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CONTACT ISOTROPIC REALISATIONS OF JACOBI

MANIFOLDS

MARÍA AMELIA SALAZAR AND DANIELE SEPE

Abstract. This paper investigates the local and global theory of contact

isotropic realisations of Jacobi manifolds, which are contact realisations of min-
imal dimension. These arise in the study of integrable Hamiltonian systems

on contact manifolds, while also extending the Boothby-Wang construction of

regular contact manifolds. The main results of the paper are local smooth
and contact normal forms for contact isotropic realisations, which, amongst

other things, provide an intrinsic proof of the existence of local action-angle

coordinates for integrable Hamiltonian systems, as well as a cohomological cri-
terion to construct such realisations. Moreover, one of the smooth invariants

of such realisations is interpreted as providing a type of transversal projective

structure on the foliation of the underlying Jacobi structures.

1. Introduction

This paper studies a certain family of contact realisations of Jacobi manifolds. A
contact structure on a smooth manifold M is a maximally non-integrable smooth
hyperplane distribution H ⊂ TM (cf. Definition 1); these can be thought of as odd-
dimensional analogues of symplectic structures (which are closed, non-degenerate
2-forms). This analogy is far-reaching. For instance, as a symplectic manifold
(S, ω) gives rise to a Poisson bracket on C∞(S) (a Lie bracket which satisfies a
Leibniz-type rule) which is transitive, so can contact structures be seen as (odd
dimensional) transitive examples of Jacobi manifolds. A Jacobi structure on a
smooth manifold P is a local Lie bracket {·, ·} on the space of sections of some fixed
real line bundle L → P (cf. Definition 4 and [24, 26, 27, 28]). A contact manifold
(M,H) naturally comes equipped with a Jacobi bracket on the space of sections of
the line bundle TM/H →M , which is not necessarily trivial, or even trivialisable,
e.g. the projectivisation of the cotangent bundle with canonical contact structure
(cf. [1, Appendix 4] for more details). Continuing with the analogy

symplectic : Poisson = contact : Jacobi,

just as symplectic realisations of Poisson manifolds play an important role in under-
standing the geometry of Poisson structures (cf. [5, 6, 9, 22]), so do contact reali-
sations of Jacobi manifolds, i.e. surjective submersions φ : (M,H)→ (P,L, {·, ·})
which are Jacobi morphisms (cf. Remark 4). Intuitively, symplectic/contact reali-
sations contain information regarding the ‘integration’ of the Lie algebraic structure
encoded in a Poisson/Jacobi manifold; as such they should be thought of ‘desingu-
larisations’ of the underlying Poisson/Jacobi structures (cf. [6, Section 7] and [34,
Section 3.2]).
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The types of contact realisations considered in this paper are those of mini-
mal dimension, i.e. the dimension of the total space (M,H) is as small as possi-
ble. These are called contact isotropic realisations and are contact realisations
φ : (M,H) → (P,L, {·, ·}) with the extra condition that the fibres are ‘isotropic’.
Informally, this condition can be described as follows. For each m ∈ M , maximal
non-integrability of H induces a non-degenerate bilinear form on Hm, i.e. a sym-
plectic form. Then the fibres of φ are isotropic if, for each m ∈M , kerDmφ∩Hm is
an isotropic subspace (cf. Definition 12 for the precise notion). The simplest such
example is given by the Boothby-Wang construction of regular contact manifolds
(cf. [4, 19]), which can be seen as contact isotropic realisations of symplectic man-
ifolds viewed as Jacobi structures (cf. Example 15). Intuitively, contact isotropic
realisations exhibit the most rigid behaviour amongst contact realisations: this ob-
servation stems from the results concerning symplectic isotropic realisations of Pois-
son manifolds. These realisations can be used to study the geometry of integrable
Hamiltonian systems on symplectic manifolds (cf. [14, 17]); moreover, recently they
have been studied in relation to Poisson manifolds of compact type (cf. the forth-
coming [8]). The work in [14] provides local and global classifications of symplectic
isotropic realisations; this begs the question of whether analogous results hold for
contact isotropic realisations, especially in light of the recently introduced notion
of integrable Hamiltonian systems on contact manifolds (cf. [21, 30] and Section
6.1 for further details).

The aim of this paper is to classify contact isotropic realisations of Jacobi man-
ifolds. The approach taken combines the framework of [14, 17] developed to study
symplectic isotropic realisations, with new techniques coming from recent work on
the integrability of Jacobi structures (cf. [10] and also [11] for even more general
methods applicable to Lie groupoids and algebroids). The main difficulty to ap-
ply the ideas of [14, 17] directly is the presence of non-trivial line bundles, which
complicate matters both conceptually and technically. This is precisely why the
methods of [10, 11] are employed in this paper; the upshot of this approach is to
provide intrinsic results on contact/Jacobi manifolds whose underlying line bundles
are non-trivial, of which there are not many in the existing literature, while also
extending results on the specific types of realisations under consideration in this
paper (cf. [2, 4, 21]).

The isotropy condition imposes a restriction on the type of Jacobi manifolds ad-
mitting a contact isotropic realisation. Associated to a Jacobi structure (P,L, {·, ·})
is a Lie algebroid structure on the first jet bundle J1L of L→ P , which consists
of a Lie bracket on Γ(J1L) and a compatible map ρ : J1L → TP (cf. Proposi-
tion 2 and [10]). This plays a central role in this paper. A necessary condition
for (P,L, {·, ·}) to admit a contact isotropic realisation is that the structure be
regular with even dimensional leaves, i.e. ρ is of constant even rank (cf. Lemma
3). Examples of such Jacobi manifolds are regular Poisson structures, zero Jacobi
structures (defined on any line bundle), and locally conformal symplectic manifolds
(cf. Example 7). Once this necessary condition is established, the first main result
is a smooth classification of contact isotropic realisations of a fixed Jacobi mani-
fold (P,L, {·, ·}); as in the case of symplectic isotropic realisations, there are two
invariants:
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• a period lattice Σ ⊂ ker ρ ⊂ J1L (cf. Definition 11), all of whose sections
are holonomic, i.e. of the form j1u for some u ∈ Γ(L) (cf. Corollary 12);
• the Chern class c ∈ H2(P ; Σ) (cf. Definition 14).

This follows from Theorem 9, whose proof is entirely analogous to that of [32, The-
orem 8.15]. In fact, the content of Theorem 9 is that a smooth local model for a
contact isotropic realisation with period lattice Σ is given by ker ρ/Σ→ P .

The second main result is a contact local normal form (in a neighbourhood of a
fibre) for contact isotropic realisations. Recall that, given a line bundle L→ P , its
first jet bundle J1L comes equipped with a canonical contact structure H, defined
as the kernel of the Cartan 1-form θcan ∈ Ω1(J1L;L) (cf. Example 2 for further
details).

Contact model. A contact isotropic realisation φ : (M,H) → (P,L, {·, ·}) is
locally isomorphic to

π : (ker ρ/Σ, ker(θ0 + π∗β))→ (P,L, {·, ·}),

where θ0 ∈ Ω1(ker ρ/Σ;L) is induced by θcan and β ∈ Ω1(P ;L) is a locally defined
1-form determined (not uniquely!) by the Jacobi bracket.

This is the content of Theorem 13, which provides a more precise statement. While
there exist similar results in the literature regarding integrable Hamiltonian systems
on contact manifolds (cf. the theorems on existence of action-angle coordinates in
[2, 21]), the above statement and the proof presented in this paper are more in-
trinsic, as the various geometric objects related to Jacobi structures are used in a
natural fashion to obtain the local normal form.

Given a regular Jacobi manifold (P,L, {·, ·}) whose foliation F consists solely of
even dimensional leaves, a natural question to ask is to construct all its contact
isotropic realisations. The third main result of the paper answers this question
once a suitable Σ ⊂ ker ρ has been fixed, by providing a cohomological criterion
which is analogous to that of [14, Theorems 4.2 and 4.3].

Cohomological criterion. A cohomology class c ∈ H2(P ; Σ) is the Chern class
of a contact isotropic realisation of (P,L, {·, ·}) if and only if Dc = [ω], where
D : H2(P ; Σ) → H2(F ;L) is a homomorphism induced by the classical Spencer
operator of J1L, and [ω] is a the cohomology class of a foliated 2-form with values
in L determined by the Jacobi bracket.

The above criterion provides both a common framework and an extension of var-
ious existing results in the literature, such as the criterion for constructing reg-
ular contact manifolds (cf. [19, Theorems 7.2.4 and 7.2.5]), and the cohomologi-
cal criterion for the existence of completely integrable contact forms of toric type
(cf. [2]). At the heart of the above result lies the classical Spencer operator
D : Γ(J1L)→ Ω1(P ;L), which recently has been discovered to play a central role in
Jacobi geometry (cf. Observation 6 for a definition of D and [10] for further results).

In analogy with a symplectic isotropic realisation of a Poisson manifold, associated
to which is an integral affine structure transversal to the symplectic foliation, the
last main result of this paper characterises the underlying geometric structure on
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the foliation F of a Jacobi manifold (P,L, {·, ·}) admitting a contact isotropic re-
alisation. The idea is to use give an intrinsic characterisation of the period lattice
Σ ⊂ J1L, i.e. which does not rely on the given realisation (cf. Definition 18).
As expected from the case L = P × R, the ensuing geometric structure on F is
transversally integral projective, i.e. it gives rise to a foliated atlas with val-
ues in real projective spaces along with an integrality condition (cf. Definition 21);
what is surprising is that this result holds even when L is non-trivial: this is the
content of Theorem 19.

The structure of this paper is as follows. Section 2 recalls basic notions and
properties of contact and Jacobi manifolds which are used throughout; particular
importance is given the Lie algebroid associated to a Jacobi manifold, described
from the point of view developed in [10] (cf. Section 2.3). Contact isotropic realisa-
tions are introduced and studied in Section 3. After establishing a simple necessary
condition on the Jacobi structure for the existence of such a realisation (cf. Sec-
tion 3.1), there is an intermezzo dealing with properties of the family of Jacobi
manifolds that occur: these share many properties with regular Poisson manifolds.
This is the content of Section 3.2. The smooth and contact local normal forms of
contact isotropic realisations are constructed in Sections 3.3 and 3.4 respectively.
The question of constructing contact isotropic realisations, both locally and glob-
ally, is dealt with in Section 4. Any regular Jacobi manifold all of whose leaves
are even dimensional admits locally a contact isotropic realisation (cf. Section 4.1);
the cohomological problem of glueing these local constructions together is solved
in Section 4.2. The geometric structure induced by a contact isotropic realisation
on the foliation of a Jacobi manifold is introduced in Section 5. Some interesting
examples and applications of the theory developed are discussed in Section 6. These
include integrable Hamiltonian systems on contact manifolds, which are shown to
be equivalent to contact isotropic realisations of a special class of Jacobi manifolds
(cf. Section 6.1), and contact isotropic realisations of Poisson manifolds and of
locally conformal symplectic manifolds (viewed as Jacobi structures on the trivial
line bundle) in Sections 6.2 and 6.3 respectively. Throughout this note, there are
two types of comments, labelled Observation and Remark respectively; those with
the former label are central to the problems studied in this paper, while those with
the latter may be skipped at a first reading.

Notation and conventions. Throughout the paper, whenever a collection of open
sets {Ui} is considered, Ui1i2...iN = Ui1 ∩ . . . ∩ UiN for any finite set of indices
i1, . . . , iN . All line bundles considered in this paper are real unless otherwise stated.
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tality at various stages of the project. M.A.S. was partly supported by the DevMath
programme of the Centre de Recerca Matemàtica and by the Max Planck Institute
for Mathematics in Bonn. D.S. was partly supported by ERC starting grant 279729
and by the NWO Veni grant 639.031.345.
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2. Generalities on contact and Jacobi manifolds

This section recalls basic definitions, properties and examples of contact and
Jacobi manifolds that are used throughout this paper (cf. [3, 10, 15, 18, 28] amongst
others for further details and proofs).

2.1. Contact manifolds and their properties.

Definition 1 (Contact manifolds). A contact manifold is a pair (M,H) con-
sisting of a manifold M and a smooth hyperplane distribution H ⊂ TM with the
property that the curvature map defined on sections by

c : Γ(H)× Γ(H)→ TM/H, c(X,Y ) := [X,Y ] mod H,(1)

is fibre-wise non-degenerate. The distribution H is said to be a contact distribu-
tion.

Remark 1. If H is co-orientable, i.e. the line bundle TM/H → M is trivialisable,
then a choice of trivialisation for TM/H → M corresponds to a globally defined
1-form θ ∈ Ω1(M) satisfying H = ker θ. In this case, the condition of equation (1)
can be rephrased as non-degeneracy of dθ|H .

Observation 1. Most works in the literature deal with contact manifolds (M,H)
whose associated line bundle L := TM/H → M is co-oriented (cf. Remark 1).
However, there are natural examples of contact manifolds which do not satisfy
this hypothesis, e.g. the canonical contact structure on the projectivisation of any
cotangent bundle (cf. Example 2 for other important examples which are central
to this work). In general, given a contact manifold (M,H) as in Definition 1, the
contact structure H can be described tautologically as the kernel of θ ∈ Ω1(M,L),
where

θ : TM → L = TM/H

is the projection. The condition of equation (1) can be rephrased as fibre-wise
non-degeneracy of (X,Y ) 7→ θ([X,Y ]), for X,Y ∈ H. In fact, contact manifolds
can be equivalently described as pairs (M, θ) consisting of a smooth manifold M
and a point-wise surjective 1-form θ ∈ Ω1(M,L), such that the curvature defined
on sections by

(2) Γ(ker θ)× Γ(ker θ)→ Γ(L), (X,Y ) 7→ cθ(X,Y ) := θ([X,Y ])

is fibre-wise non-degenerate. Throughout this paper, both points of views are used
for different purposes and the 1-form satisfying θ = kerH is referred to as a gen-
eralised contact form.

Example 2. Let π : L → P a line bundle and denote by pr : J1L → P the first
jet bundle

J1L|x = {j1
xu | u ∈ Γ(L)}.

Any (local) section u ∈ Γ(L) induces a (local) section j1u ∈ Γ(J1L) which is defined
by p 7→ j1

pu; these are called holonomic sections. The Cartan contact form

θcan ∈ Ω1(J1L, pr∗L)

detects holonomic section in the sense that a section ξ of J1L is holonomic if and
only if ξ∗θcan = 0. The Cartan contact form is defined as follows. By abuse of
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notation denote by pr : J1L → L the canonical projection and let X ∈ Tj1puJ
1L.

Then
θcan(X) := Dpr(X)−Du(Dπ(X)),

lies in kerDπ ∼= pr∗L. As its name suggests, the Cartan contact form θcan is a
generalised contact form.

Throughout this subsection, fix a contact manifold (M,H) unless otherwise
stated, and denote by

L = TM/H

the induced line bundle and by θ : TM → L the projection.

Definition 3. (Reeb vector fields) A Reeb vector field of the contact manifold
(M,H) is any vector field R satisfying

[R,Γ(H)] ⊂ Γ(H).

The vector space of Reeb vector fields is henceforth denoted by XReeb(M,H).

The following lemma relates XReeb(M,H) with Γ(L) (cf. [10] for its proof).

Lemma 1. The map

XReeb(M,H)→ Γ(L)

R 7→ θ(R)

is a vector space isomorphism.

Observation 2. The vector field Ru associated to u ∈ Γ(L) is called the Reeb
vector field of u and is uniquely defined by θ(Ru) = u and θ([Ru, H]) = 0, where
θ ∈ Ω1(M,L) is a generalised contact form. If f ∈ C∞(M), it can be checked that

Rfu = fRu + c]θ(−df |H ⊗ u),

where θ([c]θ(η), ·]) = −η for any section η ∈ Γ(Hom(H,L)) (and the convention
followed is the same as in [28]).

Remark 2. The above notion of Reeb vector fields generalises the commonly found
notion of the Reeb vector field associated to a co-oriented contact structure, which,
in the above description, is nothing but R1.

The isomorphism of Lemma 1 allows to define another geometric structure as-
sociated to a contact manifold (M,H), namely the Reeb bracket on Γ(L), given
by

(3) {u, v} := θ([Ru, Rv]),

for u, v ∈ Γ(L). The triple (M,L, {·, ·}) gives rise to a Jacobi structure, as explained
in the next subsection.

2.2. Jacobi structures. As symplectic forms are special examples of Poisson
structures, so are contact distributions instances of a more general geometric struc-
ture, first introduced in [24, 26], and further explained in [28].

Definition 4 (Jacobi structure). A Jacobi structure on a manifold P is a pair
(L, {·, ·}) consisting of a line bundle L → P , and a Lie bracket {·, ·} on Γ(L) with
the property that it is local, in the sense that

supp({u, v}) ⊂ supp(u) ∩ supp(v) ∀u, v ∈ Γ(L),



CONTACT ISOTROPIC REALISATIONS OF JACOBI MANIFOLDS 7

where supp(u) denotes the support of u. The triple (P,L, {·, ·}) consisting of a
manifold P and a Jacobi structure (L, {·, ·}) is henceforth referred to as a Jacobi
manifold.

Observation 3 (cf. [26]). If L = P × R, a Jacobi structure {·, ·} is completely
described by a pair (Λ, R) ∈ X2(P )× X(P ), satisfying

(4) JΛ,ΛK = 2R ∧ Λ, JΛ, RK = 0,

where J·, ·K is the Schouten bracket. The Lie bracket on Γ(L) = C∞(P ) is given by

{f, g} := Λ(df, dg) + f(Rg)− g(Rf),

for f, g ∈ C∞(P ).

Example 5. A contact manifold (M,H) comes equipped with a natural Jacobi
structure (L, {·, ·}), where L = TM/H → P and {·, ·} is the Reeb bracket (3).

Example 6. A Poisson manifold (P,Λ) is a manifold P along with a bivector
field Λ ∈ X2(P ), which satisfies JΛ,ΛK = 0. In light of Observation 3, Poisson
manifolds (P,Λ) are precisely Jacobi structures on P × R → P with ΛP = Λ and
RP ≡ 0.

Example 7. A locally conformal symplectic manifold is a triple (P, σ, τ),
where P is a manifold, (σ, τ) ∈ Ω2(P ) × Ω1(P ), σ is non-degenerate, dτ = 0, and
dσ = −τ ∧ σ. Following [28], given (P, σ, τ) define a bivector Λ ∈ X2(P ) and a
vector field R ∈ X(P ) uniquely by

ι(R)σ = −τ and ι(Λ](η))σ = −η
for all η ∈ Ω1(P ), where ι denotes the interior product. Then (P,ΛP , RP ) is a
Jacobi manifold (cf. [28]).

In the literature on Jacobi manifolds two types of maps between Jacobi manifolds
are considered, namely those which are, in some sense, ‘strictly’ Jacobi and those
which are up to some rescaling (conformal). The following definition provides a
common framework for both of the above types of maps in the more general setting
of Jacobi manifolds in the sense of Definition 4.

Definition 8 (Jacobi maps). Let (N,LN , {·, ·}N ) and (P,LP , {·, ·}P ) be Jacobi
manifolds such that there exists an isomorphism F : φ∗LP → LN . A map φ : N →
P is said to be Jacobi with bundle component F if for all u, v ∈ Γ(LP )

{F ◦ φ∗u, F ◦ φ∗v}N = F ◦ φ∗{u, v}P .

Observation 4. Fix a Jacobi manifold (P,L, {·, ·}). Let {Ui} be an open cover
of P with the property that, for each i, there exists a nowhere vanishing section
vi : Ui → L, which trivialises L|Ui ∼= Ui × R. Then, for each i, there is a unique
Jacobi structure (Ui × R, {·, ·}i := {·, ·}|Ui). If i, j are such that Uij 6= ∅, then
there exists a nowhere vanishing function gij : Uij → R such that vj = gijvi on
Uij . The Jacobi manifolds (Uij , Uij ×R, {·, ·}j |Uij ) and (Uij , Uij ×R, {·, ·}i|Uij ) are
Jacobi isomorphic with bundle component gij (viewed as a bundle isomorphism
Uij × R→ Uij × R). Conversely, given an open cover {Ui} of P such that

• for each i, there is a Jacobi structure on Ui × R;
• for each pair i, j with Uij 6= ∅, the Jacobi structures on Uij ×R are isomor-

phic with bundle component gij : Uij → GL(R);
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• the collection of nowhere vanishing functions {gij} satisfy the cocycle con-
dition, i.e. for all i, j, l for which Uijl 6= ∅, gil = gjlgij ;

then there exists a unique Jacobi structure on the line bundle L → P whose (iso-
morphism class) is uniquely defined by the collection of {gij} (cf. [15, Section
1.4]).

Example 9. If, in the above definition, LN and LP are trivial, and the bundle
component is the identity, the condition that φ : (N,LN , {·, ·}N )→ (P,LP , {·, ·}P )
is a Jacobi map is equivalent to asking that ΛN and RN are φ-related to ΛP and
RP respectively, where (ΛN , RN ) and (ΛP , RP ) are the bivector and vector fields
which uniquely determine the Jacobi structures on LN and LP respectively (cf.
Observation 3).

2.3. The Lie algebroid associated to a Jacobi manifold. Given a Jacobi
manifold (P,L, {·, ·}), the first jet bundle J1L → P can be endowed with the
structure of a Lie algebroid, which codifies the geometry of (P,L, {·, ·}) – cf. [7]
for a definition and examples of Lie algebroids. This Lie algebroid is described in
[23] for the trivial line bundle, in [13] in the general case, and more recently from
a different point of view in [10]. Its defining properties are given in the proposition
below, stated without proof (cf. [10]).

Proposition 2. Given a Jacobi manifold (P,L, {·, ·}), there exists a Lie algebroid
structure on J1L which is uniquely characterised by the following properties:

(I) The anchor map ρ : J1L→ TP satisfies

{u, fv} = f{u, v}+ Lρ(j1u)(f)v,

for all u, v ∈ Γ(L), f ∈ C∞(M);
(II) The Lie bracket on Γ(J1L) satisfies

[j1u, j1v] = j1{u, v}, ∀u, v ∈ Γ(L).

This Lie algebroid is henceforth referred to as the associated Lie algebroid to the
Jacobi manifold (P,L, {·, ·}).

Example 10 (Trivial line bundle, cf. [12]). For Jacobi structures on the trivial
line bundle L = P × R, uniquely defined by a pair (Λ, R) as in Observation 3, the
Lie algebroid structure on J1L = J1P = T ∗P ⊕ R has anchor ρ = ρΛ,R given by

ρ(η, λ) = Λ]P (η) + λRP ,

for any element (η, λ) ∈ T∗P ⊕ R, and Lie bracket defined by

[(η, f), (ξ, g)] = ([η, ξ]Λ−iR(η∧ξ)+fLR(ξ)−gLR(η),Λ(η, ξ)+Lρ(η,f)(g)−Lρ(ξ,g)(f)),

for any two sections (η, f), (ξ, g) ∈ Γ(J1P ).

Observation 5. For a contact manifold (M,H), where H = ker θ, with θ ∈
Ω1(M,L), the Lie algebroid structure of J1L associated to the underlying Jacobi
structure defined in Example 5 can be expressed in terms of the Reeb vector fields,
and the curvature map cθ (cf. equation (2)). Using the defining property (I) of
the anchor and the definition of the Reeb bracket of equation (3), it follows that
ρ(j1u) = Ru. This implies that, given (u, η) ∈ Γ(J1L),

ρ(u, η) = Ru + c]θ(η|H) = Ru + c]θ(D(u, η)|H).
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Observation 6 (The Spencer operator of a Jacobi manifold, cf. [10]). The first
jet bundle J1L→ P fits into a short exact sequence of vector bundles

(5) 0→ T∗P ⊗ L i→ J1L
pr→ L→ 0,

where pr : J1L→ L is the standard projection, and i(df ⊗u) = fj1(u)− j1(fu) for
f ∈ C∞(P ) and u ∈ Γ(L). While the above sequence is not canonically split, there
is a canonical splitting at the level of sections, which is very useful when studying
geometric structures on J1L. This splitting, known as the Spencer decomposi-
tion, is used extensively in this paper; it is defined by u 7→ j1u, for u ∈ Γ(L). This
induces the Spencer decomposition

Γ(J1L) ∼= Γ(L)⊕ Γ(Hom(TP,L)),

where the C∞(P )-module structure on the right hand is given by

f · (u, φ) = (fu, φ+ df ⊗ u).

The projection to the second component

D : Γ(J1L)→ Ω(P ;L), (u, η) 7→ η

is the so-called classical Spencer operator; D is compatible with the Lie alge-
broid of a Jacobi manifold (P,L, {·, ·}) in the following sense. First, L is a repre-
sentation of J1L with flat connection uniquely defined by

∇ : Γ(J1L)× Γ(L)→ Γ(L), ∇j1u(v) = {u, v}(6)

(and extended using the Leibniz rule, cf. [10] for details). Secondly, D satisfies the
following conditions (of Spencer operators on Lie algebroids [11])

Dρ(α)(α
′) = ∇α′(pr(α)) + pr([α, α′])(7)

DX [α, α′] = ∇α(DXα
′)−D[ρ(α),X]α

′ −∇α′(DXα) + D[ρ(α′),X]α,(8)

for any α, α′ ∈ Γ(J1L) and X ∈ X(P ). Henceforth, the above Spencer decomposi-
tion is going to be used tacitly unless otherwise stated.

Jacobi manifolds whose underlying characteristic distribution Im ρ ⊂ TP has
constant rank play an important role in this paper (cf. Lemma 3).

Definition 11. A Jacobi manifold (P,LP , {·, ·}) is said to be regular of corank k
if, for all p ∈ P , dim ker ρP,p = k.

Remark 3. There exist other notions of ‘regular’ Jacobi manifolds in the literature
which are different to the one of Definition 11 (cf. [16]).

3. Contact isotropic realisations: definition and invariants

3.1. Definition and basic properties. The following definition introduces the
main object studied in this paper.

Definition 12 (Contact isotropic realisations). A contact isotropic realisation
of a Jacobi manifold (P,LP , {·, ·}) is a contact manifold (M,H) together with a
surjective submersion φ : (M,H) → (P,LP , {·, ·}) with connected, compact fibers
satisfying the following properties

(IR1) φ is a Jacobi map with bundle component F : φ∗(LP )→ LM (cf. Definition
8);
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(IR2) H = ker θ is transversal to φ, i.e.

H + KerDφ = TM ;

(IR3) KerDφ ⊂ (KerDφ)⊥, where

(KerDφ)⊥ := ρM (φ∗J1LP )

is the pseudo-orthogonal distribution of kerDφ, where φ∗J1LP is identified
with its image in J1LM via the map F .

Henceforth, whenever referring to an isotropic contact realisation φ : (M,H)→
(P,LP , {·, ·}), the dimensions of M and of P are fixed to be 2n+ 1 and 2n+ 1− k
respectively, unless otherwise stated.

Remark 4.

• The assumption on compactness of the fibres of a contact isotropic realisa-
tion can be weakened for what follows, but it is imposed at this stage to
simplify the exposition;
• A surjective submersion φ : (M,H) → (P,LP , {·, ·}) with connected fibres

satisfying only properties (IR1) and (IR2) is called a contact realisation.

Observation 7. Each of the properties in Definition 12 have important implica-
tions.

(1) Property (IR1) implies commutativity of the following diagram

J1LM
ρM // TM

Dφ

��
φ∗J1LP

φ∗

OO

ρM
// φ∗TP,

where ρM , ρP are the anchor maps for the Jacobi structures on P and
M respectively, and φ∗ : φ∗J1LP → J1LM is the injective vector bundle
morphism given by j1u 7→ j1(Fφ∗u). This can be seen as follows. Consider
{u, gv}P for any sections u, v ∈ Γ(L) and any function g ∈ C∞(P ); using
the defining property (I) of the anchor of a Lie algebroid associated to a
Jacobi structure together with property (IR1), it can be shown that

φ∗(ρP (j1u)g) = ρM (j1(Fφ∗u)φ∗g),

which, in turn, implies the claimed result;
(2) Property (IR2) can be used to show that for all m ∈ M , dim(Hm ∩

kerDmφ) = k − 1, since

dim(Hm + kerDmφ)− dimHm − dim kerDmφ = dim(Hm ∩ kerDmφ)

and by property (IR2), for all m ∈M , Hm + kerDmφ = TmM ;
(3) When (P,LP , {·, ·}) is Poisson, condition (IR3) is equivalent to requiring

that, for all m ∈M , the vector space kerDmφ∩Hm is isotropic with respect
to the symplectic structure on Hm induced by a suitable choice of contact
form (cf. [25] for details). This explains the nomenclature used in the
definition.
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Not all Jacobi manifolds admit isotropic contact realisations; in fact, a necessary
condition is that the structure be regular and all its leaves be even dimensional. This
is the content of the next lemma, which should be compared to [32, Proposition
8.10], which proves an analogous statement for isotropic realisations of Poisson
manifolds.

Lemma 3. For a contact isotropic realisation φ : (M,H) → (P,LP , {·, ·}) the
Jacobi structure on P is regular with corank equal to k, and all its leaves are even
dimensional.

Proof. Fix points p ∈ P and m ∈ M such that m ∈ φ−1(p). Using item (1) of
Observation 7,

(9) rk ρP,p(J
1
p (LP ))) = rk (ρM,m ◦ φ∗(J1LP ))− rk ker(Dφ|ρM,m◦φ∗(J1LP )).

On the one hand, property (IR2) implies that ρM ◦φ∗ : φ∗J1LP → TM is injective:
indeed, Observation 5 gives that for (u, η) ∈ Γ(LP )⊕ Ω1(P,LP ) ' Γ(J1LP ),

ρM (φ∗(u, η)) = RF (φ∗u) − c](F ◦ (φ∗η|H)).

If ρM,m(φ∗(u, η)) = 0, then RF (φ∗u)(m) = c](F ◦ (φ∗η|H))(m) ∈ H. By definition
of the Reeb vector field, this means that

F (φ∗u)(m) = RF (φ∗u)(m) modH = 0.

Hence, F ◦ (φ∗ηm|H) = 0 which in turns implies that φ∗ηm|H = 0. Condition (IR2)
implies that Dφ|Hm : Hm → Tφ(m)P is surjective (as φ is a surjective submersion);
thus φ∗ηm|H = 0 holds if and only if ηφ(m) = 0, thus proving injectivity of ρM ◦φ∗.

Condition (IR3) gives that rk ker(Dφ|ρM◦φ∗J1LP ) = rk kerDφ = k. By defini-
tion rk J1LP = 2n− k + 2, while injectivity of ρM ◦ φ∗ implies that

rk ρM,m(φ∗J1LP ) = 2n− k + 2;

equation (9) yields rk ρP,p(J
1
p (LP ))) = 2n+ 2− k − k = 2n+ 2− 2k. Since p ∈ P

is arbitrary, the proof of the lemma is completed. �

3.2. Properties of regular Jacobi manifolds all of whose leaves are even
dimensional. In light of Lemma 3 a necessary condition for a Jacobi manifold
to admit a contact isotropic realisation is that it is regular and all its leaves are
even dimensional. The aim of this subsection is to prove some properties of Jacobi
manifolds of this kind, which generalise those enjoyed by regular Poisson manifolds
(which are an example of this family of Jacobi structures). Throughout this sec-
tion, let (P,LP , {·, ·}) be a regular Jacobi manifold all of whose leaves are even
dimensional, unless otherwise stated. The notation employed below follows from
that of Section 3.1.

Proposition 4. Let (P,LP , {·, ·}) be a regular Jacobi manifold with even dimen-
sional leaves. Then π : ker ρP → P is a bundle of abelian Lie algebras, so that the
inclusion ker ρP ↪→ J1LP is a morphism of Lie algebroids.

Proof. Since ker ρP is the kernel of the anchor ρ : J1LP → TP and the restric-
tion of π : J1LP → P to ker ρP is a vector bundle, it follows that π : ker ρP → P
is a bundle of Lie algebras. It remains to show that each such Lie algebra is abelian.
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Let ν∗ ⊂ T∗P denote the conormal bundle of the regular foliation F whose
distribution is TF := Im (ρ : J1LP → TP ). By assumption, the corank of the
Jacobi structure is k, which implies that the rank of ν∗ → P is k− 1. The claim is
that ker ρP fits in a short exact sequence of vector bundles

0→ ν∗ ⊗ LP → ker ρP → LP → 0,

where the projection ker ρP → LP is nothing but the restriction of pr : J1LP → LP
(cf. Observation 6). To this end, it suffices to prove that

(10) ν∗ ⊗ LP = ker ρP ∩ (T∗P ⊗ LP ) = ker pr|ker ρP .

For, if equation (10) holds, then dimension counting implies that the restriction pr :
ker ρP → LP is surjective. First, it is shown that ν∗ ⊗ LP ⊂ ker ρP . Suppose that
df⊗u ∈ Γ(ν∗⊗LP ), and fix g ∈ C∞(P ) and v ∈ Γ(LP ). Using the C∞(M)-module
structure of the Spencer decomposition of Γ(J1LP ) (cf. Observation 6), have that
i(df ⊗ u) = fj1u− j1(fu), and therefore ρP (i(df ⊗ u)) = fρP (j1u)− ρP (j1(fu)).
The defining property (I) of the anchor implies that

Lρ(df⊗u)(g)v = fLρ(j1u)(g)v − Lρ(j1(fu))(g)v

= f({u, gv} − g{u, v})− ({fu, gv} − g{fu, v})
= −Lρ(dg⊗v)(f)u = 0.

(11)

This shows that ν∗ ⊗ LP ⊂ ker ρP ∩ (T ∗P ⊗ LP ). In order to show that equality
holds, it suffices to check that, for each p ∈ P , dim ker ρP,p ∩ (T∗P ⊗ LP )p =
k − 1. To this end, note that ker ρP ∩ (T ∗P ⊗ LP ) = ker ρP |T∗P⊗LP . The map
ρP : T ∗P ⊗ LP → TP is, in fact, antisymmetric, i.e. for any η, ξ ∈ T∗P ⊗ LP ,
η(ρ(ξ)) = −ξ(ρ(η)). This can be checked directly from the defining property of the
anchor ρP (in the case of trivial coefficients, this map is given by the sharp of a
bivector). Thus, for each p ∈ P , the vector space ρP,p(T

∗
pP ⊗ LP,p) ⊂ TpF is even

dimensional. On the other hand, since k ≥ dim ker ρP,p|T∗pP⊗LP,p ≥ k−1, it follows
that

2n− 1 ≤ dim ρP,p(T
∗
pP ⊗ LP,p) ≤ 2n,

with dim ρP,p(T
∗
pP ⊗LP,p) = 2n if and only if dim ker ρP,p|T∗pP⊗LP,p = k− 1. Since

dim ρP,p(T
∗
pP ⊗ LP,p) is even dimensional, it follows that dim ker ρP,p|T∗pP⊗LP,p =

k − 1; as p ∈ P is arbitrary, this completes the proof that equation (10) holds.

Using the above description of ker ρP , it is possible to prove that ker ρP → P is
a bundle of abelian Lie algebras. Let α, α′ ∈ Γ(ker ρP ); the Spencer decomposition
of Observation 6 gives that [α, α′] = (pr[α, α′],D[α, α′]), where D : Γ(J1LP ) →
Ω1(M ;LP ) is the classical Spencer operator. Writing α = (u, η) and α′ = (v, ξ),
where u, v ∈ Γ(LP ) and η, ξ ∈ Ω1(P ;LP ), the compatibility conditions of equations
(7) and (8) yield the following formula for the Lie bracket restricted to sections of
ker ρP

(12) [α, α′] = (−∇α′u,∇α(ξ(·))−∇α′(η(·))),

where ∇ is the J1LP -connection defined by equation (6). There are two cases to
consider: the first case is when u = 0 = v, and the second is when u = 0 and v 6= 0.
Note that, for dimensional reasons, Γ(ker ρP ) is (locally) generated by elements of
this form, and therefore, as ker ρP is a bundle of Lie algebras it is enough to check
that the bracket is zero on these elements. Suppose first that u = 0 = v; using the
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defining properties of ∇ and of ρP (cf. equation (6) and property (I) respectively),
the following equality can be proved

(13) ∇ξs = −ξ(ρP (j1s)),

where s ∈ Γ(LP ) is arbitrary (and analogously for ∇ηs). Since ξ, η ∈ Γ(ν∗ ⊗ LP ),
equation (13) implies that [η, ξ] = 0. Thus it only remains to consider the case
u = 0 and v 6= 0. Write α′ = j1z + i(γ), for γ ∈ Ω1(P,LP ); without loss of
generality, the section z ∈ Γ(LP ) can be taken to be nowhere vanishing at the cost
of restricting its domain of definition, say to U ⊂ P . This does not matter to
the purpose at hand, as the aim is to check that a fibre-wise Lie algebra structure
is abelian and, to do so, there is a freedom in choosing the sections α, α′ under
consideration. Since ρP (α′) = 0, the defining property (I) of ρP implies that the
operator ∇α′(·) : Γ(LP |U ) → Γ(LP |U ) is C∞(U)-linear and hence it defines a
vector bundle automorphism LP |U → LP |U . As Hom(LP , LP ) is trivial and of
rank 1 (because LP is of rank 1), then there exists a smooth function G ∈ C∞(U)
such that

∇α′(s)(p) = G(p)s(p),

for all s ∈ Γ(LP |U ) and p ∈ U . Hence,

Gz = ∇α′(z) = {z, z} − γ(ρP (j1z)) = −γ(ρP (γ)) = 0,

where antisymmetry of ρP : T∗P ⊗ LP → LP is used to obtain the last equality.
As z ∈ Γ(LP |U ) does not vanish at any point, it follows that G ≡ 0. This, in turn,
implies that [α, α′] = 0 in this case as well, thus completing the proof. �

Observation 8. The previous proof shows that under the hypotheses of Proposi-
tion 4, the connection ∇ : Γ(J1LP )× Γ(LP )→ Γ(LP ) (cf. equation (6)) restricted
to Γ(ker ρ) ⊂ Γ(J1L) is zero.

The next aim is to construct a cohomology class associated to (P,LP , {·, ·})
which generalises the foliated cohomology class given by the leafwise symplectic
form induced by a regular Poisson manifold. As in the proof of Proposition 4,
denote the characteristic foliation of (P,LP , {·, ·}) by F . Intuitively, the cohomology
class defined below is a foliated 2-form with values in LP . However, in order to
formalise this intuition, it is necessary to prove that there is a TF-connection on
LP associated to the Jacobi structure (LP , {·, ·}P ), where the foliation TF ⊂ TP
is viewed as a Lie subalgebroid. Let ∇ be the J1LP -connection on LP defined by
equation (6).

Proposition 5. There is a unique TF-connection ∇̄ : Γ(TF) × Γ(LP ) → Γ(LP )
on LP uniquely defined by

(14) ∇̄ρP (j1u)v := ∇j1uv = {u, v}.

Proof. Observation 8 implies that ∇̄ is well-defined as a connection. Flatness of ∇̄
follows from that of ∇, thus completing the proof.

�

In light of Proposition 4, it makes sense to consider the Lie algebroid cohomology
H∗(F ;LP ), which is defined as the cohomology of the complex of smooth foliated
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forms with values in LP with the following (standard) differential dF

dFω(X1, . . . , Xl+1) :=
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xl+1)

+
∑
i

(−1)i+1∇̄Xi(ω(X1, . . . , X̂i, . . . , Xl+1)),
(15)

for X1, . . . , Xl+1 ∈ Γ(TF) and ω ∈ Ωl(F ;LP ) := Γ(∧lT∗F ⊗ LP ), and where hat
denotes omission. The next lemma associates a cohomology class in H2(F ;LP ) to
(P,LP , {·, ·}).

Lemma 6. The foliated 2-form with values in LP uniquely defined by

(16) ω(ρP (j1u), ρP (j1v)) := {u, v}P ,

for any u, v ∈ Γ(LP ), is a 2-cocycle, i.e. dFω = 0.

Proof. Since sections of the form j1u, for u ∈ Γ(LP ) form a C∞(P )-basis of
Γ(J1LP ) and TF = ρP (J1LP ), equation (16) defines a unique map Γ(TF) ×
Γ(TF) → Γ(LP ) which is manifestly antisymmetric. Let f ∈ C∞(P ) and fix
u, v ∈ Γ(LP ); then

ω(fρP (j1u), ρP (j1v)) = ω(ρP (fu,df ⊗ u), ρP (j1v)) = {fu, v}P + df ⊗ u(ρP (j1v))

= f{u, v}P − LρP (j1v)fu+ LρP (j1v)fu = fω(ρP (j1u), ρP (j1v)),

where the first equality follows from the C∞(P )-structure on Γ(J1LP ) arising from
the Spencer decomposition (cf. Observation 6), the second by definition of ω, and
the third by the characterising property (I) of the anchor ρP (cf. Proposition 2).
The above calculation shows that equation (16) indeed defines a foliated 2-form
with values in LP (also denoted by ω) as it is C∞(P )-bilinear.

To check that dFω = 0 it suffices to check that

dFω(ρP (j1u), ρP (j1v), ρP (j1w)) = 0

for any u, v, w ∈ Γ(LP ). This follows from the fact that dFω is C∞(P )-linear in
each entry and that sections of the form ρP (j1u) form a C∞(P )-basis of Γ(TF).
Then

dFω(ρP (j1u), ρP (j1v), ρP (j1w)) = ∇̄ρP (j1u)(ω(ρP (j1v), ρP (j1w))) + c.p.

− (ω([ρP (j1u), ρP (j1v)], ρP (j1w)) + c.p.) = {u, {v, w}P }P + c.p.

− (ω(ρP ([j1u, j1v]), ρP (j1w)) + c.p.) = −(ω(ρP (j1{u, v}P ), ρP (j1w)) + c.p.)

= −({{u, v}P , w}P + c.p.) = 0,

where c.p. stands for cyclic permutation, the second equality follows from the fact
that ρP is a map of Lie algebroids, the third by the defining property (II) of the
Lie bracket on J1LP (cf. Proposition 2) and by the Jacobi identity for {·, ·}, which
also implies the last equality. This shows that dFω = 0, as required. �

Observation 9. The following is an explicit formula for ω

ω(ρP (u, η), ρP (v, ζ)) := {u, v}P + η(ρP (v, ζ))− ζ(ρP (j1u)),

for (u, η), (v, ζ) ∈ Γ(J1P ).



CONTACT ISOTROPIC REALISATIONS OF JACOBI MANIFOLDS 15

3.3. Smooth classification. Any contact realisation φ : (M,H) → (P,LP , {·, ·})
(cf. Remark 4) comes equipped with an action of the Lie algebroid J1LP , in the
sense that there exists a vector bundle map ψ : Γ(J1LP )→ X(M) satisfying

(A1) it induces a Lie algebra homomorphism Γ(J1LP )→ X(M);
(A2) for all m ∈M , Dmφ ◦ ψm = ρφ(m).

Lemma 7. Let φ : (M,H) → (P,LP , {·, ·}) be a contact realisation. The map
ψ : φ∗J1LP → TM given at the level of sections by

φ∗j1u 7→ RF◦φ∗u, ∀u ∈ Γ(LP )

defines a faithful action of J1LP on φ : M → P .

Observation 10. Note that ψ can be alternatively described as the composite
ρM ◦ φ∗ : φ∗J1LP → TM , where the notation is as in item 1 of Observation 7.

Proof of Lemma 7. Since φ : (M,H) → (P,LP , {·, ·}) is a Jacobi map, item 1 in
Observation 7 implies that

(17) Dφ ◦ ρM ◦ φ∗ = φ∗(ρP ).

In light of Observation 10, it follows that property (A2) holds. It remains to prove
that ψ induces a Lie algebra morphism, i.e.

(18) ψ([α, α′])− [ψ(α), ψ(α′)] = 0,

for all α, α′ ∈ Γ(J1LP ). This equation holds when α, α′ ∈ Γ(J1P ) are holonomic
sections, i.e. of the form j1u, j1v for smooth sections u, v ∈ C∞(P ). This is because
φ : M → P is a Jacobi map with bundle component F , which implies that

(19) RF◦φ∗{u,v} = R{F◦φ∗u,F◦φ∗v} = [RF◦φ∗u, RF◦φ∗v].

for u, v ∈ Γ(LP ), where in the last equality property (3) of the Jacobi bracket of
(M,H) is used. In general, notice that the left hand side of equation (18) satisfies

ψ([fα, α′])− [ψ(fα), ψ(α′)] = (φ∗f)(ψ([α, α′])− [ψ(α), ψ(α′)]);

for f ∈ C∞(P ) and α, α′ ∈ Γ(J1LP ). This again follows from the fact that φ :
(M,H) → (P,LP , {·, ·}) is a Jacobi map, so that equation (17) holds. Thus, since
equation (18) holds for holonomic sections and these generate Γ(J1LP ) as a C∞(P )-
module, it follows that equation (18) holds for all sections of J1P , which proves
that ψ satisfies property (A1). The proof of Lemma 3 shows that ψ is injective
(this follows from property (IR2)). �

The following proposition shows that, for a contact isotropic realisation φ :
(M,H)→ (P,LP , {·, ·}), the restriction of the action of Lemma 7 to the Lie subal-
gebroid ker ρP → P yields an action.

Proposition 8. Let φ : (M,H) → (P,LP , {·, ·}) be a contact isotropic realisation
of a Jacobi manifold. The action ψ restricted to the bundle of abelian Lie algebras
ker ρP , is a vector bundle isomorphism over M ,

ψ : φ∗ ker ρP → kerDφ,

which at the level of sections ψ : Γ(ker ρP )→ Γ(kerDφ) is a Lie algebra map.
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Proof. Property (A2) implies that the image of ψ|ker ρP consists of vertical vector
fields, i.e. tangent to the fibres of φ. On the other hand, property (A1) implies
that at the level of sections ψ : Γ(ker ρP )→ Γ(kerDφ) is a Lie algebra map. Now,
since by Lemma 7, the action ψ : φ∗ ker ρP → TM is injective and for all p ∈ P ,
dim ker ρP,p = k = dimφ−1(p), dimension counting implies that for all m ∈M ,

ψ((φ∗ ker ρP )m) = Tmφ
−1(φ(m)).

�

The action ψ : φ∗ ker ρP → TM should be thought of as being infinitesimal; since
the fibres of φ are compact, ψ can be integrated to an action of π : ker ρP → P
considered as a bundle of abelian Lie groups.

Remark 5. In fact, the action ψ can be integrated under a weaker assumption on
the fibres, which is generally known as completeness (cf. [6]). All following results
hold in this more general setting with the appropriate modifications.

Fix a contact isotropic realisation φ : (M,H) → (P,LP , {·, ·}) and let ψ :
φ∗ ker ρP → TM be the associated infinitesimal π : ker ρP → P action. The
integrated action is given by

Ψ : ker ρP ×π φM →M

(α,m) 7→ ϕ1
α(m),

(20)

where
ker ρP ×π φM := {(α,m) ∈ ker ρP ×M | π(α) = φ(m)}

is a smooth manifold, and ϕ1
α is the time-1 flow of ψ(φ∗α).

Observation 11. For each p ∈ P , the action of equation (20) restricts to an
action of the abelian Lie group ker ρP,p ∼= Rk on φ−1(p). Connectivity of φ−1(p)
and Observation 8 imply that the action of ker ρP,p is transitive. Moreover, since
ker ρP,p is an abelian Lie group, if j1

pu ∈ ker ρP,p is such that Ψ(j1
pu,m) = m, then

Ψ(j1
pu,m

′) = m′ for any other m′ ∈ φ−1(p). This is because the isotropy of the

action at any two points on φ−1(p) are equal. Therefore, if

Σp := {j1
pu ∈ ker ρP,p | ϕ1

j1pu
= id},

then φ−1(p) ∼= ker ρP,p/Σp; since φ−1(p) is compact by assumption, it follows that
φ−1(p) is diffeomorphic to Tk and that Σp is a cocompact lattice in ker ρP,p and,
therefore, isomorphic to Zk.

Just as in the theory of symplectic isotropic realisations of Poisson manifolds, the
isotropy of the action of equation (20) plays an important role in the classification
of contact isotropic realisations of Jacobi manifolds.

Definition 13 (Period lattice). The subset

Σ :=
∐
p∈P

Σp ⊂ ker ρP,p

is called the period lattice of the isotropic contact realisation φ : (M,H) →
(P,LP , {·, ·}).

Remark 6. The above notion of period lattice extends that of a Legendre lattice
introduced in [2].
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The following theorem provides a local model for isotropic realisations

φ : (M,H)→ (P,LP , {·, ·});
its proof is omitted as it is entirely analogous to that of [14, Theorem 2.1].

Theorem 9. Let φ : (M,H)→ (P,LP , {·, ·}) be an isotropic realisation with asso-
ciated period lattice Σ. Then

(I) Σ is a closed submanifold of ker ρP ;
(II) the quotient ker ρP /Σ is a smooth manifold and the projection

π : ker ρP /Σ→ P

is a fibre bundle with fibre Tk;
(III) upon a choice of a local section σ : U ⊂M → φ−1(U), the map

Ψσ : ker ρP /Σ|U → φ−1(U), [α] 7→ ϕ1
α(σ(π(α)))(21)

is an isomorphism of fibres bundles, making the following diagram

ker ρP /Σ|U
Ψσ //

π
$$

φ−1(U)

φ
{{

U

commute.

Fix a good open cover U := {Ui} of P , i.e. all finite intersections of the elements
of U are contractible, and, for each i, fix a section σi : Ui → M . Suppose that
Uij 6= ∅; then the composite Ψ−1

σj ◦ Ψσi : ker ρP /Σ|Uij → ker ρP /Σ|Uij is given by

translation along the fibres by a section tij : Uij → ker ρP /Σ, i.e.

Ψ−1
σj ◦Ψσi([α]) = [α] + tij(π(α)),

where tij is uniquely defined by σj(p) = ϕ1
tij(p)

(σi(p)) for all p ∈ Uij . The collection

{tij} defines a Čech cohomology class

t ∈ H1(U ; C∞(ker ρP /Σ)) ∼= H1(P ; C∞(ker ρP /Σ)),

where C∞(ker ρP /Σ) is the sheaf of smooth sections of ker ρP /Σ → P , and the
isomorphism follows from the fact that open cover U is good.

The short exact sequence of sheaves

1→ Σ ↪→ C∞(ker ρP )→ C∞(ker ρP /Σ)→ 1,

where, by abuse of notation, Σ denotes the sheaf of sections of Σ → P , induces a
long exact sequence in cohomology whose connecting morphisms

δ : Hk(P ; C∞(ker ρP /Σ))→ Hk+1(P ; Σ)

are isomorphisms for all k ≥ 1, since C∞(ker ρP ) is fine.

Definition 14. The cohomology class c = δ(t) ∈ H2(P ; Σ) is called the Chern
class of the contact isotropic realisation φ : (M,H)→ (P,LP , {·, ·}).

In conclusion, this section proves that a contact isotropic realisation

φ : (M,H)→ (P,LP , {·, ·})
is classified smoothly by
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• its period lattice Σ ⊂ ker ρP ⊂ J1LP ;
• its Chern class c ∈ H2(P ; Σ);

this is, two contact isotropic realisations φ : (M,H) → (P,LP , {·, ·}) and φ′ :
(M ′, H ′)→ (P,LP , {·, ·}) are smoothly equivalent if and only if their period lattices
and Chern classes coincide, where smooth equivalence means the existence of a
diffeomorphism B : (M,H)→ (M ′, H ′) satisfying B ◦ φ = φ′.

3.4. Contact classification. This section studies the problem of finding a (lo-
cal) contact classification of contact isotropic realisations, which complements the
results of Section 3.3. The main result in this section is Theorem 13 which pro-
vides a local normal form for generalised contact forms arising in contact isotropic
realisations. Before proving Theorem 13, some preparatory results are required.
Throughout, fix a contact isotropic realisation φ : (M,H) → (P,LP , {·, ·}) with
compact fibres, generalised contact form θ ∈ Ω1(M,LM ), and bundle component
denoted by F : φ∗LP → TM/H. Denote by θ̄ ∈ Ω1(M ;φ∗LP ) the one form given
by the composition F−1 ◦ θ.

Recall that for any section α ∈ Γ(ker ρP ), ψ(φ∗α) ∈ Γ(kerDφ), where ψ :
φ∗ ker ρP → TM is defined as in Lemma 7. Therefore, the flow ϕtα : M → M of
ψ(φ∗α) preserves the fibres, i.e. φ◦ϕtα = φ for all t ∈ R. Hence, (ϕtα)∗φ∗LP ∼= φ∗LP
canonically. This allows to define a ‘Lie derivative’ type operator on Ω∗(M ;φ∗LP )
by

(22) (Lαω)m =
d

dt

∣∣∣
t=0

((ϕtα)∗ω)m

for any m ∈ M and ω ∈ Ωl(M,φ∗LP ). It obeys rules which are analogous to that
of the standard Lie derivative, for instance,

(23)
d

dt

∣∣∣
t=s

((ϕtα)∗ω)m = ((ϕsα)∗(Lαω))m.

The following lemma, stated below without proof, shows that the above Lie deriva-
tive also satisfies a familiar identity involving the interior product (cf. [11, Lemma
3.8]).

Lemma 10. For any ω ∈ Ωl(M ;φ∗LP ) and X ∈ X(M),

[iX ,Lα]ω = (i[X,ψ(φ∗α)]ω).

These differential geometric tools allow to prove an important property of the
flows ϕtα, which generalises [14, Lemma 2.1].

Lemma 11. For any section α = (u, η) ∈ Γ(ker ρP ),

(ϕ1
(u,η))

∗θ̄ − θ̄ = φ∗η.

Proof. Fix points p ∈ P and m ∈ φ−1(p), a tangent vector Xm ∈ TmM , and a
section (u, η) ∈ Γ(ker ρP ) defined near p. Extend Xm to a (locally defined) vector

field X̃. Since φ ◦ ϕ1
(u,η) = φ, the following expression makes sense

(24) ((ϕ1
(u,η))

∗θ̄ − θ̄)(X̃) =

1∫
0

(
d

dt
(ϕt(u,η))

∗θ̄

)
(X̃)dt.
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Consider the integrand(
d

dt
(ϕt(u,η))

∗θ̄

)
(X̃) = ((ϕt(u,η))

∗(L(u,η)θ̄))(X̃)

= (ϕt(u,η))
∗((L(u,η)θ̄)(Dϕ

t
(u,η)(X̃)))

= (ϕt(u,η))
∗(L(u,η)(θ̄(Dϕ

t
(u,η)(X̃))) + θ̄([Dϕt(u,η)(X̃), ψ(φ∗u, φ∗η)])),

(25)

where the first equality follows from equation (23) and the last by Lemma 10; write

Dϕt(u,η)(X̃) =
∑
i

ft,iAt,i + X̃t,

where ft,i ∈ C∞(M), At,i := ψ(φ∗ut,i, φ
∗ηt,i) ∈ Γ(kerDφ), and X̃t ∈ Γ(H) are all

time-dependent, with Dφ(X̃t) = Dφ(X̃). This decomposition follows from property
(IR2) and the fact that the action ψ : Γ(φ∗ ker ρP )→ Γ(kerDφ) is an isomorphism
of Lie algebras. On the one hand,

θ̄(Dϕt(u,η)(X̃)) = θ̄(
∑
i

ft,iψ(φ∗ut,i, φ
∗ηt,i)) =

∑
i

ft,iφ
∗ut,i,

since ψ(φ∗ut,i, φ
∗ηt,i)) = ρM (F ◦ (φ∗ut,i, φ

∗ηt,i)) = RF◦φ∗ut,i + c]θ(F ◦ φ∗ηt,i|H),

c]θ(F ◦ φ∗ηt,i|H) ∈ Γ(H) for all t, i, and by definition of Reeb vector fields (cf.
Observation 2). Thus

(26) L(u,η)(θ̄(Dϕ
t
(u,η)(X̃))) = L(u,η)(

∑
i

ft,iφ
∗ut,i) =

∑
i

(Lψ(u,η)ft,i)φ
∗ut,i

since ψ(φ∗u, φ∗η) ∈ Γ(kerDφ). On the other hand,

θ̄([Dϕt(u,η)(X̃),ψ(φ∗u, φ∗η)]) = θ̄([X̃t, ψ(φ∗u, φ∗η)]) +
∑
i

θ̄([ft,iAt,i, ψ(φ∗u, φ∗η)])

= θ̄([X̃t, ψ(φ∗u, φ∗η)])−
∑
i

Lψ(φ∗u,φ∗η)ft,iθ̄(At,i)

= θ̄([X̃t, ψ(φ∗u, φ∗η)])−
∑
i

Lψ(φ∗u,φ∗η)ft,iφ
∗ut,i,

(27)

where the second equality follows from the fact that At,i, ψ(φ∗u, φ∗η) ∈ Γ(kerDφ)
and this is a bundle of abelian Lie algebras (since ker ρP → P is and kerDφ ∼=
φ∗ ker ρP as bundles of Lie algebras), and the third by definition of At,i. Plugging
equations (26) and (27) into equation (25), obtain that
(28)(

d

dt
(ϕt(u,η))

∗θ̄

)
(X̃) = ((ϕt(u,η))

∗(L(u,η)θ̄))(X̃) = (ϕt(u,η))
∗(θ̄([X̃t, ψ(φ∗u, φ∗η)]));

the right hand side of equation (28) can be computed to be

θ̄([X̃t, c
]
θ(φ
∗η|H)]) = φ∗η|H(X̃t) = φ∗(η(Dφ(X̃t)))) = φ∗(η(Dφ(X̃)),

where the second equality follows from property (IR2), and the last from Dφ(X̃t) =

Dφ(X̃). Therefore, equation (28) becomes

(29)

(
d

dt
(ϕt(u,η))

∗θ̄

)
(X̃) = (ϕt(u,η))

∗φ∗(ηDφ(X̃)) = φ∗(η(DφX̃)) = (φ∗η)(X̃),
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where the second equality follows from φ ◦ ϕt(u,η) = φ. The above equation implies

that the integrand of equation (24) is independent of t, thus yielding that

((ϕ1
(u,η))

∗θ̄ − θ̄)(X̃) = (φ∗η)(X̃).

This implies that at the point m ∈M the 1-forms (ϕ1
(u,η))

∗θ̄− θ̄ and φ∗η are equal;

since m is arbitrary, this completes the proof. �

As in the case of symplectic isotropic realisations of Poisson manifolds, Lemma
10 provides a local description of the sections of the period lattice Σ→ P .

Corollary 12. Any local section of Σ → P is of the form j1u, for some locally
defined section u ∈ Γ(LP ).

Proof. Suppose that (u, η) ∈ Γ(Σ) (possibly locally defined). By definition, ϕ1
(u,η) =

id. Fix p ∈ P , Xp ∈ TpP , m ∈ φ−1(p) and X̃m ∈ Hm with Dmφ(X̃m) = Xp.
Applying Lemma 11 to the section (u, η), obtain that η(Xp) = 0. Since p ∈ P and
Xp ∈ TpP are arbitrary, it follows that η = 0. This means precisely that (u, η) is
holonomic, i.e. of the form j1u as required. �

Observation 12. Consider the canonical contact form θcan ∈ Ω1(J1LP ) described
in Example 2. By Corollary 12, translations by elements of Σ preserve θcan (as
(u, η)∗θcan = η, for u ∈ Γ(LP ), η ∈ Ω1(P,LP ), and sections of Σ are holonomic),
and therefore its restriction to ker ρP ⊂ J1LP descends to a 1-form

θ0 ∈ Ω1(ker ρP /Σ;π∗LP ),

which does not necessarily define a contact distribution (unless ker ρP = J1LP ).

The following theorem gives a local normal form for sufficiently small open φ-
saturated neighbourhoods of the fibres of φ : (M,H) → (P,LP , {·, ·}); as such,
it can be thought of as providing local action-angle variables in analogy with
[14, Corollary 2] in the case of complete isotropic realisations of Poisson manifolds,
and [2, Theorem 1] and [21, Theorems 4 and 5] in the case of non-commutative
integrable systems on contact manifolds (the former with elliptic-type singularities)
once a suitable local contact form has been fixed (cf. Section 6.1 for the relation
between integrable Hamiltonian systems on contact manifolds and contact isotropic
realisations).

Theorem 13. [Action-angle coordinates] Given a local section σ : U ⊂ P →
(M,H), then

Ψ∗σ θ̄ = θ0 + π∗σ∗θ̄,

where Ψσ : ker ρP /Σ|U → φ−1(U) is defined by equation (21).

It is important to remark that all forms in the above theorem take values in
π∗LP .

Proof. First, it is shown that the difference Ψ∗σ θ̄ − θ0 ∈ Ω1(ker ρP /Σ|U ;π∗LP ) is
basic, i.e.

Ψ∗σ θ̄ − θ0 = π∗β(30)

for some 1-form β ∈ Ω1(U ;LP ). This is the case if iZ(Ψ∗σ θ̄ − θ0) = 0 and
LZ(Ψ∗σ θ̄ − θ0) = 0 for any Z tangent to ker(π : ker ρP /Σ|U → U), (where LZω ∈
Ωk(ker ρP /Σ;π∗LP ) is defined as in (22) for any ω ∈ Ωk(ker ρP /Σ;π∗LP )). In
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order to prove this, identify (canonically) Tπ[j1pv](kerP,p /Σp) with ker ρP,p via the

isomorphism Tπ(ker ρP /Σ) ' π∗ ker ρP . Observe that for sections (u′, η′), (u, η) ∈
Γ(ker ρP ), Ψσ((u′, η′) + t(u, η)) = φt(u,η)(Ψσ(u′, η′)) for any t ∈ R, where ϕt(u,η) :

M →M is the flow of ψ(φ∗(u, η)). Equivalently,

(31) Ψσ ◦ ϕt(u,v) = ϕt(u,v) ◦Ψσ,

where on the left hand side ϕt(u,v) : ker ρP /Σ → ker ρP /Σ stands for the flow of

π∗(u, η), given by j1
pv 7→ j1

pv+ t(u, η)(p). Differentiating equation (31), obtain that

D[j1pv]Ψσ(π∗(u, η)) = ψ(φ∗u, φ∗η)Ψσ(j1pv).

Consider iZ(Ψ∗σ θ̄ − θ0); the above yields

iZΨ∗σ θ̄(j
1
pv) = θ̄Ψσ(j1v)(ψ(φ∗u, φ∗η)) = θ̄Ψσ(j1v)(RFφ∗u + c(Fφ∗η|H)) = up.

for any p ∈ P . On the other hand, θ0 restricted to π∗ ker ρP is equal to the
projection pr : ker ρP → L which implies that iZθ0 = θ0,j1pv

(u, η) = up. Thus

iZ(Ψ∗σ θ̄ − θ0) = 0 follows. To compute the Lie derivative along Z, observe that

LZΨ∗σ θ̄ =
d

dt
(ϕt(u,η))

∗(Ψ∗σ θ̄)|t=0 =
d

dt
Ψ∗σ ◦ (ϕt(u,η))

∗θ̄|t=0

where the second equality uses equation (31). By equation (29), have that

(ϕt(u,η))
∗θ̄|t=0 = φ∗η,

which implies that LZΨ∗σ θ̄ = π∗η. On the other hand,

LZθ0 =
d

dt
(ϕt(u,η))

∗θ0|t=0 =
d

dt
(id∗+ tπ∗ ◦(u, η)∗)θ0|t=0 =

d

dt
(θ0 + tπ∗η)|t=0 = π∗η,

where the third equality uses that for a section (u, η) : P → J1L, (u, η)∗θcan = η.
With this, LZ(Ψ∗σ θ̄ − θ0) = 0. As vector fields of the form π∗(u, v) generate
π∗ ker ρP ' Tπ(ker ρP /Σ) as a C∞(ker ρP /Σ)-module, this implies that equation
(30) holds.

To show that β = σ∗θ̄, consider the section z : P → ker ρP /Σ, p 7→ [Σp] = 0 of
π : ker /Σ → P . Then z∗pr∗β = β, z∗Ψ∗σ θ̄ = σ∗θ̄ as Ψσ ◦ z = σ, and z∗θ0 = 0 as
for any s ∈ Γ(Σ), s∗θcan = 0 (see Observation 12). Therefore, β = σ∗θ̄. �

4. Constructing contact isotropic realisations

In analogy with the classification of symplectic isotropic realisations of Poisson
manifolds carried out in [14], the classification of contact isotropic realisations over
a given regular Jacobi manifold (P,LP , {·, ·}) of corank k, all of whose leaves are
even dimensional, consists of the following two parts:

Part 1: Classify closed submanifolds Σ ⊂ ker ρP for which the composite Σ ↪→
ker ρP → P is a Zk-bundle and all of its sections are holonomic. Such a
submanifold is henceforth called period lattice even though it may not
necessarily arise from a contact isotropic realisation;

Part 2: Having fixed a period lattice Σ ⊂ ker ρP , determine which cohomology
classes in H2(P ; Σ) give rise to contact isotropic realisations, i.e. whether
the total space of the (isomorphism class of the) principal ker ρP /Σ-bundle
associated to c admits a contact structure which makes the projection to
P into a contact isotropic realisation.
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Part 1, while very interesting in its own right, is beyond the scope of this paper;
Section 5 gives an alternative geometric interpretation of a period lattice. This
section concentrates on solving the problem outlined in Part 2. To this end, it is
important to remark that there already exist partial solutions to this question, as
the following examples show.

Example 15 (Regular contact manifolds). Suppose that (P,LP , {·, ·}) is a closed
symplectic manifold, so that LP = P × R and the Jacobi bracket is nothing but
the Poisson bracket on C∞(P ) induced by a symplectic form ω. Then ker ρP =
P × R ⊂ J1LP , which implies that any period lattice Σ is trivial. Let Σ ⊂ ker ρP
be a period lattice and suppose that α ∈ Γ(Σ) is a nowhere vanishing section.
Corollary 12 gives that α = j1f for some smooth function f , which implies that f
is a non-zero constant function. Without loss of generality, fix f ≡ 1. A contact
isotropic realisation φ : (M, θ)→ (P, ω) is nothing but a principal S1-bundle whose
infinitesimal action is generated by the Reeb vector field RM associated to the
connection 1-form (which is a contact form!) θ ∈ Ω1(M) (cf. Remark 2). A co-
oriented contact manifold (M, θ) as above is known in the literature as a regular
contact manifold (cf. [4, 19]). Such a bundle exists if and only if the cohomology
class [ω] ∈ H2(P ;R) is integral and the Chern class of the bundle must then be equal
to [ω] (cf. [19, Theorems 7.2.4 and 7.2.5]). Reformulating this result in this paper’s
language, (P, ω) endowed with the period lattice Σ→ P admits a contact isotropic
realisation if and only if [ω] is integral and the corresponding Chern class equals
[ω], where H2(P ; Σ) is identified with H2(P ;Z). In particular, not all elements of
H2(P ; Σ) give rise to a contact isotropic realisation (in fact, there may be none that
does).

Example 16 (Zero Jacobi structure). Suppose that (P,LP , {·, ·}) is endowed with
the zero Jacobi structure, so that LP = P ×R and the Jacobi bracket is identically
zero. In this case, ker ρP = J1LP := J1P . Given any period lattice Σ ⊂ J1P ,
it can be shown that every cohomology class in H2(P ; Σ) gives rise to a contact
isotropic realisation, as proved in [2].

The main result of this section provides a cohomological criterion that solves Part
2 in the spirit of [14, Theorems 4.2 and 4.3] which unifies and extends Examples
15 and 16 above (cf. Theorem 17). The rest of the section is structured as follows.
First, it is shown that locally any regular Jacobi manifold (P,LP , {·, ·}) all of whose
leaves are even dimensional with a period lattice Σ ⊂ ker ρP admits a contact
isotropic realisation (cf. Section 4.1). The global obstruction to constructing these
objects is investigated in Section 4.2.

4.1. Local construction. Fix notation as in Theorem 13 and its proof. Let
φ : (M,H) → (P,LP , {·, ·}) be a contact isotropic realisation with characteristic
foliation denoted by F , and let σ : U → M be a local section. Theorem 13 proves
that Ψ∗σ θ̄ = θ0 + π∗σ∗θ̄, where θ0 ∈ Ω1(ker ρP /Σ;π∗LP ) is the 1-form constructed
in Observation 12. The next lemma shows that σ∗θ̄ ∈ Ω1(P ;σ∗φ∗LP ) = Ω1(P ;LP )
is related to the foliated 2-form uniquely defined by ω(ρP (j1u), ρP (j1v)) = {u, v}P
(cf. Proposition 6).

Lemma 14. The restriction of the 1-form σ∗θ̄ to the foliation F satisfies dFσ
∗θ̄ =

ω, i.e. it is a local primitive for ω.
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Proof. As in the proof of Proposition 6, it suffices to check that

dFσ
∗θ̄(ρP (j1u), ρP (j1v)) = ω(ρP (j1u), ρP (j1v)).

By definition,

dFσ
∗θ̄(ρP (j1u), ρP (j1v)) = −σ∗θ̄([ρP (j1u), ρP (j1v)]) + ∇̄ρP (j1u)(σ

∗θ̄(ρP (j1v)))

− ∇̄ρP (j1v)(σ
∗θ̄(ρP (j1u))).

(32)

First, consider

∇̄ρP (j1u)(σ
∗θ̄(ρP (j1v))) = ∇̄ρP (j1u)(σ

∗(θ̄(Dσ(ρP (j1v)))));

since φ ◦ σ = id and φ : (M,H) → (P,LP , {·, ·}) is a Jacobi map with bundle
morphism F , it follows that

Dσ(ρP (j1v)) = ρM (j1(F ◦ φ∗v)) +Xv,

where Xv ∈ Γ(kerDφ|σ(U)) (and similarly for u). Note that since kerDφ = ρM ◦
F (φ∗ ker ρP ) and the vector fields Xu, Xv are only defined on σ(U), it follows that
there exist local sections (w, η), (z, ζ) ∈ Γ(ker ρP ) with

Xu = ρM (F (φ∗w, φ∗η)) and Xv = ρM (F (φ∗z, φ∗ζ)).

Thus by definition of ρM (cf. Observation 5)

θ̄(Dσ(ρP (j1v))) = θ̄(ρM (j1(F ◦ φ∗v)) + ρM (F (φ∗z, φ∗ζ))) = φ∗(v + z),

and, similarly, θ̄(Dσ(ρP (j1u))) = φ∗(u+ w). Therefore, by definition of ∇̄,

(33) ∇̄ρP (j1u)(σ
∗θ̄(ρP (j1v)))−∇̄ρP (j1v)(σ

∗θ̄(ρP (j1u))) = {u, v+z}P−{v, u+w}P .

On the other hand,

(σ∗θ̄)([ρP (j1u), ρP (j1v)]) = σ∗(θ̄(Dσ([ρP (j1u), ρP (j1v)])))

= σ∗(θ̄(([Dσ(ρP (j1u)), Dσ(ρP (j1v))])))

= σ∗(θ̄([RF (φ∗(u+w)) + c]θ(F ◦ φ
∗η|H), RF (φ∗(v+z)) + c]θ(F ◦ φ

∗ζ|H)]))

= σ∗(θ̄(R{F (φ∗(u+w)),F (φ∗(v+z))}M + [c]θ(F ◦ φ
∗η|H), c]θ(F ◦ φ

∗ζ|H)]))

= σ∗(φ∗({u+ w, v + z}P )− φ∗η(ρM (F ◦ φ∗ζ)))

= {u+ w, v + z}P − η(Dφ(ρM (F ◦ φ∗ζ))) = {u+ w, v + z}P − η(ρP (ζ)),

(34)

where the third equality follows from the definition of ρM and the above conven-
tions, the fourth from the defining property of Reeb vector fields (cf. Definition
3), the fifth by definition of Reeb vector fields and the curvature map, and the last
from the fact that φ is a Jacobi map with bundle component F . Observe that since
(w, η), (z, ζ) ∈ Γ(ker ρP ),

{w, z}P − η(ρP (ζ)) = {w, z}P + η(ρP (j1z)) = ω(ρP (w, η), ρP (z, ζ)) = 0,

where the general definition of ω is used (cf. Observation 9). Thus equation (34)
yields that

(σ∗θ̄)([ρP (j1u), ρP (j1v)]) = {u, v}P + {u, z}P + {w, v}P .

Using this identity together with equation (33) in equation (32) yields the required
result. �
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The condition of Lemma 14 is, in fact, sufficient to construct a local contact
isotropic realisation of a regular Jacobi manifold all of whose leaves are even di-
mensional; this is the content of the next proposition, stated below without proof
(it can be checked using local coordinates, for instance). Fix one such (P,LP , {·, ·})
and a period lattice Σ ⊂ ker ρP .

Proposition 15. Let U ⊂ P be an open set and fix β ∈ Ω1(U,L) with the property
that dFβ = ω. Then

π : (ker ρ/Σ|U , θ0 + π∗β)→ (U,LU , {·, ·})

is a contact isotropic realisation.

4.2. A cohomological criterion. Fix a regular Jacobi manifold (P,LP , {·, ·}) all
of whose leaves are even dimensional, whose underlying foliation is denoted by
F , and a period lattice Σ ⊂ J1LP . By assumption, Γ(Σ) consists solely of holo-
nomic sections (cf. Corollary 12); thus the restriction of the Spencer operator
D : Γ(ker ρP ) → Ω1(P ;LP ) (cf. Observation 6) descends to a homomorphism

D̂ : Γ(ker ρP /Σ)→ Ω1(P ;LP ).

The next lemma shows that the image D̂(Γ(ker ρP /Σ)) consists solely of dF -
closed 1-forms, where dF is defined as in equation (15).

Lemma 16. For any α ∈ Γ(ker ρP ), dFD(α) = 0.

Proof. It suffices to check that dFD(α)(ρP (j1u), ρP (j1v)) = 0 for any u, v ∈ Γ(LP )
(cf. the proof of Lemma 6). Fix two such sections of LP ; by definition of dF ,

dFD(α)(ρP (j1u), ρP (j1v)) = −D[ρP (j1u),ρP (j1v)](α)

+ ∇̄ρP (j1u)(DρP (j1v)(α))− ∇̄ρP (j1v)(DρP (j1u)(α))

= −DρP (j1{u,v}P )(α) + {u,DρP (j1v)(α)}P − {v,DρP (j1u)(α)}P ,
(35)

where the second equality uses properties of the anchor map ρP , of the Lie bracket
on Γ(J1LP ), and the definition of ∇̄ (cf. equation (14)). Let z ∈ Γ(LP ) be any
section; then

DρP (j1z)(α) = ∇αz + pr([j1z, α]) = pr([j1z, α]) = −pr([α, j1z])

= ∇j1z(pr(α))−Dρ(α)(j
1z) = {z, pr(α)}P ,

where the first and fourth equalities use the compatibility condition for the Spencer
operator of equation (7), the second uses that α ∈ Γ(ker ρP ), the third exploits
anti-symmetry of the Lie bracket, and the last follows by definition of the J1LP -
connection ∇ (cf. equation (6)). Applying the above equality to the right hand
side of equation (35), it follows that

dFD(α)(ρP (j1u), ρP (j1v)) = −({{u, v}P , pr(α)}P + c.p.) = 0,

where c.p. stands for cyclic permutation and the last equality follows from the
Jacobi identity. This proves that dFD(α) = 0, thus completing the proof. �

Let C∞(ker ρP /Σ) and Z1(F ;LP ) denote the sheaves of smooth sections of
ker ρP /Σ→ P and of foliated closed 1-forms with values in LP respectively. Lemma
16 implies that there is a morphism of sheaves

(36) D̂ : C∞(ker ρP /Σ)→ Z1(F ;LP ),
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which induces a homomorphism at the level of cohomology with values in the above
sheaves,

(37) D : H1(P ; C∞(ker ρP /Σ))→ H1(P ;Z1(F ;LP )).

Recall that H1(P ; C∞(ker ρP /Σ)) ∼= H2(P ; Σ) (cf. the discussion preceding Defini-
tion 14), while a standard double Čech-Lie algebroid differential complex argument
implies that H1(P ;Z1(F ;LP )) ∼= H2(F ;LP ). Using these identifications tacitly, the
above yields a homomorphism D : H2(P ; Σ) → H2(F ;LP ) which plays a central
role in the following theorem, which is the main result of this section.

Theorem 17. A Jacobi manifold (P,LP , {·, ·}) admits a contact isotropic realisa-
tion with period lattice Σ and Chern class c ∈ H2(P ; Σ) if and only if Dc = [ω],
where ω ∈ Ω2(F ;LP ) is the closed foliated 2-form constructed in Lemma 6.

Proof. The strategy is similar to that of [14, Theorems 4.2 and 4.3]. Throughout
the proof, let U := {Ui} denote a good open cover of P unless otherwise stated.
Suppose first that φ : (M,H)→ (P,LP , {·, ·}) is a contact isotropic realisation with
Chern class c ∈ H2(P ; Σ), and denote by θ̄ ∈ Ω1(M ;φ∗LP ) the induced generalised
contact form. For each i, let σi : Ui → M be a local smooth section of φ; as in
Theorem 9, the section σi induces a local trivialisation Ψi : ker ρP /Σ|Ui → φ−1(Ui).
By Definition 14, a Čech cocycle representing c is given by the smooth maps tij :
Uij → ker ρP /Σ defined by

Ψ−1
j ◦Ψi([α]) = [α] + tij(π(α)),

where π : ker ρP /Σ→ P is the projection (cf. the discussion following Theorem 9).

Thus a Čech cocycle representing Dc is given by {t∗ijθ0 = D̂(tij)}, where the equality
follows by definition of θ0 (cf. Observation 12). By definition of tij , Ψ ◦ tij = σj on
Uij ; thus

(38) σ∗j θ̄ = t∗ij ◦Ψ∗i θ̄ = t∗ij(θ0 + π∗σ∗i θ̄) = t∗ijθ0 + σ∗i θ̄,

where the second equality uses Theorem 13, and the last follows by noticing that
π ◦ tij = id. Equation (38) gives that t∗ijθ0 = σ∗j θ̄− σ∗i θ̄. By Lemma 14, dF (σ∗j θ̄) =

ω = dF (σ∗i θ̄); this implies that the cohomology class corresponding to the Čech
cocycle {σ∗j θ̄ − σ∗i θ̄} is precisely [ω], as it is the difference of two primitives of ω.

Conversely, suppose that Dc = [ω]. Choose the good open cover U so that, for
each i, there exists a primitive for ω|Ui , i.e. there exists βi ∈ Ω1(F|Ui ;LP ) with
dFβi = ω|Ui . Since F is regular, the foliated 1-forms βi can be extended to honest
1-forms (i.e. elements of Ω1(Ui;LP )), which are henceforth also denoted by βi by
abuse of notation. Since Dc = [ω], there exists a Čech cocycle {tij} representing c
(subordinate to the above good open cover) which satisfies t∗ijθ0 = βj − βi on Uij .
For each i, consider the contact isotropic realisation π : (ker ρP /Σ|Ui , θ0 + π∗βi)→
(Ui, LP |Ui , {·, ·}P |Ui) (cf. Proposition 15). The principal ker ρP /Σ-bundle over P
with Chern class c is constructed (up to isomorphism) by glueing the above local
models using the translations tij . The condition t∗ijθ0 = βj − βi ensures that the
locally defined generalised contact forms θ0 +π∗βi patch together to give a globally
defined generalised contact form θ ∈ Ω1(M ;φ∗LP ), where φ : M → P is the
principal ker ρP /Σ-bundle over P with Chern class c constructed above. Setting
H := ker θ, have that φ : (M,H) → (P,LP , {·, ·}) is a contact isotropic realisation
as it suffices to check that the properties (IR1), (IR2) and (IR3) hold locally and
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they do by construction, since the bundle is obtained by glueing contact isotropic
realisations. This completes the proof of the theorem. �

Example 17. Theorem 17 can be used to construct examples of contact isotropic
realisations all of whose invariants are non-trivial, i.e. with non-trivial line bundle,
with period lattice Σ defining a non-trivial local system of coefficients and with
non-zero Chern class. To this end, consider RP2 with the tautological line bundle
τ → RP2 and the zero Jacobi bracket. Example 20 below shows how to construct a
period lattice ΣRP2 ⊂ J1τ . It can be checked that H2(RP2; ΣRP2) ∼= Z3 (cf. [31] for
the explicit calculation). Since the Jacobi structure under consideration is trivial,
the induced characteristic foliation is by points; in other words, H2(F ; τ) = 0. This
implies that the homomorphism D : H2(RP2; ΣRP2)→ H2(F ; τ) is identically zero;
Theorem 17 therefore gives that all c ∈ H2(RP2; ΣRP2) give rise to contact isotropic
realisations. Taking c 6= 0, obtain an example of contact isotropic realisation defined
on a non-trivial line bundle with non-trivial invariants.

5. Transversal integral L-projective structures

The period lattice Σ associated to a contact isotropic realisation φ : (M,H) →
(P,LP , {·, ·}) induces a geometric structure on the characteristic foliation of the
Jacobi manifold (P,LP , {·, ·}). The aim of this section is to introduce this struc-
ture, which, in the case of the zero Jacobi structure on the trivial line bundle, has
already been noticed (cf. [2]). Intuitively, this is the analogue of the geometric
structure induced on the symplectic (regular!) foliation of on the base of a sym-
plectic isotropic realisation of a Poisson manifold.

Throughout this section, let (N,F) denote a foliated manifold whose foliation
has codimension l, and let π : L→ N be a line bundle, unless otherwise stated.

Definition 18. A transversal integral L-projective structure (TIP-structure
for short) on (N,F) is a choice of

• flat TF-connection on π : L→ N , ∇ : Γ(TF)× Γ(L)→ Γ(L);
• an embedded smooth submanifold Σ ⊂ J1L satisfying

(T1) the composite Σ ↪→ J1L→ N is a fibre bundle with fibre Zl+1 and structure
group GL(l + 1;Z) (henceforth referred to as a Zl+1-bundle);

(T2) any locally defined section ξ : U ⊂ N → Σ is holonomic, i.e. ξ = j1u for
some u ∈ Γ(L);

(T3) any locally defined section j1u : U ⊂ N → Σ is flat, i.e. ∇u = 0.

Before giving some examples of the above structure, it is useful to reformulate the
existence of a flat TF-connection and property (T1) in Definition 18 in equivalent
terms; this is done in the following lemma.

Lemma 18. The foliated manifold (N,F) admits a transversal integral L-projective
structure if and only if there exists an embedded submanifold Σ ⊂ J1L satisfying
properties (T1), (T2), and

(T4) ΣR := Σ⊗ R fits in a short exact sequence of vector bundles

(39) 0→ ν∗ ⊗ L→ ΣR → L→ 0,

where ν∗ ⊂ T∗N is the conormal bundle to the foliation, and ΣR → L is the
restriction of the canonical projection J1L→ L.
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Proof. Suppose that (N,F) admits a transversal integral L-projective structure, so
that there exist ∇ and Σ as in Definition 18. The aim is to prove that the short
exact sequence of equation (39) holds. First, it is shown that the map ΣR → L
is pointwise surjective. Fix a point p ∈ P , an open neighbourhood p ∈ U and a
trivialisation L|U ∼= U×R. By shrinking U if needed, it may be assumed that Σ|U is
also trivialisable; properties (T1) and (T2) imply that there exist smooth functions
u1, . . . , ul+1 ∈ C∞(U) with the property that j1u1, . . . , j

1ul+1 are a frame of Σ|U .
It suffices to prove that there exists i such that ui(p) 6= 0. Suppose the contrary;
since ∇ is a flat connection, it can be locally written by

∇Xu := du(X) + β(X)u,

where X ∈ Γ(TF|U ), u ∈ C∞(U) and β ∈ Ω1(F) is a closed foliated 1-form. Prop-
erty (T3) implies that, for all i, and for all X ∈ TpF , dpui(Xp) = βp(Xp)ui(p) = 0.
Thus, for all i, dpui ∈ ν∗p . Using the identification J1U ∼= T∗U ⊕ R, have that

j1
pu1, . . . , j

1
pul+1 ∈ ν∗p ⊕ 0 ⊂ J1U . However, dim ν∗p = l, which contradicts the inde-

pendence of j1u1, . . . , j
1ul+1 on U . Since p ∈ P is arbitrary, this argument shows

that ΣR → L is pointwise surjective.
To complete the proof that equation (39) holds, it suffices to show that ν∗ ⊗ L =
(T∗P ⊗ L) ∩ ΣR. To this end, fix p ∈ P , let U be an open neighbourhood over
which both L and J1L can be trivialised as above. Given any element of αp ∈
(T∗pP ⊗ L) ∩ΣR, (by possibly shrinking U if needed) there exists a smooth section

α : U → (T∗P ⊗L)∩ΣR with α(p) = αp, since (T∗P ⊗L)∩ΣR = ker(ΣR → L)→ P
is a vector bundle of rank l. As above, fix a frame j1u1, . . . , j

1ul+1 of Σ|U ; then

there exist smooth functions f1, . . . fl+1 ∈ C∞(U) with α =
l+1∑
i=1

fij
1ui. Since

α ∈ Γ(ker(J1L → L)|U ), it follows that
l+1∑
i=1

fiui = 0 on U . Using property (T3),

for all X ∈ Γ(TF|U ),

0 = ∇X(

l+1∑
i=1

fiui) =

l+1∑
i=1

dfi(X)ui = D(α)(X),

where D is the Spencer operator. This implies that D(α) ∈ Γ(ν∗ ⊗ L|U ), which, in
turn, gives that α ∈ Γ(ν∗⊗L|U ), since α ∈ Γ(ker(J1L→ L)|U ). Thus αp ∈ ν∗p⊗Lp;
since both p and αp are arbitrary, this proves that (T∗P⊗L)∩ΣR ⊂ ν∗⊗L. Equality
follows by dimension counting; this shows that ΣR fits in the short exact sequence
of equation (39).

Conversely, suppose that Σ ⊂ J1L satisfies properties (T1) and (T2), and that
the short exact sequence of equation (39) holds. Let v ∈ Γ(L) and p ∈ P ; since
ΣR → L is surjective, there exists an open neighbourhood U of p and a section
j1u ∈ Γ(Σ|U ) with u(q) 6= 0 for all q ∈ U . Then, locally, there exists a smooth
function f ∈ C∞(U) with v = fu. For X ∈ Γ(TF|U ), define

(40) ∇Xv := LX(f)u.

The above is well-defined, for if v = f ′u′ for some other smooth nowhere vanishing
section u′ ∈ Γ(L|U ) with j1u′ ∈ Γ(Σ|U ), then, by definition, fj1u−f ′j1u′ ∈ Γ(ΣR),
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and

fj1u− f ′j1u′ = (j1(fu),D(fj1u))− (j1(f ′u′),D(f ′j1u′))

= (0,D(fj1u− f ′j1u′)) ∈ Γ(T∗P ⊗ L).

Thus fj1u− f ′j1u′ ∈ ν∗ ⊗ L, which implies that, for all X ∈ Γ(TF|U ), LX(f)u =
LX(f ′)u′, giving that the formula (40) is independent of the choices made. It can
be checked that equation (40) defines a flat TF-connection and that Σ satisfies
property (T3) as required. This completes the proof of the lemma. �

Example 19 (Radiant transversal integral affine structures). Let Ξ ⊂ ν∗ be a
transversal integral affine structure on the foliated manifold (N,F), i.e. Ξ is an
embedded submanifold which is a full rank lattice of ν∗ and such that any (locally
defined) smooth section σ ∈ Γ(Ξ) is closed. Such structures arise naturally in the
study of isotropic realisations of Poisson manifolds (cf. [14]). The existence of
a Ξ as above is equivalent to the existence of an atlas {(Ui,κi)} of submersions
κi : Ui → Rl locally defining the foliation F such that for all i, j with Uij 6= ∅,
there exists hij := (Aij , cij) ∈ GL(l;Z) nRl with κj = hij ◦ κi on Uij (cf. [33] and
Theorem 19 below for an analogous statement for TIP-structures). Suppose further
that Ξ is radiant, i.e. for all indices i, j as above, cij = 0 (cf. [20, 33] for a more
intrinsic definition). Then Ξ gives rise to a TIP-structure on the trivial line bundle
L := N ×R→ R with flat connection ∇ := dF , where dF denotes the restriction of
the exterior derivative to TF , as follows. Let {(Ui,κi)} be an atlas of submersions
as above; for each i, set κi := (f1

i , . . . , f
l
i ). The 1-forms df1

i , . . . ,df
l
i are linearly

independent over Ui and Ξ|Ui = Z〈df1
i , . . . ,df

l
i 〉. Locally Ξ can be extended to a

lattice of J1L|Ui by considering

Z〈j1f1
i , . . . j

1f li 〉;

since Ξ is radiant, these locally defined lattices patch together to yield a globally
defined lattice Ξ̄ ⊂ J1L. The lattice

Σ := Ξ̄⊕ Z〈j11〉

satisfies properties (T1), (T2) and (T4) by construction. In light of Lemma 18, it
defines a TIP-structure.

The following example is, in some sense, ‘universal’ (cf. Definition 21 and The-
orem 19).

Example 20 (The tautological line bundle over RPl). Let RPl be the real projec-
tive space and denote by τ → RPl the tautological line bundle, whose fibre at
a point [l] ∈ RPl is given by τ[l] = l. The aim is to construct a transversal integral

τ -projective structure on RPl endowed with the trivial foliation. Thus it suffices
to construct a full-rank lattice ΣRPl ⊂ J1τ all of whose sections are holonomic, i.e.
so that it satisfies properties (T1) and (T2).

The universal cover of RPl can be identified with Rl+1 \ 0 and the pull-back of τ
to Rl+1 \0, denoted by τ̃ is trivialisable. In fact, it can be described as follows: it is
the line bundle whose fibre over r ∈ Rl+1 \ 0 is given by R〈r〉. A nowhere vanishing
section of τ is given by z : r 7→ (r, r). The bundle J1τ̃ admits a full-rank lattice
given by

Σ̃ := Z〈j1u1, . . . , j
1ul+1〉,
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where ui := ri
‖r‖z, and r = (r1, . . . , rl+1). It can be checked that Σ̃ defines a

transversal integral τ̃ -projective structure on Rl+1 \ 0. The quotient of Rl+1 \ 0
by the R∗-action by homotheties can be identified with RPl; the quotient of τ̃ by
the obvious lifted action yields τ . By construction, the lifted R∗-action on J1τ̃
preserves Σ̃, which implies that Σ̃ induces a full-rank lattice ΣRPl ⊂ J1τ which
satisfies property (T2), as Σ̃ does. Thus ΣRPl defines a transversal integral τ -
projective structure.

Another way of constructing TIP-structures is through the following special class
of foliated atlases.

Definition 21. A transversal integral projective atlas of (N,F) (TIP-atlas
for short), is an atlas A := {(Ui, χi)} of submersions χi : Ui → RPl, locally defining
F , and smooth maps Aij : Uij → GL(l + 1;Z) for all i, j with Uij 6= 0 satisfying

• χj = [Aij ] ◦ χi on Uij , where [Aij ] ∈ PGL(l + 1;R) is the equivalence class
of Aij ;

• {Aij} satisfies the cocycle condition, i.e. for all i, j, k with Uijk 6= ∅, Aik =
AjkAij .

Remark 7. There is a natural notion of two TIP-atlases being compatible (essen-
tially inducing the same structure) and, thus, of maximal TIP-atlases. Henceforth,
whenever two TIP-atlases are said to be equal, it means that they are compatible
(and hence contained in the same maximal one).

Observation 13. A TIP-atlas {(Ui, χi)} on (N,F) gives rise to a TIP-structure
as follows. The line bundle L→ N is defined by

(41) L = χ∗(τ) :=
∐
i

χ∗i (τ)/ ∼,

where (m, v[l]) ∈ χ∗i (τ) is related to (m′, v[l′]) ∈ χ∗j (τ) if m = m′ ∈ N (hence Aij
maps the line l to l′ ⊂ Rl+1) and v[l′] = Aij(v[l′]) ∈ Rl+1. The reason why equation
(41) yields a well-defined smooth line bundle is that {Aij} satisfies the cocycle
condition. With this, there is a canonical inclusion of vector bundles

χ∗ : χ∗(J1τ) ↪→ J1L,

where χ∗(J1τ) :=
∐
i

χ∗i (J
1τ)/ ∼, and γ : Tχi(m)RPl → Tvχi(m)

τ ∈ χ∗i (J
1τ)m is

related to γ′ : Tχj(m′)RPl → Tvχj(m′)τ ∈ χ∗j (J
1τ)m′ if m = m′ and DAij ◦ γ =

γ′ ◦ DAij . Explicitly, χ is defined by sending the class of γ ∈ χ∗i (J
1τ)m to the

linear map

χ∗(γ) : TmN → T[m,vχi(m)]L, X 7→ [X, γ(Dχi(X))].

As Aij ∈ GL(l + 1;Z), then

Σ := χ∗(ΣRPl) =
∐
i

χ∗i (ΣRPl)/ ∼ ⊂ J1L

is a well defined lattice sitting inside J1L via the map χ. Note that rk (Σ) =
rk (ΣRPl) = l + 1, and that Σ has properties (T1) and (T2). Finally, Lemma 18
implies that Σ ⊂ J1L defines a TIP-structure on (N,F), since ΣR fits into the exact
sequence (39) by construction.
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In fact, Observation 13 can be strengthened, since every TIP-structure also gives
rise to a TIP-atlas. This is the content of the following theorem.

Theorem 19. There is a 1-1 correspondence between

• a transversal integral L-projective structure Σ ⊂ J1L of (N,F);
• a transversal integral projective atlas {(Ui, χi)} of (N,F).

The correspondence is given by

L = χ∗(τ), Σ = χ∗(ΣRPl),

where the notation is as in Observation 13.

Proof. Observation 13 provides a way to construct a TIP-structure starting from a
TIP-atlas. It remains to prove that that a TIP-structure gives rise to a TIP-atlas
and that the two procedures are inverse to one another.

Fix a TIP-structure Σ ⊂ J1L of (N,F). Choose an open cover {Ui} of N
with the property that over each Ui the line bundle π : L → N trivialises via
the nowhere vanishing section zi : Ui × R → π−1(Ui), and denote the transition
functions by cij : Uij → GL(R). Without loss of generality, assume that all Ui are
small enough so that Σ|Ui can be trivialised with local frame αi1, . . . α

i
l+1 ∈ Γ(Σ|Ui)

and transition functions denoted by Aij : Uij → GL(l+1;Z). Property (T2) implies
that for all i and each r = 1, . . . , l+1, there exist smooth functions gir : Ui → R with
αir = j1(girzi). The TIP-atlas is going to be constructed using these functions gir;
before proceeding to the construction, two preparatory claims need to be proved.

Claim 1. For each i, the smooth map χ̄i : Ui → Rl+1, χ̄i := (gi1, . . . , g
i
l+1) takes

values on Rl+1 \ 0 and is transversal to the Euler vector field E =
∑
r
xr

∂
∂xr

.

Proof of Claim 1. Indeed, as j1gi1, . . . , j
1gil+1 are a frame of Σ|Ui and ΣR → L

is pointwise onto by property (T4), it follows that χ̄i 6= 0. Secondly, to prove
that χ̄i is transversal to E, i.e. ImDχ̄i + E = TRl+1, it suffices to show that
χ̄∗i : Ann(E) → ν∗ is injective. Using the same argument of Lemma 18, have that
dgir |F= girβ |F , for some fixed closed, foliated 1-form β; hence

(42) Dχ̄i|F = β ⊗ E,

which implies that χ∗i (Ann(E)) ⊂ ν∗. To show that χ̄∗i : Ann(E)χ̄i(p) → ν∗p is
injective for any p ∈ Ui, it suffices to show that it is surjective (which is, of course,
equivalent by dimension counting). Let γp ∈ ν∗p and extend it to a locally de-
fined smooth section γ ∈ Γ(ν∗|Ui). By property (T4) there exist smooth functions
f1, . . . , f l+1 ∈ C∞(Ui) with

γ =
∑
r

frj1gir ∈ ν∗ ⊂ J1L |Ui .

Using the Spencer decomposition, it follows that
∑
r f

rgir = 0 and
∑
r f

rdgir = γ.
Therefore, χ∗i (γ

′) = γ for

γ′ =
∑
r

fr(p)dxr ∈ Γ(Ann(E)|χ̄i(Ui),

and hence surjectivity follows. �
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Claim 2. The diagram

Uij
χ̄i

{{

χ̄j

##
Rl+1 \ 0

cjiAij // Rl+1 \ 0

commutes.

Proof of Claim 2. This follows by definition of the maps χ̄i. �

Using Claims 1 and 2, a TIP-atlas can be defined as follows. Set χi : Ui → RPl

to be the composite

χi : Ui
χ̄i→ Rl+1 \ 0

q→ RPl,

where q : Rl+1 \ 0→ RPl is the quotient map. By Claim 1, χi is a submersion, and
Claim 2 implies that χj = [Aij ] ◦ χi on Uij . Moreover, since Dq(E) = 0, equation
(42) implies that Dχi|F = 0, hence F is tangent to the fibres of χi on the one hand,
and on the other, dimension counting shows that for p ∈ Ui, TFp = kerDpχi. This
shows that the atlas {(Ui, χi)} defines an TIP-atlas for (N,F).

It remains to show that these constructions are inverse to each other. Start
with a TIP-structure Σ ⊂ J1L, and construct the TIP-atlas {(Ui, χi)} as above.
First, it is shown that L is isomorphic to χ∗(τ), as constructed in Observation 13.
Observe that, for each i, χ∗i τ is trivialisable; a nowhere vanishing section is given
by p 7→ (p, χi(p)); this follows from the fact that χi = q ◦ χ̄i and q∗τ is trivialisable.
For each i, define a local trivialisation of χ∗(τ)|Ui by

ϕi : Ui × R→ χ∗(τ)|Ui , (p, t) 7→ (p, tχ̄i(p)) ∈ χ∗i (τ).

The transition functions with respect to these trivialisations are given by

ϕi(p, t) = (p, tχ̄i(p)) ∼ (p,Aij(tχ̄i(p)))

= (m, t
cji
cji
Aij(χ̄i(p))) = (p, tcijχ̄j(p)) = ϕj(p, tcij),

for p ∈ Uij . Since the cocycle of transition functions of χ∗(τ) and L are equal
over the same open cover, it follows that they are canonically isomorphic. This
identification can be used to show that the TIP-structure obtained from the TIP-
atlas {(Ui, χi)} as outlined in Observation 13 is the same as the original TIP-
structure. Moreover, it is straightforward to check that given a TIP-structure
obtained from a TIP-atlas as in Observation 13, the induced TIP-atlas is compatible
with the original one. In both cases, details are left to the reader to check. �

6. Some examples

6.1. Integrable systems on contact manifolds. Let (M,H) be a 2n+1-dimen-
sional contact manifold. A vector field X ∈ X(M) is said to be an infinitesimal
automorphism of (M,H) if its flow preserves H, or, equivalently, if [X,Y ] ∈ H
for any Y ∈ Γ(H). Suppose that φ : (M,H)→ P is a proper surjective submersion
onto a 2n+1−k-dimensional smooth manifold P with connected fibres (i.e. a fibre
bundle).
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Definition 22. The quadruple (M,H, φ,X ), where X is an Abelian Lie algebra
of infinitesimal automorphisms of (M,H) of dimension k, is a complete pre-
isotropic contact structure if

• kerDφ+H = TM ;
• the subbundle kerDφ ∩H is isotropic or, equivalently, it is involutive (cf.

[21, Lemma 2]);
• the orbits of X coincide with the fibres of φ, i.e. the orbits of the action of

the simply connected abelian Lie group integrating X are the fibres of φ.

Remark 8. While connectedness of the fibres of φ is not required in [21], it is
assumed here for simplicity. Many of the arguments below carry over to the case
of disconnected fibres with small modifications.

The aim of this section is to prove the following result, which relates the notion
of Definition 22 to contact isotropic realisations.

Proposition 20. Given a complete pre-isotropic contact structure (M,H, φ,X ),
there exists a unique line bundle LP → P (up to isomorphism), a bundle iso-
morphism F : φ∗LP → L, and a unique Jacobi structure (LP , {·, ·}) so that φ :
(M,H) → (P,LP , {·, ·}) is a contact isotropic realisation with bundle component
F .

The strategy of the proof is, first, to obtain the result locally (with the trivial
line bundle), and then globalise. In order to prove the local statement, recall the
following theorem, stated below without proof (cf. [21, Theorem 3]).

Theorem 21. Given a complete pre-isotropic contact structure (M,H, φ,X ), for
any m ∈ M there exists an open φ-saturated set U with m ∈ U , a contact form
θU such that X preserves θU , and the foliation kerDφ|U is θU -complete, i.e. first
integrals of kerDφ|U are closed under the Jacobi bracket induced by θU .

The key idea behind the proof of Theorem 21 is to construct θU by fixing an
element of kerDφ to be its Reeb vector field. This can be achieved as follows. Fix
m ∈M and consider a small enough neighbourhood of m such that

• there exists a local section X of kerDφ which is transversal to H;
• the contact distribution is locally defined as ker θ, for θ a locally defined

contact form.

The 1-form θU := θ/θ(X) is again a contact form which locally defines the
contact distribution H and it has the property that X is its Reeb vector field (cf.
[21, proof of Theorem 3]). Theorem 21 implies the local form of Proposition 20, as
stated in the following corollary, which, in fact, proves a slightly stronger statement:

Corollary 22. There exists a unique Poisson structure ΛW on W = φ(U) ⊂ P
which makes φ : (U, θU )→ (W,ΛW ,W ×R) into a contact isotropic realisation with
the identity as bundle component.

Proof. Since φ is a submersion, it is an open map, which implies that W = φ(U) ⊂
P is an open set. Let f, g ∈ C∞(W ) be smooth functions. Then,
(43)

{φ∗f, φ∗g} := Λ]U (φ∗df, φ∗dg) + (φ∗f)X(φ∗g)− (φ∗g)X(φ∗f) = Λ]U (φ∗df, φ∗dg),

where ΛU is the bivector defined by θU , and the equality follows from the fact that
X = RU ∈ Γ(kerDφ). Since first integrals of kerDφ|U are closed under the above
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Jacobi bracket (cf. Theorem 21 above), equation (43) implies that there exists a
unique smooth bivector ΛW on W which is defined by the following equation

(44) φ∗(ΛW (df, dg)) = Λ]U (φ∗df, φ∗dg).

Note that equation (44) implies that Dφ(ΛU ) = ΛW . The bivector ΛW is Poisson
since

JΛW ,ΛW K = JDφ(ΛU ), Dφ(ΛU )K = Dφ(JΛU ,ΛU K) = Dφ(2X ∧ ΛU ) = 0,

since Dφ(X) = 0 by Theorem 21. As the Jacobi structure defined by ΛW is
completely determined by the pair (ΛW , 0) ∈ X2(W )× X(W ), and Dφ(ΛU ) = ΛW
and Dφ(X) = 0, this implies that φ : (U, θU )→ (W,ΛW ) is Jacobi with the identity
as bundle component (cf. Example 9); this proves property (IR1). Property (IR2)
follows from the fact that X ∈ Γ(kerDφ). The distribution kerDφ contains the
Reeb vector field of θU and is pre-isotropic in the sense of [21, Definition 1]; by [21,
part (i) of Theorem 2], it follows that kerDφ ⊂ (kerDφ)⊥, so that property (IR3)
holds. This completes the proof of the corollary. �

Proof of Proposition 20. Let {Ui} be an open cover of M , where each Ui is an
open set of the type described in the statement of Theorem 21, so that, for each
i, there exists a X -invariant contact form θUi . For each i, Corollary 22 gives a
Poisson (and hence Jacobi) structure on Wi := φ(Ui). Suppose that i, j are such
that Uij 6= ∅; since both θUi and θUj are contact forms on Uij , there exists a
nowhere vanishing function Gji : Uij → R with θj = Gjiθi. As both θUi and
θUj are X -invariant, it follows that for all X ∈ X , LXGji = 0. Given that the
orbits of X coincide with the fibres of φ, this implies that Gji is basic, i.e. there
exists a unique nowhere vanishing function gji : Wij → R, where Wi = φ(Wi)
and Wij = Wi ∩ Wj = φ(Uij), with Gji = φ∗gji. If Λi denotes the Poisson
bivector induced on Wi as in Corollary 22 (and similarly for j), it follows from the
construction that Λj = g−1

ji Λi = gijΛi on Wij , where the last equality follows from

the fact that Gij = G−1
ji . Thus the Poisson bivectors Λi and Λj are isomorphic

on Wij up to a conformal factor; equivalently, the induced Jacobi structures on
the trivial line bundle over Wij defined by Λi and Λj are isomorphic with bundle
component gij . Moreover, since the collection of functions {Gji} satisfy the cocycle
condition, it follows that {gij} also do. Therefore, by Observation 4, there exists a
line bundle Lp → P (determined up to isomorphism), and a unique Jacobi structure
(LP , {·, ·}P ) with the property that there exists a bundle isomorphism F : φ∗LP →
LM := TM/H (the latter depending on the explicit isomorphism used to identify
LP → P as a representative of the isomorphism class of line bundles determined
by the cocycle {gij}). The properties in the statement of the proposition are local
in nature, but these hold locally by Corollary 22, thus completing the proof. �

Remark 9. A closer look at the proof of Proposition 20 yields further restrictions
on (the isomorphism class of) the line bundle LP → P . Using the notation of the
above proof, let Λi, Λj be Poisson bivectors on Wi,Wj respectively; then there
exists a nowhere vanishing function gij : Wij → R with Λj = gijΛi on Wij . Since
the self-commutator of both Λi,Λj under the Schouten bracket vanishes, the above
equality implies that

(45) −2gijΛ
]
j(dgij)Λj = 0
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on Wij , where the sign convention used is that of [29]. Since φ : (Uj , θUj ) →
(Wj ,Λj) is a complete isotropic realisation, it follows that Λj is a regular Poisson
bivector on Wj (and, thus, on Wij , which is an open subset) – cf. Lemma 3.

Therefore, it can be checked that equation (45) gives that Λ]j(dgij) = 0, i.e. the

function gij is a local Casimir for Λj . However, since Λi = g−1
ij Λj , it follows that

gij is also a local Casimir for Λi. In other words, the transition functions of the line
bundle LP → P can be chosen to be basic functions with respect to the foliation F
which is locally defined as the symplectic foliation of the Poisson bivectors Λi.

Complete pre-isotropic contact structures lie at the heart of non-commutative
Hamiltonian integrability in the contact setting (cf. [21, Definition 3]).

Definition 23. Given an infinitesimal automorphism X of (M,H), the associated
differential equation

ẋ = X

is said to be non-commutatively Hamiltonian integrable if there exists an
open dense subset Mreg ⊂ M , a proper surjective submersion φ : Mreg → P onto
a smooth manifold P with X tangent to its fibres, and an Abelian Lie algebra
X of infinitesimal automorphisms of (M,H) such that (M,H, φ,X ) is a complete
pre-isotropic contact structure.

In light of Proposition 20, (the regular part of) a non-commutatively Hamiltonian
integrable system on a contact manifold gives rise to a contact isotropic realisation.
In particular, the structure theory for the latter developed in Sections 3 and 4 can
be applied to find invariants of the former. For instance, Theorem 13 provides local
action-angle coordinates for non-commutatively integrable Hamiltonian systems on
contact manifolds (cf. [2, 21] for alternative proofs).

6.2. The case of Poisson manifolds. Since a Jacobi manifold (P,LP , {·, ·}) ad-
mits a contact isotropic realisation only if it is regular and all of its leaves are even
dimensional (cf. Lemma 3), it is worth rephrasing some of the results of Sections
3 and 4 for regular Poisson manifolds, as many of the above objects simplify in
this case. Henceforth, let (P,ΛP ) be a regular Poisson manifold with symplec-
tic foliation denoted by F ; the induced Jacobi structure is defined on the trivial
line bundle LP := P × R (cf. Example 6). Following Example 10, the anchor

ρP : T∗P ⊕R→ TP is given by ρP (η, f) = Λ]P (η), for any (η, f) ∈ T∗P ⊕R. Thus

ker ρP = ν∗ ⊕ R ⊂ T∗P ⊕ R,

while the Spencer operator is given by

D(η, f) := df − η.

Moreover, the TF-connection given by Proposition 5 is

∇̄ : Γ(TF)× C∞(P )→ C∞(P ), (X, f) 7→ df(X);

thus the differential dF defined by equation (15) is the restriction of the exterior
derivative to the foliation F . The cohomology class [ω] ∈ H2(F ;LP ) = H2(F)
defined by Lemma 6 is that of the foliated symplectic form defined by ΛP .

Without loss of generality, consider a contact isotropic realisation φ : (M, θ) →
(P,ΛP ) with the identity as bundle component, where θ ∈ Ω1(M) is a contact form.
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Let Σ ⊂ ker ρP denote the period lattice of φ; by Corollary 12, any local section of
Σ is of the form j1f , for some f ∈ C∞(P ). However, since Σ ⊂ ν∗ ⊕ R,

(46) j1f ∈ Γ(Σ) ⇒ df ∈ Γ(ν∗);

it is important to notice that this does not hold in general, even for regular Jacobi
structures defined on the trivial line bundle. The equality ker ρP = ν∗ ⊕ R can
be exploited to give another way to construct the homomorphism of equation (37)
which underpins the cohomological criterion of Theorem 17. Denote the sheaf
of basic smooth functions on (P,F) by C∞basic(P ;F), i.e. it consists of smooth
functions which are locally constant on the leaves of F . There is a short exact
sequence of sheaves

1→ C∞basic(P ;F) ↪→ C∞(P )
dF−−→ Z1(F)→ 1,

where C∞(P ) and Z1(F) are the sheaves of smooth functions on P and of closed
foliated 1-forms respectively, and dF is the foliated exterior derivative.

Lemma 23. The following is a commutative diagram of short exact sequences of
sheaves

(47) 1 // Σ

pr

��

� � // C∞(ker ρP ) //

pr

��

C∞(ker ρP /Σ)

D̂
��

// 1

1 // C∞basic(P ;F) �
� // C∞(P )

dF

// Z1(F) // 1,

where pr denotes the homomorphism of sheaves induced by the projection pr : T∗P⊕
R → P × R, D̂ is the homomorphism of sheaves defined by equation (36) which is
induced by the Spencer operator D, and Σ denotes the sheaf of smooth sections of
Σ→ P .

Proof. First, observe that equation (46) implies that the image pr(Σ) of the sheaf
homomorphism pr : C∞(ker ρP ) → C∞ lies in the sheaf C∞basic(P ;F). The only
non-trivial fact that needs checking is commutativity on the right hand side of the
diagram (47). Let [α] ∈ Γ(ker ρP /Σ) and set α = (η, f) ∈ Γ(ker ρP ) be a lift of [α].
Then

D̂([α]) = D(η, f)|F = (df − η)|F = dFf = dF ◦ pr(α),

where the third equality follows from the fact that ker ρP = ν∗ ⊕ R. �

Since both C∞(P ) and C∞(ker ρP ) are fine sheaves, there is a commutative dia-
gram

(48) H1(P ; C∞(ker ρP /Σ))

D
��

∼= // H2(P ; Σ)

��
H1(P ;Z1(F))

∼= // H2(F),

where the vertical maps are induced by the outer vertical maps of diagram (47)
(cf. equation (37) also for the definition of D), and the horizontal isomorphisms are
the connecting morphisms induced by the short exact sequences in equation (47).
Therefore, the following corollary holds.
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Corollary 24. The map in cohomology

H2(P ; Σ)→ H2(P ; C∞basic(P ;F)) ∼= H2(F)

induced by the sheaf homomorphism pr : Σ→ C∞basic(P ;F) equals D via the identi-
fications of equation (48).

Corollary 24 indicates how to calculate the map D, which is central to un-
derstanding whether a regular Poisson manifold (P,ΛP ) with given period lattice
Σ ⊂ ν∗ ⊕ R admits a contact isotropic realisation (cf. Theorem 17). For instance,
suppose that Σ = Z〈j1f1, . . . , j

1fk〉 for some basic functions fi, so that it induces
the trivial Zk-system of coefficients. Then (modulo torsion), an element in H2(P ; Σ)
can be written as

k∑
i=1

[ωi]⊗ j1fi,

where, for each i, ωi ∈ Ω2(P ) is a 2-form with integral cohomology class. Since the
map D : H2(P ; Σ)→ H2(F) is induced by the projection pr : Σ→ C∞basic(P ;F) and
Σ is a trivial bundle,

D
( k∑
i=1

[ωi]⊗ j1fi

)
=

k∑
i=1

[fiωi],

where, for each i, fiωi is a closed foliated 2-form since fi is basic.

6.3. Locally conformal symplectic manifolds. As a final example, the ques-
tion of which locally conformal symplectic (lcs for short) manifolds admit con-
tact isotropic realisations is tackled. Let (P, σ, τ) be a lcs manifold; without
loss of generality, it suffices to consider contact isotropic realisations of the form
φ : (M, θ) → (P, σ, τ), where θ ∈ Ω1(P ) is a contact form. Denote by (ΛM , RM )
the bivector and vector fields which uniquely define the Jacobi structure on (M, θ)
(cf. Observation 3).

Proposition 25. A lcs manifold (P, σ, τ) admits a contact isotropic realisation if
and only if the following conditions hold

(1) (P, σ, η) is a globally conformal symplectic manifold, i.e. τ = df , for some
f ∈ C∞(P );

(2) the cohomology class of the symplectic form σ̄ = efσ is integral, i.e. [σ̄] ∈
H2(P ;Z).

Moreover, a contact isotropic realisation φ : (M, θ) → (P, σ,df) is the same thing
as a principal S1-bundle whose infinitesimal action is generated by

e−φ
∗f (RM − Λ]M (φ∗df)),

whose Chern class is [σ̄] ∈ H2(P ;Z) and satisfying dθ = φ∗σ − φ∗df ∧ θ.

The proof of Proposition 25 relies on the following two results.

Lemma 26. A necessary condition for a lcs manifold (P, σ, τ) to admit a con-
tact isotropic realisation is that τ = df for some smooth function f ∈ C∞(P ).
Moreover, Σ = Z〈Be−f (τ,−1)〉 for some constant B ∈ R.

Proof. Let φ : (M, τ)→ (P, σ, τ) be a contact isotropic realisation. The dimension
of its fibres is 1 as it is equal to the corank of the Jacobi structure on P . By defi-
nition, ker ρP = R〈(τ,−1)〉; since the fibres of φ are compact and by smoothness of
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the period lattice, Σ = Z〈g(τ,−1)〉 for some positive smooth function f ∈ C∞(P ).
Corollary 12 implies that there exists a smooth function λ such that j1λ = (gτ,−g);
in other words, τ = d(− log g), as required. �

The following result is stated without proof, as it follows from a simple calcula-
tion.

Lemma 27. Let (P, σ,df) be a globally conformal symplectic manifold. Then φ :
(M, θ) → (P, σ,df) is a contact isotropic realisation if and only if φ : (M, θ̄) →
(P, σ̄) is a contact isotropic realisation, where θ̄ ∈ Ω1(M) is the contact form θ̄ :=
efθ and σ̄ ∈ Ω2(P ) is the symplectic form σ̄ = efσ.

Proof of Proposition 25. Lemma 26 proves that property (1) in the statement of
the proposition is a necessary condition for (P, σ, τ) to admit a contact isotropic
realisation. Henceforth, without loss of generality, assume that τ = df and that
the aim is to construct a complete isotropic realisation of (P, σ,df) with period net
Σ = Z〈j1e−f 〉 (all other cases follow by multiplying by a suitable constant). In this
case, Lemma 27 gives that φ : (M, θ)→ (P, σ,df) is a contact isotropic realisation
if and only if φ : (M, θ̄) → (P, σ̄) is; by Example 15, such a realisation exists if
and only if [σ̄] is integral, and [σ̄] is the Chern class of the S1-bundle φ : M → P .
Moreover, dθ̄ = φ∗σ̄, i.e.

φ∗(ef )(dθ + φ∗df ∧ θ) = dθ̄ = φ∗σ̄ = φ∗(ef )φ∗σ

which is equivalent to dθ = φ∗σ− φ∗dfa∧ θ, and the infinitesimal generator of the
action is given by the Reeb vector field of θ̄, which, written in terms of the bivector

and Reeb vector field of θ is given by e−f (RM − Λ]M (φ∗df)) as required. �
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[27] A. Lichnerowicz. Sur les algèbres de Lie locales de Kirillov-Shiga. C. R. Acad. Sci. Paris Sér.
I Math., 296(22):915–920, 1983.

[28] C.-M. Marle. On Jacobi manifolds and Jacobi bundles. In Symplectic geometry, groupoids,

and integrable systems (Berkeley, CA, 1989), volume 20 of Math. Sci. Res. Inst. Publ., pages
227–246. Springer, New York, 1991.

[29] C.-M. Marle. The Schouten-Nijenhuis bracket and interior products. J. Geom. Phys., 23(3-

4):350–359, 1997.
[30] E. Miranda. A normal form theorem for integrable systems on contact manifolds. R. Soc.

Mat. Esp, (9):240–246, 2005.

[31] D. Sepe. Topological classification of Lagrangian fibrations. J. Geom. Phys., 60(2):341–351,
2010.

[32] I. Vaisman. Lectures on the geometry of Poisson manifolds, volume 118 of Progress in Math-
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