that
F ' ν∗(L(−p1 − p2)). It is of index 2, and we see that P2 ' J(C̃),
P1 = ∅. This ends the proof of the proposition. �

5. Further properties of P
2m

Fujiki has constructed a number of irreducible symplectic
V -manifolds of dimension 4 with at worst isolated singularities as
partial desingularizations of a finite quotient of the product of two
symplectic surfaces. Among his examples, there are two with 28
singular points of the same type that the singular points of P

2m, see
Table 1 on p. 225 and Remark 13.2.4 on p. 227 of [F].

These two examples are obtained by the following construction. Let
H be a finite group of symplectic automorphisms of a K3 surface S,
and θ ∈ AutH such that θ2 = id. Then H acts on S × S by the
rule h : (s, t) 7→ (hs, θ(h)t). Define G ⊂ Aut(S × S) as the subgroup
generated by H and the involution (s, t) 7→ (t, s). Then K = S × S/G
is a symplectic V -manifold, in general, with non-isolated singularities.
The two examples under consideration correspond to H = Z/2Z or
H = (Z/2Z)3 and θ : h 7→ h−1. For these H, θ, the blowup of the
2-dimensional components of the singular locus of K provides two
irreducible symplectic V -manifolds Y1, Y2 with 28 singular points of
analytic type of (C4/{±1}, 0). They have the same Euler characteristic
and the Hodge numbers. The symmetries for the Hodge diamond of a
symplectic V -manifold imply that the whole Hodge diamond of Yi is
determined by the three of them, h1,1 = 14, h1,2 = 0, h2,2 = 162, and
the Euler number is χ(Yi) = 8 + 4h1,1 + h2,2 − 4h1,2 = 226.

The easiest way to prove that Fujiki’s examples are different from
P

2m is to compute the Euler number. Recall that there are at most
two non-isomorphic varieties among the P

2m: P
0 and P

2.

Proposition 5.1. The varieties P
0 and P

2 have the same topological
Euler number, equal to 268.

Proof. Let P denote either one of the varieties P
2m, f : P → P2∨

the natural map. We introduce a stratification (Πi)i=0,...,8 of P2∨ as
follows: Π0 = P2∨ \ (B0 ∩ ∆0), the complement of the discriminant
divisor of f , and Πk for k = 1, . . . , 8 is the locus of points t ∈
B0 ∩ ∆0 for which the k-th case of Lemma 4.1 is realized. Then
we can compute the topological Euler number of P by the formula
χ(P) =

∑8
k=0 χ(Πk)χ(Ptk). ¿From Lemma 3.5 and Proposition 4.3, we
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see that χ(Ptk) is the number of 0-dimensional strata in Ptk and that
it is different from zero only for k = 4, 6, 8. For these values of k, Πk is
finite and χ(Πk) = #Πk. Thus

χ(P) = 28 · 4 + 128 · 1 + 28 · 1 = 268.

�

To show that P
2m are irreducible symplectic V -manifolds in the

sense of Definition 1.3, it remains to prove their simple connectedness.
We will start by the case m = 0, in which we will use a certain rational
map Φ : S [2]

99K P
0, an analog of the Abel-Jacobi map for Prym

varieties. Recall some notation from Section 1: τ : S → S is the
Galois involution of the double cover ρ : S → X, µ : X → P2 is the
double cover map, B ⊂ X (resp. ∆ ⊂ S) the ramification curve of
µ (resp. ρ), B0 = µ(B), ∆0 = ρ(∆). Let ξ ∈ S [2] be generic. Then
ξ is a pair of distinct points, ξ = {p1, p2}, and the line `ξ = 〈µρ(ξ)〉
spanned by µρ(p1), µρ(p2) in P2 is well-defined. Let Cξ = (µρ)−1(`ξ).
Then Prym(Cξ, τ |Cξ

) is a subvariety of P
0, the fiber f−1({`ξ}), where

f : P
0 → P2∨ is the natural map and {`} denotes the point of P2∨

representing a line ` ⊂ P2. Define

Φ : S [2]
99K P

0, ξ = {p1, p2} 7→
2

∑

i=1

[pi − τ(pi)] ∈ Prym(Cξ, τ |Cξ
).

Obviously, Φ is dominant. To describe the fibers of Φ, we will
introduce the involution

ι0 : S [2]−→S [2], ξ 7→ ξ′ = (〈ξ〉 ∩ S) − ξ.

Here S is considered in its embedding as a quartic surface in P3, given
by the linear system |H|, 〈ξ〉 stands for the line in P3 spanned by ξ, and
ξ′ is the residual intersection of 〈ξ〉 with S. This involution is regular
whenever S contains no lines, which is the case for sufficiently generic
S (see Lemma 1.1). Further, τ induces on S [2] an involution which we
will denote by the same symbol. As τ on S is the restriction of a linear
involution on P3, ι0 commutes with τ , and the composition ι1 = ι0 ◦ τ
is also an involution.

Lemma 5.2. Φ is a rational double covering with Galois involution ι1,
so that the quotient M = S [2]/ι1 is birational to P

0.

Proof. Let ξ = {p1, p2} be generic. We have to determine all the
divisors p′1+p

′
2 on Cξ such that p1−τ(p1)+p2−τ(p2) ∼ p′1−τ(p′1)+p′2−

τ(p′2). Assume this relation satisfied, and set δ = p1+p2+τ(p
′
1)+τ(p

′
2),

δ′ = p′1 + p′2 + τ(p1) + τ(p2). Then either δ′ 6= δ and dim |δ| > 0, or
δ = δ′.
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Let us consider the first case. There are three subcases:
(1) dim |δ| = 2. Then δ, δ′ ∼ K = KCξ

are intersections of
Cξ, considered as a plane quartic, with two different lines L1, L2,
and τ(p′1 + p′2) is uniquely determined as the residual intersection
(L1 ∩ Cξ) − p1 − p2. Thus there is a unique solution p′1 + p′2, different
from p1 + p2: p

′
1 + p′2 = τ((L1 ∩ Cξ) − p1 − p2) = ι1(p1 + p2).

(2) dim |δ| = 1 and |δ| is base point free. Then there exist 4 points

δ̃ on Cξ, such that no three of them are aligned, and |δ| consists of

the residual intersections (q ∩ Cξ) − δ̃, where q runs over the pencil of

conics |2H − δ̃| in the plane 〈Cξ〉 spanned by Cξ. Remark that τ acts
as a linear involution on this plane with fixed line Lτ , and when q runs
over |2H− δ̃|, the symmetric conic τ(q) runs over another pencil of the

same type, |2H−τ(δ̃)|. As δ′ = τ(δ), δ′ belongs to both pencils, hence

the two pencils coincide. We conclude that δ̃ is τ -invariant, and hence
every conic in |2H − δ̃| is τ -invariant. Hence p′1 + p′2 = p1 + p2, which
is absurd.

(3) dim |δ| = 1 and |δ| has a base point. There are two points
u, v ∈ Cξ such that |δ| = {u− v + L ∩ Cξ}, where the line L runs over
the pencil |H−v|. As δ′ = τ(δ), u, v ∈ Lτ ∩Cξ, hence either {p1, p2}∩
Lτ ∩ Cξ 6= ∅, or p1, p2 are aligned with one of the 4 points of Lτ ∩ Cξ.
In both cases ξ is non-generic, which contradicts our assumption.

It remains to consider the second case δ = δ′. Then δ is τ -invariant,
and modulo the transpositions p1 ↔ p2, p

′
1 ↔ p′2, there are only two

possibilities for which p′1 + p′2 6= p1 + p2:
(a) p′i = τ(pi), i = 1, 2. Then 2(p1 + p2) ∼ 2(τ(p1) + τ(p2)), hence

p1 + p2 is nongeneric.
(b) p′1 = p1, p

′
2 = τ(p2). Then 2p2 ∼ 2τ(p2), hence p1 + p2 is

nongeneric.

We conclude that the generic fiber of Φ consists of two elements:
{ξ, ι1(ξ)}. �

Lemma 5.3. The fixed locus Fix(ι1) of ι1 is the union of a nonsingular
irreducible surface Σ ⊂ S [2] and of 28 isolated points.

Proof. It is obvious that the fixed point set of any biregular involution
on a smooth variety is also smooth. Consider S as a quartic in P3. As
τ has invariant curves in the linear system of hyperplane sections H, it
acts linearly on P3, and its fixed locus is the union of a plane Hτ and
a point ∞τ 6∈ S. If ι1(ξ) = ξ, then the line 〈ξ〉 is τ -invariant. Hence
either 〈ξ〉 ⊂ Hτ , or 〈ξ〉 passes through ∞τ . The first case provides the
28 isolated points of Fix(ι1), each of them being the pair of tangency
points of a bitangent to the plane quartic ∆0 = Hτ ∩ S. The second
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case provides the remaining part of Fix(ι1):

Σ = { ξ ∈ S [2] | ∞τ ∈ 〈ξ〉, τ(ξ) 6= ξ}.
Let us call the lines through ∞τ vertical. A generic vertical line L

meets S in 4 points which represent one fiber of µρ. These 4 points
form 6 pairs. When we vary L, the 6 pairs sweep a surface Σ̃ ⊂ S [2],
a 6-sheeted covering of P2. Two of the 6 pairs are τ -invariant, so
Σ̃ contains an irreducible component Σ0 which is a double covering
of P2 and is identified with X = S/τ . The other 4 pairs sweep Σ,

a 4-sheeted covering of P2, and we have Σ̃ = Σ ∪ Σ0. If we assume
that Σ is reducible, then the two components of Σ would meet along
the curve (identified with ρ−1(B)) of pairs of tangency points of the
vertical bitangents to S. This would contradict the smoothness of Σ.
Hence Σ is irreducible. �

Proposition 5.4. The varieties P
0 and M = S [2]/ι1 are simply

connected.

Proof. We will first prove that M and its resolution of singularities M̃
are simply connected. Denote by Ψ the quotient map S [2] → M . Let
F = Fix(ι1) and F the image of F in M . Choose any point z0 ∈ F and
denote by z0 its image under Ψ. Then any loop based at z0 lifts to a
loop based at z0, just because z0 is the unique preimage of z0. Hence
the map Ψ∗ : π1(S

[2], z0) → π1(M, z0) is surjective. But π1(S
[2], z0) = 1,

so M is simply connected.
The singularities of M are analytically equivalent to (C4/{±1}, 0) at

the 28 isolated points of F and to ((C2/{±1})×C2, 0) along Σ = Ψ(Σ).
Thus a resolution of singularities can be obtained by a single blowup
σ : M̃ → M with center F , and the fibers of σ over the points of
F are the projective spaces P3 and P1. Hence σ does not change the
fundamental group and M̃ is simply connected. Similarly, the blowup

P̃
0 → P

0 of the 28 singular points of P
0 pastes in 28 copies of P3 and

hence does not change the fundamental group. We have obtained two

complete smooth varieites P̃
0
, M̃ which are birational. It follows that

their fundamental groups are isomorphic. This can be deduced from
the Weak Factorization Theorem [AKMW], saying that a birational
map between complete smooth varieites over an algebraically closed
field of characteristic 0 decomposes into blowups with smoth centers
or their inverses, and from an obvious observation that a blowup of a
smooth variety with smooth center does not change the fundamental
group. We have thus proved the simple connectedness of P

0. �
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Lemma 5.5. Let G ⊂ P
0 be the open subscheme parametrizing

invertible sheaves on the curves Ct, t ∈ T , where T = P2∨; it is a
group scheme over T with a regular action on P

0. Let G denote the
sheaf of cross-sections of G in the étale topology over T , and G2 the
constructible subsheaf of 2-torsion points. Then there exists a 1-cocycle
β representing an element of H1

ét(T,G2) such that P
2 ' P

0 ×G Gβ,
where Gβ is the G-torsor defined by β.

Proof. The theta-characteristics of the curves Ct, that is, invertible
sheaves θ on Ct such that θ⊗2 ' ωCt

, form a constructible sheaf Θ with
finite stalks over T . Let Θτ denote the subsheaf of τ -invariant theta-
characteristics. As we saw in the proofs of Lemmas 3.5 and 4.2 (i), Θτ

has nonempty stalks at all the points t ∈ T . Thus there exists an étale
covering (ij : Uj → T )j∈J together with local sections θj ∈ Γ(Uj, i

∗
jΘ

τ).

The translation by θj defines an isomorphism T (θj) : P
0
Uj
−→∼ P

2
Uj

.

We can define the cocycle β = (βjk) over Ujk = Uj ×T Uk by βjk =

pr∗j θj ⊗ (pr∗k θk)
−1, where Ujk

prj
//

prk

//

Uj

Uk
are natural projections. �

Proposition 5.6. P
2 is simply connected.

Proof. Let P denote either one of the varieties P
0 or P

2, f : P → P2∨

the natural map, D = B0 ∩ ∆0 the discriminant divisor of f , U =
P2∨ \ D, E = f−1(D), V = P \ E, so that fV = f |V : V → U is a
smooth projective morphism. Then fU is a locally trivial fiber bundle
in the C∞-category with general fiber Pt, and there is an exact sequence
of homotopy groups:

. . .→ π2(U)
∂−→ π1(Pt)

ε−→ π1(V ) → π1(U) → 1.

It allows us to identify π1(Pt)/ im ∂ with a subgroup of π1(V ). Let
(cj)j∈J be any generating system for π1(Pt)/ im ∂. Let us also fix
one lift γ̃ in π1(V ) for each element γ of π1(U) different from 1.
Then, by Proposition 0.2 of [Lei] and taking into account the fact
that π1(P

2∨) = 1, we obtain a surjection π1(Pt)/ im ∂ � π1(P) whose
kernel is generated, as a normal subgroup, by the following set of
commutators:

R =
{

[γ̃, cj] | j ∈ J, γ ∈ π1(U) \ {1}
}

. (9)

The description of R in our case simplifies drastically due to the fact
that π1(Pt) ' Z4 is abelian. As π1(Pt) = H1(Pt,Z), the monodromy
action M : π1(U) → Aut π1(Pt) is well-defined, and for any c ∈ π1(Pt),
we have γ̃ε(c)γ̃−1 = Mγ(c) (as above, fV ∗(γ̃) = γ ∈ π1(U) \ {1}).
Thus we can write π1(P) ' π1(Pt)/N , where N =<R1, R2>norm is the
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normal subgroup of π1(Pt) generated by the two sets of elements:

R1 : the elements of the form Mγ(cj)c
−1
j , where γ runs over

π1(U) \ {1}, and (cj) is a basis of π1(Pt) (j = 1, . . . , 4);
R2 : the image of any generating subset of π2(U).

We will show that if P = P
2, then R1 generates the whole of

π1(Pt), and thus π1(P
2) = 1. By Lemma 5.5, the smooth locus

V = P
2
U of P

2/P2∨ can be obtained by gluing together pieces P
0
Uj

of P
0/P2∨ over Ui ∩ Uj via transition maps which are translations in

the fibers. A translation in a fiber induces a canonical isomorphism of
the homology groups, hence the local systems of the groups H1(Pt,Z)
for P

2
U and P

0
U are isomorphic. Thus it suffices to see that R1 generates

the whole of H1(Pt,Z) = π1(Pt) in the case when P = P
0. Here we can

use Propositioon 0.3 of op. cit. The latter applies to the situation when
f has a global cross-section meeting all the components of E, which is
the case for the cross-section of neutral elements of the group scheme
G inside P

0. It permits to replace the description of the relations in
the fundamental group given in (9) by the following one: π1(P

0) =

π1(Pt)/ <R̃>norm, where R̃ is the set of all the commutators [cj, hk], in
which cj (resp. hk) runs over any set of generators of π1(Pt) (resp. of
ker(π1(P

0
U) → π1(P

2∨)). Using the commutativity of π1(Pt), as above,
we obtain that [cj, hk] = Mγ(cj)c

−1
j , where γ = f(hk) ∈ π1(U). Thus

for P = P
0, <R1>norm=<R̃>norm= π1(Pt), and we are done. �

Corollary 5.7. The partial resolution of singularities M ′ of M
obtained by blowing up the image of Σ is an irreducible symplectic
V -manifold whose singularities are 28 points of analytic type
(C4/{±1}, 0). The natural birational map P

0
99K M ′ is the Mukai

flop with center at the image Π ' P2 of the zero section of P
0, that

is, it blows up Π and then blows down the obtained exceptional divisor
Π̃ ' P(Ω1

Π) along the second ruling. The image Π′ ' P2 of Π̃ in M ′

coincides with the proper transform of Σ0/ι1.

Proof. To construct M ′, we may first blow up Σ and then quotient
by ι1. Let N = S [2], N1 the blowup of N at Σ, and N2 the blowup of
N1 at the proper transform of Σ0. Denote the proper transforms of Σ,
Σ0 in N2 by Σ′, Σ′

0 respectively. The curve of intersection B̃ = Σ ∩ Σ0

is a common fixed curve of the pair of regular commuting involutions
ι0, τ on N , hence it is smooth and Σ′, Σ′

0 intersect transversely along

a smooth surface which is a P1-bundle over B̃. As the two blowups
are done at ι1-invariant centers, ι1 lifts to a regular involution, denoted
by the same symbol, on N2. The 3-fold Σ′

0 and the natural P1-bundle
Σ′

0 → Σ0 are ι1-invariant, and Fix(ι1|Σ′
0
) = Σ′∩Σ′

0. We deduce that the
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image Σ
′

0 of Σ′
0 in N2/ι1 is smooth and is a P1-bundle over Σ0 = Σ0/ι1.

As we noticed earlier, Σ0 is identified with X; under this identification,
ι1|Σ′

0
= ι, the Galois involution of µ : X → P2. Thus Σ0 ' P2 and

Σ
′

0 → Σ0 is a P1-bundle over P2.
We have M ′ = N1/ι1, and as the proper transform of Σ0 in N1 is

isomorphic to Σ0, Σ0 ' P2 embeds naturally into M ′. Denote its image
in M ′ by Π′. Then M ′′ = N2/ι1 is nothing but the blowup of M ′ at Π′,

and we denote by Π̃ the exceptional divisor of this blowup. The fibers
of the blowdown map Π̃ → Π′ represent one ruling of Π′, and we are
to verify that the map to P

0 contracts another ruling of Π′.
Let Φ2 : N2 → P

0 be the composition of N2 → N with Φ. The
indeterminacy locus of Φ consists of those ξ ∈ S [2] for which ξ is vertical
(that is, contained in a fiber of µρ). We omit a fastidious calculation in
local coordinates on N2 which shows that the indeterminacy is resolved
on N2, so that Φ2 is regular. We can represent a point ξ̂ ∈ N2 as a
pair (ξ, `ξ), where `ξ is a line in P2 containing µρ(ξ), and the curve
Cξ̂ = (µρ)−1(`ξ) is well defined. Then Φ2 contracts to the neutral

element 0ξ̂ of Prym(Cξ̂, τ) all the vertical divisors of Cξ̂. The latter

form a curve, isomorphic to Cξ̂/τ ' Eξ̂ := µ−1(`ξ). Quotienting further

by ι1, we see that the fiber of the induced map Φ′′ : M ′′ → P
0 over 0ξ̂

is Eξ̂/ι ' P1. Thus Φ′′ contracts another ruling of Π̃ to the locus Π of
neutral elements of the Prymians Pt.

As remarked Mukai [Mu-1], the normal bundle of a plane P2 in a
symplectic 4-fold is isomorphic to Ω1

P2 , so that the exceptional divisor
P(Ω1

P2) of the blowup centered at this P2 has exactly two different
rulings that can be blown down. The map Φ′ : M ′ → P

0 induced by Φ
blows up Π′ and contracts the exceptional divisor along another ruling.
It is easily seen, along the lines of the proof of Lemma 5.2, that Φ′ is
bijective on the complements to Π,Π′, and this ends the proof. �

We conclude this section by several miscellaneous remarks.

Remark 5.8. Odd-degree Prymians. It is plausible that all the

odd-degree Prymians Prym
2k+1,κ

(C, τ) contain 3-dimensional rational
subvarieties and thus cannot be symplectic. We will produce such
a subvariety in degree 2k + 1 = 3 for κ defined by c = C ′

i as
in the paragraph preceding Definition 3.3. The case of degree 3 is

particularly handy, because Pic
3
(|H|) is fiberwise birational to the

relative symmetric cube of the linear system |H|. For the fiber Pic
3
(C)

corresponding to the reducible curve C = C ′
i ∪C ′′

i , this means that the
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Abel-Jacobi map

AJ : C(3)
99K Pic

3
(C), p1 + p2 + p3 7→ [OC(p1 + p2 + p3)]

maps birationally all the 4 components of the symmetric cube C (3) onto

the 4 respective components of Pic
3
(C). We will see that AJ(C

′(2)
i ×

C ′′
i ) = J

2,1
(C) is contained entirely in Prym

3,κ
(C, τ).

Let us suppress the subscript i from the notation, so that c = C ′, C =
C ′ ∪ C ′′. On a typical fiber Ct, the involution ι acts by

ι : [x1 + x2 + x3] 7→ [(H + C ′) · Ct − x1 − x2 − x3]

= [(2H − C ′′) · Ct − x1 − x2 − x3]

= [q · Ct − z′′1 − z′′2 − x1 − x2 − x3]

= [y1 + y2 + y3],

where z′′1 +z′′2 = C ′′ ·Ct, q ∈ |2H−z′′1−z′′2−x1−x2−x3| is a (generically
unique) conic passing through the 5 points, and y1 + y2 + y3 is the
residual intersection of this conic with Ct. Now assume Ct τ -invariant,
that is Ct is of the form (µρ)−1(`t) for a sufficiently general line `t. For
generic x1, x2, x3 ∈ Ct (“generic” here means: which do not vary in a
pencil g1

3), we have:

[x1 + x2 + x3] ∈ Prym
3,κ

(C, τ) ⇐⇒ y1 + y2 + y3 = τ(x1 + x2 + x3)

⇐⇒ q is τ -invariant.

We obtain that the birational transform P̃t of Pt := Prym
3,κ

(C, τ) ∩
Pic3(Ct) in C(3) can be described as follows:

P̃t = {x1 + x2 + x3 ∈ C(3) | ∃ q ∈ P2
τ,t : x1 + x2 + x3 ∈ q},

where P2
τ,t denotes the 2-dimensional linear system of τ -invariant conics

through the two points z′′1 + z′′2 = C ′′ · Ct in the plane spanned by Ct.
Now let `t tend to `0 := µρ(C) in the pencil with a fixed intersection
point p = `0∩`t. Then z′′1 +z′′2 remains fixed, and the limits of P̃t contain
all the triples x1+x2+x3 extracted from the 6 points q·C−z′′1−z′′2 , where
q runs over the linear system P2

τ (z
′′
1 , z

′′
2 ) of τ -invariant conics through

z′′1 , z
′′
2 in the plane 〈C〉. Varying p, and hence the pair z′′1 , z

′′
2 = τ(z′1), we

allow all the triples x1 +x2 +x3 extracted from the 8-tuples q ·C, where
q runs over the linear system P3

τ of all the τ -invariant conics in 〈C〉,
with the only restriction that at least one of the two τ -invariant pairs of
points of q∩C ′′ has empty intersection with {x1, x2, x3}. Taking generic
points x1, x2 ∈ C ′, x3 ∈ C ′′, we find a unique τ -invariant conic through
x1, x2, x3, which satisfies the above restriction, and thus C ′(2) ×C ′′ lies
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in the closure of the family of P̃t. Hence the 3-dimensional rational

variety J
2,1

(C) is contained in Prym
3,κ

(C, τ).
Remark 5.9. More on the structure of Pt. In Lemma 3.5 and
Proposition 4.3, we only enumerated the strata of the fibers Pt; to
determine the topological structure of Pt, one should also describe the
adjacencies of these strata. We are going to produce several examples
of such calculation.

In the situation of Lemma 3.5, the open piece P0 of Pt consists of
the sheaves

F = F(0;λ1, λ2, λ3, λ4) = OC− #
(λ1 ,λ2,λ3,λ4)

OC+

with λ1λ2 = λ3λ4. Let us fix λ3, λ4 and make λ1 → 0; then
automatically λ2 → ∞. The sheaf F can be defined as the subsheaf of
OC−

⊕ OC+, whose stalks at all the points coincide with the stalks of
the ambient sheaf, except at zi, where

Fzi
= {(f−, f+) ∈ OC−,zi

⊕OC+,zi
| f−(zi) = λif+(zi)}.

Thus the stalks of the limiting sheaf F(0; 0,∞, λ3, λ4) coincide with
the stalks of F everywhere, except for the stalks mC−,z1 ⊕OC+,z1 at z1
and OC−,z2 ⊕ mC+,z2 at z2. Hence

F(0; 0,∞, λ3, λ4) = OC−
(−z1) #

(·,·,λ3,λ4)

OC+(−z2),

where the bases of the two sheaves used to define the gluings at z3, z4
are the functions 1 ∈ Γ(C±,OC±

) considered as rational sections of
OC−

(−z1), OC+(−z2). In the same way, we determine the limit when
λ3, λ4 are fixed and λ1 → ∞:

F(0;∞, 0, λ3, λ4) = OC−
(−z2) #

(·,·,λ3,λ4)

OC+(−z1).

Changing to the standard bases e± for the sheaves OC±
(−pt), we see

that

F(0; 0,∞, λ3, λ4) ' F ′(0;
z3 − z2
z3 − z1

λ3,
z4 − z2
z4 − z1

λ4),

F(0;∞, 0, λ3, λ4) ' F ′(0;
z3 − z1
z3 − z2

λ3,
z4 − z1
z4 − z2

λ4).

Similarly, we find the limits when λ1, λ2 are fixed and λ3 → 0 or ∞.
And when λ1, λ3 tend simultaneously to elements of {0,∞}, then the
limit is the unique sheaf in Pt which is non-invertible at all the 4
points zi: OC−

(−2 pt) ⊕OC+(−2 pt). Finally, we conclude:

In the situation of Lemma 3.5, Pt is obtained from P1 × P1 by the
following gluings:
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– the horizontal sections 0 × P1 and ∞ × P1 are glued together
according to the rule (0, λ) ∼ (∞, [z1, z2; z3, z4]

2λ);
– the vertical sections P1 × 0 and P1 × ∞ are glued together

according to the rule (λ, 0) ∼ ([z3, z4; z1, z2]
2λ,∞);

– the 4 “vertices” (0, 0), (0,∞), (∞, 0), (∞,∞) are glued together.

Here [z1, z2; z3, z4] stands for the cross ratio of 4 complex numbers.

We will also provide the answers for two cases of Proposition 4.3,
using the notation used in the proof of this proposition.

Case (i). The normalization P̃t of Pt is a P1-bundle over the elliptic
curve E = Prym(C̃, τ) having two distinguished cross-sections 0,∞.
Let 0x, ∞x denote the point of the respective cross-section lying in the
fiber over x ∈ E. Then Pt is obtained from P̃t by gluing 0 to ∞ with a
translation according to the rule 0x ∼ ∞x+[p′′−p′].

Case (iii). The normalization P̃t of Pt is a P1-bundle over the elliptic
curve C̃ having two distinguished cross-sections 0,∞, and Pt is obtained
from P̃t by gluing 0 to ∞ with a translation according to the rule 0x ∼
∞x+[p′1−p′2−p′′1+p′′2 ].

Case (vii). Pt is a locally trivial bundle over the elliptic curve C̃
with fiber P1

∨

P1, the bouquet of two copies of P1.

As concerns the compactified Jacobians of the curves Ct, one can
find examples of their calculation in [Cook-2].

Remark 5.10. Moduli spaces with involution. One can pursue our
approach to constructing new symplectic varieties in a generalized
setting: search for pairs (M, κ) formed by a moduli space of sheaves
on a K3 surface and a symplectic birational involution. Then one
may expect to get new symplectic manifolds either as a (partial)
desingularization of the quotient M/κ, or as the fixed locus Mκ. We
can obtain an example of this kind with M parametrizing non-torsion
sheaves by a birational transformation from the compactified Jacobian

Pic
2
(|H|) of Section 2. Let C ′

i be one of the 56 conics in S, L ∈
Pic

2
(|H|) invertible on its support, and V = Ext1

S(L⊗O(−C ′
i),OS) '

C2. Then the ext-group classifying the extensions

0−→V ∨ ⊗OS−→E−→L⊗O(−C ′
i)−→0

is canonically isomorphic to Hom(V, V ), and we can define a vector
bundle E as the middle term of this extension with extension class idV ∈
Hom(V, V ). This provides a birational isomorphism Pic

2
(|H|) 99K

MH,ss
S (2, H, 0) in the notation using the Mukai vector (2, H, 0) =
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(rk E , c1(E), χ(E)− rk E), and the (regular) symplectic involution κ on

Pic
2
(|H|) induces a birational symplectic involution on MH,ss

S (2, H, 0).
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