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Abstract. We build an explicit link between coherent functors in the sense
of Auslander [1] and strict polynomial functors in the sense of Friedlander and
Suslin [6].

1. Introduction

Since the foundational work of Schur in his thesis, the representation theory of
general linear groups has been closely related to the representation theory of sym-
metric groups. Especially fruitful has been the study of tensor products T n(V ) :=
V ⊗n of a vector space V , endowed with the commuting actions of the general linear
group GL(V ) (diagonally on each factor by linear substitution) and of the symmet-
ric group Sn (by permutation of the factors). For many purposes, the mysterious
group ring of the general linear group can thus be replaced by the more manageable
Schur algebra of Sn-equivariant linear maps of V ⊗n.

The use of functors in representation theory, maybe first promoted by Auslander,
is practical and efficient for formalizing the relations between symmetric groups
and general linear groups. The classical work of Green [7] on representations of
the Schur algebras pushes these ideas quite far and in great generality. In the
example of interest to us, Green associates to every additive functor f , defined on
representations of the symmetric group, the representation over the Schur algebra
given by f(V ⊗n). The main problem of constructing reverse correspondances is
solved naturally by Green. It is one of the purpose of this paper to shed new light
on these correspondances.

A few years later, Friedlander and Suslin [6] introduced strict polynomial func-
tors, which are equivalent to representations of the Schur algebra when the dimen-
sion of V is at least n. This new formalization is aimed at cohomology computations,
and has numerous applications, including a proof of finite generation of the coho-
mology of finite group schemes in the same paper [6]. The pleasing properties of
the category P of strict polynomial functors lead to impressive cohomological com-
putations in the difficult case of finite fields. These computations follow from the

fundamental computation of ExtP(Id(i), Id(i)) given in [6] (the decoration (i) indi-
cates Frobenius twists, that is base change along the Frobenius isomorphism). In a
recent paper [2], Cha lupnik proves elegant formulae computing functor cohomology,
in the case of finite fields, for various fundamental functors of the form

V 7→ f(V ⊗n).

He succeeds in comparing f(ExtP(G, Tn(i))) and ExtP(G, f(Tn(i))) for many im-
portant families of functors G and f . [When the functor f is given by an idempotent
in the group ring of the symmetric group, the two terms are easily seen to be isomor-
phic. However, this is very rarely the case in positive characteristic smaller than n.]
To this end, Cha lupnik considers certain adequate choices of functors f , defined on
representations of the symmetric group Sn, such that f(V ⊗n) = F (V ) for a given
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strict polynomial functor F , thus informally rediscovering the correspondances set
up by Green. These methods motivated and inspired the present work.

Green’s correspondances are best expressed in terms of adjoint functors and rec-
ollements of categories. The category P thus appears as a quotient category of the
category of all additive functors defined on representations of the symmetric groups.
Unfortunately, the latter is very large and stays quite mysterious. Representable
functors, such as the functor H0(Sn,−) taking invariants, are examples of functors
obtained through the reverse correspondances of Green, but they are many more.
We show however that one can restrict to considering coherent functors, that is
functors which are presented by representable functors. The resulting category, if
still very rich, is much better behaved. For instance, the global dimension of the
category of coherent functors is two. This comes in sharp contrast with the rich
functor cohomology obtained through homological algebra in the category of strict
polynomial functors.

We revisit in this setting some of the properties of functors which make the cat-
egory P much more tractable than coarse representations: tensor product, compo-
sition (or plethysm), linearization etc. and we try and find corresponding construc-
tions for coherent functors. We also apply our insight to functor cohomology, and
obtain Cha lupnik’s constructions in a natural way.

In Section 2, we give a new presentation of strict polynomial functors adapted
to our purpose. Section 3 develops the general properties of coherent functors.
Although we do not claim much originality, it contains a few results which we could
not find in the literature. Section 4 contains our main results. It compares coherent
functors and strict polynomial functors. Since the comparison is best stated in terms
of recollements of abelian categories, we recall in an appendix A what is needed
from this theory. Section 5 applies this new setting to functor cohomology and
obtains natural versions of Cha lupnik’s results. Section 6 lifts the tensor product
of polynomial functors to the level of coherent functors, and the final section 7 does
the same for the composition of functors.

Notations. We fix a field K of positive characteristic p. All vector spaces are
considered over K, and Hom and ⊗ are taken over K, unless otherwise decorated.
Let V be the category of finite-dimensional vector spaces. For a finite group G, we
let GV denote the category of finite dimensional G-modules.

2. The category of strict polynomial functors

Strict polynomial functors were introduced by Friedlander and Suslin [6, §3]. To
explain what they are in a given degree, fix a positive integer n. We start with the
n-th divided power of a vector space V , defined by:

Γn(V ) := H0(Sn, V
⊗n) = (V ⊗n)Sn

where the symmetric group on n-letters Sn acts on V ⊗n by permuting the factors.
For any x in some vector space X , we let γ(x) be the element x⊗n in Γn(X). This
defines a natural set map γX : X → Γn(X). Reordering the factors

A⊗n ⊗B⊗n → (A⊗B)⊗n

induces a K-linear natural transformation

Γn(A) ⊗ Γn(B) → Γn(A⊗ B)

sending γA(a) ⊗ γB(b) to γA⊗B(a ⊗ b). Together with the composition law in V ,
these maps define a composition map:

Γn(Hom(V,W ))⊗Γn(Hom(U, V )) → Γn(Hom(V,W )⊗Hom(U, V )) → Γn(Hom(U,W )).
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This defines a category ΓnV , with the same objects as V , and with morphisms

HomΓnV (V,W ) := Γn(Hom(V,W )).

The following Lemma describes the category ΓnV as a full subcategory of Sn
V .

Lemma 2.1. For a positive integer n, the functor

i : Γn
V → Sn

V

V 7→ V ⊗n

is a full embedding.

Proof. This follows from the natural isomorphism:

HomSn
(V ⊗n,W⊗n) = (Hom(V ⊗n,W⊗n))Sn ∼= (Hom(V,W )⊗n)Sn = HomΓnV (V,W ).

�

According to [6], a homogeneous strict polynomial functor of degree n defined on
V is a K-linear functor ΓnV → V . We let Pn be the category of homogeneous strict
polynomial functors of degree n. It is known that the category Pn is equivalent to
the category of finite dimensional modules over the Schur algebra S(n, n) [6, §3].

The collection of maps γX : X → Γn(X) yields a (nonlinear) functor γ : V →
Γn

V . Precomposition with γ associates to any strict polynomial functor defined on
V an usual functor on V ; it is called the underlying functor of the strict polynomial
functor. It is usual to denote by the same letter a strict polynomial functor and its
underlying functor. For example, the composite

ΓnV
i //

Sn
V

H0(Sn,−) // V

is denoted by Γn, since its underlying functor is the n-th divided power functor,
and Symn denotes the composite

ΓnV
i //

Sn
V

H0(Sn,−) // V ,

because its underlying functor is the n-th symmetric power. Similarly the composite

ΓnV
i //

Sn
V

forget // V

is denoted by T n, because the underlying functor is the n-th tensor power. We now
recall from [6, §3] the basic properties of the category Pn.

There is a well-defined tensor product of strict polynomial functors which corre-
sponds to the usual tensor product of underlying functors, and it yields a bifunctor

−⊗− : Pn × Pm → Pn+m.

For example: T n = T 1 ⊗ · · · ⊗ T 1 (n-factors).
There is also a duality in Pn. For an object F in Pn, we let DF be the

homogeneous strict polynomial functor given by

(DF )(V ) = (F (V ∨))∨

where W∨ denotes the dual vector space of W . Since the values of any homogeneous
strict polynomial functor are finite dimensional, D is an involution and defines an
equivalence of categories D : Pop

n → Pn. The functor DF is called the dual of F .
The category Pn has enough projective and injective objects. A set of generators

is indexed by partitions of n, that is decreasing sequences of positive integers adding
up to n. For a partition λ = (n1 ≥ n2 ≥ · · · ≥ nk), put

Γλ := Γn1 ⊗ · · · ⊗ Γnk .
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The functors Γλ, when λ runs through all partitions of the integer n, are small
projective generators. Indeed, HomPn

(Γλ, F ) is the evaluation on the base field of
the cross-effect of the functor F of homogeneous multidegree λ. Dually, the functors

Symλ := Symn1 ⊗ · · · ⊗ Symnk

form a set of injective cogenerators. In particular, the functor T n is projective and
injective in Pn. Moreover, the action of Sn by permuting factors yields an exact
functor

c∗ : Pn →Sn
V

F 7→HomPn
(Tn, F ).

The representation c∗(F ) is often called the linearization of the functor F ; we use
the letter c for cross-effect. The functor c∗ has both a left and a right adjoint functor
given respectively by

(c!(M))(V ) = (M ⊗ V ⊗n)Sn
, c∗(M) = (M ⊗ V ⊗n)Sn .

Let P0
n be the full subcategory of Pn whose objects are the strict polynomial

functors F such that c∗(F ) = 0. This condition means that the underlying functor
has degree less than n in the additive sense of Eilenberg and MacLane. Let d∗ :
P0

n → Pn be the inclusion and let d∗ and d! be the left and right adjoint of d∗. By
Proposition A.2, this defines a recollement situation:

Pn
0 d∗

// Pn

d!

hh

d∗

vv
c∗ //

Sn
V

c∗

gg

c!

ww
.

3. Coherent functors

A good reference for this section is a recent survey of Harsthorne [8]. All the
results in this section are well-known to experts but some of them (e. g. Proposition
3.8 and Proposition 3.10) are not easy to find in the literature.

In this section we fix a finite group G. Let GV be the category of all finite
dimensional G-modules, and let A (G) be the category of all covariant K-linear
functors from GV to the category V of finite dimensional vector spaces. The fol-
lowing functors in A (G) are of special interest. For any M in GV , let tM be the
functor

tM = (−) ⊗G M,

and let hM be the functor represented by M :

hM = HomG(M,−).

We shall use that hM (K[G]) is isomorphic to the K-dual M∨. This isomorphism is
precisely defined as follows. Let τ be the element of K[G]∨ given by

τ(g) = 0, if g 6= 1 and τ(1) = 1.

By the Yoneda lemma, the function τ yields a natural morphism

τX : HomG(X,K[G]) → X∨

f 7→ τ ◦ f.

The homomorphism τX is an isomorphism when X = K[G]. Since K[G] is a self-
injective algebra, HomG(−,K[G]) is an exact functor, and τ is a natural transfor-
mation between exact functors. It results that τX is an isomorphism for all X in

GV . We shall use this fact without further reference.
The category A (G) is an abelian category. We state below its elementary prop-

erties.
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Lemma 3.1. For all object f of the category A (G), let D(f) be the object of A (G)
defined by

(Df)(M) = (f(M∨))∨.

The resulting functor D is a duality in A (G).

Lemma 3.2. For any M in GV , the Yoneda lemma yields a natural isomorphism

HomA (G)(hM , f) ∼= f(M).

Thus the functor hM is a projective object in the category A (G). Moreover, for all
M,N in GV , there is a natural isomorphism:

HomA (G)(hM ,hN ) ∼= HomG(N,M).

Lemma 3.3. For all M in GV , there is a natural isomorphism: D(hM ) ∼= tM .
Hence the functor tM is an injective object in the category A (G). Moreover, for all
f in A (G), there is a natural isomorphism

HomA (G)(f , tM ) ∼= Df(M).

In particular, there is a natural isomorphism:

HomC (G)(tN , tM ) = HomG(N,M).

Proof. We have a canonical element θM in

(M∨ ⊗G M)∨ ∼= HomG(HomG(M,K[G]) ⊗G M,K[G])

which is given by: θM (ξ ⊗m) = ξ(m). By the Yoneda lemma, it yields a natural
transformation θ : hM → D(tM ). For X in V ,

θX : HomG(M,X) →(X∨ ⊗G M)∨

α 7→{ξ ⊗m 7→ ξ(α(m))}.

Since θK[G] is an isomorphism and both hM and D(tM ) are left exact functors, it
follows that θ is an isomorphism. The rest follows because D is a duality. �

An object f in A (G) is finitely generated if it is a quotient of hM for some M in

GV . Among finitely generated functors, coherent functors are defined by further
requiring finiteness of the relations.

Definition 3.4. [8] An object f in A (G) is called coherent if it fits in an exact
sequence

(1) hN → hM → f → 0

for some M,N in GV . We let C (G) be the category of all coherent functors and
natural transformations between them.

Remark 3.5. The category C (G) has the following alternative description. Objects
are all arrows of GV , while a morphism from α : M → N to α′ : M ′ → N ′ is an
equivalence classe of commutative diagrams

M ′
α′

//

β

��

N ′

β′

��
M α

// N

,

such a commutative diagram being equivalent to the zero morphism if there exists
δ : N ′ → M such that δα′ = β. However we will use only the previous description
of C (G).

It is a classical fact due to Auslander [1] that the kernel and the cokernel of any
morphism of coherent functors are still coherent functors. As a consequence, the
category C (G) is an abelian category.

We now give examples of coherent functors.
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Proposition 3.6. (i) For any M in GV , the functor hM is coherent;
(ii) For any M in GV , the functor tM is coherent;

(iii) If f is a coherent functor, then Df is also a coherent functor;
(iv) For any integer i ≥ 0, the homology and cohomology functors H i(G,−),

Hi(G,−) are coherent on GV ;

(v) For any integer i ≥ 0, the Tate homology and cohomology functors Ĥ i(G,−)

and Ĥi(G,−) are coherent on GV .

Proof. Examples (i) to (iv) are also in [8, §2].

(i) Take N = 0 in the definition of coherent functors.
(ii) If M is free and finite dimensional, then hM

∼= tM . For a general M ,
choose a presentation K → N → M → 0 in the category F V , with free
and finite dimensional K and N . Then tM is a cokernel of tK → tM and
hence it is coherent.

(iii) Assume f is a coherent functor. By definition, it is a cokernel of a morphism
hN → hM . Then Df is the kernel of the dual morphism tM → tN , hence
it is also a coherent functor.

(iv) Since

H0(G,−) = hK and H0(G,−) = tK,

they are coherent. For a general i, choose a projective resolution P∗ of K

with finite dimensional Pi, i ≥ 0. Then H i(G,−) is the i-th homology of
the cochain complex hP∗

of coherent functors, therefore it is also a coherent
functor.

(v) The functors Ĥ0(G,−) and Ĥ−1(G,−) are respectively the cokernel and
the kernel of the norm homomorphism H0(G,−) → H0(G,−), so they are
also coherent. We then proceed as for (iv).

�

Proposition 3.7. The category C (G) has enough projective and injective objects.
The category C (G) is semi-simple if, and only if, the order of G is invertible in
K. In this case any coherent functor is of the form hM and therefore the category
C (G) is equivalent to GV . Otherwise the global dimension of C (G) is exactly two.

Proof. Since hM (resp. tM ) is for any M in GV a projective (resp. injective) object
in A (G), it is also projective (resp. injective) in C (G).

By definition, any coherent functor f is a cokernel of a morphism hN → hM .
By the Yoneda lemma, this morphism is of the form hα for a uniquely defined
α : M → N . It follows that there is an exact sequence

(2) 0 → hCoker α → hN → hM → f → 0

This proves that C has enough projective objects and that gl.dim. C (G) ≤ 2. Since
D is a duality, we see that C has enough injective objects as well.

It remains to show that, if gl.dim. C (G) ≤ 1, then the order of G is invertible in
K. To this end let us consider the augmentation ideal I(G) of the group algebra
K[G]. There is an exact sequence in C :

0 → hK → hK[G] → hI[G] → H1(G,−) → 0.

When gl.dim (C (G)) ≤ 1, it follows that hK is a direct summand of hK[G]. Thus K,
as a G-module, is a direct summand of K[G], hence it is a projective G-module. The
fact that this holds if and only if the order of G is invertible in K is well-known. �

Proposition 3.8. Let f be a coherent functor.

(i) The following are equivalent:
(a) f is projective;
(b) The functor f is left exact;



STRICT POLYNOMIAL FUNCTORS AND COHERENT FUNCTORS 7

(c) f is of the form hM for some M .
(ii) The following are equivalent:

(a) f is injective;
(b) The functor f is right exact;
(c) f is of the form tM for some M .

(iii) pd(f) ≤ 1 if, and only if, f respect monomorphisms.
(iv) id(f) ≤ 1 if, and only if, f respect epimorphisms.

Proof. We prove only (ii) and (iii). The rest follows by duality. Statement (i) is
also proved in [8, Proposition 3.12 & 4.9].

If f is an injective object, then it is a direct summand of tM for some M . The
corresponding projector of tM has the form tα, where α is a projector of M . Thus
f ∼= tIm(α). In particular any injective object is a right exact functor.

Conversely, assume that f is right exact. The G-module M = f(K[G]) is finitely
generated and therefore one can consider the functor tM . There is a well-defined
transformation α : tM → f given by: αX(m ⊗ x) = f(x̂)(m), where, for x in X ,
x̂ : K[G] → X is the G-homomorphism defined by x̂(1) = x. By construction this
map is an isomorphism when X = K[G]. Because f is right exact and X is a finitely
generated G-module, it follows that αX is an isomorphism for all X in GV , so that
f is injective in C (G).

Suppose that f respects monomorphisms. Consider an exact sequence of functors

0 → f ′ → hM → f → 0.

We want to show that f ′ is projective. By (i), we need to prove that f ′ is left exact.
For any short exact sequence in GV

0 → A→ B → C → 0,

there is a commutative diagram with exact columns:

0

��

0

��

0

��
f ′(A)

��

// f ′(B) //

��

f ′(C)

��
0 // hM (A)

��

// hM (B) //

��

hM (C)

��
f(A)

��

α // f(B) //

��

f(C)

��
0 0 0

.

In this diagram the middle row is also exact and a diagram chase shows that α is
a monomorphism. It follows that f ′ is left exact and hence projective. This shows
that pd(f) ≤ 1.

Conversely, suppose that the projective dimension of f is ≤ 1. There is a short
exact sequence of functors

0 → hN → hM → f → 0.

If

0 → A→ B → C → 0
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is a short exact sequence in GV , there is a commutative diagram with exact columns:

0

��

0

��

0

��
0 // hN (A)

��

// hN (B) //

��

hN (C)

��
0 // hM (A)

��

// hM (B) //

��

hM (C)

��
f(A)

��

α // f(B) //

��

f(C)

��
0 0 0

The first two rows in this diagram are also exact, and α is a monomorphism. This
shows that f respects monomorphisms. �

Following Auslander [1, 7], we now consider a recollement situation involving the
categories C (G) and GV .

One considers the functors

t∗ : C (G) → GV , t∗ : GV → C (G) and t! : GV → C (G)

given respectively by

t∗(f) = f(K[G]), t∗(M) = hM∨ and t!(M) := tM .

Lemma 3.9. (i) The functor t! is left adjoint to t∗ and, for all M in GV , the
G-module t∗t!(M) is naturally isomorphic to M .

(ii) The functor t∗ is right adjoint to t∗ and, for all M in GV , the G-module
t∗t!(M) is naturally isomorphic to M .

Proof. (i) For any coherent functor f , the functor Df is also coherent, so one
can assume that Df = Coker(hα : hF → hE), for some linear map α : E →
F . By duality, f = Ker(tα) and we get an exact sequence

(3) 0 → f → tE → tF .

It shows that: t∗(f) = f(K[G]) = Ker(α). Moreover, there are natural
isomorphisms:

HomC (G)(tM , f) = HomC (G)(tM ,Ker(tα))

= Ker(HomC (G)(tM , tα))

= Ker(HomG(M,α))

= HomG(M,Kerα)

= HomG(M, t∗(f)).

¿From this follows the first statement of (1). The second one follows from
the natural isomorphism: t∗t!(M) = tM (K[G]) ∼= M .

(ii) We use the duality: HomG(M,K[G]) ∼= M∨. Take f as in the exact se-
quence (1): f = Cokerhα for some linear map α. Because K[G] is a
selfinjective algebra, it follows:

t∗(f) = f(K[G]) = Coker(HomG(α,K[G])) ∼= HomG(Ker(α),K[G]) ∼= (Ker α)∨.
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Moreover, there are natural isomorphisms:

HomC (f ,hX∨) = Ker(hX∨(α))

= Ker(HomG(X∨, α))

= HomG(X∨,Kerα)

∼= HomG((Ker α)∨, X)

∼= HomG(t∗(f), X)

Finally, for M in GV : t∗t∗(M) = t∗(hM∨ ) = HomG(M∨,K[G]) ∼= M .
�

We let C 0(G) be the full subcategory of C (G) whose objects f are such that:
t∗(f) = 0. Thus the category C 0(G) consists exactly of coherent functors which
vanish on projective objects. Since t∗ is exact, the subcategory C 0(G) is abelian.
Indeed, it is a Serre subcategory of C (G). We let

r∗ : C
0(G) → C (G)

be the inclusion. It is an exact functor. It is a consequence of Proposition A.2 that
the functors r∗, t

∗, t∗, t! are part of a recollement situation

C
0(G) r∗ // C (G)

r!

ii

r∗

uu
t∗ //

GV

t∗

ii

t!
uu

.

where r∗ and r!, left and right adjoint to r∗, are defined by the following exact
sequences:

0 → r∗r
!(f) → f → t∗t

∗(f), t!t
∗(M) →M → r∗r

∗(f) → 0.

The following Proposition gives another description of r∗ and r!.

Proposition 3.10. (i) For a functor f : GV → V , let τ : L0f → f be the
natural transformation from the 0-th left derived functor. There is an iso-
morphism

r∗(f) ∼= Coker(τ).

(ii) For M in GV , let ΣM be a finitely generated G-module which fits in a
short exact sequence

(4) 0 →M → P → ΣM → 0

where P is a projective G-module. There is an isomorphism

r!(tM ) ∼= TorG
1 (−,ΣM).

(iii) For a functor f : GV → V , write f = Ker(tα) for some linear map
α : E → F , as in the exact sequence (3). There is an isomorphism

r!(f) ∼= Ker(TorG
1 (−,Σα)).

Proof. (i) Let us consider a natural transformation

ξ : f → g

where f is a coherent functor and g is in C
0(G). We have to prove that ξ

factors trough Coker(τ). In other words we have to show that the compos-
ite ξ ◦ τ : L0f → g is zero. To this end, for an object M in GV choose an
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exact sequence 0 → N → P → M → 0 with projective P . The following
commutative diagram with exact top row implies the result:

L0f(P ) //

∼=

��

L0f(M)

��

// 0

f(P ) //

��

f(M)

��
0 = g(P ) // g(M)

.

(ii) The long exact sequence for Tor-groups on 0 →M → P → ΣM → 0 yields
an exact sequence

0 → TorG
1 (−,ΣM) → tM → tP → tΣM → 0.

Let ψ : tM → hM∨ be the natural transformation defined by:

ψX : X ⊗G M → HomG(M∨, X)

x⊗m 7→ (ξ 7→ ξ(m)x).

It is an isomorphism when M is a projective object in GV . There is a
commutative diagram with exact rows

0 // hM∨
// hP∨

// hΣM∨

��
0 // TorG

1 (−,ΣM ) // tM
//

OO

tP
//

∼=

OO

tΣM
// 0.

It follows that there is an exact sequence

0 → TorG
1 (−,ΣM) → tM → hM∨ .

The result follows from the comparison with the exact sequence

0 → r∗r
!(tM ) → tM → t∗t

∗(tM )) = t∗(M) ∼= hM∨ .

(iii) Apply r! to the exact sequence (3). Because the functor r! is left exact:

r!(f) = r!(Ker(tα) = Ker(r!(tα)),

and the result follows from (ii).
�

4. The relation between Pn and An

For simplicity, we write An and Cn instead of A (Sn) and C (Sn). For an object
f in An, the composite

ΓnV
i //

Sn
V

f // V

defines a strict polynomial functor, which is denoted by j∗(f). This construction
defines a functor

j∗ : An → Pn

j∗(f)(V ) = f(V ⊗d).

The same functor was constructed, in terms of Schur algebras, by Green [7, §5,
pp 275–276]. The functor j∗ was also considered by Cha lupnik [2] in his work on
functor cohomology.

Lemma 4.1. The functor j∗ respects duality: D ◦ j∗ ∼= j∗ ◦ D.

Proof. Dj∗(f)(V ) = (j∗(f)(V ∨))∨ = (f(V ∨⊗n))∨ ∼= (Df)(V ⊗n) = j∗D(f)(V ). �
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Proposition 4.2. The functor j∗ : An → Pn has a right adjoint functor defined
by:

j∗(F )(M) = HomPn
(j∗(hM ), F ) = HomPn

(HomSn
(M, (−)⊗n), F )

where M is representation of Sn. It has also a left adjoint functor defined by:

j!(F ) = D(j∗(DF )).

In other words:
(j!F )(M)∨ = HomPn

(F, (−)⊗n ⊗Sn
M∨).

Proof. Since hom’s in the category Pn are finite dimensional vector spaces, we see
that j∗(F ) belongs to An. The fact that it is right adjoint of j∗ follows from the
Yoneda lemma. The dual formula is formal:

HomAn
(D(j∗(DF )), f) ∼= HomAn

(Df , j∗(DF )) ∼= HomPn
(j∗(Df),DF )

∼= HomPn
(Dj∗(f),DF ) ∼= HomPn

(F, j∗(f)).

To check the last formula, observe that:

j∗(DF )(M∨) = HomPn
(j∗(hM∨ ),DF ) ∼= HomPn

(F, j∗(DhM∨))

and
j∗(DhM∨) ∼= j∗tM∨ = (−)⊗n ⊗Sn

M∨.

�

Remark 4.3. In particular j∗ and j! are a functorial choice of, respectively, an
injective and projective symmetrization of [2, Section 3].

Remark 4.4. The existence of adjoints of a precomposition functor is quite a general
phenomenon, see Example A.4.

We now study these adjoint functors. For a partition λ of a positive integer n,
we let Sλ be the corresponding Young subgroup of Sn.

Lemma 4.5. Let λ be a partition of n. For all finite dimensional Sn-module M ,
there are natural isomorphisms:

j∗(Symλ)(M) ∼= H0(Sλ,M),

j!(Γ
λ)(M) ∼= H0(Sλ,M)

Proof.
j∗(Symλ)(M) = HomPn

(HomSn
(M, (−)⊗n), Symλ)

∼= HomPn
(Γλ,D(HomSn

(M, (−)⊗n)))

∼= HomPn
(Γλ, (−)⊗n ⊗Sn

M).

The first isomorphism follows from [6, Corollary 2.12]. The second follows by dual-
ity. �

Proposition 4.6. The values of the functors j∗ and j! are coherent functors.

Proof. By duality, it is enough to consider the functor j∗. By Proposition 4.5:

j∗(Symλ) = H0(Sλ,−) = tK[Sn/Sλ],

so the statement is true for injective cogenerators of Pn. Since j∗ is left exact the
result follows by a resolution argument. �

Proposition 4.7. The unit IdPn
→ j∗j! and the counit j∗j∗ → IdPn

are isomor-
phisms.

Proof. We prove only the second isomorphism, the first one follows by duality. It
is clear that j∗(H0(Sλ,−)) ∼= Symλ. Thus Lemma 4.5 shows that the statement
is true for injective cogenerators of Pn. Since j∗ is exact and j∗ is left exact, the
result follows by taking resolutions. �
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Remark 4.8. Since the functor j∗ is a full embedding, this gives a new proof of [2,
Lemma 3.4].

Proposition 4.9. Let C Y

n be the full subcategory of Cn whose objects are the co-
herent functors f such that, for all partitions λ of n:

f(K[Sn/Sλ]) = 0.

The functors j∗ and its adjoints j∗, j! are part of a recollement of abelian categories:

C Y

n
i∗ // Cn

i!

gg

i∗

ww
j∗ // Pn

j∗

gg

j!

ww

Proof. According to Proposition A.2, the functor j∗ and its adjoints give rise to a
recollement situation. To determine the kernel category, it is enough to notice that
every permutation representation K[Sn/Sλ] occurs as a direct factor in the tensor
product V ⊗n as soon as the dimension of V is n. �

Example 4.10. C Y

n = 0 for p = 2 and n = 2 or 3.

Proposition 4.11. The counit j!j
∗(f) → f is an isomorphism when f = tM .

Dually, the unit f → j∗j
∗(f) is an isomorphism when f = hM .

Proof. We prove only the first assertion. Since both j!j
∗(tM ) and tM are right

exact functors of M , it is enough to consider the case when M = K[Sn]. In this
case tM is the forgetful functor u. Therefore: j∗(tM ) = ⊗n = Γ11···1 and

j!j
∗(tM ) = j!(Γ

11···1) = H0(S11···1,−) = u = tM .

�

Proposition 4.12. The norm transformation (see Appendix A) for the previous
recollement situation is an isomorphism on projective and injective objects.

Proof. By Lemma 4.5 we have j!(Γ
λ) = hM , for M = K[Sn/Sλ]. By Proposition

4.11 we have also j∗(Γλ) = j∗j
∗(hM ) = hM , thus the norm is an isomorphism on

projective objects. By duality it is also an isomorphism on injective objects. �

The following examples gather some other known values of the adjoint functors
j∗, j!.

Example 4.13. The relation of Proposition 4.11:

j∗(j∗tM ) ∼= tM
∼= j!(j

∗tM )

applies in particular when M is the signature, or when M is induced from the
signature of a Young subgroup Sµ. This shows that, when p is odd, the norm is an
isomorphism on a tensor product of exterior powers Λµ.

Example 4.14. Let Id(1) be the Frobenius twist in Pp, that is base change along
the Frobenius [6]. It is related to the norm N by an exact sequence:

0 //
Id(1) // Symp N // Γp //

Id(1) // 0

It follows that there are exact sequences:

0 → j∗(Id(1)) → H0(Sp,−) → H0(Sp,−)

H0(Sp,−) → H0(Sp,−) → j!(Id
(1)) → 0.

Thus j∗(Id(1)) = Ĥ−1(Sp,−) and j!(Id
(1)) = Ĥ0(Sp,−).
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Example 4.15. Assume p = 2. Let S be a set with n elements. For each 0 ≤ k ≤ n
we let Bk be the vector space spanned on the set of all subsets of S with exactly
k-elements. Define d : Bk → Bk+1 by

d(X) =
∑

X⊂Y ∈Bk+1

Y

Then d2 = 0 andB∗ is a cochain complex of Sn-modules. One checks thatH∗(B∗) =
0. For an integer m ≥ 1 and n = 2m+1, the explicit injective resolution of Sym2m(1)

of [3, §8] allows to compute:

(5) R∗j∗(Sym2m(1)) ∼= H∗(tB∗
).

In particular, j∗(Sym2m(1)) is the kernel of the obvious mapH0(Sn,−) → H0(Sn−1,1,−).

Another consequence of (5) is the fact that Rkj∗(Sym2m(1)) = 0 when k ≥ m.

We now show the compatibility of the different recollement situations.

Proposition 4.16. There are commutative diagrams of categories and functors:

Cn Pn
j∗oo

Sn
V

t∗

OO

Sn
V

c∗

OO

C Y
n

// C 0
n

//

r∗

��

P
0
n

d∗

��
C Y

n

i∗ // Cn
j∗ //

t∗

��

Pn

c∗

��
Sn

V Sn
V

Cn Pn
j!oo

Sn
V

t!

OO

Sn
V .

c!

OO

Proof. To show that c∗ ◦ j∗ = t∗, note that the three functors involved are exact.
It is therefore enough to check that they coincide on hM for each M in Sn

V . This
means that we need to show that:

HomPn
(Tn,HomSn

(M, (−)⊗n)) ∼= M∨

Since Tn is projective, the left hand side of the expected isomorphism is left exact
as a functor of M . So it suffices to consider the case when M is injective, and it
reduces to the case when M = K[Sn]. In this case it is a well-known isomorphism:

HomPn
(Tn, Tn) ∼= K[Sn].

To show that j!c! = t!, note that both sides are right exact. It is therefore enough
to check that they coincide on K[Sn]. In this case, j!c!(K[Sn]) = j!(T

n) has already
been seen (see the proof of Proposition 4.11) to be u = tK[Sn].

The rest is quite similar. �

We end the section with the following immediate consequence of Proposition A.5
and Proposition 3.7.

Corollary 4.17. Let F ∈ Pn and g ∈ Cn. For every k ≥ 2, there exist a functo-
rially defined subgroup Ek(F,g) of Extk

P(F, j∗(g)) and exact sequences:

0 → Ext1C (j!F,g) → Ext1P(F, j∗g) → HomC (L1j!(F ),g) →

→ Ext2C (j!F,g) →E2(F,g) → Ext1C (L1j!(F ),g) → 0,

0 → Ek(F,g) → Extk
P(F, j∗g) → HomC (Lkj!(F ),g) →

→ Extk
C (Lk−1j!F,g) →Ek+1(F,g) → Ext1C (Lkj!(F ),g) → 0, k ≥ 2.
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Dually, for every k ≥ 2, there exist a functorially defined subgroup Ek(g, F ) of

Extk
P(j∗(g), F ) and exact sequences:

0 → Ext1C (g, j∗F ) → Ext1P(j∗g, F ) → HomC (g, R1j∗(F )) →

→ Ext2C (g, j∗F ) →E2(g, F ) → Ext1C (g, R1j∗(F )) → 0,

0 → Ek(g, F ) → Extk
P(j∗g, F ) → HomC (g, Rkj∗(F )) →

→ Extk
C (g, Rk−1j∗F ) →Ek+1(g, F ) → Ext1C (g, Rkj∗(F )) → 0, k ≥ 2.

5. Application to functor cohomology

M. Cha lupnik [2, Theorem 4.3] has generalized the Ext-computations in the
category Pn obtained in [5]. We show in this section how one can obtain his results
through natural isomorphisms.

Let i be a non negative integer; for F in Pn, we denote its Frobenius twist in
Pnpi by F (i). Any functor f in An is naturally extended to graded objects as in

[2]. We want to compare f(ExtP
npi

(G, Tn(i))) and ExtP
npi

(G, j∗f (i)).

Lemma 5.1. For all functors f in An, there is a natural transformation

f(HomP
npi

(G, Tn(i))) → HomP
npi

(G, j∗f (i)),

which is a isomorphism when f is of the form hM , and a monomorphism for all
coherent functors f .

Proof. We start with the structure map:

HomSn
(M,N) → Hom(f(M), f(N)),

rewritten as:

f(M) → Hom(HomSn
(M,N), f(N)).

In case M = Hom(E,N) for E in V and N in Sn
V , we compose with the evaluation

map E → HomSn
(Hom(E,N), N) and get a natural map:

f(Hom(E,N)) → Hom(HomSn
(Hom(E,N), N), f(N)) → Hom(E, f(N)).

This map is an isomorphism when f is of the form hM or tM .
Using freely the notion of end of a bifunctor,we obtain a natural map:

f

∫
V ∈Γnpi

V

Hom(GV, V ⊗n(i)) →

∫
V ∈Γnpi

V

f Hom(GV, V ⊗n(i)) →

∫
V

Hom(GV, f(V ⊗n(i)))

which, in view of the description of HomP
npi

as end of the bifunctor Hom, is a

natural transformation:

f(HomP
npi

(G, Tn(i))) → HomP
npi

(G, j∗f (i)).

It is an isomorphism when f is of the form hM . For, in this case, both sides of:

HomSn
(M,HomP

npi
(G, Tn(i))) → HomP

npi
(G,HomSn

(M,Tn(i)))

are left exact functors of M which coincide when M = K[Sn].
For a general coherent f , write f = Cokerhα for α : M → N . There is a

commutative diagram:

hN HomP
npi

(G, Tn(i)))
hα //

∼=

��

hM (HomP
npi

(G, Tn(i))) //

∼=

��

f(HomP
npi

(G, Tn(i))) //

��

0

HomP
npi

(G, j∗h
(i)
N )

hα∗ // HomP
npi

(G, j∗h
(i)
M ) // HomP

npi
(G, j∗f (i))

,

with an exact first row, the composition of the second row being zero. Thus the
third vertical map is a monomorphism. �
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In general, this is not an isomorphism: consider for example the case when
p = n = 2, G is the Frobenius twist, and f is H0(S2,−).

We now follow closely the proof of [2, Theorem 4.3]. For f in An, consider an
injective resolution S• of j∗f in Pn. Note that j∗S

• is a complex, and that, because
j∗ is left exact, H0(j∗S

•) = f . Remark [2, Proposition 3.4.2] that, when evaluated
at a permutation module M , the complex j∗S

•(M) is a resolution of f(M).
For G in Pnpi , applying HomP

npi
(G,−) yields a spectral sequence:

Es,∗
1 = Exts

P
npi

(G,S∗(i))

converging to ExtP
npi

(G,F (i)). It is related to f(ExtP
npi

(G, Tn(i))) through two
maps:

f(ExtP
npi

(G, Tn(i))) = H0(j∗S
• ExtP

npi
(G, Tn(i))) → H(j∗S

• ExtP
npi

(G, Tn(i))),

and, using the map in Lemma 5.1:

H(j∗S
• ExtP

npi
(G, Tn(i))) → H(ExtP

npi
(G,S•(i))) = E2.

In the case when ExtP
npi

(G, Tn(i)) is a permutation module, the first map is an

isomorphism and the spectral sequence collapses at E2. This is the case for instance
when G is the twist Γµ(i) of a projective. For G = Γµ(i), the second map is an
isomorphism as well [2, Proposition 4.1]. We thus recover the isomorphisms of [2]
in a natural manner. For instance, for G = Γn(i) and f = j∗F , we obtain:

Proposition 5.2. For all F in Pn, there is a natural isomorphism:

ExtP
npi

(Γn(i), F (i)) ∼= F (ExtP
pi

(Id(i), Id(i))).

6. Tensor products of coherent functors

The aim of this section is to lift the bifunctor ⊗ : Pn × Pm → Pn+m given by
(F ⊗ G)(V ) = F (V ) ⊗G(V ) at the level of coherent functors. Not surprisingly, it
involves the induction functor

Ind
Sm+n

Sm×Sn
: Sm×Sn

V → Sn+m
V .

For M and N in Sn
V , let M�N denote the module Ind

Sm+n

Sm×Sn
(M⊗N). The opera-

tion � yields a symmetric monoidal structure on the category
⊕

n≥0 Sn
V . Because

the objects hM are projective generators in the category of coherent functors, one
readily obtains:

Proposition 6.1. There exists a unique biadditive functor

H : Cm × Cn → Cm+n

such that:

(i) hMHhN = hM�N ;
(ii) The bifunctor H is right exact with respect to both variables.

Moreover H equips the category
⊕

d≥0 Cd with a symmetric monoidal structure.

We show next that the bifunctor H is balanced, which means that (−)Hg is an
exact functor when g is projective in Cn. We start by defining another product,
using restriction. Consider Sn as the subgroup of Sm+n which fixes the first m

elements. For X in Sm+n
V , denote by Res

Sn+m

1m×Sn
(X) the corresponding restriction.

Then, for any g in Cn, the vector space g(Res
Sm+n

1m×Sn
(X)) has a natural structure

of representation of Sm, because Sm × 1n commutes with 1m ×Sn. Thus, for f in

Cm, the evaluation f(g(Res
Sm+n

1m×Sn
X)) makes sense. Denote it (f�g)(X). It defines

a biadditive functor

� : Cm × Cn → Cm+n.
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The bifunctor � is clearly exact with respect to the first argument. The bifunctor
� is highly nonsymmetric.

Lemma 6.2. For all f in Cm and all N in Sn
V , there is a natural isomorphism

fHhN
∼= f�hN .

Proof. Since both sides are right exact on f , one can assume that f = hM for some
M in Sm

V . For X in Sm+n
V , one has:

hM�N (X) = HomSm+n
(Ind

Sm+n

Sm×Sn
(M ⊗N), X)

= HomSm×Sn
(M ⊗N,Res

Sm+n

Sm×Sn
(X))

= HomSm
(M,HomSn

(N,Res
Sm+n

1m×Sn
X)

= hM�hN (X).

�

Proposition 6.3. The bifunctor H is balanced.

Proof. Since H is symmetric, it suffices to prove that (−)HhN is an exact functor.
By the lemma, this is the same as (−)�hN , which is exact. �

Before stating our next result, let us recall that a composition is a finite sequence
of positive integers. The integers of any composition are the parts of a unique
partition. In particular, the concatenation of two partitions λ and µ is in general
not a partition, but only a composition. We let λ ∪ µ be the associated partition.
There is an isomorphism:

(6) Ind
Sm+n

Sm×Sn
(IndSm

Sλ
K ⊗ IndSn

Sµ
K) ∼= Ind

Sm+m

Sλ∪µ
K.

Proposition 6.4. (i) For all f in Cm and g in Cn, there is a natural isomor-
phism

j∗(f) ⊗ j∗(g) ∼= j∗(fHg);

(ii) For all F in Pm and G in Pn, there is a natural isomorphism

j!(F )Hj!(G) ∼= j!(F ⊗G).

Proof. (i) Since j∗ and H are right exact functors, it is enough to consider the
case when f = hM and g = hN . Then we have to prove that

hM�N (V ⊗n+m) ∼= hM (V ⊗m) ⊗ hN (V ⊗n).

This follows from the isomorphism:

HomSm+n
(Ind

Sm+n

Sm×Sn
(M ⊗N), V ⊗m+n) = HomSm×Sn

(M ⊗N, V ⊗m ⊗ V ⊗n)

= HomSm
(M,V ⊗m) ⊗ HomSn

(N, V ⊗n).

(ii) It is enough to assume that F and G are projective generators: F = Γλ

and G = Γµ. Thanks to Lemma 4.5, we have

j!(F ) = H0(Sλ,−) = hK[Sm/Sλ] , j!(G) = H0(Sµ,−) = hK[Sn/Sµ]

So the result follows from the isomorphism (6).
�

Since the functors tM , M ∈ Sm
V , form a family of injective cogenerators, we

obtain the following result, which is dual to Proposition 6.1.

Proposition 6.5. There exists a unique biadditive functor

N : Cm × Cn → Cm+n

such that:

(i) tMNtN = tM�N ;
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(ii) the functor N is left exact with respect to both variables;
(iii) the functor N equips the category

⊕
d≥0 Cd with a symmetric monoidal

structure;
(iv) For all f in Cm and g in Cn, there is a natural isomorphism

j∗(f) ⊗ j∗(g) ∼= j∗(fNg);

(v) For all F in Pm and G in Pn, there is a natural isomorphism

j∗(F )N j∗(G) ∼= j∗(F ⊗G).

The rest of this section is devoted to the relationship between the three bifunctors
H,N,�.

Lemma 6.6. For all M in Sm
V and N in Sn

V , there are natural isomorphisms

tM�tN
∼= tM�N

∼= tMHtN ,

hM�hN
∼= hM�N

∼= hMNhN .

Proof.

(tM�tN )(X) = M ⊗Sm
(N ⊗Sn

(Res
Sm+n

1m×Sn
(X))

∼= (M ⊗N)Sm×Sn
(Res

Sm+n

Sm×Sn
(X))

∼= ((M ⊗N)Sm⊗Sn
K[Sm+n]) ⊗Sm+n

X

∼= tM�N (X).

Similarly:

(hM�hN )(X) = HomSm
(M,HomSn

(N,Res
Sm+n

1m×Sn
(X)))

∼= HomSm×Sn
(M ⊗N,Res

Sm+n

Sm×Sn
(X))

∼= HomSn+m
(M �N,X)

∼= hM�N (X).

To show that tM�N
∼= tMHtN ,, observe that it holds when M is free, because

tM
∼= hM∨ . It follows for a general M from the right exactness of the tensor and

H-products. The proof that hM�N
∼= hMNhN is similar. �

Corollary 6.7. The left exact bifunctor N is balanced, meaning that it is exact
provided one of the arguments is injective.

Let us observe that the bifunctors H and � (resp. N and �) take the same values
on projective (resp. on injective) objects and H (resp. N) is right (resp. left) exact
with respect to both arguments. It follows that there are natural transformations:
fHg → f�g and f�g → fNg.

Lemma 6.8. The natural transformation fHg → f�g is an isomorphism, provided
g is projective, and the natural transformation f�g → fNg is an isomorphism
provided g is injective. Moreover the composite transformation fHg → fNg is an
isomorphism when both arguments are simultaneously injective or projective.

Lemma 6.9. For all f in Cm and g in Cn, there is a natural isomorphism

j∗(f) ⊗ j∗(g) ∼= j∗(f�g).

Proof. We have:

j∗(f�g)(V ) = f(g(Res
Sm+n

1m×Sn
V ⊗m+n))

For all W ∈ V and N ∈ Sn
V , there is a natural isomorphism

g(W ⊗N) ∼= W ⊗ g(N),
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where Sn acts on the second factor of W ⊗ N . Now: V ⊗m+n = V ⊗m ⊗ V ⊗n as
Sn-modules, with trivial action on the first factor, so:

g(Res
Sm+n

1m×Sn
V ⊗m+n) = V ⊗m ⊗ g(V ⊗n).

Similarly, the group Sm acts trivially on g(V ⊗n), and we obtain:

j∗(f�g)(V ) ∼= f(V ⊗m) ⊗ g(V ⊗n).

�

Corollary 6.10. The functor j∗ sends the morphisms fHf ′ → f�f ′ → fNf ′ to
isomorphisms.

We end this section with the derived functors of H and N. We let TorH

∗ (f ,g) be
the left derived functors of the bifunctor H. Since H is balanced, taking projective
resolutions p• → f and q• → g, we get isomorphisms:

TorH

∗ (f ,g) = H∗(p•Hg) ∼= H∗(fHq•) ∼= H∗(p•Hq•).

Similarly, we let TorN

∗ (f ,g) be the right derived functors of the bifunctor N. Since N

is balanced, it can be computed via injective resolutions of f and g. By Proposition
3.7: TorH

k = 0 = TorN

k when k > 2. Moreover, the following variant of the Künneth
spectral sequence holds.

Lemma 6.11. For F in Pm and G in Pn, there are spectral sequences

E2
pq =

⊕
s+t=q

TorH

p (Lsj!(F ), Lqj!(G)) ⇒ Lp+qj!(F ⊗G)

and

Epq
2 =

⊕
s+t=q

TorN

p (Rsj∗(F ), Rqj∗(G)) ⇒ Rp+qj∗(F ⊗G)

Moreover E2
pq = 0 = Epq

2 provided p > 2.

Proof. Let P• → F and Q• → G be projective resolutions. Then P•⊗Q• → F → G
is also a projective resolution. Thus L∗j!(F ⊗ G) = H∗(j!(P• ⊗ Q•)). We have
j!(P• ⊗ Q•) ∼= j!(P•)Hj!(Q•). Since H is balanced, and both j!(P•) and j!(Q•)
are degreewise projective complexes whose homology is respectively L∗j!(F ) and
L∗j!(T ), the result follows by repeating the proof of the classical Künneth spectral
sequence. �

7. Composition and coherent functors

The composite of two strict polynomial functors is a strict polynomial functor
[6]. The aim of this section is to lift the resulting bifunctor:

◦ : Pn × Pm → Pnm

(F,G) 7→ F ◦G

at the level of coherent functors.
Composition of functors is exact with respect to the first variable. Although the

functor G 7→ F ◦G is not additive for n > 1, it still has some exactness properties
with respect to the second variable.

Definition 7.1. Let A and B be abelian categories. For any short exact sequence

(7) 0 // A1
α // A

β // A2
// 0

in A, define δ1, δ2 : A⊕ A1 → A by

δ1(a, a1) = a+ α(a1) , δ2(a, a1) = a,
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and γ = T (δ1) − T (δ2). A covariant functor T : A → B preserves reflective coequal-
izers if the following sequence is exact:

(8) T (A⊕A1)
γ // T (A)

T (β) // T (A2) // 0 .

Observe that when T is an additive, then it preserves reflective coequalizers if,
and only if, T is right exact. Let us observe also that if the exact sequence (7)
splits then the sequence (8) is exact for any functor T . If A has enough projective
objects, then any (possibly nonadditive) functor, from the category of projective
objects in A to the category B, has a unique (up to unique isomorphism) extension
as a functor A → B which preserves reflective coequalizers.

We leave to the reader to define the dual notion, a functor preserving coreflective
equalizers. An additive functor has this property if, and only if, it is left exact.

Lemma 7.2. For any F in Pn, the functor

Pm →Pnm

G 7→F ◦G

preserves reflective coequalizers and coreflective equalizers.

Proof. Take any short exact sequence in Pm:

0 // G1
α // G

β // G2
// 0 .

After evaluating at V ∈ V , the corresponding sequence

0 → G1(V ) → G(V ) → G2(V ) → 0

splits. Therefore for any F , the sequence

F (G(V ) ⊕G1(V )) → F (G(V )) → F (G2(V )) → 0

is exact. This shows that F ◦ (−) respects reflective coequalizers. Similarly for
coreflective equalizers. �

For a natural number m and a group G, let Sm oG be the wreath product, which
by definition is the semi-direct product Gm

o Sm. For M in Sm
V and N in GV ,

it acts on M ⊗N⊗m. In particular, for G = Sn, let

M •N := IndSmn

SmoSn
(M ⊗N⊗m)

It defines a functor:
• : Sm

V × Sn
V → Smn

V

Lemma 7.3. There is a unique (up to isomorphism) bifunctor

� : Cm × Cn → Cmn

with the following properties

(i) The functor � preserves reflective coequalizers with respect to each variables;
(ii) hM � hN = hM•N .

We define another bifunctor

◦̄ : Cm × Cn → Cmn.

Because H is a symmetric monoidal structure on ⊕d≥0Cd, the functor gHm has a
natural action of Sm for g in Cn. We put (compare with [4]):

f ◦̄g := f(gHm).

Lemma 7.4. For all f in Cm and N in Sn
V , there is a natural isomorphism:

f � hN
∼= f ◦̄hN .

In particular, f � g is an exact functor on f , provided g is projective.
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Proof. Since f � g is right exact on f and f ◦̄g is exact on f , it is enough to consider
the case f = hM . Then:

hM•N (X) = HomSmn
(IndSmn

SnoSm
(M ⊗N⊗m), X)

= HomSnoSm
(M ⊗N⊗m,ResSmn

SnoSm
(X))

= HomSm
(M,Hom(Sn)m(N⊗m,ResSmn

(Sn)m(X)))

= hM (hN�m)(X)

= (hm◦̄hN )(X).

�

Proposition 7.5. (i) For all f in Cm and g in Cn, there is a natural isomor-
phism

j∗(f) ◦ j∗(g) ∼= j∗(f � g).

(ii) For all F in Pm and G in Pn, there is a natural isomorphism

j!(F ) � j!(G) ∼= j!(F ◦G).

Proof. (i) Since j∗ is right exact and � respects reflective coequalizers, it suf-
fices to consider the case when f = hM and g = hN . Then we have:

j∗(f) ◦ j∗(g) ∼= HomSm
(M, (Homesn

(N, V ⊗n))⊗m)

= HomSm
(M,Hom(Sn)m(N⊗m,ResSmn

(Sn)m(V ⊗mn)))

By the previous computation the last group is isomorphic to hM•N (V ⊗mn).
(ii) It is enough to assume that F and G are projective generators: F = Γµ,

G = Γν . We set M = K[Sm/Sµ] and N = K[Sn/Sν ]. Then we have
j!(F ) = hM and j!(T ) = hN . Therefore j!(F ) � j!(G) ∼= hM•N . On the
other hand

F ◦G(V ) = Γmu(Γν(V )) HomSm
(M, (HomSn

(N, V ⊗n))⊗m)

= HomSm
(M,HomSn×···×Sn

(N⊗mRes
K[Smn]
Sn×···×Sn

(V ⊗mn)))

= HomSmoSn
(M ⊗N⊗m,Res

K[Smn]
esmoSn

(V mn))

= HomSmn
(N •M,V ⊗mn)

It follows that: j!(F ◦G) = hM•N .
�

Since the functors tM , M ∈ Sm
V form the family of injective cogenerators, by

duality we obtain the following result.

Proposition 7.6. There is a unique bifunctor

∗ : Cm × Cn → Cmn

such that:

(i) tM ∗ tN = tM•N ;
(ii) the functor ∗ respect coreflective equalizers with respect to both variables;

(iii) for all F in Pm and G in Pn, there is a natural isomorphism

j∗(F ) ∗ j∗(G) ∼= j∗(F ◦G),

(iv) for all f in Cm and g in Cn, there is a natural isomorphism

j∗(f) ◦ j∗(g) ∼= j∗(f ∗ g).
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Appendix A. Recollement of abelian categories

To reveal the relationship between the different abelian categories, we use the
language of recollements (see e.g. [3]). A recollement of abelian categories consists
of a diagram of abelian categories and additive functors

A ′ i∗ // A

i!

gg

i∗

ww
j∗ //

A ′′

j∗

ff

j!

xx

satisfying the following conditions:

(i) the functor j! is left adjoint to j∗ and the functor j∗ is left adjoint of j∗;
(ii) the unit IdA ′′ → j∗j! and the counit j∗j∗ → IdA ′′ are isomorphisms;

(iii) the functor i∗ is left adjoint of i∗ and i∗ is left adjoint of i!;
(iv) the unit IdA ′ → i!i∗ and the counit i∗i∗ → IdA ′ are isomorphisms;
(v) the functor i∗ : A ′ → Ker(j∗) is an equivalence of categories.

Example A.1. The following example is the paradigm of a recollement situation.
Let X be a space, C is a closed subset in X and U = X \ C its open complement.
Extension and restriction yield a recollement of sheaves categories:

Sh(C) i∗ // Sh(X)

i!

ii

i∗

uu
j∗ // Sh(U)

j∗

ii

j!
uu

.

The list of properties (i)-(v) can be somewhat shortened.

Proposition A.2. Let j∗ : A → A ′′ be an exact functor which satisfies (i) and
(ii): it admits both a left adjoint j! and a right adjoint j∗, and the unit IdA ′′ → j∗j!
and counit j∗j∗ → IdA ′′ are isomorphisms. Let A ′ be the full subcategory of A

with objects those A such that j∗A = 0. Then the full embedding i∗ : A ′ → A

has adjoint functors (i∗, i!) and the unit IdA ′ → i!i∗ and counit i∗i∗ → IdA ′ are
isomorphisms. In other words we have a recollement situation.

Proof. Let A in A and let εA: j!j
∗A→ A be the counit of the adjoint pair (j!, j

∗).
Because IdA ′′ → j∗j! is an isomorphism, we have j∗(Coker εA) = 0. It follows that
Coker(εA) lies in the subcategory A ′. So there is a well-defined functor i∗ : A → A ′

such that Coker(εA) = i∗i
∗A. The rest follows, using the short exact sequence of

natural transformations:

j!j
∗ ε
→ IdA → i∗i

∗ → 0

and the dual study of the unit of adjonction η which sums up in the following exact
sequence:

0 → i∗i
! → IdA

η
→ j∗j

∗ .

�

Remark A.3. Actually, if A is a category of modules over a ring (or, more generally,
if A is a Grothendieck category), then it is enough to assume that j∗ is an exact
functor which has a left adjoint functor j! such that the unit of adjonction: IdA ′′ →
j∗j! is an isomorphism. The existence of j∗ follows from [10, Proposition 2.2].

Example A.4. Recollements arise naturally when relating functor categories through
precomposition. Indeed, starting with a functor i : A → B, precomposition is an
exact functor:

j∗ : V
B → V

A

F 7→ F ◦ i.
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A classic result of D. Kan tells that it always admits adjoint functors, called the left
and the right Kan extension. By [9, §X.3, Corollary 3], the unit and the counit of
adjonction are isomorphisms when the functor i is a full embedding. A recollement
situation then arises by Proposition A.2.

In the case when i is a full embedding of K-linear categories, the functor j∗ and its
adjoints restrict to the subcategories of K-linear functors. Proposition 4.9 describes
the resulting recollement when the functor i is the full embedding of Lemma 2.1.

Another useful functor arises from a recollement: the functor j!∗ : A ′′ → A is
the image of the norm N : j! → j∗, the natural transformation which corresponds
to 1X , under the isomorphism

HomA (j!X, j∗X) ∼= HomA ′′(X, j∗j∗X) ∼= HomA ′′(X,X).

The functor j!∗ preserves simple objects, and every simple object in A is either the
image of a simple in A ′ by the functor i∗, or the image of a simple in A ′′ by the
functor j!∗.

We close with an immediate consequence of the Grothendieck spectral sequence
for a composite functor.

Proposition A.5. Assume in a recollement situation all abelian categories have
enough projective objects. For X in A ′′ and B in A , there are spectral sequences:

Epq
2 = Extp

A
(Lqj!(X), B) =⇒ Extp+q

A ′′ (X, j∗B)

and
Epq

2 = Extp
A

(B,Rqj∗(X)) =⇒ Extp+q
A ′′ (j∗B,X).
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